JP2005235521A - Electrode for solid polymer fuel cell - Google Patents
Electrode for solid polymer fuel cell Download PDFInfo
- Publication number
- JP2005235521A JP2005235521A JP2004041866A JP2004041866A JP2005235521A JP 2005235521 A JP2005235521 A JP 2005235521A JP 2004041866 A JP2004041866 A JP 2004041866A JP 2004041866 A JP2004041866 A JP 2004041866A JP 2005235521 A JP2005235521 A JP 2005235521A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- catalyst
- particles
- fuel cell
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子型燃料電池用電極に関する。 The present invention relates to an electrode for a polymer electrolyte fuel cell.
近年、燃料電池の開発が進められている。この燃料電池には、いくつかのタイプがあり、車両用あるいは固定用の発電システムとして、固体高分子型燃料電池の開発が進められている。 In recent years, fuel cells have been developed. There are several types of fuel cells, and a polymer electrolyte fuel cell is being developed as a vehicle or stationary power generation system.
固体高分子型燃料電池においては、以下に示した水素と酸素の電気化学反応が起こり、電気エネルギーが発生する。 In the polymer electrolyte fuel cell, the following electrochemical reaction between hydrogen and oxygen occurs, and electric energy is generated.
(燃料極側) H2→2H++2e-
(空気極側) 2H++1/2O2+2e-→H2O
(全体) H2+1/2O2→H2O
固体高分子型燃料電池は、通常は、触媒金属を有する触媒層が両面に形成された高分子電解質膜よりなる固体高分子型燃料電池用電極の触媒層のそれぞれに拡散層を接合して膜−電極接合体(MEA)を形成し、これをガス流路を備えたセパレータで挟持した燃料電池セルを形成し、空気極に酸素を有する空気を燃料極に水素を供給して発電を行っている。上記電気化学反応は、燃料電池セルにおいて触媒、電解質およびガスの三者が共存する三相界面で起こると考えられている。すなわち、三相界面量が少なくなると上記電気化学反応の反応箇所が少なくなるため、燃料電池セルの電池性能が低下する。
(Fuel electrode side) H 2 → 2H + + 2e -
(Air electrode side) 2H + + 1 / 2O 2 + 2e − → H 2 O
(Overall) H 2 + 1 / 2O 2 → H 2 O
A polymer electrolyte fuel cell is usually a membrane in which a diffusion layer is bonded to each of the catalyst layers of a polymer electrolyte fuel cell electrode made of a polymer electrolyte membrane having a catalyst layer having a catalyst metal formed on both sides. -An electrode assembly (MEA) is formed, and a fuel cell unit is formed by sandwiching the electrode assembly (MEA) with a separator having a gas flow path. Yes. The electrochemical reaction is considered to occur at a three-phase interface where a catalyst, an electrolyte, and a gas coexist in a fuel cell. That is, when the amount of the three-phase interface is reduced, the number of reaction sites for the electrochemical reaction is reduced, so that the battery performance of the fuel cell is lowered.
触媒層は、一般に、表面にPt等の触媒粒子を担持させたカーボン粒子とイオン伝導性ポリマーからなる電解質とを溶媒に混合して触媒ペーストを調製し、この触媒ペーストを、高分子電解質膜に塗布して乾燥させることにより形成している。また、触媒ペーストをフッ素樹脂シート等に塗布して乾燥させた後に高分子電解質膜に接合させることで形成することもできる。 In general, the catalyst layer is prepared by mixing a carbon particle carrying catalyst particles such as Pt on the surface and an electrolyte made of an ion conductive polymer in a solvent to prepare a catalyst paste, and using this catalyst paste as a polymer electrolyte membrane. It is formed by applying and drying. Alternatively, the catalyst paste can be formed by applying the catalyst paste to a fluororesin sheet or the like and drying it, followed by bonding to the polymer electrolyte membrane.
そして、触媒層において三相界面量を増加させる手段のひとつに触媒ペーストの分散度を増加させる方法がある。また、触媒層においては、製造時に触媒ペーストの分散度合いを上げるだけでなく、得られた触媒層におけるガス拡散性および水排出性を向上させることも重要である。 One method for increasing the amount of the three-phase interface in the catalyst layer is to increase the degree of dispersion of the catalyst paste. Further, in the catalyst layer, it is important not only to increase the degree of dispersion of the catalyst paste during production, but also to improve the gas diffusibility and water discharge properties in the obtained catalyst layer.
たとえば、特許文献1には、触媒ペースト中に造孔材を加え、この触媒ペーストを塗布・乾燥させた後に、乾燥物から造孔材を取り除くことで触媒層中の細孔分布をコントロールする手法が開示されている。 For example, Patent Document 1 discloses a method of controlling pore distribution in a catalyst layer by adding a pore former to a catalyst paste, applying and drying the catalyst paste, and then removing the pore former from the dried product. Is disclosed.
しかしながら、この手法では、触媒層中の造孔材を除去するための処理として電極の焼成および洗浄等の処理を行っており、これらの処理工程がさらに必要となる。このことは、電極の製造コストを上昇させる。また、造孔材が触媒粒子(Pt)と電解質の界面に存在した場合には、三相界面の形成が阻害されるようになる。 However, in this method, treatments such as firing and washing of electrodes are performed as treatments for removing the pore former in the catalyst layer, and these treatment steps are further required. This increases the manufacturing cost of the electrode. In addition, when the pore former is present at the interface between the catalyst particles (Pt) and the electrolyte, the formation of the three-phase interface is inhibited.
また、特許文献2には、触媒ペーストを粉体化し、高分子電解質膜上に散布し、圧着することで触媒層の細孔分布をコントロールする手法が開示されている。 Patent Document 2 discloses a technique for controlling the pore distribution of the catalyst layer by powdering the catalyst paste, spraying it on the polymer electrolyte membrane, and pressing it.
