JPH0613085A - Manufacture of electrode catalytic layer for fuel cell - Google Patents

Manufacture of electrode catalytic layer for fuel cell

Info

Publication number
JPH0613085A
JPH0613085A JP3116080A JP11608091A JPH0613085A JP H0613085 A JPH0613085 A JP H0613085A JP 3116080 A JP3116080 A JP 3116080A JP 11608091 A JP11608091 A JP 11608091A JP H0613085 A JPH0613085 A JP H0613085A
Authority
JP
Japan
Prior art keywords
organic solvent
boiling point
fuel cell
rolling
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116080A
Other languages
Japanese (ja)
Inventor
Shinji Kamitomai
真二 上斗米
Katsuaki Kato
克明 加藤
Akira Uchiumi
章 内海
Yasuyuki Maeda
靖之 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Japan Vilene Co Ltd
Original Assignee
NE Chemcat Corp
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp, Japan Vilene Co Ltd filed Critical NE Chemcat Corp
Priority to JP3116080A priority Critical patent/JPH0613085A/en
Publication of JPH0613085A publication Critical patent/JPH0613085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a method for manufacturing an electrode catalytic layer for fuel cell having a high cavity rate, a fine porous structure, and a high physical strength. CONSTITUTION:A method for manufacturing an electrode catalytic layer for fuel cell comprises the processes of mixing a catalyst fine particle suspension with a dispersion of fluorine resin, co-coagulating the catalyst fine particle and the fluorine resin in the mixture, kneading the coagulated body, and rolling the kneaded material. In this time, a low boiling point organic solvent having a boiling point lower than that of water and a high boiling point organic solvent having a boiling point higher than that of water are contained in the coagulated body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池の電極触媒層の
製造方法に関する。更に詳細には、微細な多孔構造と高
い空隙率とを有しかつ高い物理的強度を備えた燃料電池
用電極触媒層の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an electrode catalyst layer of a fuel cell. More specifically, it relates to a method for producing an electrode catalyst layer for a fuel cell, which has a fine porous structure, a high porosity, and a high physical strength.

【0002】[0002]

【従来の技術】燃料電池用電極触媒層はカーボン電極な
どの電極表面に形成され、この触媒層を備えた正負の電
極間にリン酸電解液マトリックス層を設けることにより
燃料電池が構成されている。燃料電池用電極触媒層は、
カーボンブラック等の触媒担体表面に白金などの貴金属
微粒子を担持させた触媒微粒子の集合体をフィブリル化
された弗素樹脂のネットワーク内に保持した微細な多孔
構造からなり、触媒層内に形成される固液気相の3相界
面で、触媒作用を利用して水素ガス、酸素ガス、及び電
解質を化学反応させて、電気エネルギーを取り出す働き
をしている。
2. Description of the Related Art A fuel cell electrode catalyst layer is formed on the surface of an electrode such as a carbon electrode, and a fuel cell is constructed by providing a phosphoric acid electrolyte matrix layer between positive and negative electrodes provided with this catalyst layer. . The fuel cell electrode catalyst layer is
It consists of a fine porous structure in which an aggregate of catalyst fine particles in which noble metal fine particles such as platinum are supported on the surface of a catalyst carrier such as carbon black is held in a network of fibrillated fluororesin and is formed in the catalyst layer. At the three-phase interface of the liquid-gas phase, hydrogen gas, oxygen gas, and the electrolyte are chemically reacted by utilizing the catalytic action to extract electric energy.

【0003】このような燃料電池用電極触媒層の製造方
法としては、従来より種々のものが提案されている。例
えば特開昭63−48757号公報には、水に分散させ
た触媒微粒子を弗素樹脂微粒子のディスパージョンに混
合し、混合液にエチレングリコールなどの有機溶媒を加
えて混合物中の触媒微粒子と弗素樹脂とを共凝集させた
後、この凝集体を混練し押し出し成型した後、圧延する
という方法が記載されている。この方法によれば、エチ
レングリコールなどの高い沸点を有する有機溶媒を用い
ていることから、混練、圧延時において有機溶媒が存在
し、弗素樹脂のフィブリル化が促進されるという長所が
ある反面、圧延工程時に多量の高沸点有機溶媒が存在す
ることから、弗素樹脂に対する可塑化効果が強く働きす
ぎて、圧延時に触媒層の圧密化が進み、空隙率の高い触
媒層を得にくいという欠点があった。
Various methods have been conventionally proposed as a method for producing such an electrode catalyst layer for a fuel cell. For example, in Japanese Unexamined Patent Publication No. 63-48757, catalyst fine particles dispersed in water are mixed with a dispersion of fine fluororesin particles, and an organic solvent such as ethylene glycol is added to the mixture to add fine catalyst particles and fluororesin in the mixture. It is described that after co-aggregating and, the aggregate is kneaded, extruded and molded, and then rolled. According to this method, since an organic solvent having a high boiling point such as ethylene glycol is used, there is an advantage that the organic solvent is present during kneading and rolling, and fibrillation of the fluororesin is promoted, while rolling Since there is a large amount of high-boiling point organic solvent during the process, the plasticizing effect on the fluororesin is too strong, and the compaction of the catalyst layer progresses during rolling, which makes it difficult to obtain a catalyst layer with a high porosity. .

