JPH0697612B2 - Method for manufacturing fuel cell electrode - Google Patents

Method for manufacturing fuel cell electrode

Info

Publication number
JPH0697612B2
JPH0697612B2 JP1159926A JP15992689A JPH0697612B2 JP H0697612 B2 JPH0697612 B2 JP H0697612B2 JP 1159926 A JP1159926 A JP 1159926A JP 15992689 A JP15992689 A JP 15992689A JP H0697612 B2 JPH0697612 B2 JP H0697612B2
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
polytetrafluoroethylene
sheet
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1159926A
Other languages
Japanese (ja)
Other versions
JPH0325856A (en
Inventor
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1159926A priority Critical patent/JPH0697612B2/en
Publication of JPH0325856A publication Critical patent/JPH0325856A/en
Publication of JPH0697612B2 publication Critical patent/JPH0697612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体高分子電解質型(SPE型)の燃料電池に
用いる電極の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an electrode used in a solid polymer electrolyte type (SPE type) fuel cell.

〔従来の技術〕[Conventional technology]

燃料電池は電解質の種類によって分類されているが、電
解質がカチオン交換膜あるいはアニオン交換膜などの固
体高分子で構成される燃料電池は固体高分子電解質型
(SPE型:Solid Polymer Electolyte)と呼ばれて他の燃
料電池と区別されている。
Although fuel cells are classified according to the type of electrolyte, fuel cells in which the electrolyte consists of solid polymer such as cation exchange membrane or anion exchange membrane are called solid polymer electrolyte type (SPE type: Solid Polymer Electolyte). Are distinguished from other fuel cells.

このSPE型燃料電池に用いられる電極の製造方法には、
カーボン粉末と触媒粉末にバインダーおよび撥水剤とし
て機能するポリテトラフルオロエチレンを混合して固体
高分子電解質とともにホットプレスする方法、固体高分
子電解質となるイオン交換膜の表面に化学メッキ法で触
媒金属を析出させる方法が知られているが、後者はカー
ボンあるいは酸化物などの添加成分を結合しにくい難点
があるため前者のホットプレス法が主流となっている。
The electrode manufacturing method used in this SPE fuel cell includes
A method in which carbon powder and catalyst powder are mixed with polytetrafluoroethylene that functions as a binder and a water repellent and hot pressed together with a solid polymer electrolyte, and a catalyst metal is formed on the surface of the ion exchange membrane that becomes the solid polymer electrolyte by a chemical plating method. The method of precipitating is known, but in the latter case, the former hot pressing method is predominant because it is difficult to bond additional components such as carbon or oxide.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、カーボン粉末、白金触媒およびポリテト
ラフルオロエチレンの三成分を原料としてホットプレス
法で製造した電極は、気孔率が低く、気孔径も一定化し
ない問題点がある。このため、電極材料として圧損が大
きく、ガス流路を別に形成する必要が生じるなどの関係
で、効率およびコンパクト化の点で不利な面がある。
However, the electrode manufactured by the hot pressing method using the three components of carbon powder, platinum catalyst and polytetrafluoroethylene as raw materials has a problem that the porosity is low and the pore diameter is not constant. For this reason, there is a disadvantage in terms of efficiency and compactness, because pressure loss is large as an electrode material and it is necessary to separately form a gas flow path.

したがって、本発明の目的はカーボン粉末、白金触媒お
よびポリテトラフルオロエチレンを主体成分として、優
れた気孔率と均質な気孔径を備えるシート状のSPE型燃
料電池用電極を製造するための方法を提供するところに
ある。
Therefore, an object of the present invention is to provide a method for producing a sheet-like SPE fuel cell electrode having carbon powder, a platinum catalyst and polytetrafluoroethylene as main components and having excellent porosity and a uniform pore size. There is a place to do it.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するための本発明による燃料電池用電
極の製造方法は、カーボン粉末、白金触媒およびポリテ
トラフルオロエチレン(PTFE)からなる成分系に、表面
を炭素膜で被覆した炭化けい素ウイスカーを加えて混練
し、混練物をシート化したのち熱処理、イオン交換樹脂
処理を施すことを構成上の特徴とするものである。
The method for producing an electrode for a fuel cell according to the present invention to achieve the above object is a silicon carbide whisker having a surface coated with a carbon film on a component system consisting of carbon powder, a platinum catalyst and polytetrafluoroethylene (PTFE). Is added and kneaded, and the kneaded product is formed into a sheet, which is then heat-treated and ion-exchange resin treated.