しかしながら、この手法においては、粉体化された触媒ペーストの粒子の粒径が30μm程度と大きくなるため、触媒層中に形成される細孔径が大きな細孔しかコントロールできないという問題があった。また、触媒ペーストの粒子同士の結着性および連続性が得られないという問題もあった。
本発明は上記実状に鑑みてなされたものであり、十分な三相界面量を有する触媒層をもつ固体高分子型燃料電池用電極を提供することを課題とする。 This invention is made | formed in view of the said actual condition, and makes it a subject to provide the electrode for polymer electrolyte fuel cells which has a catalyst layer which has sufficient three-phase interface amount.
上記課題を解決するために本発明者は、触媒層の製造時に触媒ペーストの分散性を調節することで三相界面量の多い触媒層をもつ固体高分子型燃料電池用電極を得られることを見出した。 In order to solve the above problems, the present inventor has found that a polymer electrolyte fuel cell electrode having a catalyst layer with a large three-phase interface amount can be obtained by adjusting the dispersibility of the catalyst paste during the production of the catalyst layer. I found it.
すなわち、本発明の固体高分子型燃料電池用電極は、溶媒中に電解質を溶解した電解質溶液と、電解質よりなる電解質粒子と、触媒金属を担体粒子に担持させた触媒担持粒子と、を分散した触媒ペーストを塗布することによって形成された触媒層がもうけられたことを特徴とする。 That is, the polymer electrolyte fuel cell electrode of the present invention is obtained by dispersing an electrolyte solution in which an electrolyte is dissolved in a solvent, electrolyte particles made of the electrolyte, and catalyst-supported particles in which a catalyst metal is supported on carrier particles. A catalyst layer formed by applying the catalyst paste is provided.
本発明の固体高分子型燃料電池用電極は、溶媒中に電解質が溶解した電解質溶液が分散され、電解質粒子が分散されることで触媒ペースト中の分散性が向上し、この触媒ペーストが乾燥してなる触媒層を有している。この結果、本発明の固体高分子型燃料電池用電極は、十分な三相界面量を有する触媒層をもつようになった。 The electrode for a polymer electrolyte fuel cell of the present invention is obtained by dispersing an electrolyte solution in which an electrolyte is dissolved in a solvent, and by dispersing electrolyte particles, the dispersibility in the catalyst paste is improved, and the catalyst paste is dried. And a catalyst layer. As a result, the polymer electrolyte fuel cell electrode of the present invention has a catalyst layer having a sufficient three-phase interface amount.
本発明の固体高分子型燃料電池用電極は、触媒層が、溶媒中に電解質が溶解した電解質溶液と、電解質よりなる電解質粒子と、触媒金属を担体粒子に担持させた触媒担持粒子と、を分散した触媒ペーストが塗布されてなる。本発明において、電解質が溶解した電解質溶液は、電解質がコロイド状で存在する状態を含む。 The electrode for a polymer electrolyte fuel cell of the present invention comprises an electrolyte solution in which an electrolyte is dissolved in a solvent, an electrolyte particle made of an electrolyte, and catalyst-supported particles in which a catalyst metal is supported on carrier particles. A dispersed catalyst paste is applied. In the present invention, the electrolyte solution in which the electrolyte is dissolved includes a state where the electrolyte exists in a colloidal state.
本発明の固体高分子型燃料電池用電極は、電解質溶液に溶解した電解質と電解質粒子とが分散した触媒ペーストが塗布されてなることで十分な三相界面量を有する触媒層をもつようになる。電解質溶液に溶解した電解質と電解質粒子とは、それぞれの状態における粒径が異なるため、触媒ペーストへの分散性が異なる。 The electrode for a polymer electrolyte fuel cell of the present invention has a catalyst layer having a sufficient three-phase interface amount by applying a catalyst paste in which an electrolyte dissolved in an electrolyte solution and electrolyte particles are dispersed. . Since the electrolyte and electrolyte particles dissolved in the electrolyte solution have different particle sizes in the respective states, dispersibility in the catalyst paste is different.
一般的な電解質溶液中の電解質は、粒径3nm程度のコロイド状をなしているといわれている。電解質溶液に溶解した電解質は、固体の電解質粒子より触媒ペーストに分散しやすい。すなわち、電解質溶液に溶解した電解質は、触媒ペーストの他の分散粒子(触媒金属を担体粒子に担持させた触媒担持粒子、特に触媒金属担持カーボン)と均一に分散する。この均一な分散により、電解質が他の分散粒子の表面に存在するようになる。このとき、他の分散粒子に多孔質の部材が用いられた場合には、この多孔質の部材の細孔の内部にまで電解質が浸透する。また、電解質溶液の電解質が分散剤(安定剤)として機能するため、その後の工程において電解質粒子が分散しやすくなる。 It is said that the electrolyte in a general electrolyte solution has a colloidal shape with a particle size of about 3 nm. The electrolyte dissolved in the electrolyte solution is easier to disperse in the catalyst paste than the solid electrolyte particles. That is, the electrolyte dissolved in the electrolyte solution is uniformly dispersed with the other dispersed particles of the catalyst paste (catalyst-supported particles in which the catalyst metal is supported on the carrier particles, particularly catalyst-metal-supported carbon). This uniform dispersion causes the electrolyte to be present on the surface of other dispersed particles. At this time, when a porous member is used for the other dispersed particles, the electrolyte penetrates into the pores of the porous member. Further, since the electrolyte of the electrolyte solution functions as a dispersant (stabilizer), the electrolyte particles are easily dispersed in the subsequent steps.