【0004】別の燃料電池用電極触媒層の製造方法とし
て、特開昭63−48756号公報には、水に分散させ
た触媒微粒子を弗素樹脂のディスパージョンに混合し、
混合液にアセトンなどの親水性有機溶媒を加えて混合物
中の触媒微粒子と弗素樹脂とを共凝集させた後、この凝
集体を濾過し一旦乾燥させて前記親水性有機溶媒を除去
し、次いでこれにグリセリン、エチレングリコールなど
の有機溶媒を加えて混練し圧延するという方法が記載さ
れている。この方法にあっては、グリセリン、エチレン
グリコールなどの高い沸点を有する有機溶媒を用いてお
り、前記特開昭63−48757号公報に記載の方法と
同様に、圧延工程時に多量の有機溶媒が存在し、微細な
多孔構造を有し、かつ空隙率が高い触媒層を得ることが
困難であった。
As another method for producing a fuel cell electrode catalyst layer, Japanese Patent Laid-Open No. 63-48756 discloses that catalyst fine particles dispersed in water are mixed with a dispersion of a fluororesin.
After adding a hydrophilic organic solvent such as acetone to the mixed solution to coaggregate the catalyst fine particles and the fluororesin in the mixture, the aggregate is filtered and once dried to remove the hydrophilic organic solvent. Describes a method of adding an organic solvent such as glycerin and ethylene glycol, kneading and rolling. In this method, an organic solvent having a high boiling point such as glycerin and ethylene glycol is used, and like the method described in JP-A-63-48757, a large amount of organic solvent is present during the rolling step. However, it is difficult to obtain a catalyst layer having a fine porous structure and a high porosity.

【0005】更に別の燃料電池用電極触媒層の製造方法
として、特開昭63−245864号公報に記載された
ものがある。この方法は、水に分散させた触媒微粒子を
弗素樹脂のディスパージョンに混合した後、これにメチ
ルアルコール、エチルアルコール、イソプロピルアルコ
ール、エチレングリコールなどの有機溶媒を2段階に分
けて加えることにより、有機溶媒を分散系に加えたとき
の気泡の発生を防止し、凝集体における触媒微粒子及び
弗素樹脂の均一な分散を実現するようにしたものであ
る。この方法にあっては、メチルアルコール、エチルア
ルコール、イソプロピルアルコール、エチレングリコー
ルなどの有機溶媒を用いるとしているが、メチルアルコ
ール、エチルアルコール、イソプロピルアルコールなど
の有機溶媒は沸点が100℃以下の低い沸点を有する有
機溶媒であり、これのみを用いた場合には圧延工程で有
機溶媒の気化が過度に進行してしまい、圧延を行うのに
必要な混練物の流動性、すなわち、弗素樹脂の可塑性が
急激に失われるので、シートの圧密化は起きにくく、高
い空隙率を保つことができるが、反面、圧延時の圧力に
シートが耐え切れずにクラックやひび割れが生じるとい
う欠点があった。一方、エチレングリコールなどの有機
溶媒は沸点が100℃以上の高い沸点を有する有機溶媒
であり、これのみを用いた場合には圧延工程の終わりま
で多量の有機溶媒が存在し、前例と同様に高い空隙率を
有する触媒層が得にくいという結果を招いていた。
Yet another method for producing an electrode catalyst layer for a fuel cell is disclosed in JP-A-63-245864. In this method, the catalyst fine particles dispersed in water are mixed with a dispersion of a fluororesin, and then an organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol or ethylene glycol is added to the dispersion in two steps to form an organic solvent. It is intended to prevent the generation of bubbles when a solvent is added to the dispersion system and to realize the uniform dispersion of the catalyst fine particles and the fluororesin in the aggregate. In this method, an organic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and ethylene glycol is used, but an organic solvent such as methyl alcohol, ethyl alcohol, and isopropyl alcohol has a low boiling point of 100 ° C. or lower. It is an organic solvent that has, and when only this is used, the vaporization of the organic solvent proceeds excessively in the rolling process, and the fluidity of the kneaded product necessary for rolling, that is, the plasticity of the fluororesin is rapidly increased. However, it is difficult to consolidate the sheet, and a high porosity can be maintained, but on the other hand, there is a drawback that the sheet cannot withstand the pressure during rolling and cracks or cracks occur. On the other hand, an organic solvent such as ethylene glycol has a high boiling point of 100 ° C. or higher, and when only this is used, a large amount of the organic solvent exists until the end of the rolling process, which is high as in the previous example. This has resulted in the difficulty of obtaining a catalyst layer having a porosity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みなされたものであり、高い空隙率と微細な多
孔構造とを有しかつ高い物理的強度を備えた燃料電池用
電極触媒層の製造方法を提供することを目的とするもの
である。
The present invention has been made in view of the above circumstances, and has a high porosity, a fine porous structure, and a high physical strength, and is an electrode catalyst for a fuel cell. It is intended to provide a method for producing a layer.

【0007】[0007]

【課題を解決するための手段及び作用】上記目的を達成
するため、請求項1記載の発明にあっては、「触媒微粒
子懸濁液と弗素樹脂のディスパージョンとを混合する工
程と、混合液中の触媒微粒子と弗素樹脂とを共凝集させ
る工程と、凝集体を混練する工程と、混練物を圧延する
工程とを備えた燃料電池用電極触媒層の製造方法におい
て、前記凝集体中に、水の沸点よりも低い沸点を有する
低沸点有機溶媒と、水の沸点よりも高い沸点を有する高
沸点有機溶媒とを含ませたことを特徴とする燃料電池用
電極触媒層の製造方法」をその要旨とした。請求項2記
載の発明にあっては、「低沸点有機溶媒と、高沸点有機
溶媒の沸点差が少なくとも10℃以上であることを特徴
とする燃料電池用電極触媒層の製造方法」をその要旨と
した。請求項3記載の発明にあっては、「圧延する工程
での圧延温度が40〜80℃であることを特徴とする燃
料電池用電極触媒層の製造方法」をその要旨とした。
In order to achieve the above object, in the invention according to claim 1, "a step of mixing a catalyst fine particle suspension and a dispersion of a fluororesin, and a mixed solution" In the method for producing a fuel cell electrode catalyst layer comprising a step of coaggregating the catalyst fine particles and a fluororesin therein, a step of kneading the aggregate, and a step of rolling the kneaded material, in the aggregate, A low-boiling point organic solvent having a boiling point lower than that of water, and a high-boiling point organic solvent having a boiling point higher than that of water are included in the method for producing an electrode catalyst layer for a fuel cell. I made it a summary. According to the invention of claim 2, "a method for producing an electrode catalyst layer for a fuel cell, characterized in that the boiling point difference between the low boiling point organic solvent and the high boiling point organic solvent is at least 10 ° C or more" And The gist of the invention according to claim 3 is "a method for producing an electrode catalyst layer for a fuel cell, wherein the rolling temperature in the rolling step is 40 to 80 ° C".

