JP4665536B2 - Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer - Google Patents

Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer Download PDF

Info

Publication number
JP4665536B2
JP4665536B2 JP2005021537A JP2005021537A JP4665536B2 JP 4665536 B2 JP4665536 B2 JP 4665536B2 JP 2005021537 A JP2005021537 A JP 2005021537A JP 2005021537 A JP2005021537 A JP 2005021537A JP 4665536 B2 JP4665536 B2 JP 4665536B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode
fuel cell
catalyst
rpm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005021537A
Other languages
Japanese (ja)
Other versions
JP2006210181A (en
Inventor
洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005021537A priority Critical patent/JP4665536B2/en
Publication of JP2006210181A publication Critical patent/JP2006210181A/en
Application granted granted Critical
Publication of JP4665536B2 publication Critical patent/JP4665536B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、燃料電池用の電極触媒層の製造方法及び該電極触媒層を有する燃料電池に関するものである。   The present invention relates to a method for producing an electrode catalyst layer for a fuel cell and a fuel cell having the electrode catalyst layer.

近年、地球環境問題に鑑みクリーンで発電効率の高い次世代の発電装置が希求されており、その1つとして水素と空気中の酸素を化学反応させる際にその化学エネルギー変化を直接電気エネルギーとして取り出す燃料電池の実用化が大いに期待されている。   In recent years, there has been a demand for a next-generation power generation device that is clean and has high power generation efficiency in view of global environmental problems, and one of them is to directly extract the chemical energy change as electrical energy when chemically reacting hydrogen with oxygen in the air. The practical application of fuel cells is highly expected.

燃料電池は、電解質層を挟んで一対の電極を配置し、一方の電極(燃料電極)に水素を含有する燃料ガスを供給するとともに他方の電極(空気電極)に酸素を含有する酸化剤ガスを供給し、両電極間の触媒層で起きる電気化学反応を利用して起電力を得る発電システムであって、以下の電気化学反応が生じることにより発電する。(1)は燃料電極側に於ける反応、(2)は空気電極側に於ける反応を表す。   In a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (fuel electrode), and an oxidant gas containing oxygen is supplied to the other electrode (air electrode). A power generation system that supplies and generates an electromotive force using an electrochemical reaction that occurs in a catalyst layer between both electrodes, and generates power when the following electrochemical reaction occurs. (1) represents the reaction on the fuel electrode side, and (2) represents the reaction on the air electrode side.

→2H+2e ………(1)
1/2O+2H+2e→HO ………(2)
燃料電池の燃料電極及び空気電極は、一般的には、カーボンブラック等の触媒担体粒子に白金等の貴金属触媒を担持させた触媒担持粒子と、プロトン導電性ポリマーとを分散媒中に分散させた触媒層ペーストをシート状に成形した多孔質構造の触媒層を有しており、この触媒層に反応ガスを供給することによって上記の反応が、気相(細孔中の反応ガス;H,O)、固相(プロトン伝導性ポリマー;H)、固相(触媒;e)の3相界面で生じる。
H 2 → 2H + + 2e (1)
1 / 2O 2 + 2H + + 2e → H 2 O (2)
In general, a fuel electrode and an air electrode of a fuel cell are obtained by dispersing catalyst-carrying particles in which a noble metal catalyst such as platinum is supported on catalyst carrier particles such as carbon black and a proton conductive polymer in a dispersion medium. The catalyst layer paste has a porous catalyst layer formed into a sheet shape. By supplying a reaction gas to the catalyst layer, the above reaction is performed in the gas phase (reaction gas in pores; H 2 , O 2 ), a solid phase (proton conductive polymer; H + ), and a solid phase (catalyst; e ).

そして、触媒層中に不純物等が混入し、不均一なものとなってしまうと電池初期特性や耐久性に支障が生じてしまうため、触媒層ペースト中には、不純物や凝縮物等の混入・発生を抑制する必要があり、また、触媒層ペーストの成分の触媒粉末が溶媒中で沈殿、又は凝集することなく均一に存在し、この均一な状態が少なくとも1日保管しても変化しない程度の安定した状態を維持できるような触媒層ペーストを作製する必要がある。   And if impurities and the like are mixed in the catalyst layer and become non-uniform, the initial characteristics and durability of the battery will be hindered. Therefore, the catalyst layer paste contains impurities and condensates. It is necessary to suppress the generation, and the catalyst powder as a component of the catalyst layer paste is present uniformly in the solvent without precipitation or aggregation, and this uniform state does not change even when stored for at least one day. It is necessary to prepare a catalyst layer paste that can maintain a stable state.

触媒層の製造方法としては、触媒と、プロトン伝導性ポリマーとを、アルコールや水等の溶媒と混ぜ合わせ、攪拌ミキサー、乳鉢、超音波攪拌、ミル及び自転公転式攪拌脱泡等の方法で触媒層ペーストを作製し、この触媒ペーストを拡散層や電解質膜等の基材上にコーター、スプレー、印刷等の手法で塗布する方法などが知られている。   As a method for producing the catalyst layer, the catalyst and the proton conductive polymer are mixed with a solvent such as alcohol or water, and the catalyst is prepared by a method such as a stirring mixer, a mortar, ultrasonic stirring, a mill, and rotation and revolution stirring stirring and defoaming. A method is known in which a layer paste is prepared, and this catalyst paste is applied onto a substrate such as a diffusion layer or an electrolyte membrane by a method such as coater, spray, or printing.