電解質粒子の粒径は、電解質溶液中の電解質の粒径よりはるかに大きい。電解質粒子は、電解質溶液中の電解質より分散性が弱いため、他の分散粒子と均一な分散は生じない。すなわち、電解質粒子は触媒ペースト中において粒子形状を有しており、この電解質粒子と他の分散粒子とが当接してもその周囲にすき間が存在する。このすき間には触媒ペーストの溶媒などが存在する。そして、この触媒ペーストが乾燥するとこのすき間が空孔となる。電解質粒子の粒径は、電解質溶液中の電解質の粒径の100倍以上であることが好ましく、500倍以上であることがより好ましい。さらに好ましくは、1000倍以上である。 The particle size of the electrolyte particles is much larger than the particle size of the electrolyte in the electrolyte solution. Since the electrolyte particles are less dispersible than the electrolyte in the electrolyte solution, uniform dispersion with other dispersed particles does not occur. That is, the electrolyte particles have a particle shape in the catalyst paste, and even if the electrolyte particles and other dispersed particles come into contact with each other, a gap exists around the electrolyte particles. In this gap, there is a catalyst paste solvent and the like. And when this catalyst paste dries, this gap becomes a void. The particle size of the electrolyte particles is preferably 100 times or more, and more preferably 500 times or more the particle size of the electrolyte in the electrolyte solution. More preferably, it is 1000 times or more.
すなわち、触媒ペーストにおいては、他の分散粒子(触媒金属を担体粒子に担持させた触媒担持粒子、特に触媒金属担持カーボン)の近傍にプロトン伝導能力の高い電解質溶液中の電解質が存在し、その周囲に電解質粒子が存在している。本発明の固体高分子型燃料電池用電極は、この状態の触媒ペーストが塗布・乾燥されてなる触媒層を有するものである。すなわち、電解質溶液の電解質が触媒金属の外周に存在し、その周囲に触媒金属と電解質粒子とにより形成された空孔が存在する。この空孔が触媒層のガス拡散性および水排出性を確保する。 That is, in the catalyst paste, there is an electrolyte in an electrolyte solution having a high proton conductivity in the vicinity of other dispersed particles (catalyst-supported particles in which catalyst metal is supported on carrier particles, in particular, catalyst-metal-supported carbon). Electrolyte particles are present in The electrode for a polymer electrolyte fuel cell of the present invention has a catalyst layer formed by applying and drying the catalyst paste in this state. That is, the electrolyte of the electrolyte solution exists on the outer periphery of the catalyst metal, and pores formed by the catalyst metal and the electrolyte particles exist around the electrolyte. These pores ensure gas diffusibility and water discharge of the catalyst layer.
触媒ペーストは、電解質溶液を分散させた後に電解質粒子を分散させてなることが好ましい。電解質溶液と電解質粒子は触媒ペーストへの分散性が異なるため、同時ではなく分けて分散させることで均一に分散した触媒ペーストが得られる。まず、電解質溶液を分散させることで、触媒ペーストの他の分散粒子(触媒金属を担体粒子に担持させた触媒担持粒子、特に触媒金属担持カーボン)と均一に分散する。そして、電解質溶液が均一に分散した分散液に電解質粒子を分散させることで、他の分散粒子(触媒金属を担体粒子に担持させた触媒担持粒子、特に触媒金属担持カーボン)の近傍にプロトン伝導能力の高い電解質溶液中の電解質が存在し、その周囲に電解質粒子が存在することとなる。 The catalyst paste is preferably formed by dispersing electrolyte particles after dispersing the electrolyte solution. Since the electrolyte solution and the electrolyte particles have different dispersibility in the catalyst paste, a uniformly dispersed catalyst paste can be obtained by dispersing separately instead of simultaneously. First, the electrolyte solution is dispersed to uniformly disperse with other dispersed particles of the catalyst paste (catalyst-supported particles having catalyst metal supported on carrier particles, particularly catalyst metal-supported carbon). Then, by dispersing the electrolyte particles in a dispersion liquid in which the electrolyte solution is uniformly dispersed, the proton conduction ability in the vicinity of other dispersed particles (catalyst-supported particles having catalyst metal supported on carrier particles, particularly catalyst-metal-supporting carbon). The electrolyte in the electrolyte solution having a high density is present, and the electrolyte particles are present around the electrolyte.
電解質溶液の分散は、分散粒子に機械的エネルギーを付与する分散手段をあげることができる。このような分散方法としては、粉砕混合装置を用いて行う分散をあげることができる。粉砕混合機としては、具体的には、メディアをもつ撹拌装置、超音波を用いた撹拌装置、ジェットミル、ホモジナイザー等をあげることができる。すなわち、粉砕混合装置を用いて攪拌することで電解質が溶解した電解質溶液を分散させることが好ましい。 The dispersion of the electrolyte solution can be a dispersion means for imparting mechanical energy to the dispersed particles. Examples of such a dispersion method include dispersion performed using a pulverizing and mixing apparatus. Specific examples of the pulverizer include a stirrer having media, a stirrer using ultrasonic waves, a jet mill, and a homogenizer. That is, it is preferable to disperse the electrolyte solution in which the electrolyte is dissolved by stirring using a pulverizing and mixing apparatus.
また、電解質粒子の分散は、触媒ペーストに、剪断応力を付与する分散手段をあげることができる。このような分散手段としては、マグネティックスターラー、遊星攪拌機等の撹拌装置による攪拌、ガラス棒による手攪拌、モータによる羽根攪拌等をあげることができる。すなわち、剪断応力を付与する攪拌を行うことで電解質粒子を分散させることが好ましい。 Moreover, the dispersion | distribution of electrolyte particle can mention the dispersion | distribution means to provide a shear stress to a catalyst paste. Examples of such dispersing means include stirring by a stirring device such as a magnetic stirrer and planetary stirrer, manual stirring by a glass rod, blade stirring by a motor, and the like. That is, it is preferable to disperse the electrolyte particles by performing stirring that imparts a shear stress.