【0008】以下、本発明の燃料電池用電極触媒層の製
造方法を更に詳しく説明する。触媒微粒子は、カーボン
ブラックなどの触媒担体表面に白金などの貴金属微粒子
を担持させたものであり、この触媒微粒子を水に超音波
などの分散手段や界面活性剤を用いることにより均一に
分散させて触媒微粒子懸濁液を得る。一方、弗素樹脂の
ディスパージョンはポリテトラフルオロエチレン(PT
FE)などの弗素樹脂を水に分散させたものであり、分
散性を高めるため分散媒を用いたり、超音波分散などの
手法を用いたりすることができる。この後、これらを均
一に混合する。弗素樹脂量としては触媒層重量に対し
て、20〜60%であることが望ましい。というのは、
弗素樹脂量が20%よりも少ない場合には触媒を安定し
た状態に保持することが困難となる上に、触媒層の物理
的強度が低下することになる。一方、60%よりも多い
場合には、相対的に保持できる触媒微粒子量が少なくな
り、十分な触媒効果を得ることができなくなるからであ
る。
The method for producing the fuel cell electrode catalyst layer of the present invention will be described in more detail below. The catalyst fine particles are obtained by supporting precious metal fine particles such as platinum on the surface of a catalyst carrier such as carbon black, and the catalyst fine particles are uniformly dispersed in water by using a dispersing means such as ultrasonic waves or a surfactant. A catalyst fine particle suspension is obtained. On the other hand, the dispersion of fluorine resin is polytetrafluoroethylene (PT
A fluororesin such as FE) is dispersed in water, and a dispersion medium can be used to enhance dispersibility, or a method such as ultrasonic dispersion can be used. After this, these are mixed uniformly. The amount of fluororesin is preferably 20 to 60% with respect to the weight of the catalyst layer. I mean,
When the amount of the fluororesin is less than 20%, it becomes difficult to keep the catalyst in a stable state, and the physical strength of the catalyst layer decreases. On the other hand, if it is more than 60%, the amount of catalyst fine particles that can be relatively retained becomes small, and a sufficient catalytic effect cannot be obtained.

【0009】次に、上記混合液に凝集剤を添加して、触
媒微粒子及び弗素樹脂を共凝集させる。凝集剤は親水性
の有機溶媒であれば何でもよい。次に、この工程により
得られた凝集体を含む液から、濾過などの分離法により
凝集体を取り出し、この凝集体を混練し圧延する。
Next, an aggregating agent is added to the above mixed solution to coaggregate the catalyst fine particles and the fluororesin. The aggregating agent may be any hydrophilic organic solvent. Next, the agglomerates are taken out from the liquid containing the agglomerates obtained in this step by a separation method such as filtration, and the agglomerates are kneaded and rolled.

【0010】混練は、混練攪拌機、ニーダー、バンバリ
ーミキサー、ロールミキサー、スクリューミキサーなど
の混練機により行う。弗素樹脂は剪断力を加えることに
より、フィブリル化して粘着性のある微細な繊維状とな
る性質を有しており、凝集体中の弗素樹脂は、混練時の
剪断力によりフィブリル化する。同時にこの混練によっ
て弗素樹脂の凝集体と触媒微粒子の凝集体との均一な混
合物が形成されることになる。
The kneading is carried out by a kneading machine such as a kneading stirrer, a kneader, a Banbury mixer, a roll mixer, a screw mixer. The fluororesin has a property of becoming fibrillated into a fine fibrous substance having tackiness by applying a shearing force, and the fluororesin in the aggregate is fibrillated by the shearing force at the time of kneading. At the same time, this kneading forms a uniform mixture of the agglomerates of the fluororesin and the agglomerates of the catalyst fine particles.

【0011】圧延は、カレンダーロールやプレス機等に
より行う。この圧延により、混練物中の弗素樹脂のフィ
ブリル化が進行すると共に、フィブリル化された繊維状
物が配向し、その物理的強度を高めることができる。物
理的強度をさらに高めるためには、圧延する工程を繰り
返せばよく、特にカレンダーロールを用いる場合には、
圧延方向を変えることにより強度を高めることができ
る。
Rolling is performed by a calender roll or a press. By this rolling, the fibrillation of the fluororesin in the kneaded material proceeds, and the fibrillated fibrous material is oriented, so that its physical strength can be increased. In order to further increase the physical strength, the rolling step may be repeated, especially when a calender roll is used,
The strength can be increased by changing the rolling direction.