カーボン粉末としては、比表面積が大きくストラクチャ
ーの発達した導電性のカーボンブラックが好適に使用さ
れる。白金触媒には、粒径0.5〜1.0μmの白金黒が用い
られる。ポリテトラフルオロエチレン(PTFE)はバイン
ダーおよび撥水剤として機能する成分であるが、本発明
ではこれを気孔形成剤としての利用が図られる。このた
め、剪断力を加えることにより繊維化する特性をもつポ
リテトラフルオロエチレンを選択使用することが望まし
い態様となる。繊維化可能なポリテトラフルオロエチレ
ンとしては、例えば三井デュポンフロロケミカル(株)
製の“テフロンK-10J"、ダイキン工業(株)製の“ポリ
フロンF-103"“F-202"等を挙げることができる。
As the carbon powder, conductive carbon black having a large specific surface area and a well-developed structure is preferably used. As the platinum catalyst, platinum black having a particle size of 0.5 to 1.0 μm is used. Polytetrafluoroethylene (PTFE) is a component that functions as a binder and a water repellent, and in the present invention, it can be used as a pore forming agent. Therefore, it is a desirable mode to selectively use polytetrafluoroethylene having a property of forming fibers by applying a shearing force. Examples of the polytetrafluoroethylene that can be made into fibers include Du Pont Mitsui Fluorochemical Co., Ltd.
Examples thereof include "Teflon K-10J" manufactured by Daikin Industries, Ltd., "Polyflon F-103" and "F-202" manufactured by Daikin Industries, Ltd.

これらの成分系に加えられる表面を炭素膜で被覆した炭
化けい素ウイスカーは、炭化けい素ウイスカーをフェノ
ール系樹脂、フラン系樹脂のような高炭化性の樹脂溶液
やピッチを有機溶媒に溶かした溶液などに分散させたの
ち濾過、乾燥し、これを不活性雰囲気下で1800℃程度の
温度域で焼成処理することによって形成することができ
る。
Silicon carbide whiskers coated with a carbon film on the surface added to these component systems are silicon carbide whiskers such as phenol resin, high carbon resin resin such as furan resin, or a solution of pitch dissolved in an organic solvent. It can be formed by subjecting it to a dispersion in, for example, filtration, drying, and baking treatment in an inert atmosphere at a temperature range of about 1800 ° C.

使用する炭化けい素ウイスカーは可及的に直径およびア
スペクト比の均等なものであることがよく、とくに直径
0.3〜0.6μm、長さ30〜60μmの性状範囲を選択するこ
とが好ましい。また、表面を炭素膜で被覆した炭化けい
素ウイスカーの添加量は、カーボン粉末、白金触媒およ
びポリテトラフルオロエチレンの成分量に対し100〜300
重量%の範囲に設定することが望ましく、この範囲を外
れると気孔率を向上させる効果が減退する。
The silicon carbide whiskers used should be as uniform in diameter and aspect ratio as possible.
It is preferable to select a property range of 0.3 to 0.6 μm and a length of 30 to 60 μm. The amount of silicon carbide whiskers coated with a carbon film on the surface is 100 to 300 with respect to the amounts of carbon powder, platinum catalyst and polytetrafluoroethylene.
It is desirable to set the content in the range of weight%, and if it is out of this range, the effect of improving the porosity decreases.

上記の原料成分は、捏合機のような混練装置に入れて十
分な剪断力を与えながら混練する。この際、混練助剤と
して流動パラフィン、液状ポリエチレングリコール等を
添加することができる。
The above raw material components are put into a kneading device such as a kneader and kneaded while giving a sufficient shearing force. At this time, liquid paraffin, liquid polyethylene glycol or the like can be added as a kneading aid.