本発明の固体高分子型燃料電池用電極において、溶媒中に電解質が溶解した電解質溶液の溶媒は、電解質を溶解できる溶媒であれば特に限定されるものではない。たとえば、水とエタノールが等体積で混合した混合溶媒を用いることができる。また、この電解質溶液は、従来公知の市販の電解質溶液を用いることができる。 In the polymer electrolyte fuel cell electrode of the present invention, the solvent of the electrolyte solution in which the electrolyte is dissolved in the solvent is not particularly limited as long as it can dissolve the electrolyte. For example, a mixed solvent in which water and ethanol are mixed in an equal volume can be used. Moreover, a conventionally well-known commercially available electrolyte solution can be used for this electrolyte solution.
さらに、電解質溶液における電解質の含有割合は、電解質および溶媒の材質により異なるため一概に決定できるものではないが、電解質溶液全体を100wt%としたときに、5〜20wt%で電解質を含むことが好ましい。 Further, the content ratio of the electrolyte in the electrolyte solution varies depending on the materials of the electrolyte and the solvent, and thus cannot be determined in general. However, when the entire electrolyte solution is 100 wt%, it is preferable that the electrolyte is contained at 5 to 20 wt%. .
電解質粒子は、数十μmの平均粒径を有することが好ましい。電解質粒子が数十μmの平均粒径を有することで、触媒層中の三相界面量を多くできる。より好ましい電解質粒子の平均粒径は、5〜20μmである。 The electrolyte particles preferably have an average particle size of several tens of μm. When the electrolyte particles have an average particle diameter of several tens of μm, the three-phase interface amount in the catalyst layer can be increased. More preferably, the average particle diameter of the electrolyte particles is 5 to 20 μm.
電解質粒子は、粒子状を有していればその製造方法が限定されるものではない。たとえば、固体の電解質を微粉化する方法や、電解質溶液を調製しこの電解質溶液から造粒する方法をあげることができる。電解質粒子は、電解質が溶解した電解質溶液から造粒されたことが好ましい。造粒条件を変化させることで所望の粒径の粒子を簡単に得ることができるため、電解質溶液から造粒することが好ましい。ここで、この造粒を行う造粒装置としては、振動乾燥機、ドラムドライヤー、真空攪拌ドライヤー、ダブルコーンドライヤー、棚式真空ドライヤー、真空ろ過乾燥機、スプレードライヤー等の乾燥機をあげることができる。 The manufacturing method of the electrolyte particles is not limited as long as it has a particulate shape. For example, a method of pulverizing a solid electrolyte or a method of preparing an electrolyte solution and granulating from the electrolyte solution can be given. The electrolyte particles are preferably granulated from an electrolyte solution in which the electrolyte is dissolved. Since particles having a desired particle diameter can be easily obtained by changing the granulation conditions, it is preferable to granulate from an electrolyte solution. Here, examples of the granulating apparatus for performing the granulation include a dryer such as a vibration dryer, a drum dryer, a vacuum stirring dryer, a double cone dryer, a shelf vacuum dryer, a vacuum filtration dryer, and a spray dryer. .
触媒ペーストの製造時における電解質粒子を分散させる手段としては、電解質粒子を添加した触媒ペーストに、剪断応力を付与する分散手段をあげることができる。このような分散手段としては、マグネティックスターラー、遊星攪拌機等の撹拌装置による攪拌、ガラス棒による手攪拌、モータによる羽根攪拌等をあげることができる。すなわち、剪断応力を付与する攪拌を行うことで電解質粒子を弱分散させることが好ましい。 Examples of the means for dispersing the electrolyte particles during the production of the catalyst paste include a dispersing means for applying a shear stress to the catalyst paste to which the electrolyte particles are added. Examples of such dispersing means include stirring by a stirring device such as a magnetic stirrer and planetary stirrer, manual stirring by a glass rod, blade stirring by a motor, and the like. That is, it is preferable to weakly disperse the electrolyte particles by performing stirring that imparts a shear stress.
本発明の固体高分子型燃料電池用電極において、触媒ペーストを構成する材質については、上記した電解質溶液および電解質粒子以外については、特に限定されるものではなく、従来公知の材質を用いることができる。 In the polymer electrolyte fuel cell electrode of the present invention, the material constituting the catalyst paste is not particularly limited except for the above-described electrolyte solution and electrolyte particles, and conventionally known materials can be used. .
触媒ペーストは、Pt等の触媒金属を担持させたカーボン粉末粒子とイオン伝導性ポリマーからなる電解質とを水、アルコール等の溶媒に混合してなるペーストを用いることができる。また、適宜、フッ素系樹脂で撥水処理した炭素微粉末、撥水剤、高分子電解質などを一緒に含有させることもできる。 As the catalyst paste, a paste obtained by mixing carbon powder particles supporting a catalyst metal such as Pt and an electrolyte made of an ion conductive polymer in a solvent such as water or alcohol can be used. In addition, carbon fine powder that has been subjected to a water repellent treatment with a fluorine-based resin, a water repellent, a polymer electrolyte, and the like can be contained together as appropriate.
また、その表面に触媒層が形成される高分子電解質膜は、従来公知の材質を用いることができる。高分子電解質膜は、デュポン社製のNafion膜に代表されるパーフルオロスルフォン酸膜、ヘキスト社製の炭化水素系膜、部分フッ素系膜などの膜を用いることができる。 Moreover, a conventionally well-known material can be used for the polymer electrolyte membrane in which the catalyst layer is formed on the surface. As the polymer electrolyte membrane, a membrane such as a perfluorosulfonic acid membrane represented by a Nafion membrane manufactured by DuPont, a hydrocarbon-based membrane, a partial fluorine-based membrane manufactured by Hoechst, or the like can be used.
また、触媒層は、触媒層の高分子電解質膜との界面に背向した表面上にもうけられた拡散層を有することが好ましい。拡散層は、撥水処理された多孔質のカーボンシートを用いることができる。 Moreover, it is preferable that a catalyst layer has a diffusion layer provided on the surface facing the interface with the polymer electrolyte membrane of a catalyst layer. As the diffusion layer, a water-repellent porous carbon sheet can be used.