【0012】上記、混練する工程及び圧延する工程にお
いて、フィブリル化助剤として有機溶媒を添加すること
により、弗素樹脂のフィブリル化の促進を計ることがで
きる。本発明の燃料電池用電極触媒層の製造方法にあっ
ては、凝集体中に、水の沸点より低い沸点を有する低沸
点有機溶媒と、水の沸点よりも高い沸点を有する高沸点
有機溶媒とを含ませている。これら低沸点有機溶媒及び
高沸点有機溶媒の添加方法としては、混練する工程で、
その混練物中に低沸点有機溶媒及び高沸点有機溶媒が含
んで居ればよいことから、例えば触媒微粒子懸濁液と弗
素樹脂のディスパージョンとを混合した後に、低沸点有
機溶媒又は高沸点有機溶媒を加えて、前記触媒微粒子と
弗素樹脂とを共凝集させ、この凝集体を濾過した後のろ
滓物に高沸点有機溶媒又は低沸点有機溶媒を加えるとい
う方法がある。また、その他の方法としては、触媒微粒
子懸濁液と弗素樹脂のディスパージョンとを混合した後
に、低沸点有機溶媒及び高沸点有機溶媒を一緒に加える
方法、或は共凝集させ濾過した後のろ滓物を混練すると
きに低沸点有機溶媒及び高沸点有機溶媒を加える方法が
ある。尚、上記方法のうち混合する工程の後に低沸点有
機溶媒及び又は高沸点有機溶媒を加えた場合には、これ
ら低沸点有機溶媒及び又は高沸点有機溶媒が後の混練す
る工程及び圧延する工程での作用に加えて凝集剤として
も作用することになり有用である。
In the above kneading step and rolling step, the fibrillation of the fluororesin can be promoted by adding an organic solvent as a fibrillation aid. In the method for producing a fuel cell electrode catalyst layer of the present invention, in the aggregate, a low boiling organic solvent having a boiling point lower than that of water, and a high boiling organic solvent having a boiling point higher than that of water. Is included. As a method of adding these low boiling point organic solvent and high boiling point organic solvent, in the step of kneading,
Since it suffices that the low-boiling organic solvent and the high-boiling organic solvent are contained in the kneaded product, for example, after mixing the catalyst fine particle suspension and the dispersion of the fluororesin, the low-boiling organic solvent or the high-boiling organic solvent is mixed. Is added to co-aggregate the catalyst fine particles with the fluororesin, and the aggregate is filtered, and then a high-boiling organic solvent or a low-boiling organic solvent is added to the filter cake. Further, as another method, after mixing the catalyst fine particle suspension and the dispersion of the fluororesin, a low-boiling organic solvent and a high-boiling organic solvent are added together, or a filter after co-coagulating and filtering is added. There is a method of adding a low boiling point organic solvent and a high boiling point organic solvent when kneading the slag. Incidentally, in the case of adding a low-boiling point organic solvent and / or a high-boiling point organic solvent after the step of mixing in the above method, in the step of kneading and rolling the low-boiling point organic solvent and / or the high-boiling point organic solvent later. In addition to the action of, it also acts as an aggregating agent and is useful.

【0013】水の沸点よりも低い沸点を有する低沸点有
機溶媒としては、メチルアルコール、エチルアルコー
ル、イソプロピルアルコール、プロピルアルコール等の
脂肪族飽和アルコールなどがある。又、水の沸点よりも
高い沸点を有する高沸点有機溶媒としては、エチレング
リコールエチルエーテルなどのエチレングリコールモノ
エーテル、ブチルアルコール、イソブチルアルコール、
n−アミルアルコール、イソアミルアルコール等の脂肪
族飽和アルコール、エチレングリコール等がある。
Examples of the low boiling point organic solvent having a boiling point lower than that of water include aliphatic saturated alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and propyl alcohol. Further, as the high boiling point organic solvent having a boiling point higher than that of water, ethylene glycol monoether such as ethylene glycol ethyl ether, butyl alcohol, isobutyl alcohol,
There are aliphatic saturated alcohols such as n-amyl alcohol and isoamyl alcohol, and ethylene glycol.

【0014】前記混練する工程において、低沸点有機溶
媒及び高沸点有機溶媒は、弗素樹脂のフィブリル化を促
進する。又、圧延する工程においては、圧延時の熱によ
り、低沸点有機溶媒の気化が進行し、圧延初期の段階で
その全量若しくはその大部分が気化し、その分だけ混練
物中の有機溶媒量が減少する。これに伴い、弗素樹脂の
流動化も低下し圧密化が起こりにくくなり、水或は低沸
点有機溶媒の気化によって生じた空隙が保持され易くな
る。一方、高沸点有機溶媒は、圧延時の熱によっても気
化しにくく、圧延終了までその全量若しくは大部分が存
在し、弗素樹脂のフィブリル化を促進すると共に配向性
が増し、物理的強度の向上が計られる。
In the kneading step, the low boiling point organic solvent and the high boiling point organic solvent accelerate the fibrillation of the fluororesin. Further, in the rolling step, the heat of rolling causes the vaporization of the low boiling point organic solvent to progress, and the whole amount or most of it is vaporized in the initial stage of rolling, and the amount of the organic solvent in the kneaded product is correspondingly increased. Decrease. Along with this, fluidization of the fluororesin is also reduced, and consolidation is less likely to occur, and voids generated by vaporization of water or the low boiling point organic solvent are easily retained. On the other hand, the high-boiling organic solvent is hard to be vaporized by the heat at the time of rolling, and the whole amount or most of it is present until the end of rolling, which promotes the fibrillation of the fluororesin and increases the orientation, thereby improving the physical strength. Measured.