また、下記特許文献1では、触媒の酸化劣化によるペースト安定性の低下を抑制するため、触媒層ペーストを作製する際の混合攪拌工程において、混合攪拌装置内の雰囲気を水蒸気濃度10vol%〜90vol%、不活性ガス濃度90vol%〜10vol%として混合攪拌している。下記特許文献2では、樹脂等の凝集物のない触媒層ペーストを製造するため、導電材粒子および分散媒を強い剪断力で混合処理してペースト中の前記導電材粒子の二次粒子化をさせ、次いで樹脂を添加し、前記樹脂の凝集が発生しない程度の弱い剪断力で混合処理している。
特開2004−199915号公報 特開2003−100305号公報
Moreover, in the following Patent Document 1, in order to suppress a decrease in paste stability due to oxidative deterioration of the catalyst, the atmosphere in the mixing and stirring apparatus is set to a water vapor concentration of 10 vol% to 90 vol% in the mixing and stirring step when preparing the catalyst layer paste. The mixture is stirred at an inert gas concentration of 90 vol% to 10 vol%. In Patent Document 2 below, in order to produce a catalyst layer paste without agglomerates such as resin, the conductive material particles and the dispersion medium are mixed with a strong shearing force to make the conductive material particles in the paste into secondary particles. Then, a resin is added and mixed with a weak shearing force that does not cause aggregation of the resin.
Japanese Patent Laid-Open No. 2004-199915 JP 2003-100305 A

触媒層ペーストの製造工程において、自転公転式攪拌脱泡装置を用いた混練方法は、攪拌効率がよく、また、外部からの不純物の混入経路が少ないため、不純物の極めて少ない触媒層ペーストを大量かつ効率的に製造することができる。   In the production process of the catalyst layer paste, the kneading method using the rotation and revolution type stirring and defoaming apparatus has good stirring efficiency, and since there are few impurity mixing paths from the outside, a large amount of catalyst layer paste with extremely few impurities can be obtained. It can be manufactured efficiently.

しかしながら、攪拌により触媒層ペーストの温度が上昇していくが、60℃以上となると発火等の危険性があるという問題点があった。また、攪拌速度,時間が不十分であると、触媒層ペースト中の触媒粒子が溶媒中で凝集したり、沈殿する場合があった。   However, although the temperature of the catalyst layer paste rises due to stirring, there is a problem that there is a risk of ignition or the like when the temperature exceeds 60 ° C. Further, when the stirring speed and time are insufficient, the catalyst particles in the catalyst layer paste may be aggregated or precipitated in the solvent.

よって、本発明は、触媒層ペーストを安全に調製し、不純物・凝集物・沈殿物・気泡等のない燃料電池用電極触媒層を製造することを目的とする。   Accordingly, an object of the present invention is to prepare a catalyst layer paste safely and to produce an electrode catalyst layer for a fuel cell free from impurities, aggregates, precipitates, bubbles and the like.

上記課題を解決するにあたって、本発明の燃料電池用電極触媒層の製造方法は、導電性カーボンブラック、カーボンナノチューブ、活性炭及び酸化物半導体から選ばれる触媒担体に、白金又は白金系合金を担持させた触媒担持体と、溶媒と、パーフルオロスルホン酸とを含む触媒層ペースト原料のみを自転公転式攪拌脱泡装置に投入し、公転回転数200〜2200rpm、自転回転数150〜1200rpm、攪拌時間10〜60分の条件で混合攪拌して触媒層ペーストを製造し、この触媒層ペーストを電解質膜又は電極基材に塗布して触媒層を形成することを特徴とする。 In solving the above-mentioned problems, the method for producing an electrode catalyst layer for a fuel cell according to the present invention has platinum or a platinum-based alloy supported on a catalyst carrier selected from conductive carbon black, carbon nanotubes, activated carbon, and an oxide semiconductor. Only a catalyst layer paste raw material containing a catalyst carrier, a solvent, and perfluorosulfonic acid is put into a rotation / revolution type stirring and defoaming apparatus, and a revolution speed is 200 to 2200 rpm, a rotation speed is 150 to 1200 rpm, and a stirring time is 10 A catalyst layer paste is produced by mixing and stirring under a condition of ˜60 minutes, and this catalyst layer paste is applied to an electrolyte membrane or an electrode substrate to form a catalyst layer.

また、本発明の燃料電池用電極触媒層の製造方法のもう一つは、導電性カーボンブラック、カーボンナノチューブ、活性炭及び酸化物半導体から選ばれる触媒担体に、白金又は白金系合金を担持させた触媒担持体と、溶媒と、パーフルオロスルホン酸とを含む触媒層ペースト原料のみを自転公転式攪拌脱泡装置に投入し、公転回転数1500〜2400rpm自転回転数1200〜1500rpm攪拌時間2〜10分の条件で混合攪拌して触媒層ペーストを製造し、この触媒層ペーストを電解質膜又は電極基材に塗布して触媒層を形成することを特徴とする。 Another method for producing an electrode catalyst layer for a fuel cell according to the present invention is a catalyst in which platinum or a platinum-based alloy is supported on a catalyst carrier selected from conductive carbon black, carbon nanotubes, activated carbon, and an oxide semiconductor. Only the catalyst layer paste raw material containing a support, a solvent, and perfluorosulfonic acid is put into a rotation and revolution type stirring and deaerator, and the revolution speed is 1500 to 2400 rpm , the rotation speed is 1200 to 1500 rpm , and the stirring time is 2. A catalyst layer paste is produced by mixing and stirring under conditions of 10 minutes to 10 minutes, and this catalyst layer paste is applied to an electrolyte membrane or an electrode substrate to form a catalyst layer.