混練物のシート化は、通常の抄紙法、ドクターブレード
法のようなシート化手段を用いておこなうことができ
る。
The kneaded product can be formed into a sheet by using a sheet forming means such as an ordinary papermaking method or a doctor blade method.

成形されたシートは、ついで不活性気流中で340℃前後
の温度で熱処理し、必要に応じてプレスする。このシー
トには最終的にイオン交換樹脂処理が施される。イオン
交換樹脂処理は、スチレン‐ジビニルベンゼンスルフォ
ン酸粉末、パーフルオロカーボンスルフォン酸の低級脂
肪族アルコールなどと水との混合溶媒溶液(ナフィオン
溶液)を上記シートに含浸する方法によっておこなわれ
る。
The formed sheet is then heat treated in an inert gas stream at a temperature of around 340 ° C. and pressed if necessary. This sheet is finally treated with an ion exchange resin. The ion exchange resin treatment is carried out by impregnating the sheet with a mixed solvent solution (Nafion solution) of styrene-divinylbenzenesulfonic acid powder, a lower aliphatic alcohol of perfluorocarbon sulfonic acid, and the like and water.

〔作用〕[Action]

本発明において原料成分として添加される微小繊維状の
炭化けい素ウイスカーは、組織の気孔形成化に機能し、
表面層の炭素膜が電極の性能向上に寄与する。とくに繊
維化性のポリテトラフルオロエチレンを使用した場合に
は、これが混練過程の剪断力で繊維化して上記した炭化
けい素ウイスカーによる気孔形成化を助長するととも
に、相互の絡み現象により多孔組織を強化する作用を発
揮する。また、ポリテトラフルオロエチレンの繊維化時
にはカーボンブラックが繊維表面に付着してネットを形
成するため、導電性を増大させる働きもなす。
The fine fibrous silicon carbide whiskers added as a raw material component in the present invention function to form pores in the tissue,
The carbon film of the surface layer contributes to improving the performance of the electrode. In particular, when fibrous polytetrafluoroethylene is used, this promotes the formation of pores by the above-mentioned silicon carbide whiskers by forming fibers by the shearing force in the kneading process, and strengthens the porous structure by the mutual entanglement phenomenon. Exert the action. Further, when the polytetrafluoroethylene is made into fibers, carbon black adheres to the surface of the fibers to form a net, which also serves to increase conductivity.

これらの相乗的な作用を介して優れた気孔率と均質な粒
子径を有する高機能性のシート電極が形成される。
Through these synergistic effects, a highly functional sheet electrode having excellent porosity and uniform particle size is formed.

また、得られたシートは適度の柔軟性を有しており、セ
ル組立の面でも有利となる。
Further, the obtained sheet has appropriate flexibility, which is advantageous in terms of cell assembly.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

実施例1〜6 (1)直径0.3〜0.6μm、長さ30〜60μmの炭化けい素
ウイスカー50gをフェノール樹脂〔群栄化学(株)製、
“PGA-4508"〕のエタノール溶液500mlに投入して十分に
攪拌分散させたのち濾過し、100〜150℃で2時間乾燥し
た。ついでこれをアルゴンガス気流中で30分間焼成して
樹脂成分を炭化し、表面に炭素膜を形成した。
Examples 1 to 6 (1) 50 g of silicon carbide whiskers having a diameter of 0.3 to 0.6 μm and a length of 30 to 60 μm were mixed with a phenol resin [manufactured by Gunei Chemical Co., Ltd.,
The mixture was added to 500 ml of an ethanol solution of "PGA-4508", sufficiently stirred and dispersed, filtered, and dried at 100 to 150 ° C for 2 hours. Then, this was baked in an argon gas stream for 30 minutes to carbonize the resin component and form a carbon film on the surface.

各例の変更条件は、第1表のとおりである。The changing conditions of each example are as shown in Table 1.

(2)上記の表面に炭素膜を被覆した炭化けい素ウイス
カー25gを、導電性カーボンブラック〔東海カーボン
(株)製、“トーカブラック”〕8.0g、粒径0.5〜1.0μ
mの白金黒2.5gおよびポリテトラフルオロエチレン〔ダ
イキン工業(株)製、“ポリフロンF-104"〕2.0gととも
にエタノール100mlに入れ、超音波をかけながら5分間
保持して均一に混合した。混合物を小型捏合機に投入
し、助剤として流動パラフィンおよび液状ポリエチレン
グリコール25gを添加して混練した。この段階でポリテ
トラフルオロエチレンは繊維化した。
(2) 25 g of silicon carbide whiskers coated with a carbon film on the above-mentioned surface was used as conductive carbon black [Tokai Carbon Co., Ltd., "Toker Black"] 8.0 g, particle size 0.5 to 1.0 μ.
2.5 g of m of platinum black and 2.0 g of polytetrafluoroethylene [manufactured by Daikin Industries, Ltd., "Polyflon F-104"] were added to 100 ml of ethanol, and the mixture was kept for 5 minutes while applying ultrasonic waves to uniformly mix them. The mixture was put into a small kneader, and 25 g of liquid paraffin and liquid polyethylene glycol were added as auxiliary agents and kneaded. At this stage, polytetrafluoroethylene was made into fibers.

助剤をトルエンで一旦抽出除去したのちカーターミキサ
ーで解体し、再びエタノール200ml中で超音波により十
分に分散した。ついで分散液を、35μmのナイロン網を
用いて抄紙してシートに成形した。このシートを50〜80
℃で乾燥後、アルゴン気流中で330〜350℃の温度域で約
1時間熱処理し、さらに加圧プレスして縦横100mm、厚
さ0.15mmのシートに作成した。
The auxiliary agent was once extracted and removed with toluene, disassembled with a Carter mixer, and again thoroughly dispersed in 200 ml of ethanol by ultrasonic waves. Then, the dispersion was paper-made using a 35 μm nylon net to form a sheet. This sheet is 50-80
After drying at ℃, it was heat-treated for about 1 hour in a temperature range of 330 to 350 ℃ in an argon stream, and further pressed to form a sheet having a length and width of 100 mm and a thickness of 0.15 mm.

このシートをパーフルオロカーボンスルフォン酸の低級
脂肪族アルコールによる5%水溶液に浸漬し、100℃以
下の温度で乾燥してSPE型燃料電池用の電極を製造し
た。
This sheet was immersed in a 5% aqueous solution of perfluorocarbon sulfonic acid containing a lower aliphatic alcohol and dried at a temperature of 100 ° C. or lower to produce an electrode for SPE fuel cell.

このようにして得られた各電極の特性ならびにセル性能
を第2表に示した。
The characteristics and cell performance of each electrode thus obtained are shown in Table 2.

比較例1〜2 実施例と同一の導電性カーボンブラック25.0g、白金黒
粉末2.5g、ポリテトラフルオロエチレン6.2gを成分系と
し、以後の工程を実施例と同一にして2種類のSPE型燃
料電池用電極を作成した。
Comparative Examples 1 and 2 Two kinds of SPE-type fuels were prepared by using the same conductive carbon black (25.0 g), platinum black powder (2.5 g) and polytetrafluoroethylene (6.2 g) as component systems, and the subsequent steps were the same as those of the examples. A battery electrode was created.

この電極の特性ならびにセル性能を、第2表に併せて示
した。
The characteristics and cell performance of this electrode are also shown in Table 2.

〔発明の効果〕 本発明によれば、常に気孔率が大きく気孔径が揃った高
強度で適度の柔軟性を備えるシート性状の固体高分子電
解質型(SPE型)燃料電池用電極を容易に製造すること
が可能となる。したがって、組織的にガス拡散性に優れ
ているから、ガス流路を介設することなしに高度の電池
効率を得ることができる。
[Effects of the Invention] According to the present invention, a sheet-like solid polymer electrolyte type (SPE type) fuel cell electrode having a high porosity and a uniform pore size, high strength and moderate flexibility can be easily produced. It becomes possible to do. Therefore, since the gas diffusivity is systematically excellent, a high degree of battery efficiency can be obtained without providing a gas flow path.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】カーボン粉末、白金触媒およびポリテトラ
フルオロエチレン(PTFE)からなる成分系に、表面を炭
素膜で被覆した炭化けい素ウイスカーを加えて混練し、
混練物をシート化したのち熱処理、イオン交換樹脂処理
を施すことを特徴とする燃料電池用電極の製造方法。
1. A silicon carbide whisker having a surface coated with a carbon film is added to a component system composed of carbon powder, a platinum catalyst and polytetrafluoroethylene (PTFE) and kneaded.
A method for producing an electrode for a fuel cell, which comprises heat-treating the kneaded material into a sheet, and then subjecting it to heat treatment and ion exchange resin treatment.
【請求項2】剪断力を加えることにより繊維化する特性
のポリテトラフルオロエチレンを用いる請求項1記載の
燃料電池用電極の製造方法。
2. The method for producing an electrode for a fuel cell according to claim 1, wherein polytetrafluoroethylene having a property of being made into fibers by applying a shearing force is used.
JP1159926A 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode Expired - Lifetime JPH0697612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159926A JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159926A JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Publications (2)

Publication Number Publication Date
JPH0325856A JPH0325856A (en) 1991-02-04
JPH0697612B2 true JPH0697612B2 (en) 1994-11-30

Family

ID=15704172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159926A Expired - Lifetime JPH0697612B2 (en) 1989-06-22 1989-06-22 Method for manufacturing fuel cell electrode

Country Status (1)

Country Link
JP (1) JPH0697612B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921725B2 (en) * 1993-06-30 1999-07-19 三洋電機株式会社 Method for manufacturing solid polymer electrolyte fuel cell electrode
US7094492B2 (en) 2001-10-11 2006-08-22 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
JP4906307B2 (en) * 2005-10-21 2012-03-28 アイシン化工株式会社 Method for producing gas diffusion layer for fuel cell electrode
JP5108240B2 (en) * 2006-03-20 2012-12-26 トヨタ自動車株式会社 Fuel cell and fuel cell manufacturing method

Also Published As

Publication number Publication date
JPH0325856A (en) 1991-02-04

Similar Documents

Publication Publication Date Title
US8133306B2 (en) Gas diffusion substrate
US3899354A (en) Gas electrodes and a process for producing them
US5783325A (en) Gas diffusion electrodes based on poly(vinylidene fluoride) carbon blends
DE60016924T2 (en) ELECTROCHEMICAL APPLICATIONS OF AMORPHOUS FLUOROPOLYMERS
EP1944819A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
KR101142309B1 (en) Production of gas diffusion electrodes
DE10297187T5 (en) Electrode catalyst layer for use in a fuel cell
JP5885513B2 (en) Microporous layer forming paste composition and method for producing the same
WO2003052844A1 (en) Diffusion film, electrode having the diffusion film, and process for producing diffusion film
US4446210A (en) Fuel cell electrode
JPH0697612B2 (en) Method for manufacturing fuel cell electrode
JPH08148152A (en) Solid polymeric fuel cell electrode and manufacture thereof
JPH07230811A (en) Gas diffusion electrode, and manufacture thereof
DE10362173B4 (en) fuel cell
JPS5944749B2 (en) gas diffusion electrode
JPH06203849A (en) Manufacture of solid high polymer fuel cell
JPH06203848A (en) Manufacture of solid high polymer fuel cell
JPH02162650A (en) Manufacture of catalyst
JPH07130374A (en) Water repellent treating method for carbon paper in fuel cell electrode
JPH08185867A (en) Electrode for solid high polymer type fuel cell and its manufacture
JP2004247148A (en) Water repellent paste for gas diffusion layer
KR100187430B1 (en) Method of manufacturing electrolyte matrix for phosphorus fuel cell made of sic whisker
CS208688B2 (en) Method of making the powder material impregnated against the humidity,determinated for production of electrodes by the diffusing gas
JP2905551B2 (en) Method for producing electrode for fuel cell
JPS59169069A (en) Electrode for fuel cell