【0015】水に対する高沸点有機溶媒及び低沸点有機
溶媒を合わせた有機溶媒の比率は、2:1〜1:2(体
積比)が好ましい。この比率よりも水の比率が高くなる
と、凝集力が不十分となったり、混練時のフィブリル化
が十分に進まなくなる。逆に高沸点有機溶媒及び低沸点
有機溶媒の比率が高くなると、フィブリル化は進行する
が、圧延する工程や圧延後の仮焼成時に発火し易くなり
好ましくない。又、高沸点有機溶媒と低沸点有機溶媒の
比率は、2:1〜1:9(体積比)が好ましい。さらに
好ましくは1:1〜1:4である。高沸点有機溶媒の比
率が前記比率よりも大きくなると、低沸点有機溶媒が圧
延初期に気化した後も弗素樹脂の流動性は低下せず、可
塑性が強いことから圧密化して高い空隙を確保するのが
困難になる。逆に、低沸点有機溶媒の比率が高い場合に
は、圧延初期に低沸点有機溶媒が気化して弗素樹脂の可
塑性が急激に低下するため、クラックやひび割れが生じ
易くなる。
The ratio of the organic solvent including the high boiling organic solvent and the low boiling organic solvent to water is preferably 2: 1 to 1: 2 (volume ratio). When the ratio of water is higher than this ratio, the cohesive force becomes insufficient or fibrillation during kneading does not proceed sufficiently. On the contrary, if the ratio of the high-boiling organic solvent and the low-boiling organic solvent is high, fibrillation proceeds, but ignition is likely to occur during the rolling step or pre-baking after rolling, which is not preferable. Further, the ratio of the high boiling point organic solvent and the low boiling point organic solvent is preferably 2: 1 to 1: 9 (volume ratio). More preferably, it is 1: 1 to 1: 4. When the ratio of the high boiling point organic solvent is larger than the above ratio, the fluidity of the fluororesin does not decrease even after the low boiling point organic solvent is vaporized in the initial stage of rolling, and since the plasticity is strong, it is consolidated to secure high voids. Becomes difficult. On the other hand, when the ratio of the low boiling point organic solvent is high, the low boiling point organic solvent is vaporized at the initial stage of rolling and the plasticity of the fluororesin is drastically lowered, so that cracks and cracks are likely to occur.

【0016】高沸点有機溶媒と低沸点有機溶媒の沸点差
は10℃以上、好ましくは20℃以上であるとよい。沸
点差が10℃以下の場合、前述した高沸点有機溶媒及び
低沸点有機溶媒の沸点の異なることによる十分な作用効
果を期待できなくなる。
The boiling point difference between the high boiling point organic solvent and the low boiling point organic solvent is preferably 10 ° C. or more, and more preferably 20 ° C. or more. When the boiling point difference is 10 ° C. or less, it is not possible to expect sufficient action and effect due to the different boiling points of the high boiling point organic solvent and the low boiling point organic solvent.

【0017】尚、前記圧延する工程での圧延温度として
は、40〜80℃が好ましい。圧延温度が40℃を下ま
わる場合には低沸点有機溶媒が十分に気化しないで残存
することになり、弗素樹脂の流動性が十分に低下せず、
高い空隙率を確保できなくなる。圧延温度が80℃を上
回る場合には、低沸点有機溶媒及び水のみならず混練物
中の有機溶媒量が減少することになり、弗素樹脂の可塑
性が急激に低下しすぎるため、クラックやひび割れが発
生し易くなる。
The rolling temperature in the rolling step is preferably 40 to 80 ° C. When the rolling temperature is lower than 40 ° C., the low boiling point organic solvent remains without being vaporized sufficiently, and the fluidity of the fluororesin is not sufficiently lowered,
A high porosity cannot be secured. If the rolling temperature is higher than 80 ° C, not only the low boiling point organic solvent and water but also the amount of the organic solvent in the kneaded product will be decreased, and the plasticity of the fluororesin will be drastically reduced, resulting in cracks and cracks. It tends to occur.

【0018】圧延する工程の後、シートを130〜20
0℃程度の温度で仮焼成し、シート内の高沸点有機溶媒
及び残存する水分を除去し、適度な細孔分布と高い空隙
率を持つ触媒層が得られる。
After the rolling step, the sheet is rolled between 130 and 20.
Preliminary calcination at a temperature of about 0 ° C. removes the high boiling point organic solvent and residual water in the sheet to obtain a catalyst layer having an appropriate pore distribution and high porosity.

【0019】[0019]

【実施例】【Example】

実施例1 白金を担持したカーボンブラックからなる触媒微粒子
6.0gを、超純水1リットルに超音波を用いて均一に
分散させた。次いで、この分散液にポリテトラフルオロ
エチレン(PTFE)ディスパージョン(三井フロロケ
ミカル株式会社製:30−J)10.0gを滴下して均
一に混合した。この後、この混合液にエチルアルコール
1リットルとイソブチルアルコール0.5リットルの混
合溶媒を添加して、触媒微粒子とPTFEを共凝集させ
た。この凝集体を含む液を吸引濾過することにより、6
0gのろ滓物を得た。このろ滓物を35〜40℃に加温
した双腕ニーダーにより混練し、PTFEを十分にフィ
ブリル化させた。次に、この混練物をロール温度50℃
のカレンダーに縦横交互に通して、主として混練物中に
残るエタノールを蒸発させながら圧延を行い、厚さ14
0μmのシート状物を得た。このシート状物を150℃
まで加熱して、シート内に残る主として水、イソブタノ
ールなどの溶媒を蒸発させて、空隙率76容量%の触媒
層を得た。得られた触媒層は取り扱いにより破損が生じ
ることがなく、十分な強度を有するものであった。
Example 1 6.0 g of catalyst fine particles made of carbon black supporting platinum were uniformly dispersed in 1 liter of ultrapure water by using ultrasonic waves. Next, 10.0 g of polytetrafluoroethylene (PTFE) dispersion (30-J, manufactured by Mitsui Fluorochemical Co., Ltd.) was added dropwise to this dispersion and uniformly mixed. Then, a mixed solvent of 1 liter of ethyl alcohol and 0.5 liter of isobutyl alcohol was added to this mixed liquid to coagulate the catalyst fine particles and PTFE. By suction-filtering the liquid containing this aggregate, 6
0 g of filter cake was obtained. This filter cake was kneaded with a twin-arm kneader heated to 35 to 40 ° C to sufficiently fibrillate PTFE. Next, this kneaded product is rolled at a temperature of 50 ° C.
The thickness of the kneaded product is 14
A sheet having a thickness of 0 μm was obtained. This sheet is 150 ℃
The mixture was heated up to the temperature to evaporate mainly the solvent such as water and isobutanol remaining in the sheet to obtain a catalyst layer having a porosity of 76% by volume. The resulting catalyst layer had sufficient strength without being damaged by handling.