これによれば、触媒ペーストの温度が60℃以上と発火点付近まで上昇することがない。また、固形物が均一に分散し、気泡等の混入の極めて少ない触媒ペーストを製造することができる。よって電気特性に優れた電極触媒層とすることができる。 According to this, the temperature of the catalyst layer paste is 60 ° C. or higher and does not rise to near the ignition point. In addition, a catalyst layer paste in which solids are uniformly dispersed and there is very little mixing of bubbles or the like can be produced. Therefore, it can be set as the electrode catalyst layer excellent in the electrical property.

また、本発明において、前記触媒層ペーストを、公転回転数が200〜2200rpm及び自転回転数が公転回転数の1/5以下の回転数で攪拌して脱泡処理することが好ましい。そして、前記触媒層ペーストの脱泡処理時間を10〜300秒とすることが好ましい。   In the present invention, the catalyst layer paste is preferably defoamed by stirring at a revolution speed of 200 to 2200 rpm and a rotation speed of 1/5 or less of the revolution speed. And it is preferable that the defoaming time of the catalyst layer paste is 10 to 300 seconds.

これによれば、触媒ペーストを効果的に脱泡でき、気泡等の混入の極めて少ない、より均一かつ電気特性に優れた電極触媒層とすることができる。 According to this, the catalyst layer paste can be effectively defoamed, and an electrode catalyst layer having more uniform and excellent electrical characteristics can be obtained with extremely little mixing of bubbles and the like.

一方、本発明の燃料電池は、上記製造方法により作製された電極触媒層を空気電極及び/又は燃料電極として用いることを特徴とする。これによれば、触媒層の表面に気泡等によるピンホールやひび割れが生じず、電池寿命や電池特性に優れた燃料電池とすることができる。   On the other hand, the fuel cell of the present invention is characterized in that the electrode catalyst layer produced by the above production method is used as an air electrode and / or a fuel electrode. According to this, pinholes and cracks due to bubbles and the like do not occur on the surface of the catalyst layer, and a fuel cell excellent in battery life and battery characteristics can be obtained.

本発明によれば、60℃以下の安定な温度領域で、触媒担持体、パーフルオロスルホン酸、溶媒等が均一に分散した触媒層ペーストを製造することができ、それを電解質膜又は電極基材に塗布することで、均一で特性の高い燃料電池用触媒層を製造できる。そしてその電極触媒層を用いた燃料電池は、優れた電池寿命や電池特性が期待できる。 According to the present invention, a catalyst layer paste in which a catalyst carrier, perfluorosulfonic acid , a solvent, and the like are uniformly dispersed can be produced in a stable temperature range of 60 ° C. or less, and the catalyst layer paste can be prepared as an electrolyte membrane or electrode substrate By applying to, a fuel cell catalyst layer having uniform and high characteristics can be produced. A fuel cell using the electrode catalyst layer can be expected to have excellent battery life and battery characteristics.

本発明の燃料電池は、電解質膜の両面に、触媒層と電極基板とからなる電極を配置した燃料電池であって、その基本構成としては、例えば図1に示されるように、電解質膜1の両側に燃料電極2と、空気電極3とを密着して配置して、電解質と燃料電極と空気電極が一体化したMEA(Membrane and Electrode Assembly)4を形成し、MEA4の外側をセパレータ5a、5bで挟持して、電池単セルを構成している。なお、燃料電極2、及び酸化剤電極3はそれぞれ触媒層2a、3aと、電極基板2b、3bとで構成されている。   The fuel cell of the present invention is a fuel cell in which electrodes comprising a catalyst layer and an electrode substrate are arranged on both surfaces of an electrolyte membrane, and the basic configuration thereof is, for example, as shown in FIG. The fuel electrode 2 and the air electrode 3 are disposed in close contact with each other to form an MEA (Membrane and Electrode Assembly) 4 in which the electrolyte, the fuel electrode, and the air electrode are integrated. A single battery cell is configured by sandwiching the two. The fuel electrode 2 and the oxidant electrode 3 are composed of catalyst layers 2a and 3a and electrode substrates 2b and 3b, respectively.

以下本発明の燃料電池用電極触媒層の製造方法について説明する。   The method for producing an electrode catalyst layer for a fuel cell according to the present invention will be described below.

触媒層ペーストをまず製造する。この触媒層ペーストは、触媒担持体と、溶媒と、プロトン導電性ポリマーを主成分とするものである。   First, a catalyst layer paste is produced. This catalyst layer paste is mainly composed of a catalyst carrier, a solvent, and a proton conductive polymer.

触媒担持体、導電性カーボンブラック、カーボンナノチューブ、活性炭、酸化物半導体等の触媒担体に、白金、白金系合金等の触媒を担持させたものを用いる Catalyst support, conductive carbon black, carbon nanotube, activated carbon, a catalyst carrier such as an oxide semiconductor, platinum, used one obtained by supporting a catalyst such as platinum-based alloy.