本発明の固体高分子型燃料電池用電極の触媒層は、従来公知の方法を用いて触媒ペーストから触媒層を形成できる。すなわち、触媒ペーストを高分子電解質膜上に塗布・乾燥して触媒層を形成しても、フッ素樹脂シート上、PTFE上あるいは拡散層を形成するためのシート部材上に塗布・乾燥したのちに高分子電解質膜に接合してもいずれでもよい。 The catalyst layer of the electrode for a polymer electrolyte fuel cell of the present invention can be formed from a catalyst paste using a conventionally known method. That is, even if the catalyst layer is formed by applying and drying the catalyst paste onto the polymer electrolyte membrane, the catalyst paste is applied and dried on the fluororesin sheet, PTFE, or the sheet member for forming the diffusion layer. Either may be joined to the molecular electrolyte membrane.
本発明の固体高分子型燃料電池用電極は、その製造方法が限定されるものではない。たとえば以下の製造方法により製造することができる。 The production method of the polymer electrolyte fuel cell electrode of the present invention is not limited. For example, it can be manufactured by the following manufacturing method.
まず、電解質が溶解した電解質溶液、触媒金属を担持させたカーボン粉末粒子、導電材、溶媒を秤量し、混合する。この混合溶液をサンドミル等の撹拌装置を用いて攪拌して電解質溶液中の電解質が強分散したペーストを調製する。 First, an electrolyte solution in which an electrolyte is dissolved, carbon powder particles supporting a catalyst metal, a conductive material, and a solvent are weighed and mixed. This mixed solution is stirred using a stirring device such as a sand mill to prepare a paste in which the electrolyte in the electrolyte solution is strongly dispersed.
つづいて、このペースト中に、電解質粒子を添加して、遊星攪拌脱泡機を用いて攪拌する。この攪拌により、触媒ペーストが調製された。 Subsequently, electrolyte particles are added to the paste and stirred using a planetary stirring deaerator. A catalyst paste was prepared by this stirring.
調製された触媒ペーストは、高分子電解質膜、PTFE、拡散層等の被塗布物に塗布し、乾燥される。触媒ペーストの乾燥物は、触媒層を形成することができる。 The prepared catalyst paste is applied to an object to be coated such as a polymer electrolyte membrane, PTFE, or a diffusion layer, and dried. The dried product of the catalyst paste can form a catalyst layer.
この乾燥物は、高分子電解膜および拡散層が接合され膜−電極接合体を形成する。その後、この膜−電極接合体の両面にガス流路を備えたセパレータを配設して燃料電池セルを形成できる。 In this dried product, the polymer electrolyte membrane and the diffusion layer are joined to form a membrane-electrode assembly. Thereafter, a separator having a gas flow path is provided on both surfaces of the membrane-electrode assembly to form a fuel cell.
以下、実施例を用いて本発明を説明する。 Hereinafter, the present invention will be described using examples.
本発明の実施例として、まず、固体高分子型燃料電池用電極を製造した。 As an example of the present invention, first, an electrode for a polymer electrolyte fuel cell was manufactured.
(実施例1)
まず、46重量%でPtを担持したPt担持カーボン粉末(田中貴金属製、商品名:T10E50E)を6.3重量部、5wt%で電解質成分を有する高分子電解質溶液(イオン交換樹脂溶液、デュポン製、商品名:Nafion SE−5112、溶媒:水とエタノールの等体積混合溶媒、EW:1100)16.9重量部、イオン交換水26.2重量部、を秤量し、サンドミルを用いて十分に混合して原料ペーストを調製した。サンドミルは、φ5mmのジルコニアボールを有し、周速15m/sで2時間作動した。
(Example 1)
First, a polymer electrolyte solution (ion exchange resin solution, manufactured by DuPont) containing 6.3 parts by weight of Pt-supported carbon powder (product name: T10E50E, traded by Tanaka Kikinzoku, Ltd.) supporting Pt at 46% by weight and 5 wt%. , Trade name: Nafion SE-5112, solvent: equal volume mixed solvent of water and ethanol, EW: 1100) 16.9 parts by weight, 26.2 parts by weight of ion-exchanged water, weighed thoroughly using a sand mill A raw material paste was prepared. The sand mill had zirconia balls with a diameter of 5 mm and operated at a peripheral speed of 15 m / s for 2 hours.
つづいて、この原料ペーストに、電解質粒子2.5重量部、イオン交換水とエタノールの等重量混合溶液48.1重量部を添加し、遊星攪拌脱泡機(シンキー製、商品名:AR−360M)を用いて自転:600rpm/min、公転2000rpm/minで10分間攪拌脱泡した。これにより、触媒ペーストが調製された。 Subsequently, 2.5 parts by weight of electrolyte particles and 48.1 parts by weight of an equal weight mixed solution of ion-exchanged water and ethanol were added to the raw material paste, and a planetary stirring deaerator (trade name: AR-360M, manufactured by Shinky Corporation) was added. ) Was used for rotation for 10 minutes at 600 rpm / min and revolution of 2000 rpm / min. Thereby, a catalyst paste was prepared.
ここで、電解質粒子は、上記の5wt%で電解質成分を有する高分子電解質溶液(デュポン製、商品名:Nafion SE−5112)をスプレードライヤー(ヤマト化学製、商品名:ADL310)を用いて平均粒径が10μmに造粒した粒子粉末である。 Here, the electrolyte particles are the average particle size of the polymer electrolyte solution (made by DuPont, trade name: Nafion SE-5112) having an electrolyte component at 5 wt% using a spray dryer (trade name: ADL310, manufactured by Yamato Chemical Co., Ltd.). A particle powder granulated to have a diameter of 10 μm.
調製された触媒ペーストをPTFE上にギャップが150μmのアプリケータを用いて50cm2の面積に塗布し、大気雰囲気下で70℃に1時間保持した。この保持により、PTFE上の触媒ペーストが乾燥した。 The prepared catalyst paste was applied onto PTFE in an area of 50 cm 2 using an applicator with a gap of 150 μm, and kept at 70 ° C. for 1 hour in an air atmosphere. By this holding, the catalyst paste on PTFE was dried.
触媒ペーストが乾燥してなる乾燥物をPTFEから剥離し、高分子電解質膜(デュポン社製、商品名:Nafion 112、膜厚:50μm)と接合した。高分子電解質膜との接合は、高分子電解質膜と触媒ペーストの乾燥物とが積層した状態で、150℃、10MPaの加圧力で厚さ方向に加圧することでなされた。高分子電解質膜の他方の表面にも同様にして触媒ペーストの乾燥物を圧着した。なお、この高分子電解質膜への圧着は、高分子電解質膜の両面への圧着を同時に行った。すなわち、触媒ペーストの乾燥物を高分子電解質膜の両面に配した状態で加圧した。 The dried product obtained by drying the catalyst paste was peeled off from PTFE and joined to a polymer electrolyte membrane (manufactured by DuPont, trade name: Nafion 112, film thickness: 50 μm). The polymer electrolyte membrane was joined by pressing in the thickness direction at a pressure of 150 ° C. and 10 MPa in a state where the polymer electrolyte membrane and the dried catalyst paste were laminated. Similarly, a dried product of the catalyst paste was pressure bonded to the other surface of the polymer electrolyte membrane. The pressure bonding to the polymer electrolyte membrane was performed simultaneously on both surfaces of the polymer electrolyte membrane. That is, pressure was applied in a state where the dried catalyst paste was disposed on both sides of the polymer electrolyte membrane.
その後、積層体の両面のそれぞれに撥水処理されたカーボンシートを乾燥物のときと同様に140℃、8MPaの加圧力で加圧することで圧着した。圧着した。撥水処理されたカーボンシートは、カーボンブラック(キャボット社製、商品名:バルカンXC−72R)と撥水剤(ダイキン製、商品名:ポリフロンD1)の分散溶液をカーボンシート(東レ製、商品名:TGP−H−60)に含浸させ、380℃、1時間の焼き付けを行うことで製造された。なお、撥水処理されたカーボンシートの圧着も触媒ペーストの乾燥物の高分子電解質膜への圧着と同様に、一度の加圧で両面に圧着した。 Thereafter, the carbon sheets subjected to the water repellent treatment on both surfaces of the laminate were pressed by applying pressure at 140 ° C. and an applied pressure of 8 MPa as in the case of the dried product. Crimped. The water-repellent treated carbon sheet is a carbon sheet (trade name: Vulcan XC-72R, trade name: Vulcan XC-72R) and a water repellent (Daikin, trade name: Polyflon D1). : TGP-H-60), and baked at 380 ° C. for 1 hour. In addition, the pressure bonding of the water-repellent carbon sheet was performed on both surfaces by a single press, similarly to the pressure bonding of the dried catalyst paste to the polymer electrolyte membrane.
以上の手段により本実施例の触媒層をもつMEAが製造された。 The MEA having the catalyst layer of this example was manufactured by the above means.
本実施例において調製された触媒ペーストの(電解質溶液中の電解質重量)/(電解質粒子重量)の比は、0.3(1/3)であった。 The ratio of (electrolyte weight in electrolyte solution) / (electrolyte particle weight) of the catalyst paste prepared in this example was 0.3 (1/3).
(実施例2)
触媒ペースト中に分散される高分子電解質溶液および電解質粒子の添加量を変化した以外は、実施例1と同様に製造を行った。なお、本実施例において用いられた原料は特に記載がない限り実施例1で用いられたものと同様の材料が用いられた。
(Example 2)
Production was carried out in the same manner as in Example 1 except that the amount of the polymer electrolyte solution and electrolyte particles dispersed in the catalyst paste was changed. The raw materials used in this example were the same as those used in Example 1 unless otherwise specified.
まず、46重量%でPtを担持したPt担持カーボン粉末を6.3重量部、5wt%で電解質成分を有する高分子電解質溶液33.7重量部、イオン交換水26.2重量部、を秤量し、サンドミルを用いて十分に混合して原料ペーストを調製した。サンドミルは、φ5mmのジルコニアボールを有し、周速15m/sで2時間作動した。 First, 6.3 parts by weight of Pt-supported carbon powder supporting Pt at 46% by weight, 33.7 parts by weight of a polymer electrolyte solution having an electrolyte component at 5% by weight, and 26.2 parts by weight of ion-exchanged water are weighed. The raw material paste was prepared by thoroughly mixing using a sand mill. The sand mill had zirconia balls with a diameter of 5 mm and operated at a peripheral speed of 15 m / s for 2 hours.
つづいて、この原料ペーストに、電解質粒子1.7重量部、イオン交換水とエタノールの等重量混合溶液32.1重量部を添加し、遊星攪拌脱泡機を用いて自転:600rpm/min、公転2000rpm/minで10分間攪拌脱泡した。これにより、触媒ペーストが調製された。 Subsequently, 1.7 parts by weight of electrolyte particles and 32.1 parts by weight of a mixed solution of equal weight of ion-exchanged water and ethanol are added to the raw material paste, and rotation is performed using a planetary stirring deaerator: 600 rpm / min, revolution The mixture was stirred and degassed at 2000 rpm / min for 10 minutes. Thereby, a catalyst paste was prepared.
上記実施例1と同様の手段を用いて、調製された触媒ペーストから本実施例の触媒層をもつMEAが製造された。 Using the same means as in Example 1, an MEA having the catalyst layer of this example was produced from the prepared catalyst paste.
本実施例において調製された触媒ペーストの(電解質溶液中の電解質重量)/(電解質粒子重量)の比は、1.0(1/1)であった。 The ratio of (weight of electrolyte in electrolyte solution) / (weight of electrolyte particle) of the catalyst paste prepared in this example was 1.0 (1/1).
(比較例1)
電解質粒子の添加とその後の遊星攪拌脱泡機による攪拌を行わなかった以外は、実施例1と同様に製造を行った。なお、本実施例において用いられた原料は特に記載がない限り実施例1で用いられたものと同様の材料が用いられた。
(Comparative Example 1)
The production was performed in the same manner as in Example 1 except that the addition of the electrolyte particles and the subsequent stirring by the planetary stirring deaerator were not performed. The raw materials used in this example were the same as those used in Example 1 unless otherwise specified.
まず、46重量%でPtを担持したPt担持カーボン粉末を6.3重量部、5wt%で電解質成分を有する高分子電解質溶液67.5重量部、イオン交換水26.2重量部、を秤量し、サンドミルを用いて十分に混合して触媒ペーストを調製した。サンドミルは、φ5mmのジルコニアボールを有し、周速15m/sで2時間作動した。 First, 6.3 parts by weight of Pt-supported carbon powder supporting Pt at 46% by weight, 67.5 parts by weight of a polymer electrolyte solution having an electrolyte component at 5% by weight, and 26.2 parts by weight of ion-exchanged water were weighed. The catalyst paste was prepared by thoroughly mixing using a sand mill. The sand mill had zirconia balls with a diameter of 5 mm and operated at a peripheral speed of 15 m / s for 2 hours.
上記実施例1と同様の手段を用いて、調製された触媒ペーストから本比較例の触媒層をもつMEAが製造された。 Using the same means as in Example 1, an MEA having the catalyst layer of this comparative example was produced from the prepared catalyst paste.
(比較例2)
高分子電解質溶液に替えて電解質粒子を用いた以外は、比較例1と同様に製造を行った。なお、本実施例において用いられた原料は特に記載がない限り実施例1で用いられたものと同様の材料が用いられた。
(Comparative Example 2)
Manufacture was performed in the same manner as in Comparative Example 1 except that electrolyte particles were used instead of the polymer electrolyte solution. The raw materials used in this example were the same as those used in Example 1 unless otherwise specified.
まず、46重量%でPtを担持したPt担持カーボン粉末を6.3重量部、電解質粒子67.5重量部、イオン交換水26.2重量部、を秤量し、サンドミルを用いて十分に混合して触媒ペーストを調製した。サンドミルは、φ5mmのジルコニアボールを有し、周速15m/sで2時間作動した。 First, 6.3 parts by weight of Pt-supported carbon powder supporting Pt at 46% by weight, 67.5 parts by weight of electrolyte particles, and 26.2 parts by weight of ion-exchanged water are weighed and mixed thoroughly using a sand mill. A catalyst paste was prepared. The sand mill had zirconia balls with a diameter of 5 mm and operated at a peripheral speed of 15 m / s for 2 hours.
上記実施例1と同様の手段を用いて、調製された触媒ペーストから本比較例の触媒層をもつMEAが製造された。 Using the same means as in Example 1, an MEA having the catalyst layer of this comparative example was produced from the prepared catalyst paste.
(評価)
つづいて、実施例および比較例の触媒層をもつMEAの評価として、燃料電池セルを組み立て、その電流−電圧特性を測定した。
(Evaluation)
Subsequently, as an evaluation of MEAs having the catalyst layers of Examples and Comparative Examples, fuel cells were assembled and their current-voltage characteristics were measured.
実施例および比較例のMEAの両側にガス流路を備えたセパレータを配設してシングルセルの燃料電池セルを製造した。 Single cell fuel cells were manufactured by disposing separators having gas flow paths on both sides of the MEAs of the examples and comparative examples.
製造された燃料電池セルの電流−電圧特性を測定した。燃料極には水素ガスを空気極にはエアーを供給した。両極に供給された水素ガスおよびエアーは、いずれも60℃露点となるように加湿されている。ガスの供給時の燃料電池セルは80℃に保持され、水素ガスの利用率が90%でエアーの利用率は40%であった。測定結果を図1に示した。 The current-voltage characteristics of the manufactured fuel cell were measured. Hydrogen gas was supplied to the fuel electrode and air was supplied to the air electrode. Both hydrogen gas and air supplied to both electrodes are humidified so as to have a 60 ° C. dew point. The fuel cell at the time of gas supply was kept at 80 ° C., the utilization rate of hydrogen gas was 90%, and the utilization rate of air was 40%. The measurement results are shown in FIG.
図1より、各実施例の触媒層をもつMEAより形成された燃料電池セルは、各比較例の触媒層をもつMEAより形成された燃料電池セルより高いセル電圧を有していることがわかる。すなわち、高分子電解質溶液と電解質粒子とを触媒ペーストに分散させることで、高い電池性能を発揮できるようになることがわかる。 As can be seen from FIG. 1, the fuel cell formed from the MEA having the catalyst layer of each example has a higher cell voltage than the fuel cell formed from the MEA having the catalyst layer of each comparative example. . That is, it can be seen that high battery performance can be exhibited by dispersing the polymer electrolyte solution and the electrolyte particles in the catalyst paste.
具体的には、高分子電解質溶液は、サンドミルにより分散されることで電解質成分がPt担持カーボン粒子の表面の細孔の内部にまで浸透し、細孔内の表面に担持されたPtの周囲に存在するようになる。そして、電解質粒子がPt担持カーボン粒子の周囲にお互いの表面の間にすき間を有する状態で分散される。この状態で、触媒ペーストが乾燥するため、各実施例の触媒層においてはPtの周囲に高分子電解質溶液中の電解質が存在し、かつ電解質粒子の周囲に空孔が存在するようになる。すなわち、Pt担持カーボン粒子の近傍に燃料電池の三相界面が形成される。これにより、各実施例の触媒層をもつMEAからなる燃料電池セルは、高い電池性能を発揮できた。 Specifically, the polymer electrolyte solution is dispersed by a sand mill so that the electrolyte component penetrates into the pores on the surface of the Pt-supported carbon particles, and around the Pt supported on the surface in the pores. It comes to exist. Then, the electrolyte particles are dispersed around the Pt-supported carbon particles with a gap between the surfaces. In this state, since the catalyst paste dries, in the catalyst layer of each example, the electrolyte in the polymer electrolyte solution exists around Pt, and the pores exist around the electrolyte particles. That is, a three-phase interface of the fuel cell is formed in the vicinity of the Pt-supported carbon particles. Thereby, the fuel battery cell which consists of MEA with the catalyst layer of each Example was able to exhibit high battery performance.