【0020】実施例2 白金を担持したカーボンブラックからなる触媒微粒子
6.0gを、超純水1リットルに超音波を用いて均一に
分散させた。次いで、この分散液にPTFEディスパー
ジョン(三井フロロケミカル株式会社製:30−J)
4.3gを滴下して均一に混合した。この後、この混合
液にイソプロピルアルコール1.5リットルを添加し
て、触媒微粒子とPTFEを共凝集させた。凝集体の沈
澱後、上澄み液の2リットルを除去し、イソアミルアル
コール80ミリリットルを加えて混合した。この際、
水:イソプロピルアルコール:イソアミルアルコールの
体積比は、2:3:1であった。この凝集体を含む液を
吸引濾過することにより、42.9gのろ滓物を得た。
このろ滓物を45〜50℃に加温した双腕ニーダーによ
り混練しPTFEを十分にフィブリル化させた。次に、
この混練物をロール温度60℃のカレンダーに縦横交互
に通して、主として混練物中のイソプロピルアルコール
を蒸発させながら圧延を行い、厚さ140μmのシート
状物を得た。このシート状物を150℃まで加熱して、
シート内に残る主としてイソアミルアルコール等の溶媒
を蒸発させて、空隙率78容量%の触媒層を得た。得ら
れた触媒層は取り扱いにより破損が生じることがなく、
十分な強度を有するものであった。
Example 2 6.0 g of catalyst fine particles made of carbon black carrying platinum was uniformly dispersed in 1 liter of ultrapure water by using ultrasonic waves. Next, a PTFE dispersion (Mitsui Fluorochemical Co., Ltd .: 30-J) was added to this dispersion.
4.3 g was added dropwise and mixed uniformly. Thereafter, 1.5 liters of isopropyl alcohol was added to this mixed solution to coagulate the catalyst fine particles and PTFE. After precipitation of the aggregates, 2 liters of the supernatant was removed, and 80 ml of isoamyl alcohol was added and mixed. On this occasion,
The volume ratio of water: isopropyl alcohol: isoamyl alcohol was 2: 3: 1. The liquid containing this aggregate was suction-filtered to obtain 42.9 g of a filter cake.
This filter cake was kneaded with a twin-arm kneader heated to 45 to 50 ° C. to sufficiently fibrillate PTFE. next,
This kneaded product was passed through a calender at a roll temperature of 60 ° C. alternately in the vertical and horizontal directions to perform rolling while mainly evaporating isopropyl alcohol in the kneaded product to obtain a sheet-shaped product having a thickness of 140 μm. Heat this sheet to 150 ° C,
A solvent such as isoamyl alcohol mainly remaining in the sheet was evaporated to obtain a catalyst layer having a porosity of 78% by volume. The resulting catalyst layer is not damaged by handling,
It had sufficient strength.

【0021】実施例3 白金を担持したカーボンブラックからなる触媒微粒子
6.0gを、超純水1リットルに超音波を用いて均一に
分散させた。次いで、この分散液にPTFEディスパー
ジョン(三井フロロケミカル株式会社製:30−J)1
0.0gを滴下して均一に混合した。この後、この混合
液にエチルアルコール1リットルを添加して、触媒微粒
子とPTFEを共凝集させた。この凝集体を含む液を吸
引濾過した後、110℃迄徐々に昇温して水及びエチル
アルコールを蒸発させ、乾燥した。この乾燥した触媒微
粒子とPTFEの混合物をボールミルを用いて平均粒径
約5μmに粉砕し、これに水30ミリリットル、イソア
ミルアルコール10ミリリットル、イソプロピルアルコ
ール20ミリリットルの混合溶液を加えた。
Example 3 6.0 g of catalyst fine particles made of carbon black supporting platinum were uniformly dispersed in 1 liter of ultrapure water by using ultrasonic waves. Next, a PTFE dispersion (Mitsui Fluorochemical Co., Ltd .: 30-J) 1 was added to the dispersion liquid.
0.0 g was added dropwise and mixed uniformly. Then, 1 liter of ethyl alcohol was added to this mixed solution to coagulate the catalyst fine particles and PTFE. After the liquid containing this aggregate was filtered by suction, the temperature was gradually raised to 110 ° C. to evaporate water and ethyl alcohol and dried. The dried mixture of catalyst fine particles and PTFE was pulverized with a ball mill to an average particle size of about 5 μm, and a mixed solution of 30 ml of water, 10 ml of isoamyl alcohol and 20 ml of isopropyl alcohol was added thereto.