プロトン導電性ポリマーは、電池反応で生成されるプロトンを電解質膜面上へ運ぶ役を持つものであり、パーフルオロスルホン酸を用いるProton-conducting polymer state, and it is not having the role to carry the protons generated in the cell reaction to the electrolyte membrane surface, using a perfluorosulfonic acid.

溶媒としては、メタノール、エタノール等のアルコール類;水;酢酸、蟻酸等の有機酸等が挙げられ、特に限定はない。   Examples of the solvent include alcohols such as methanol and ethanol; water; organic acids such as acetic acid and formic acid, and the like, and are not particularly limited.

その他副成分として撥水材、増孔材を含有してもよい。   In addition, you may contain a water repellent material and a pore enlargement material as an auxiliary component.

撥水剤としては、ポリテトラフルオロエチレン、フッ化ピッチ等が挙げられる。増孔材としては、シリカ、アルミナ等が挙げられる。   Examples of the water repellent include polytetrafluoroethylene and fluorinated pitch. Examples of the pore expanding material include silica and alumina.

上記原料を自転公転式攪拌脱泡装置に投入して、混合攪拌することで触媒層ペーストが得られる。   A catalyst layer paste can be obtained by charging the above-mentioned raw material into a rotation and revolution type stirring and defoaming apparatus and mixing and stirring.

ここで、自転公転式攪拌脱泡装置とは、被混練物を収容した容器等を容器ホルダに保持して公転させながらその公転軌道上で自転させるように構成した攪拌脱泡装置であって、容器の公転によって働く遠心力により容器内の内壁に被混練物を押し付けて、被混練物に内在する気泡を外部に放出すると共に、容器の自転運動により容器内の被混練物を攪拌するものである。そして、公転速度が大きいと被混練物の脱泡性能が良くなり、自転速度が大きいと攪拌性能が良くなることが知られている。   Here, the rotation and revolution type stirring and defoaming device is a stirring and defoaming device configured to rotate on its orbit while holding and revolving a container or the like containing a material to be kneaded in a container holder, The material to be kneaded is pressed against the inner wall of the container by the centrifugal force acting by the revolution of the container, and the bubbles present in the material to be kneaded are released to the outside, and the material to be kneaded in the container is agitated by the rotational movement of the container. is there. It is known that when the revolution speed is high, the defoaming performance of the material to be kneaded is improved, and when the rotation speed is high, the stirring performance is improved.

このような自転公転式攪拌脱泡装置としては、例えばシンキー社製(商品名;「あわとり錬太郎」)、倉敷紡績社製(商品名;「マゼルスター」)等が知られている。   As such a rotation and revolution type stirring and degassing apparatus, for example, those manufactured by Shinky Co., Ltd. (trade name; “Awatori Rentaro”), Kurashiki Boshoku Co., Ltd. (trade name: “Mazerustar”) and the like are known.

そして、本発明において自転公転式攪拌脱泡装置による混合攪拌を、公転回転数200〜2200rpm、自転回転数150〜1200rpm及び攪拌時間10〜60分の攪拌条件(A)、もしくは、公転回転数1500〜2400rpm、自転回転数1200〜1500rpm、攪拌時間2〜10分の攪拌条件(B)で行うことを特徴とする。 And in the present invention, the mixing and stirring by the rotation and revolution type stirring and degassing apparatus is carried out by stirring conditions (A) for revolution speed 200 to 2200 rpm, rotation speed 150 to 1200 rpm and stirring time 10 to 60 minutes, or revolution speed. It is characterized by being carried out under stirring conditions (B) of 1500 to 2400 rpm, rotation speed of 1200 to 1500 rpm, and stirring time of 2 to 10 minutes .

上記(A)又は(B)の攪拌条件で行うことで、60℃以下の発火温度以下でペースト化でき、それぞれの成分が均一に分散し、気泡等の混入の極めて少ない触媒層ペーストとすることができる。   By carrying out under the stirring conditions (A) or (B) above, a catalyst layer paste that can be made into a paste at an ignition temperature of 60 ° C. or less, in which each component is uniformly dispersed, and there is very little mixing of bubbles, etc. Can do.

こうして得られた触媒層ペーストを自転公転式攪拌脱泡装置にて、更に公転回転数を200〜2200rpm及び自転回転数を公転回転数の1/5以下とした条件で攪拌することが好ましく、より好ましくは公転回転数は500〜2000rpmであり、自転回転数は公転回転数の1/10〜1/5である。また、攪拌時間は10〜300秒とすることが好ましく、より好ましくは、30〜120秒である。   It is preferable to stir the catalyst layer paste thus obtained in a rotation and revolution type stirring and defoaming device under the condition that the revolution speed is 200 to 2200 rpm and the revolution speed is 1/5 or less of the revolution speed. Preferably, the revolution speed is 500 to 2000 rpm, and the rotation speed is 1/10 to 1/5 of the revolution speed. The stirring time is preferably 10 to 300 seconds, more preferably 30 to 120 seconds.

得られた触媒層ペーストを上記条件で更に攪拌することで、ほぼ完全に脱泡された触媒層ペーストを得ることができる。   By further stirring the obtained catalyst layer paste under the above conditions, a catalyst layer paste that is almost completely degassed can be obtained.