なお、上記実施例は、触媒ペーストの塗布をPTFE上に行ったが、フッ素樹脂シート上に行ってもよい。また、触媒ペーストの塗布を高分子電解質膜上に行ってもよい。高分子電解質膜に触媒ペーストを塗布すると、高分子電解質膜と一体に接合した触媒層が得られる。 In the above embodiment, the catalyst paste is applied on PTFE, but may be applied on a fluororesin sheet. Moreover, you may apply | coat a catalyst paste on a polymer electrolyte membrane. When a catalyst paste is applied to the polymer electrolyte membrane, a catalyst layer joined integrally with the polymer electrolyte membrane is obtained.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041866A JP2005235521A (en) | 2004-02-18 | 2004-02-18 | Electrode for solid polymer fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004041866A JP2005235521A (en) | 2004-02-18 | 2004-02-18 | Electrode for solid polymer fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005235521A true JP2005235521A (en) | 2005-09-02 |
Family
ID=35018256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004041866A Pending JP2005235521A (en) | 2004-02-18 | 2004-02-18 | Electrode for solid polymer fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005235521A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008004644A1 (en) | 2006-07-04 | 2008-01-10 | Sumitomo Chemical Company, Limited | Polymer electrolyte emulsion and use thereof |
JP2010257597A (en) * | 2009-04-21 | 2010-11-11 | Toyota Motor Corp | Membrane electrode assembly used for fuel cell |
JP2011204605A (en) * | 2010-03-26 | 2011-10-13 | Toppan Printing Co Ltd | Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell |
WO2015002073A1 (en) * | 2013-07-02 | 2015-01-08 | 旭化成イーマテリアルズ株式会社 | Electrolyte solution and method for manufacturing same, continuous dissolving device, electrolyte membrane, electrode catalyst layer, membrane-electrode assembly, and fuel cell |
-
2004
- 2004-02-18 JP JP2004041866A patent/JP2005235521A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008004644A1 (en) | 2006-07-04 | 2008-01-10 | Sumitomo Chemical Company, Limited | Polymer electrolyte emulsion and use thereof |
JP2010257597A (en) * | 2009-04-21 | 2010-11-11 | Toyota Motor Corp | Membrane electrode assembly used for fuel cell |
JP2011204605A (en) * | 2010-03-26 | 2011-10-13 | Toppan Printing Co Ltd | Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell |
WO2015002073A1 (en) * | 2013-07-02 | 2015-01-08 | 旭化成イーマテリアルズ株式会社 | Electrolyte solution and method for manufacturing same, continuous dissolving device, electrolyte membrane, electrode catalyst layer, membrane-electrode assembly, and fuel cell |
JP2016211002A (en) * | 2013-07-02 | 2016-12-15 | 旭化成株式会社 | Electrolyte solution, method for producing the same, continuous dissolution device, electrolytic membrane, electrode catalyst layer, membrane electrode joined body, and fuel battery |
US10586994B2 (en) | 2013-07-02 | 2020-03-10 | Asahi Kasei Kabushiki Kaisha | Electrolyte solution and method for producing same, continuously dissolving facility, electrolyte membrane, electrode catalyst layer, membrane electrode assembly and fuel cell |
US11374247B2 (en) | 2013-07-02 | 2022-06-28 | Asahi Kasei Kabushiki Kaisha | Electrolyte solution and method for producing same, continuously dissolving facility, electrolyte membrane, electrode catalyst layer, membrane electrode assembly and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3869568B2 (en) | Fuel cell electrode | |
EP1306913B1 (en) | Polyelectrolyte fuel cell and production method therefor | |
EP3536664B1 (en) | Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly | |
KR102189064B1 (en) | Method for manufacturing electrode, electrode manufactured by using the same, membrane-electrode assembly comprising the electrode, and fuel cell comprising the membrane-electrode assembly | |
JP2006142293A (en) | Metal catalyst, manufacturing method of metal catalyst, electrode, manufacturing method of electrode and fuel cell | |
JP5458503B2 (en) | Method for producing electrolyte membrane-electrode assembly | |
JP5481820B2 (en) | Microporous layer and gas diffusion layer having the same | |
JP2008186798A (en) | Electrolyte membrane-electrode assembly | |
WO2005099002A1 (en) | Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same | |
JP2007214008A (en) | Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and solid polymer fuel cell | |
JP2005228601A (en) | Solid polymer fuel cell | |
WO2003077336A1 (en) | Method for manufacturing polymer electrolyte type fuel cell | |
JP2005235706A (en) | Electrode for solid polymer fuel cell | |
JP2011159517A (en) | Method for manufacturing fuel cell catalyst layer | |
JP5669432B2 (en) | Membrane electrode assembly, fuel cell, and fuel cell activation method | |
JP5410787B2 (en) | Gas diffusion layer for polymer electrolyte fuel cells | |
WO2005057698A1 (en) | Fuel cell | |
JP2020057516A (en) | Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell | |
JP2007027064A (en) | Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same | |
JP2008171702A (en) | Manufacturing method of fuel cell assembly, manufacturing method of fuel cell, fuel cell assembly and fuel cell | |
JP6819688B2 (en) | Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this | |
JP2005235521A (en) | Electrode for solid polymer fuel cell | |
JP2007323824A (en) | Manufacturing method of electrode for fuel cell and electrode for fuel cell | |
JP2011014406A (en) | Ink for catalyst and catalyst layer formed using ink for catalyst | |
WO2014155929A1 (en) | Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091126 |