【0022】この後、この混合物を45〜50℃に加温
した双腕ニーダーにより混練し、PTFEを十分にフィ
ブリル化させた。次に、この混練物をロール温度60℃
のカレンダーに縦横交互に通して、主として混練物中の
イソプロピルアルコールを蒸発させながら圧延を行い、
厚さ150μmのシート状物を得た。このシート状物を
150℃まで加熱して、シート内に残る主として水、イ
ソアミルアルコールなどの溶媒を蒸発させて、空隙率7
5容量%の触媒層を得た。得られた触媒層は取り扱いに
より破損が生じることがなく、十分な強度を有するもの
であった。
Thereafter, this mixture was kneaded with a twin-arm kneader heated to 45 to 50 ° C. to sufficiently fibrillate PTFE. Next, this kneaded product is rolled at a temperature of 60 ° C.
By passing through the calendar alternately in the vertical and horizontal directions, rolling is performed mainly while evaporating isopropyl alcohol in the kneaded product,
A sheet-like material having a thickness of 150 μm was obtained. This sheet-like material is heated to 150 ° C. to evaporate mainly water, a solvent such as isoamyl alcohol remaining in the sheet, and a porosity of 7
A 5% by volume catalyst layer was obtained. The resulting catalyst layer had sufficient strength without being damaged by handling.

【0023】比較例 白金を担持したカーボンブラックからなる触媒微粒子
6.0gを、超純水1リットルに超音波を用いて均一に
分散させた。次いで、この分散後にポリテトラフルオロ
エチレン(PTFE)ディスパージョン(三井フロロケ
ミカル株式会社製:30−J)10.0gを滴下して均
一に混合した。この後、この混合液にエチルアルコール
1.5リットルを添加して、触媒微粒子とPTFEを共
凝集させた。この凝集体を含む液を吸引濾過することに
より、60gのろ滓物を得た。この後、実施例1と同様
にして混練及び圧延を行ったところ、シート状物には圧
延時において、シートの進行方向と直角の方向に亀裂が
多数生じた。
Comparative Example 6.0 g of catalyst fine particles made of carbon black supporting platinum was uniformly dispersed in 1 liter of ultrapure water using ultrasonic waves. Then, after this dispersion, 10.0 g of polytetrafluoroethylene (PTFE) dispersion (30-J, manufactured by Mitsui Fluorochemical Co., Ltd.) was dropped and uniformly mixed. Thereafter, 1.5 liters of ethyl alcohol was added to this mixed solution to coagulate the catalyst fine particles and PTFE. The liquid containing this aggregate was suction-filtered to obtain 60 g of a filter cake. After that, when kneading and rolling were performed in the same manner as in Example 1, a large number of cracks were generated in the sheet-like material in the direction perpendicular to the traveling direction of the sheet during rolling.

【0024】[0024]

【発明の効果】上記構成を備えたことにより、請求項1
記載の燃料電池用電極触媒層の製造方法にあっては、混
練物中に、低沸点有機溶媒と、高沸点有機溶媒とを含ま
せたことから、圧延工程で、低沸点有機溶媒の気化が進
行し、圧延初期の段階で低沸点有機溶媒の全量若しくは
その多くが気化し、このため、混練物中に含ませた有機
溶媒の全量が低下して、弗素樹脂の流動性も低下し、圧
密化が起こりにくくなり、低沸点有機溶媒の気化によっ
て生じた空隙が保持される。一方、高沸点有機溶媒は、
圧延する工程の終わりまで気化しないで存在して弗素樹
脂のフィブリル化を進行させると共にフィブリル化した
繊維状物を配向させる。この結果、微細な多孔構造を有
し、しかも高い空隙率を持ち、かつ高い物理的強度を備
えた燃料電池用電極触媒層を得ることができる。
According to the present invention, the above-mentioned structure is provided.
In the method for producing a fuel cell electrode catalyst layer described, in the kneaded product, since a low boiling point organic solvent and a high boiling point organic solvent were included, in the rolling step, vaporization of the low boiling point organic solvent The whole amount of the low boiling point organic solvent or a large amount of it vaporizes in the early stage of rolling, so that the total amount of the organic solvent contained in the kneaded material decreases, the fluidity of the fluororesin also decreases, and consolidation As a result, it is less likely that the low boiling point organic solvent is vaporized and the voids generated by the vaporization of the low boiling point organic solvent are retained. On the other hand, the high boiling point organic solvent is
It exists without vaporization until the end of the rolling step to promote the fibrillation of the fluororesin and to orient the fibrillated fibrous material. As a result, it is possible to obtain a fuel cell electrode catalyst layer having a fine porous structure, a high porosity, and a high physical strength.

【0025】請求項2記載の燃料電池用電極触媒層の製
造方法によれば、凝集体中に含ませた高沸点有機溶媒の
圧延時におけるフィブリル化の促進効果、及び低沸点有
機溶媒の圧延初期での気化を確実ならしめることができ
る。
According to the method for producing an electrode catalyst layer for a fuel cell according to claim 2, the effect of promoting fibrillation during rolling of the high boiling point organic solvent contained in the agglomerate, and the initial rolling stage of the low boiling point organic solvent. It is possible to ensure the vaporization in.

【0026】請求項3記載の燃料電池用電極触媒層の製
造方法によれば、高い空隙率を確実に確保し、かつクラ
ックやひび割れの発生を防止できる。
According to the method for producing the fuel cell electrode catalyst layer of the third aspect, a high porosity can be reliably ensured, and cracks and cracks can be prevented from occurring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内海 章 滋賀県守山市勝部町1128番地 日本バイリ ーン株式会社滋賀工場内 (72)発明者 前田 靖之 茨城県猿島郡総和町北利根7 日本バイリ ーン株式会社東京工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Utsumi 1128 Katsube-cho, Moriyama-shi, Shiga Japan Shiba Plant, Japan Baileen Co., Ltd. (72) Inventor Yasuyuki Maeda 7 Kitatone, Sowa-machi, Sarushima-gun, Ibaraki Japan Vilene Tokyo Factory Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 触媒微粒子懸濁液と弗素樹脂のディスパ
ージョンとを混合する工程と、混合液中の触媒微粒子と
弗素樹脂とを共凝集させる工程と、凝集体を混練する工
程と、混練物を圧延する工程とを備えた燃料電池用電極
触媒層の製造方法において、 前記凝集体中に、水の沸点よりも低い沸点を有する低沸
点有機溶媒と、水の沸点よりも高い沸点を有する高沸点
有機溶媒とを含ませたことを特徴とする燃料電池用電極
触媒層の製造方法。
1. A step of mixing a catalyst fine particle suspension and a dispersion of a fluororesin, a step of coaggregating catalyst fine particles and a fluororesin in a mixed solution, a step of kneading an aggregate, and a kneaded product In the method for producing a fuel cell electrode catalyst layer comprising a step of rolling, in the aggregate, a low-boiling organic solvent having a boiling point lower than that of water, and a high-boiling point having a boiling point higher than that of water. A method of producing an electrode catalyst layer for a fuel cell, which comprises an organic solvent having a boiling point.
【請求項2】 低沸点有機溶媒と高沸点有機溶媒の沸点
差が少なくとも10℃以上であることを特徴とする請求
項1記載の燃料電池用電極触媒層の製造方法。
2. The method for producing an electrode catalyst layer for a fuel cell according to claim 1, wherein the boiling point difference between the low boiling point organic solvent and the high boiling point organic solvent is at least 10 ° C. or more.
【請求項3】 圧延する工程での圧延温度が40〜80
℃であることを特徴とする請求項1又は2記載の燃料電
池用電極触媒層の製造方法。
3. The rolling temperature in the rolling step is 40-80.
3. The method for producing an electrode catalyst layer for a fuel cell according to claim 1, wherein the method is at a temperature of ° C.
JP3116080A 1991-05-21 1991-05-21 Manufacture of electrode catalytic layer for fuel cell Pending JPH0613085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116080A JPH0613085A (en) 1991-05-21 1991-05-21 Manufacture of electrode catalytic layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116080A JPH0613085A (en) 1991-05-21 1991-05-21 Manufacture of electrode catalytic layer for fuel cell

Publications (1)

Publication Number Publication Date
JPH0613085A true JPH0613085A (en) 1994-01-21

Family

ID=14678222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116080A Pending JPH0613085A (en) 1991-05-21 1991-05-21 Manufacture of electrode catalytic layer for fuel cell

Country Status (1)

Country Link
JP (1) JPH0613085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160401A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
US6524736B1 (en) * 2000-10-18 2003-02-25 General Motors Corporation Methods of preparing membrane electrode assemblies
US6589685B2 (en) 2000-03-22 2003-07-08 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst solution and production method therefor
US6933003B2 (en) 2002-06-13 2005-08-23 General Motors Corporation Method of making membrane electrode assemblies
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160401A (en) * 1999-12-01 2001-06-12 Japan Storage Battery Co Ltd Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
US6589685B2 (en) 2000-03-22 2003-07-08 Toyota Jidosha Kabushiki Kaisha Fuel cell electrode catalyst solution and production method therefor
US6524736B1 (en) * 2000-10-18 2003-02-25 General Motors Corporation Methods of preparing membrane electrode assemblies
US6933003B2 (en) 2002-06-13 2005-08-23 General Motors Corporation Method of making membrane electrode assemblies
JP2006031951A (en) * 2004-07-12 2006-02-02 Tomoegawa Paper Co Ltd Method of manufacturing gas diffusion electrode for solid polymer fuel cell

Similar Documents

Publication Publication Date Title
US7157402B2 (en) HCMS carbon capsule, electrocatalysts for fuel cell supported by HCMS carbon capsule, and method of preparing the same
EP2959970B1 (en) Carbon material for catalyst support use
CN101341616B (en) Separator material for solid polymer electrolyte fuel cell and process for producing the same
JP5403211B2 (en) Manufacturing method for forming catalyst layer for fuel cell using catalyst ink
JP4897480B2 (en) Manufacturing method of gas diffusion electrode
JP2010267539A (en) Method of manufacturing gas diffusion layer for fuel cell
JPH0613085A (en) Manufacture of electrode catalytic layer for fuel cell
JP2006302644A (en) Catalyst paste for fuel cell electrode and its manufacturing method as well as electrode for fuel cells
US6630081B1 (en) Process for producing gas diffusion electrode material
JP6956851B2 (en) Electrode catalyst for fuel cells and fuel cells using them
JPS62122068A (en) Manufacture of catalizer layer for fuel cell electrode
JP3111195B2 (en) Method for producing electrode catalyst sheet for fuel cell
EP1687360A1 (en) Polymer bonded functional materials
JPH0636771A (en) Gas diffusion electrode and its manufacture
JP6970183B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
Nam et al. Mechanical milling of catalyst support for enhancing the performance in fuel cells
JP4300045B2 (en) Method for producing metal oxide microspheres
CN114976022B (en) Graphene composite dry powder conductive agent and preparation method and application thereof
JP4294512B2 (en) Method for producing raw material powder for gas diffusion electrode
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor
KR102618826B1 (en) The Method for Producing Organic Solvent Dispersion solution of Styrene Butadiene Rubber
RU2612195C1 (en) Method of producing powders for making gas diffusion electrodes
JPH09102441A (en) Electric double layer capacitor
JP3434739B2 (en) Method for producing gas diffusion electrode material
JPH0697612B2 (en) Method for manufacturing fuel cell electrode