そして、この触媒層ペーストを電解質膜面又は電極基板に塗布することで触媒層を形成できる。触媒層ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、スプレー法等が挙げられる。   And a catalyst layer can be formed by apply | coating this catalyst layer paste to an electrolyte membrane surface or an electrode substrate. Examples of the method for applying the catalyst layer paste include screen printing, roll coating, and spraying.

触媒層の膜厚は5〜100μmであることが好ましく、より好ましくは10〜40μmである。   The thickness of the catalyst layer is preferably 5 to 100 μm, more preferably 10 to 40 μm.

このようにして製造された触媒層を有する燃料電池は、触媒層にピンホールやひび割れが生じにくく、また、触媒層の厚みの均一なものである。   The fuel cell having the catalyst layer manufactured as described above is less likely to cause pinholes or cracks in the catalyst layer and has a uniform thickness.

以下、本発明を実施例を挙げて説明する。なお、本発明は、これらの実施例に制限されるものではない。   Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not restrict | limited to these Examples.

[実施例1]
白金担持量40質量%の白金担持カーボン10gと、パーフロロスルフォン酸樹脂5%アルコール溶液100gとを自転公転式攪拌脱泡装置を用いて、下記表1に示す公転回転数及び自転回転数で攪拌した。均一な触媒層ペーストが得られた時間、及び攪拌により触媒層ペーストの温度が60℃に達した時間を表1にまとめて記す。また、攪拌時間と触媒層ペーストの温度の関係を示す図表を図2に示す。
[Example 1]
Stirring 10 g of platinum-carrying carbon having a platinum loading of 40% by mass and 100 g of a 5% perfluororosulphonic acid resin alcohol solution at the revolutions and rotations shown in Table 1 below using a rotation and revolution type stirring and deaerator. did. Table 1 summarizes the time when the uniform catalyst layer paste was obtained and the time when the temperature of the catalyst layer paste reached 60 ° C by stirring. Moreover, the graph which shows the relationship between the stirring time and the temperature of a catalyst layer paste is shown in FIG.

なお、触媒層ペーストの分散状態を確認するにあたって、100μmの篩いに触媒ペーストを通過させて、触媒残渣の有無を観察した。












In confirming the dispersion state of the catalyst layer paste, the catalyst paste was passed through a 100 μm sieve and the presence or absence of catalyst residue was observed.












上記結果より、公転回転数が2400rpm以上である製造例1、及び自転回転数が1500rpm以上である製造例2の触媒層ペーストは、攪拌開始2分程度で均一な触媒層ペーストとすることができた。その際、触媒層ペーストの温度が60℃以上となることはなかった。   From the above results, the catalyst layer pastes of Production Example 1 having a revolution speed of 2400 rpm or more and Production Example 2 having a rotation speed of 1500 rpm or more can be made into a uniform catalyst layer paste within about 2 minutes of stirring. It was. At that time, the temperature of the catalyst layer paste never exceeded 60 ° C.

また、公転回転数が200〜2200rpm及び自転回転数が150〜1350rpmである製造例3、4の触媒層ペーストは攪拌開始10分後に触媒層ペーストとすることができ、攪拌開始60分経過後であっても触媒層ペーストの温度が60℃以上となることはなかった。   Further, the catalyst layer pastes of Production Examples 3 and 4 having a revolution speed of 200 to 2200 rpm and a rotation speed of 150 to 1350 rpm can be made into a catalyst layer paste 10 minutes after the start of stirring, and 60 minutes after the start of stirring. Even if it existed, the temperature of the catalyst layer paste did not become 60 degreeC or more.

一方、自転回転数が150rpm未満である製造例5の触媒層ペースト、及び公転回転数が200rpm未満である製造例6の触媒層ペーストは均一な触媒層ペーストが得られなかった。   On the other hand, the catalyst layer paste of Production Example 5 having a rotation speed of less than 150 rpm and the catalyst layer paste of Production Example 6 having a revolution speed of less than 200 rpm did not yield a uniform catalyst layer paste.

[実施例2]
(燃料電極触媒層の作製)
白金担持量40質量%の白金担持カーボン10gと、パーフロロスルフォン酸樹脂5%アルコール溶液100gとを自転公転式攪拌脱泡装置を用いて公転回転数2000rpm、自転回転数600rpm、攪拌時間15分の条件で混合して触媒層ペーストを作製した。こうして得られた触媒層ペーストを電解質膜上にPt量0.3mg/cmとなるように塗布し、燃料電極触媒層/電解質膜を得た。
[Example 2]
(Preparation of fuel electrode catalyst layer)
10 g of platinum-supporting carbon having a platinum loading of 40% by mass and 100 g of an alcohol solution of 5% perfluororosulphonic acid resin are rotated at a rotational speed of 2000 rpm, a rotational speed of 600 rpm, and a stirring time of 15 minutes using a rotating and rotating stirring deaerator. The catalyst layer paste was prepared by mixing under conditions. The catalyst layer paste thus obtained was applied on the electrolyte membrane so that the amount of Pt was 0.3 mg / cm 2 to obtain a fuel electrode catalyst layer / electrolyte membrane.

(空気電極触媒層の作製)
白金担持量30質量%、ルテニウム担持量15質量%の白金ルテニウム担持カーボン10gと、パーフロロスルフォン酸樹脂5%アルコール溶液100gとを自転公転式攪拌脱泡装置を用いて公転回転数1340rpm、自転回転数1200rpm、攪拌時間30分の条件で混合して触媒層ペーストを作製した。こうして得られた触媒層ペーストを燃料電極触媒層が塗布された電解質膜の反対側の面にPt量0.3mg/cmとなるように塗布し、空気電極触媒層/電解質膜/燃料電極触媒層を得た。
(Preparation of air electrode catalyst layer)
A platinum ruthenium-carrying carbon of 10 g having a platinum-carrying amount of 30% by mass and a ruthenium-carrying amount of 15% by mass and a perfluororosulphonic acid resin 5% alcohol solution of 100 g are rotated at a rotational speed of 1340 rpm using a rotating and rotating stirring deaerator. The catalyst layer paste was prepared by mixing under the conditions of several 1200 rpm and stirring time of 30 minutes. The catalyst layer paste thus obtained was applied to the opposite surface of the electrolyte membrane coated with the fuel electrode catalyst layer so that the amount of Pt was 0.3 mg / cm 2, and the air electrode catalyst layer / electrolyte membrane / fuel electrode catalyst was applied. A layer was obtained.

(MEA作製)
上記空気電極触媒層/電解質膜/燃料電極触媒層の両面にカーボンペーパーをそれぞれ配し、140℃、0.4MPaで熱圧着することでMEAを作製した。
(MEA production)
Carbon paper was arranged on both sides of the air electrode catalyst layer / electrolyte membrane / fuel electrode catalyst layer, and MEA was produced by thermocompression bonding at 140 ° C. and 0.4 MPa.

この触媒層は、粒子の凝縮物等がなく、均一に形成された触媒層であり、また、触媒層ペーストの製造時において、それぞれの触媒層ペーストの温度を発火点以下の60度以下に維持することが出来た。   This catalyst layer is a catalyst layer formed uniformly without particle condensate, etc. Also, during the production of the catalyst layer paste, the temperature of each catalyst layer paste is maintained at 60 degrees or less below the ignition point. I was able to do it.

[実施例3]
実施例2に示す燃料電極触媒層ペースト及び空気電極触媒層ペーストの作製後、それぞれの触媒層ペーストを更に公転回転数1000rpm及び自転回転数100rpmで2分間攪拌した後に、電解質膜上にPt量0.3mg/cmとなるようにそれぞれ塗布し、各々の触媒層を得た。この触媒層には気泡の混入がなく、均一に形成された触媒層であった。
[Example 3]
After the fuel electrode catalyst layer paste and the air electrode catalyst layer paste shown in Example 2 were prepared, the catalyst layer paste was further stirred for 2 minutes at a revolution speed of 1000 rpm and a rotation speed of 100 rpm, and then the Pt amount was 0 on the electrolyte membrane. Each of the catalyst layers was obtained by coating each to a concentration of 3 mg / cm 2 . This catalyst layer was a catalyst layer that was uniformly formed without air bubbles.

その後、空気電極触媒層/電解質膜/燃料電極触媒層の両面にカーボンペーパーをそれぞれ配し、140℃、0.4MPaで熱圧着することでMEAを作製した。   Thereafter, carbon paper was disposed on both sides of the air electrode catalyst layer / electrolyte membrane / fuel electrode catalyst layer, and MEA was produced by thermocompression bonding at 140 ° C. and 0.4 MPa.

〔比較例1〕
(燃料電極触媒層の作製)
白金担持量40質量%の白金担持カーボン10gと、パーフロロスルフォン酸樹脂5%アルコール溶液100gとを自転公転式攪拌脱泡装置を用いて公転回転数1000rpm、自転回転数600rpm、攪拌時間5分の条件で混合して触媒層ペーストを作製した。こうして得られた触媒層ペーストを電解質膜上にPt量0.3mg/cmとなるように塗布し、燃料電極触媒層/電解質膜を得た。
[Comparative Example 1]
(Preparation of fuel electrode catalyst layer)
10 g of platinum-supporting carbon having a platinum loading of 40% by mass and 100 g of an alcohol solution of 5% perfluororosulphonic acid resin are rotated at a revolution speed of 1000 rpm, a rotation speed of 600 rpm, and a stirring time of 5 minutes using a rotation and revolution type stirring and deaerator. The catalyst layer paste was prepared by mixing under conditions. The catalyst layer paste thus obtained was applied on the electrolyte membrane so that the amount of Pt was 0.3 mg / cm 2 to obtain a fuel electrode catalyst layer / electrolyte membrane.

(空気電極触媒層の作製)
白金担持量30質量%、ルテニウム担持量15質量%の白金ルテニウム担持カーボン10gと、パーフロロスルフォン酸樹脂5%アルコール溶液100gとを自転公転式攪拌脱泡装置を用いて公転回転数1000rpm、自転回転数600rpm、攪拌時間5分の条件で混合して触媒層ペーストを作製した。こうして得られた触媒層ペーストを燃料電極触媒層が塗布された電解質膜の反対側の面にPt量0.3mg/cmとなるように塗布し、空気電極触媒層/電解質膜/燃料電極触媒層を得た。
(Preparation of air electrode catalyst layer)
10 g of platinum ruthenium-carrying carbon with 30% by mass of platinum and 15% by mass of ruthenium and 100 g of 5% alcohol solution of perfluororosulphonic acid resin using an agitation revolving type stirring and defoaming device, rotation speed of 1000 rpm, rotation of rotation The catalyst layer paste was prepared by mixing under the conditions of several 600 rpm and stirring time of 5 minutes. The catalyst layer paste thus obtained was applied to the opposite surface of the electrolyte membrane coated with the fuel electrode catalyst layer so that the Pt amount was 0.3 mg / cm 2, and the air electrode catalyst layer / electrolyte membrane / fuel electrode catalyst was applied. A layer was obtained.

(MEAの作製)
上記空気電極触媒層/電解質膜/燃料電極触媒層の両面にカーボンペーパーをそれぞれ配し、140℃、0.4MPaで熱圧着することでMEAを作製した。
(Production of MEA)
Carbon paper was arranged on both sides of the air electrode catalyst layer / electrolyte membrane / fuel electrode catalyst layer, and MEA was produced by thermocompression bonding at 140 ° C. and 0.4 MPa.

〔試験例〕
実施例3及び比較例1のMEAを、電解質膜の面積当たり0.2Amp/cmの負荷をかけて10000時間運転して長期セル試験をおこない、MEAの電池特性の変化を評価した。図3に結果を示す。
[Test example]
The MEA of Example 3 and Comparative Example 1 was operated for 10,000 hours under a load of 0.2 Amp / cm 2 per area of the electrolyte membrane, and a long-term cell test was performed to evaluate changes in battery characteristics of the MEA. The results are shown in FIG.

図3の結果から、比較例1のMEAは5000時間経過後電圧低下の生じるものであったが、実施例3のMEAは5000時間以降も電圧低下が生じなかった。   From the results in FIG. 3, the MEA of Comparative Example 1 had a voltage drop after 5000 hours, but the MEA of Example 3 had no voltage drop after 5000 hours.

本発明は、燃料電池、特に固体高分子型燃料電池の長寿命化が期待できる。   The present invention can be expected to extend the life of fuel cells, particularly solid polymer fuel cells.

固体高分子型燃料電池の一例を示す断面図である。It is sectional drawing which shows an example of a polymer electrolyte fuel cell. 攪拌時間と触媒層ペーストの温度の関係を示す図表である。It is a graph which shows the relationship between stirring time and the temperature of a catalyst layer paste. 実施例3と比較例1のMEAの長期セル試験結果を示す図表である。6 is a chart showing long-term cell test results of MEAs of Example 3 and Comparative Example 1.

符号の説明Explanation of symbols

1 電解質膜
2 燃料電極
3 空気電極
2a、3a 触媒層
2b、3b 電極基板
4 MEA
5a、5b セパレータ
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Fuel electrode 3 Air electrode 2a, 3a Catalyst layer 2b, 3b Electrode board | substrate 4 MEA
5a, 5b separator

Claims (5)

導電性カーボンブラック、カーボンナノチューブ、活性炭及び酸化物半導体から選ばれる触媒担体に、白金又は白金系合金を担持させた触媒担持体と、溶媒と、パーフルオロスルホン酸とを含む触媒層ペースト原料のみを自転公転式攪拌脱泡装置に投入し、公転回転数200〜2200rpm、自転回転数150〜1200rpm、攪拌時間10〜60分の条件で混合攪拌して触媒層ペーストを製造し、この触媒層ペーストを電解質膜又は電極基材に塗布して触媒層を形成することを特徴とする燃料電池用電極触媒層の製造方法。 A catalyst carrier selected from conductive carbon black, carbon nanotubes, activated carbon, and oxide semiconductor, and a catalyst carrier containing platinum or a platinum-based alloy, a solvent, and a catalyst layer paste raw material containing perfluorosulfonic acid only. The catalyst layer paste is prepared by mixing and stirring under the conditions of rotation speed 200 to 2200 rpm, rotation speed 150 to 1200 rpm, and stirring time 10 to 60 minutes. A method for producing an electrode catalyst layer for a fuel cell, comprising applying a catalyst to an electrolyte membrane or an electrode substrate to form a catalyst layer. 導電性カーボンブラック、カーボンナノチューブ、活性炭及び酸化物半導体から選ばれる触媒担体に、白金又は白金系合金を担持させた触媒担持体と、溶媒と、パーフルオロスルホン酸とを含む触媒層ペースト原料のみを自転公転式攪拌脱泡装置に投入し、公転回転数1500〜2400rpm自転回転数1200〜1500rpm攪拌時間2〜10分の条件で混合攪拌して触媒層ペーストを製造し、この触媒層ペーストを電解質膜又は電極基材に塗布して触媒層を形成することを特徴とする燃料電池用電極触媒層の製造方法。 A catalyst carrier selected from conductive carbon black, carbon nanotubes, activated carbon, and oxide semiconductor, and a catalyst carrier containing platinum or a platinum-based alloy, a solvent, and a catalyst layer paste raw material containing perfluorosulfonic acid only. was put into rotation revolution type stirrer degassing apparatus, the revolution number from 1,500 to 2400 rpm, rotation rotational speed 1200 to 1500 rpm, and mixed and stirred under conditions of stirring time 2-10 minutes to prepare a catalyst layer paste, the catalyst layer A method for producing an electrode catalyst layer for a fuel cell, comprising applying a paste to an electrolyte membrane or an electrode substrate to form a catalyst layer. 前記触媒層ペーストを、公転回転数が200〜2200rpm及び自転回転数が公転回転数の1/5以下の回転数で攪拌して脱泡処理する請求項1又は2に記載の燃料電池用電極触媒層の製造方法。   3. The fuel cell electrode catalyst according to claim 1, wherein the catalyst layer paste is defoamed by stirring at a revolution speed of 200 to 2200 rpm and a rotation speed of 1/5 or less of the revolution speed. Layer manufacturing method. 触媒層ペーストの脱泡処理時間を10〜300秒とする請求項3に記載の燃料電池用電極触媒層の製造方法。   The method for producing an electrode catalyst layer for a fuel cell according to claim 3, wherein the defoaming time of the catalyst layer paste is 10 to 300 seconds. 請求項1〜4に記載の製造方法により作製された電極触媒層を空気電極及び/又は燃料電極として用いた燃料電池。   The fuel cell which used the electrode catalyst layer produced by the manufacturing method of Claims 1-4 as an air electrode and / or a fuel electrode.
JP2005021537A 2005-01-28 2005-01-28 Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer Expired - Fee Related JP4665536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021537A JP4665536B2 (en) 2005-01-28 2005-01-28 Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021537A JP4665536B2 (en) 2005-01-28 2005-01-28 Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer

Publications (2)

Publication Number Publication Date
JP2006210181A JP2006210181A (en) 2006-08-10
JP4665536B2 true JP4665536B2 (en) 2011-04-06

Family

ID=36966779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021537A Expired - Fee Related JP4665536B2 (en) 2005-01-28 2005-01-28 Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer

Country Status (1)

Country Link
JP (1) JP4665536B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141104B2 (en) * 2006-11-06 2013-02-13 トヨタ自動車株式会社 Manufacturing method of fuel cell
JP5293149B2 (en) * 2008-12-18 2013-09-18 株式会社エクォス・リサーチ Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP5245838B2 (en) * 2009-01-09 2013-07-24 株式会社エクォス・リサーチ Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283040A (en) * 1985-10-08 1987-04-16 Fuji Electric Co Ltd Preparation of platinum/vanadium alloy catalyst
JPH0737592A (en) * 1993-07-23 1995-02-07 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for fuel cell
JP2001347152A (en) * 1999-10-07 2001-12-18 Toyota Motor Corp Mixing/deaerating device and mixing/deaerating method
WO2003083981A1 (en) * 2002-03-29 2003-10-09 Kri, Inc. Proton exchanger for fuel cell and fuel cell containing the same
JP2005235706A (en) * 2004-02-23 2005-09-02 Aisin Seiki Co Ltd Electrode for solid polymer fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283040A (en) * 1985-10-08 1987-04-16 Fuji Electric Co Ltd Preparation of platinum/vanadium alloy catalyst
JPH0737592A (en) * 1993-07-23 1995-02-07 Tanaka Kikinzoku Kogyo Kk Manufacture of electrode for fuel cell
JP2001347152A (en) * 1999-10-07 2001-12-18 Toyota Motor Corp Mixing/deaerating device and mixing/deaerating method
WO2003083981A1 (en) * 2002-03-29 2003-10-09 Kri, Inc. Proton exchanger for fuel cell and fuel cell containing the same
JP2005235706A (en) * 2004-02-23 2005-09-02 Aisin Seiki Co Ltd Electrode for solid polymer fuel cell

Also Published As

Publication number Publication date
JP2006210181A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4230920B2 (en) Method for producing supported nanoparticle catalyst
US6911411B2 (en) Catalyst agglomerates for membrane electrode assemblies
CN1801514A (en) Pt/Ru alloy catalyst for fuel cell
CN109314250B (en) Membrane electrode assembly with improved electrodes
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
TW202039074A (en) Catalyst, method for manufacturing the same, electrode comprising the same, membrane-electrode assembly comprising the same, and fuel cell comprising the same
WO2011083842A1 (en) Apparatus for production of catalyst layer for fuel cell, method for production of catalyst layer for fuel cell, polyelectrolyte solution, and process for production of polyelectrolyte solution
JP5108199B2 (en) POWDERED CATALYST MATERIAL, PROCESS FOR PRODUCING THE SAME, AND POLYMER FUEL CELL ELECTRODE
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
WO2006114942A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP2005235706A (en) Electrode for solid polymer fuel cell
JP4665536B2 (en) Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer
JP5132699B2 (en) Membrane electrode structure for fuel cell and manufacturing method thereof
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP5017981B2 (en) Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same
JP5565305B2 (en) Fuel cell catalyst layer manufacturing apparatus, fuel cell catalyst layer manufacturing method, polymer electrolyte solution, and polymer electrolyte solution manufacturing method
JP5270936B2 (en) Manufacturing method of membrane electrode structure for fuel cell
JP2005141920A (en) Catalyst carrying electrode
US11715833B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP5270939B2 (en) Membrane electrode structure for fuel cell
EP4400480A1 (en) Electroconductive titanium oxide, metal-supported electroconductive titanium oxide, membrane electrode assembly, solid polymer electrolyte fuel cell, method for producing electroconductive titanium oxide, and method for producing metal-supported electroconductive titanium oxide
JP2008218341A (en) Forming method for electrode layer and manufacturing method for film electrode structure
KR100738059B1 (en) Electrode for fuel cell, manufacturing method thereof, and fuel cell employing the same
JP2005166310A (en) Gas diffusion electrode and its manufacturing method and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees