JP2011204605A - Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell - Google Patents

Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell Download PDF

Info

Publication number
JP2011204605A
JP2011204605A JP2010073071A JP2010073071A JP2011204605A JP 2011204605 A JP2011204605 A JP 2011204605A JP 2010073071 A JP2010073071 A JP 2010073071A JP 2010073071 A JP2010073071 A JP 2010073071A JP 2011204605 A JP2011204605 A JP 2011204605A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
polymer electrolyte
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010073071A
Other languages
Japanese (ja)
Inventor
Haruna Hatazawa
晴菜 畑澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010073071A priority Critical patent/JP2011204605A/en
Publication of JP2011204605A publication Critical patent/JP2011204605A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalytic layer for a fuel cell, in which sufficient proton conductivity and gas diffusion are secured and the number of reaction active spots is increased to improve output performance; to provide a membrane electrode assembly for a fuel cell comprising the electrode catalytic layer; to provide a fuel cell comprising the membrane electrode assembly; and to provide a method of manufacturing the electrode catalytic layer for the fuel cell.SOLUTION: The electrode catalytic layer 21 for a fuel cell is composed of: a plurality of composite catalyst particles 11 each including at least a catalyst material 1 on a surface, in which the surface of the catalyst material 1 is coated with a polymer electrolyte layer 3; and a plurality of aggregates 12 formed by aggregation of the polymer electrolyte. The plurality of composite catalyst particles 11 are coupled with the plurality of aggregates 12, and the plurality of aggregates 12 are formed by drying a solution prepared by dissolving the polymer electrolyte.

Description

本発明は、燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた固体高分子形の燃料電池および燃料電池用電極触媒層の製造方法に関するものである。   The present invention relates to a fuel cell electrode catalyst layer, a fuel cell membrane electrode assembly including the electrode catalyst layer, a polymer electrolyte fuel cell including the membrane electrode assembly, and a fuel cell electrode catalyst layer. It is about the method.

燃料電池は、水素を含有する燃料ガスと酸素を含む酸化剤ガスとを、触媒を含む電極で水の電気分解の逆反応を起こさせ、熱と同時に電気を生み出す発電システムである。この発電システムは、従来の発電方式と比較して高効率で低環境負荷、低騒音などの特徴を有し、将来のクリーンなエネルギー源として注目されている。用いるイオン伝導体の種類によってタイプがいくつかあり、プロトン伝導性高分子膜を用いたものは、固体高分子形燃料電池と呼ばれる。   A fuel cell is a power generation system that generates electricity simultaneously with heat by causing a hydrogen gas-containing fuel gas and an oxygen-containing oxidant gas to undergo reverse reaction of water electrolysis at an electrode including a catalyst. This power generation system has features such as high efficiency, low environmental load, and low noise as compared with conventional power generation systems, and is attracting attention as a clean energy source in the future. There are several types depending on the type of ion conductor used, and those using proton conductive polymer membranes are called solid polymer fuel cells.

燃料電池の中でも固体高分子形燃料電池は、室温付近で使用可能なことから、車載用電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。固体高分子形燃料電池は、高分子電解質膜の両面に一対の電極を配置させた接合体を、一対のセパレータ板で挟持してなる電池である。ここで、一対のセパレータ板は、前記電極の一方に水素を含有する燃料ガスを供給するためのガス流路を形成したセパレータ板と、前記電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成したセパレータ板とで構成される。一対の電極のうち燃料ガスを供給する電極を燃料極、酸化剤ガスを供給する電極を空気極と呼んでいる。これらの電極は、一般に、白金系の貴金属などの触媒物質を担持したカーボン粒子である触媒物質担持粒子と高分子電解質層とを積層した電極触媒層と、ガス通気性及び電子伝導性を兼ね備えたガス拡散層とからなっている。
なお、高分子電解質膜と、高分子電解質膜の一方の面に配置された空気極側の電極触媒層と、高分子電解質膜の他方の面に配置された燃料極側の電極触媒層とで膜電極接合体(Membrane Electrode Assembly;以下、MEAと称すことがある)と呼ばれる接合体を構成する。
Among fuel cells, polymer electrolyte fuel cells can be used near room temperature, so they are considered promising for use in in-vehicle power sources and household stationary power sources. In recent years, various research and development have been conducted. Yes. A solid polymer fuel cell is a battery in which a joined body in which a pair of electrodes are disposed on both sides of a polymer electrolyte membrane is sandwiched between a pair of separator plates. Here, the pair of separator plates is used to supply a separator plate having a gas flow path for supplying a fuel gas containing hydrogen to one of the electrodes, and an oxidant gas containing oxygen to the other of the electrodes. And a separator plate in which a gas flow path is formed. Of the pair of electrodes, an electrode for supplying fuel gas is called a fuel electrode, and an electrode for supplying oxidant gas is called an air electrode. These electrodes generally have electrode catalyst layers in which catalyst material-carrying particles, which are carbon particles carrying a catalyst material such as a platinum-based noble metal, and a polymer electrolyte layer, and gas permeability and electronic conductivity. It consists of a gas diffusion layer.
A polymer electrolyte membrane, an air electrode side electrode catalyst layer disposed on one surface of the polymer electrolyte membrane, and a fuel electrode side electrode catalyst layer disposed on the other surface of the polymer electrolyte membrane. A joined body called a membrane electrode assembly (hereinafter referred to as MEA) is formed.

電極触媒層における燃料ガス、酸化剤ガスとの酸化還元反応の反応活性点は、電子伝導体とプロトン伝導体、および導入ガスが吸着しうる触媒の表面が接している三相界面と呼ばれる部分である。この三相界面の面積が大きく、かつ三相界面への電子、プロトン、導入ガスのそれぞれの供給パスを満足させることが、電極触媒層における酸化還元反応の円滑かつ効率よい進行へとつながる。このため、電極触媒層中の電子およびプロトン伝達経路、ガスの拡散経路などが充分に確保されることが必要である。   The reaction active point of the redox reaction with the fuel gas and oxidant gas in the electrode catalyst layer is the part called the three-phase interface where the surface of the catalyst that can adsorb the electron conductor and proton conductor and the introduced gas is in contact. is there. When the area of the three-phase interface is large and the supply paths for electrons, protons, and introduced gas to the three-phase interface are satisfied, the redox reaction in the electrode catalyst layer proceeds smoothly and efficiently. For this reason, it is necessary to sufficiently ensure the electron and proton transfer paths, the gas diffusion paths, and the like in the electrode catalyst layer.

従来、電極触媒層は、触媒とプロトン伝導性を有する高分子電解質と溶媒とを混合したインクを用いて基材上に形成することが多かった。
図3に、従来の形成法にて作製された燃料電池用電極触媒層の模式図を示す。
図3に示す電極触媒層121は、白金系の貴金属などの触媒物質101を表面に担持したカーボン粒子である触媒物質担持粒子102が複数凝集して形成され、触媒物質101及び触媒物質担持粒子102の表面がさらに高分子電解質層103で被覆された複数の複合触媒粒子111で構成される。触媒物質担持粒子102は電子伝導性を有し、その一方、高分子電解質層103はプロトン伝導性を有する。
Conventionally, the electrode catalyst layer is often formed on a substrate using an ink obtained by mixing a catalyst, a polymer electrolyte having proton conductivity, and a solvent.
FIG. 3 shows a schematic diagram of an electrode catalyst layer for a fuel cell produced by a conventional forming method.
The electrode catalyst layer 121 shown in FIG. 3 is formed by agglomerating a plurality of catalyst material-carrying particles 102 that are carbon particles carrying a catalyst material 101 such as a platinum-based noble metal on the surface. The surface is further composed of a plurality of composite catalyst particles 111 coated with a polymer electrolyte layer 103. The catalyst material-carrying particles 102 have electronic conductivity, while the polymer electrolyte layer 103 has proton conductivity.

ここで、このような従来の形成法にて製作された電極触媒層121においては、触媒物質101の表面にある高分子電解質層103の量を調整しがたい。これは、触媒物質101が担持された触媒物質担持粒子102に1回の被覆により高分子電解質層103が形成されるため、高分子電解質層103の量の過不足が生じ、被覆過剰部分と被覆不足部分とが生じ、電極特性を向上させることができないということである。
即ち、図3に示すように触媒物質101近傍の高分子電解質層103が厚いとプロトン伝導性は確保できるが触媒物質101間の細孔の一部が閉塞しやすくガス拡散性の低下が起こりうる。また、逆に、触媒物質101近傍の高分子電解質層103が薄いとガス拡散性は確保できるが、プロトン伝導性が不十分になってしまうという問題がある。
Here, in the electrode catalyst layer 121 manufactured by such a conventional forming method, it is difficult to adjust the amount of the polymer electrolyte layer 103 on the surface of the catalyst material 101. This is because the polymer electrolyte layer 103 is formed by a single coating on the catalyst material-carrying particles 102 on which the catalyst material 101 is supported, so that the amount of the polymer electrolyte layer 103 is excessive and insufficient, and the overcoated portion and the coated The shortage occurs and the electrode characteristics cannot be improved.
That is, as shown in FIG. 3, when the polymer electrolyte layer 103 in the vicinity of the catalyst substance 101 is thick, proton conductivity can be ensured, but some of the pores between the catalyst substances 101 are likely to be clogged, and gas diffusibility may be lowered. . Conversely, if the polymer electrolyte layer 103 in the vicinity of the catalyst substance 101 is thin, gas diffusibility can be secured, but there is a problem that proton conductivity becomes insufficient.

このような問題を解決するため、例えば特許文献1では、触媒物質の表面に有孔性の高分子電解質層を被覆することでプロトン伝導性とガス拡散性の確保できる複合触媒が提案されている。また、特許文献2では、プロトン伝導性をより確実に確保するために複合粒子に熱処理を行い、触媒表面に被覆した高分子電解質層の溶出を防ぐ方法を示している。
一方、特許文献3では、電極触媒層は、高分子電解質層で被覆された触媒群(複合触媒粒子)と、電解質の凝集体である電解質群とが互いに接続されて、絡み合って構成されている。このため、被覆されている高分子電解質層の量を調整しやすく、プロトン伝導性とガス拡散性を両立しやすい電極触媒層となっている。
In order to solve such a problem, for example, Patent Document 1 proposes a composite catalyst that can ensure proton conductivity and gas diffusibility by covering a surface of a catalyst material with a porous polymer electrolyte layer. . Patent Document 2 discloses a method for preventing elution of the polymer electrolyte layer coated on the catalyst surface by subjecting the composite particles to heat treatment in order to ensure proton conductivity more reliably.
On the other hand, in Patent Document 3, the electrode catalyst layer is configured such that a catalyst group (composite catalyst particle) covered with a polymer electrolyte layer and an electrolyte group that is an aggregate of electrolytes are connected to each other and intertwined with each other. . For this reason, it is easy to adjust the amount of the polymer electrolyte layer that is coated, and it is an electrode catalyst layer that easily balances proton conductivity and gas diffusibility.

特開2001−300324号JP 2001-300344 A 特開平7−254419号Japanese Patent Laid-Open No. 7-254419 特開平11−126615号JP-A-11-126615

しかしながら、特許文献1および2に記載の方法では、プロトン伝導の経路が触媒物質に被覆した高分子電解質層のみであり、高分子電解質層の量でガス拡散性や電極触媒層の強度を詳細に調整することが困難である。
また、特許文献3に記載の方法では、電解質の凝集体が析出するような貧溶媒にて触媒インクを調製することから、高分子電解質の凝集体が析出するのみでなく、複合触媒粒子の凝集も起こりうるため、触媒の表面を十分に利用できないという問題がある。
However, in the methods described in Patent Documents 1 and 2, the proton conduction path is only the polymer electrolyte layer coated with the catalyst material, and the gas diffusibility and the strength of the electrode catalyst layer are detailed according to the amount of the polymer electrolyte layer. It is difficult to adjust.
Further, in the method described in Patent Document 3, since the catalyst ink is prepared in a poor solvent in which electrolyte aggregates are deposited, not only polymer electrolyte aggregates are deposited but also aggregates of composite catalyst particles. In other words, the surface of the catalyst cannot be fully utilized.

そこで、本発明は、上記の課題を解決するためになされたものであり、その目的は、十分なプロトン伝導性とガス拡散性を確保し、反応活性点を増加させ出力性能を向上させた燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法を提供することにある。   Accordingly, the present invention has been made to solve the above-described problems, and its purpose is to ensure sufficient proton conductivity and gas diffusibility, increase the reaction active point, and improve the output performance. An object of the present invention is to provide a battery electrode catalyst layer, a fuel cell membrane electrode assembly including the electrode catalyst layer, a fuel cell including the membrane electrode assembly, and a method for producing the fuel cell electrode catalyst layer.

上記課題を解決するため、本発明のうち請求項1に係る燃料電池用電極触媒層は、少なくとも表面に触媒物質を備え、該触媒物質の表面が高分子電解質層によって被覆されている複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、前記複数の複合触媒粒子を前記複数の凝集体で連結するとともに、前記複数の凝集体が、高分子電解質を溶かしてなる溶液を乾燥して形成されることを特徴としている。   In order to solve the above-mentioned problems, an electrode catalyst layer for a fuel cell according to claim 1 of the present invention comprises a plurality of composites comprising at least a catalyst material on the surface, and the surface of the catalyst material is covered with a polymer electrolyte layer. The catalyst particles and a plurality of aggregates formed by aggregation of the polymer electrolyte, the plurality of composite catalyst particles are connected by the plurality of aggregates, and the plurality of aggregates are polymer It is characterized by being formed by drying a solution obtained by dissolving an electrolyte.

この請求項1に係る燃料電池用電極触媒層によれば、少なくとも表面に触媒物質を備え、該触媒物質の表面がさらに高分子電解質層によって被覆されている複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、複数の複合触媒粒子を複数の凝集体で連結しているので、電極触媒層内のプロトン伝導性を高めるだけでなく、ガス拡散性も確保することで反応活性点を増加させ出力性能を向上させることができる。高分子電解質で被覆した複合触媒粒子を用いた従来の電極触媒層では、触媒物質の表面にある高分子電解質層の量を調整しがたく、触媒表面のプロトン伝導性とガス拡散性を同時に十分に確保することができない。   According to the electrode catalyst layer for a fuel cell according to claim 1, a plurality of composite catalyst particles each having a catalyst material on at least a surface, the surface of the catalyst material being further covered with a polymer electrolyte layer, and a polymer electrolyte Is composed of a plurality of aggregates formed by agglomeration, and a plurality of composite catalyst particles are connected by a plurality of aggregates, so that not only the proton conductivity in the electrode catalyst layer is increased, but also gas diffusion By ensuring the property, the reaction active point can be increased and the output performance can be improved. In the conventional electrocatalyst layer using composite catalyst particles coated with polyelectrolyte, it is difficult to adjust the amount of polyelectrolyte layer on the surface of the catalyst material, and the proton conductivity and gas diffusivity on the catalyst surface are sufficient at the same time Can not be secured.

また、請求項1に係る燃料電池用電極触媒層によれば、複数の凝集体が、高分子電解質を溶かしてなる溶液を乾燥して形成されるので、触媒インクの作製に際し、乾燥温度により凝集体中の高分子電解質の溶媒への溶出量を制御することができ、これにより、複合触媒粒子の凝集を回避でき、触媒物質の表面を十分利用することができる。
また、本発明のうち請求項2に係る燃料電池用電極触媒層は、請求項1記載の燃料電池用電極触媒層において、前記複数の複合触媒粒子の各々は、前記触媒物質、又は、前記触媒物質を表面に担持した触媒物質担持粒子が複数凝集して形成され、前記触媒物質、又は、前記触媒物質及び前記触媒物質担持粒子の表面が前記高分子電解質層によって被覆されていることを特徴としている。
According to the fuel cell electrode catalyst layer of the first aspect, the plurality of aggregates are formed by drying a solution in which the polymer electrolyte is dissolved. The amount of the polymer electrolyte in the aggregate eluted into the solvent can be controlled, whereby aggregation of the composite catalyst particles can be avoided and the surface of the catalyst substance can be fully utilized.
Moreover, the fuel cell electrode catalyst layer according to claim 2 of the present invention is the fuel cell electrode catalyst layer according to claim 1, wherein each of the plurality of composite catalyst particles is the catalyst material or the catalyst. A plurality of catalyst material-carrying particles carrying a substance on the surface are formed by agglomeration, and the surface of the catalyst material or the catalyst material and the catalyst material-carrying particles is covered with the polymer electrolyte layer. Yes.

また、本発明のうち請求項3に係る燃料電池用膜電極接合体は、プロトン伝導性高分子電解質膜と、該プロトン伝導性高分子電解質膜を挟む一対の燃料電池用電極触媒層とで構成される燃料電池用膜接合体において、前記一対の燃料電池用電極触媒層のうち少なくとも一方が、請求項1又は2のいずれかに記載の燃料電池用電極触媒層からなることを特徴としている。
更に、本発明のうち請求項4に係る燃料電池は、請求項3に記載の燃料電池用膜電極接合体と、該燃料電池用膜電極接合体を挟持する一対のガス拡散層と、該一対のガス拡散層を挟持する一対のセパレータ板とを具備していることを特徴としている。
According to a third aspect of the present invention, a membrane electrode assembly for a fuel cell comprises a proton conductive polymer electrolyte membrane and a pair of fuel cell electrode catalyst layers sandwiching the proton conductive polymer electrolyte membrane. The fuel cell membrane assembly is characterized in that at least one of the pair of fuel cell electrode catalyst layers comprises the fuel cell electrode catalyst layer according to claim 1.
Furthermore, a fuel cell according to claim 4 of the present invention is a fuel cell membrane electrode assembly according to claim 3, a pair of gas diffusion layers sandwiching the fuel cell membrane electrode assembly, and the pair. And a pair of separator plates sandwiching the gas diffusion layer.

また、本発明のうち請求項5に係る燃料電池用電極触媒層の製造方法は、燃料電池用電極触媒層の製造方法であって、
触媒物質、又は、該触媒物質を担持した触媒物質担持粒子と、高分子電解質とを溶媒に分散させた混合物を乾燥させ、前記高分子電解質で、前記触媒物質、又は、前記触媒物質を担持した触媒物質担持粒子及び前記触媒物質の表面を被覆して複数の複合触媒粒子を形成する工程と、
高分子電解質を溶かした溶液を乾燥させ、複数の凝集体を形成する工程と、
前記複合触媒粒子と前記凝集体とを溶媒に分散させ、触媒インクを作製する工程と、
ガス拡散層、転写シートおよび高分子電解質膜のうちから選択される基材上に、前記触媒インクを塗布して電極触媒層を形成する工程と、
を備えることを特徴としている。
Moreover, the manufacturing method of the electrode catalyst layer for fuel cells which concerns on Claim 5 among this invention is a manufacturing method of the electrode catalyst layer for fuel cells,
A catalyst material or a mixture of catalyst material-supported particles supporting the catalyst material and a polymer electrolyte dispersed in a solvent is dried, and the catalyst material or the catalyst material is supported by the polymer electrolyte. Coating the catalyst material-supporting particles and the surface of the catalyst material to form a plurality of composite catalyst particles;
Drying a solution in which the polymer electrolyte is dissolved to form a plurality of aggregates;
A step of dispersing the composite catalyst particles and the aggregates in a solvent to prepare a catalyst ink;
A step of applying the catalyst ink on a substrate selected from a gas diffusion layer, a transfer sheet, and a polymer electrolyte membrane to form an electrode catalyst layer;
It is characterized by having.

この請求項5に係る燃料電池用電極触媒層の製造方法によれば、高分子電解質で、触媒物質、又は、前記触媒物質を担持した触媒物質担持粒子及び前記触媒物質の表面を被覆した複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、複数の複合触媒粒子を複数の凝集体で連結した燃料電池用電極触媒層を得ることができる。このため、電極触媒層内のプロトン伝導性を高めるだけでなく、ガス拡散性も確保することで反応活性点を増加させ出力性能を向上させることができる。高分子電解質で被覆した複合触媒粒子を用いた従来の電極触媒層の製造方法では、触媒物質の表面にある高分子電解質層の量を調整しがたく、触媒表面のプロトン伝導性とガス拡散性を同時に十分に確保することができない。   According to the method for producing an electrode catalyst layer for a fuel cell according to claim 5, a plurality of catalyst materials or catalyst material-supporting particles supporting the catalyst material and a surface of the catalyst material are coated with a polymer electrolyte. It is possible to obtain a fuel cell electrode catalyst layer composed of composite catalyst particles and a plurality of aggregates formed by agglomeration of the polymer electrolyte, in which a plurality of composite catalyst particles are connected by a plurality of aggregates. For this reason, not only the proton conductivity in the electrode catalyst layer can be increased, but also the gas diffusibility can be ensured to increase the reaction active point and improve the output performance. In the conventional method for producing an electrocatalyst layer using composite catalyst particles coated with a polymer electrolyte, it is difficult to adjust the amount of the polymer electrolyte layer on the surface of the catalyst material, and proton conductivity and gas diffusivity on the catalyst surface are difficult to adjust. Cannot be secured at the same time.

また、請求項5に係る燃料電池用電極触媒層の製造方法によれば、複数の凝集体が、高分子電解質を溶かした溶液を乾燥して形成されるので、触媒インクの作製に際し、乾燥温度により凝集体中の高分子電解質の溶媒への溶出量を制御することができ、これにより、複合触媒粒子の凝集を回避でき、触媒物質の表面を十分利用することができる。
また、本発明のうち請求項6に係る燃料電池用電極触媒層の製造方法は、請求項5記載の燃料電池用電極触媒層の製造方法において、前記複数の複合触媒粒子を形成する工程における乾燥温度が、前記複数の凝集体を形成する乾燥温度と等しいか高いことを特徴としている。
この請求項6に係る燃料電池用電極触媒層の製造方法によれば、複数の複合触媒粒子を形成する工程における乾燥温度が、複数の凝集体を形成する乾燥温度と等しいか高いことにより、複合触媒粒子中の高分子電解質よりも凝集体中の高分子電解質が溶媒に溶解しやすくすることができる。
Further, according to the method for producing an electrode catalyst layer for a fuel cell according to claim 5, the plurality of aggregates are formed by drying a solution in which the polymer electrolyte is dissolved. Thus, it is possible to control the amount of the polymer electrolyte in the aggregate eluted into the solvent, thereby avoiding the aggregation of the composite catalyst particles and fully utilizing the surface of the catalyst substance.
Moreover, the manufacturing method of the electrode catalyst layer for fuel cells which concerns on Claim 6 among this invention is drying in the process of forming these composite catalyst particles in the manufacturing method of the electrode catalyst layer for fuel cells of Claim 5. The temperature is equal to or higher than the drying temperature for forming the plurality of aggregates.
According to the method for producing a fuel cell electrode catalyst layer according to claim 6, the drying temperature in the step of forming the plurality of composite catalyst particles is equal to or higher than the drying temperature of forming the plurality of aggregates. The polymer electrolyte in the aggregate can be more easily dissolved in the solvent than the polymer electrolyte in the catalyst particles.

また、本発明のうち請求項7に係る燃料電池用電極触媒層の製造方法は、請求項5又は6記載の燃料電池用電極触媒層の製造方法において、前記複数の複合触媒粒子を形成する工程における乾燥温度が、50℃以上180℃以下の範囲内であることを特徴としている。
この請求項7に係る燃料電池用電極触媒層の製造方法によれば、複数の複合触媒粒子を形成する工程における乾燥温度を、50℃以上180℃以下の範囲内とすることにより、複合触媒粒子における高分子電解質のプロトン伝導性の阻害を回避でき、出力性能を向上させることができる。この乾燥温度が50℃に満たない場合には、触媒インクを作製する工程で、複合触媒粒子における高分子電解質の多くが溶媒に溶解し、形成した反応活性点の減少によって出力が向上しない場合がある。一方、この乾燥温度が180℃を超える場合には、複合触媒粒子における高分子電解質のプロトン伝導性が阻害され、出力性能が向上しない場合がある。
Moreover, the manufacturing method of the electrode catalyst layer for fuel cells which concerns on Claim 7 among this invention is a manufacturing method of the electrode catalyst layer for fuel cells of Claim 5 or 6, The process of forming these composite catalyst particles. The drying temperature is in the range of 50 ° C. or higher and 180 ° C. or lower.
According to the method for producing an electrode catalyst layer for a fuel cell according to claim 7, the drying temperature in the step of forming a plurality of composite catalyst particles is set in the range of 50 ° C. or higher and 180 ° C. or lower, whereby composite catalyst particles are obtained. Inhibition of proton conductivity of the polymer electrolyte in can be avoided, and output performance can be improved. When the drying temperature is less than 50 ° C., in the process of preparing the catalyst ink, many of the polymer electrolytes in the composite catalyst particles are dissolved in the solvent, and the output may not be improved due to the reduction of the formed reaction active sites. is there. On the other hand, when the drying temperature exceeds 180 ° C., the proton conductivity of the polymer electrolyte in the composite catalyst particles is hindered, and the output performance may not be improved.

更に、本発明のうち請求項8に係る燃料電池用電極触媒層の製造方法は、請求項5乃至7のうちいずれか一項に記載の燃料電池用電極触媒層の製造方法において、前記複数の凝集体を形成する工程における乾燥温度が、30℃以上140℃以下の範囲内であることを特徴としている。
この請求項8に係る燃料電池用電極触媒層の製造方法によれば、複数の凝集体を形成する工程における乾燥温度を、30℃以上140℃以下の範囲内とすることにより、電極触媒層内での凝集体の量が十分となり、プロトン伝導性の低下を抑制し、出力性能を向上させることができる。この乾燥温度が30℃に満たない場合には、触媒インクを作製する工程で、凝集体の多くが溶媒に溶解し、電極触媒層内で凝集体の量が不十分となり出力性能が向上しない場合がある。その一方、この乾燥温度が140℃を超える場合には、凝集体の触媒インクの溶媒への溶出がしがたくなり、電極触媒層内のプロトン伝導性が低下し、出力性能が向上しない場合がある。
Furthermore, the manufacturing method of the electrode catalyst layer for fuel cells which concerns on Claim 8 among this invention is a manufacturing method of the electrode catalyst layer for fuel cells as described in any one of Claim 5 thru | or 7. The drying temperature in the step of forming the aggregate is in the range of 30 ° C. or higher and 140 ° C. or lower.
According to the method for producing an electrode catalyst layer for a fuel cell according to claim 8, the drying temperature in the step of forming a plurality of aggregates is within the range of 30 ° C. or more and 140 ° C. or less, thereby Thus, the amount of aggregates becomes sufficient, suppressing a decrease in proton conductivity and improving the output performance. If this drying temperature is less than 30 ° C, when the catalyst ink is produced, most of the aggregates are dissolved in the solvent, and the amount of aggregates is insufficient in the electrode catalyst layer, so that the output performance is not improved. There is. On the other hand, when the drying temperature exceeds 140 ° C., it is difficult for the aggregate to elute into the solvent of the catalyst ink, the proton conductivity in the electrode catalyst layer is lowered, and the output performance may not be improved. is there.

本発明によれば、電極触媒層が、複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、複数の複合触媒粒子を複数の凝集体で連結しているので、電極触媒層内のプロトン伝導性を高めるだけでなく、ガス拡散性も確保することで反応活性点を増加させ出力性能を向上させた燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法を提供できる。   According to the present invention, the electrode catalyst layer is composed of a plurality of composite catalyst particles and a plurality of aggregates formed by aggregation of the polymer electrolyte, and the plurality of composite catalyst particles are connected by the plurality of aggregates. Therefore, not only the proton conductivity in the electrode catalyst layer is increased but also the gas diffusibility is ensured, thereby increasing the reaction active point and improving the output performance, and this electrode catalyst layer. A fuel cell membrane electrode assembly provided with a fuel cell, a fuel cell provided with this membrane electrode assembly, and a method for producing a fuel cell electrode catalyst layer.

また、本発明によれば、高分子電解質で被覆された複合触媒粒子および凝集体を分散させた触媒インク組成の自由度が高く、複合触媒粒子の凝集を防ぎ触媒の表面を十分に利用できるため、反応活性点を増加させ出力性能を向上させた燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法を提供できる。   Further, according to the present invention, the degree of freedom of the composition of the catalyst ink in which the composite catalyst particles and aggregates coated with the polymer electrolyte are dispersed is high, and the surface of the catalyst can be fully utilized by preventing the aggregation of the composite catalyst particles. , Fuel cell electrode catalyst layer with increased reaction active points and improved output performance, fuel cell membrane electrode assembly including the electrode catalyst layer, fuel cell and fuel cell electrode including the membrane electrode assembly A method for producing a catalyst layer can be provided.

本発明に係る燃料電池用電極触媒層の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrode catalyst layer for fuel cells which concerns on this invention. 本発明に係る燃料電池の分解模式図である。1 is an exploded schematic view of a fuel cell according to the present invention. 従来の形成法にて作製された燃料電池用電極触媒層の構造を示す模式図である。It is a schematic diagram which shows the structure of the electrode catalyst layer for fuel cells produced with the conventional formation method.

以下に、本発明の実施の形態に係る燃料電池用電極触媒層について説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれうるものである。   Below, the electrode catalyst layer for fuel cells which concerns on embodiment of this invention is demonstrated. The embodiments of the present invention are not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the embodiments of the present invention.

図1に示す燃料電池用電極触媒層(以下、単に電極触媒層という)21は、固体高分子形燃料電池に用いられるものであり、複数の複合触媒粒子11と、高分子電解質が凝集することによって形成された複数の凝集体12とを備え、複数の複合触媒粒子11を複数の凝集体12で連結して構成される。
ここで、各複合触媒粒子11は、白金系の貴金属などの触媒物質1を表面に担持したカーボン粒子である触媒物質担持粒子2が複数凝集して形成され、触媒物質1及び触媒物質担持粒子2の表面がさらに高分子電解質層3で被覆されている。触媒物質担持粒子2は電子伝導性を有し、その一方、高分子電解質層3はプロトン伝導性を有する。
A fuel cell electrode catalyst layer (hereinafter simply referred to as an electrode catalyst layer) 21 shown in FIG. 1 is used for a solid polymer fuel cell, and a plurality of composite catalyst particles 11 and a polymer electrolyte are aggregated. And a plurality of aggregates 12 formed by the above, and a plurality of composite catalyst particles 11 are connected by a plurality of aggregates 12.
Here, each composite catalyst particle 11 is formed by agglomerating a plurality of catalyst material-carrying particles 2 which are carbon particles carrying a catalyst material 1 such as a platinum-based noble metal on the surface, and the catalyst material 1 and the catalyst material-carrying particles 2 are formed. Is further covered with a polymer electrolyte layer 3. The catalyst material-carrying particles 2 have electronic conductivity, while the polymer electrolyte layer 3 has proton conductivity.

なお、各複合触媒粒子11は、高分子電解質層3で触媒物質1のみを被覆し、電子伝導性を有する触媒物質担持粒子2を含まなくてもよい。この場合、後に述べる触媒インクの調製において、電子伝導性物質を混合する必要がある。即ち、各複合触媒粒子11は、少なくとも表面に触媒物質1を備え、触媒物質1の表面がさらに高分子電解質層3によって被覆されていればよい。   Each composite catalyst particle 11 may be coated with only the catalyst material 1 with the polymer electrolyte layer 3 and may not include the catalyst material-carrying particles 2 having electron conductivity. In this case, it is necessary to mix an electron conductive substance in preparation of the catalyst ink described later. That is, each composite catalyst particle 11 only needs to have the catalyst material 1 on at least the surface, and the surface of the catalyst material 1 may be further covered with the polymer electrolyte layer 3.

各複合触媒粒子11における触媒物質1としては、白金が好適に使用されるが、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属又はこれらの合金、または酸化物、複酸化物等を用いても何ら問題はない。   As the catalyst material 1 in each composite catalyst particle 11, platinum is preferably used. In addition to the platinum group elements of palladium, ruthenium, iridium, rhodium and osmium, iron, lead, copper, chromium, cobalt, nickel, manganese There is no problem even if a metal such as vanadium, molybdenum, gallium or aluminum or an alloy thereof, or an oxide or a double oxide is used.

また、複合触媒粒子における触媒担持粒子2は、電子伝導性を有する物質であり、炭素粒子が好適に使用される。炭素粒子の種類は、微粒子状で導電性を有し、触媒におかされないものであればどのようなものでも構わないが、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンが使用できる。
炭素粒子の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると電極触媒層21のガス拡散性が低下したり、触媒の利用率が低下したりするので、10〜1000nm程度が好ましい。更に好ましくは、10〜100nmが良い。
Further, the catalyst-carrying particles 2 in the composite catalyst particles are a substance having electron conductivity, and carbon particles are preferably used. Any carbon particles can be used as long as they are in the form of fine particles, have conductivity and are not affected by the catalyst, but carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, and fullerene are used. it can.
If the particle size of the carbon particles is too small, it becomes difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the electrode catalyst layer 21 is lowered or the utilization factor of the catalyst is lowered. The degree is preferred. More preferably, 10-100 nm is good.

各複合触媒粒子11に含まれる高分子電解質層3、および各凝集体12を形成する高分子電解質としては、プロトン伝導性を有するものであれば良く、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。なお、電極触媒層21内の密着性を考慮すると、各複合触媒粒子11に含まれる高分子電解質粗3と凝集体を形成する高分子電解質には同様の材料を用いることが好ましい。   The polymer electrolyte that forms the polymer electrolyte layer 3 and each aggregate 12 contained in each composite catalyst particle 11 may be any one having proton conductivity, such as a fluorine-based polymer electrolyte and a hydrocarbon-based polymer. An electrolyte can be used. In consideration of the adhesiveness in the electrode catalyst layer 21, it is preferable to use the same material for the polymer electrolyte that forms aggregates with the polymer electrolyte crude 3 contained in each composite catalyst particle 11.

次に、本発明の実施の形態に係る燃料電池用膜電極接合体及びこの膜電極接合体を備えた燃料電池について説明する。図2は、本発明に係る燃料電池の分解模式図である。
図2に示す燃料電池40は、固体高分子形燃料電池であり、高分子電解質膜23の両面に一対の電極26,27を配置させた接合体を、一対のセパレータ板30a,30bで挟持して構成される。ここで、一対の電極26,27のうち酸素を含む酸化剤ガスを供給する電極26を空気極(カソード)、水素を含有する燃料ガスを供給する電極27を燃料極(アノード)と呼んでいる。
Next, a membrane electrode assembly for a fuel cell according to an embodiment of the present invention and a fuel cell including the membrane electrode assembly will be described. FIG. 2 is an exploded schematic view of the fuel cell according to the present invention.
A fuel cell 40 shown in FIG. 2 is a solid polymer fuel cell, and a joined body in which a pair of electrodes 26 and 27 are arranged on both surfaces of a polymer electrolyte membrane 23 is sandwiched between a pair of separator plates 30a and 30b. Configured. Here, of the pair of electrodes 26 and 27, the electrode 26 that supplies an oxidant gas containing oxygen is called an air electrode (cathode), and the electrode 27 that supplies a hydrogen-containing fuel gas is called a fuel electrode (anode). .

ここで、空気極である電極26は、高分子電解質膜23の上面に配置された電極触媒層21と、電極触媒層21の上面に配置されたガス拡散層24とで構成されている。電極触媒層21は、図1に示した電極触媒層21と同様の構成のものである。
また、燃料極である電極27は、高分子電解質膜23の下面に配置された電極触媒層22と、電極触媒層22の下面に配置されたガス拡散層25とで構成されている。電極触媒層22は、図1に示した電極触媒層21と同様の構成のものである。
一対の電極触媒層21,22は高分子電解質膜23を挟持している。
Here, the electrode 26, which is an air electrode, is composed of an electrode catalyst layer 21 disposed on the upper surface of the polymer electrolyte membrane 23 and a gas diffusion layer 24 disposed on the upper surface of the electrode catalyst layer 21. The electrode catalyst layer 21 has the same configuration as the electrode catalyst layer 21 shown in FIG.
The electrode 27 that is the fuel electrode includes an electrode catalyst layer 22 disposed on the lower surface of the polymer electrolyte membrane 23 and a gas diffusion layer 25 disposed on the lower surface of the electrode catalyst layer 22. The electrode catalyst layer 22 has the same configuration as the electrode catalyst layer 21 shown in FIG.
The pair of electrode catalyst layers 21 and 22 sandwich the polymer electrolyte membrane 23.

本発明の実施の形態に係る燃料電池用膜電極接合体(以下、単に膜電極接合体という)31は、高分子電解質膜23と、この高分子電解質膜23を挟持する一対の電極触媒層21,22とで構成されている。ここで、一対の電極触媒層21,22のうち少なくとも一方が図1に示した構造を有すればよく、他方は図3に示す電極触媒層120と同様の構成であってもよい。   A fuel cell membrane electrode assembly (hereinafter simply referred to as a membrane electrode assembly) 31 according to an embodiment of the present invention includes a polymer electrolyte membrane 23 and a pair of electrode catalyst layers 21 sandwiching the polymer electrolyte membrane 23. , 22. Here, it is sufficient that at least one of the pair of electrode catalyst layers 21 and 22 has the structure shown in FIG. 1, and the other may have the same configuration as the electrode catalyst layer 120 shown in FIG.

そして、膜電極接合体31を備えた燃料電池40は、膜電極接合体31と、膜電極接合体31を挟持する前記した一対のガス拡散層24,25と、一対のガス拡散層24,25を挟持する前記した一対のセパレータ板30a,30bとで構成される。
空気極である電極26側のガス拡散層24上に配置されるセパレータ板30aの下面には、ガス流通用のガス流路28が形成され、その一方、セパレータ板30aの上面には、冷却水流通用の冷却水水路29が形成される。セパレータ板30aは、導電性でかつ不透過性の材料で作製される。
一方、燃料極である電極27側のガス拡散層25下に配置されるセパレータ板30bの上面には、ガス流通用のガス流路28が形成され、その一方、セパレータ板30bの下面には、冷却水流通用の冷却水水路29が形成される。セパレータ板30bは、導電性でかつ不透過性の材料で作製される。
The fuel cell 40 including the membrane electrode assembly 31 includes the membrane electrode assembly 31, the pair of gas diffusion layers 24 and 25 that sandwich the membrane electrode assembly 31, and the pair of gas diffusion layers 24 and 25. And a pair of separator plates 30a and 30b.
On the lower surface of the separator plate 30a disposed on the gas diffusion layer 24 on the electrode 26 side, which is an air electrode, a gas flow path 28 for gas circulation is formed. On the other hand, on the upper surface of the separator plate 30a, a cooling water flow A common cooling water channel 29 is formed. Separator plate 30a is made of a conductive and impermeable material.
On the other hand, on the upper surface of the separator plate 30b disposed under the gas diffusion layer 25 on the electrode 27 side which is the fuel electrode, a gas flow path 28 for gas circulation is formed, while on the other hand, on the lower surface of the separator plate 30b, A cooling water channel 29 for circulating the cooling water is formed. Separator plate 30b is made of a conductive and impermeable material.

そして、燃料電池40においては、燃料極である電極27側のセパレータ板30のガス流路28からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極である電極26側のセパレータ板30のガス流路28からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。そして、燃料ガスの水素と酸素ガスとを触媒の存在下で電極反応させることにより、燃料極である電極27と空気極である電極26の間に起電力を生じることができる。   In the fuel cell 40, for example, hydrogen gas is supplied as a fuel gas from the gas flow path 28 of the separator plate 30 on the electrode 27 side that is the fuel electrode. On the other hand, a gas containing oxygen, for example, is supplied as an oxidant gas from the gas flow path 28 of the separator plate 30 on the electrode 26 side which is an air electrode. An electromotive force can be generated between the electrode 27 which is a fuel electrode and the electrode 26 which is an air electrode by causing an electrode reaction between hydrogen and oxygen gas of the fuel gas in the presence of a catalyst.

図2に示した燃料電池40は、一対のセパレータ板30a,30bによって高分子電解質膜23、電極触媒層21、22、ガス拡散層24、25が狭持された、いわゆる単セル構造の固体高分子形燃料電池である。但し、本発明にあっては、セパレーター板30a,30bを介して複数のセルを積層して燃料電池とすることもできる。
また、膜電極接合体31に用いられる高分子電解質膜23としては、プロトン伝導性を有するものであればよく、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。なお、電極触媒層21,22と高分子電解質膜23との密着性を考慮すると、高分子電解質膜23は、電極触媒層21,22と同一の材料を用いることが好ましい。
The fuel cell 40 shown in FIG. 2 has a so-called single-cell solid state in which a polymer electrolyte membrane 23, electrode catalyst layers 21 and 22, and gas diffusion layers 24 and 25 are sandwiched by a pair of separator plates 30a and 30b. This is a molecular fuel cell. However, in the present invention, a plurality of cells can be stacked via the separator plates 30a and 30b to form a fuel cell.
The polymer electrolyte membrane 23 used in the membrane electrode assembly 31 may be any one having proton conductivity, and a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte can be used. In consideration of the adhesion between the electrode catalyst layers 21 and 22 and the polymer electrolyte membrane 23, the polymer electrolyte membrane 23 is preferably made of the same material as the electrode catalyst layers 21 and 22.

次に、図1に示す電極触媒層21の製造方法について説明する。
電極触媒層21は、以下に述べる複合触媒粒子11の形成工程、凝集体12の形成工程、触媒インクの作製工程、及び電極触媒層の形成工程により製造される。
電極触媒層21の製造に際し、先ず、触媒物質1を担持した触媒物質担持粒子2と、高分子電解質膜3を構成する高分子電解質とを溶媒に分散させた混合物を乾燥させ、触媒物質1を担持した触媒物質担持粒子2及び触媒物質1の表面を高分子電解質で被覆して複数の複合触媒粒子11を形成する(複合触媒粒子の形成工程)。
Next, the manufacturing method of the electrode catalyst layer 21 shown in FIG. 1 is demonstrated.
The electrode catalyst layer 21 is manufactured by a composite catalyst particle 11 formation process, an aggregate 12 formation process, a catalyst ink production process, and an electrode catalyst layer formation process described below.
In the production of the electrode catalyst layer 21, first, a mixture in which the catalyst material-carrying particles 2 that carry the catalyst material 1 and the polymer electrolyte that constitutes the polymer electrolyte membrane 3 are dispersed in a solvent is dried to obtain the catalyst material 1. The surfaces of the supported catalyst material-supporting particles 2 and the catalyst material 1 are coated with a polymer electrolyte to form a plurality of composite catalyst particles 11 (composite catalyst particle forming step).

ここで、触媒物質1のみと高分子電解質とを溶媒に分散させた混合物を乾燥させ、高分子電解質で触媒物質1の表面を被覆して複数の複合触媒粒子11を形成してもよい。
この複合触媒粒子11の形成工程にあっては、複合触媒粒11子中の触媒物質1もしくは触媒物質1を担持した触媒物質担持粒子2と高分子電解質との重量比を溶媒に分散させた混合物の組成で制御することができる。また、複合触媒粒子11を形成する工程にあっては、乾燥温度により複合触媒粒子11中の高分子電解質の溶媒への溶出量を制御することができる。
Here, a mixture of only the catalyst substance 1 and the polymer electrolyte dispersed in a solvent may be dried, and the surface of the catalyst substance 1 may be covered with the polymer electrolyte to form a plurality of composite catalyst particles 11.
In the step of forming the composite catalyst particles 11, the catalyst material 1 in the composite catalyst particles 11 or the mixture of the catalyst material-supported particles 2 supporting the catalyst material 1 and the polymer electrolyte is dispersed in a solvent. It can be controlled by the composition. Further, in the step of forming the composite catalyst particles 11, the elution amount of the polymer electrolyte in the composite catalyst particles 11 into the solvent can be controlled by the drying temperature.

この複合触媒粒子11の形成工程にあっては、乾燥温度が50℃以上180℃以下であることが好ましい。乾燥温度が50℃に満たない場合にあっては、触媒インクを作製する工程で、複合触媒粒子11における高分子電解質の多くが溶媒に溶解し、形成した反応活性点の減少によって出力性能が向上しない場合がある。また、乾燥温度が180℃を超える場合にあっても、複合触媒粒子11における高分子電解質のプロトン伝導性が阻害され、出力性能が向上しない場合がある。   In the step of forming the composite catalyst particles 11, the drying temperature is preferably 50 ° C. or higher and 180 ° C. or lower. When the drying temperature is less than 50 ° C., in the process of preparing the catalyst ink, most of the polymer electrolyte in the composite catalyst particle 11 is dissolved in the solvent, and the output performance is improved by reducing the formed reaction active sites. May not. Even when the drying temperature exceeds 180 ° C., the proton conductivity of the polymer electrolyte in the composite catalyst particles 11 is hindered, and the output performance may not be improved.

複合触媒粒子11の形成工程の後、高分子電解質を溶かした溶液を乾燥させ、複数の凝集体12を形成する(凝集体の形成工程)。
凝集体12の形成工程にあっては、乾燥温度により、凝集体中の高分子電解質の溶媒への溶出量を制御することができる。
この凝集体12の形成工程にあっては、乾燥温度が30℃以上140℃以下であることが好ましい。乾燥温度が30℃に満たない場合にあっては、触媒インクを作製する工程で、凝集体12の多くが溶媒に溶解し、電極触媒層21内で凝集体12の量が不十分となり出力性能が向上しない場合がある。また、乾燥温度が140℃を超える場合にあっては、触媒インクの溶媒への溶出がしがたくなり、電極触媒層21内のプロトン伝導性が低下し、出力性能が向上しない場合がある。
After the formation step of the composite catalyst particles 11, the solution in which the polymer electrolyte is dissolved is dried to form a plurality of aggregates 12 (aggregate formation step).
In the formation process of the aggregate 12, the elution amount of the polymer electrolyte in the aggregate into the solvent can be controlled by the drying temperature.
In the formation process of this aggregate 12, it is preferable that drying temperature is 30 degreeC or more and 140 degrees C or less. When the drying temperature is less than 30 ° C., in the process of preparing the catalyst ink, most of the aggregates 12 are dissolved in the solvent, and the amount of the aggregates 12 is insufficient in the electrode catalyst layer 21, so that the output performance. May not improve. Further, when the drying temperature exceeds 140 ° C., it is difficult for the catalyst ink to elute into the solvent, the proton conductivity in the electrode catalyst layer 21 is lowered, and the output performance may not be improved.

複合触媒粒子11の形成工程における乾燥温度と凝集体12の形成工程における乾燥温度にあっては、複合触媒粒子11の形成工程における乾燥温度が、凝集体12の形成工程における乾燥温度よりも高いか、等しくても構わないが、複合触媒粒子11中の高分子電解質よりも凝集体12が溶媒に溶解しやすい乾燥温度であることが好ましい。
凝集体12の形成工程の後、複合触媒粒子11と凝集体12とを溶媒に分散させ、触媒インクを作製する(触媒インクの作製工程)。この触媒インクの作製工程においては、電極触媒層21中の複合触媒粒子11と凝集体12との重量比を触媒インクの組成で制御することができる。
Whether the drying temperature in the formation process of the composite catalyst particles 11 and the drying temperature in the formation process of the aggregates 12 are higher than the drying temperature in the formation process of the aggregates 12. However, the drying temperature is preferably such that the aggregate 12 is more easily dissolved in the solvent than the polymer electrolyte in the composite catalyst particles 11.
After the formation process of the aggregate 12, the composite catalyst particles 11 and the aggregate 12 are dispersed in a solvent to prepare a catalyst ink (catalyst ink preparation process). In this catalyst ink preparation process, the weight ratio of the composite catalyst particles 11 and the aggregates 12 in the electrode catalyst layer 21 can be controlled by the composition of the catalyst ink.

ここで、分散媒として使用される溶媒は、触媒物質1や高分子電解質を浸食することがなく、高分子電解質を流動性の高い状態で溶解または微細ゲルとして分散できるものあれば特に制限はない。しかし、揮発性の有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではないが、アルコール類やケトン系溶剤、エーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノールなどの極性溶剤などが使用される。また、これらの溶剤のうち二種以上を混合させたものも使用できる。   Here, the solvent used as the dispersion medium is not particularly limited as long as it does not erode the catalyst material 1 or the polymer electrolyte and can dissolve or disperse the polymer electrolyte in a highly fluid state as a fine gel. . However, it is desirable to include at least a volatile organic solvent, and is not particularly limited, but alcohols, ketone solvents, ether solvents, other dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, Polar solvents such as diethylene glycol, diacetone alcohol, and 1-methoxy-2-propanol are used. Moreover, what mixed 2 or more types of these solvents can also be used.

また、触媒物質1の分散媒として低級アルコールを用いる場合には発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。高分子電解質となじみがよい水が含まれていてもよい。水の添加量は、高分子電解質が分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。
複合触媒粒子11の形成工程及び凝集体12の形成工程にあっては、必要に応じて分散処理がおこなわれる。複合触媒粒子11および凝集体12の粒子サイズは、それぞれの工程における分散処理の条件によって制御することができる。また、触媒インクの作製にあっても必要に応じて分散処理が行われる。触媒インクの粘度、粒子のサイズは、触媒インクの分散処理の条件によって制御することができる。
Further, when a lower alcohol is used as the dispersion medium of the catalyst substance 1, there is a high risk of ignition. When using such a solvent, it is preferable to use a mixed solvent with water. Water that is compatible with the polymer electrolyte may be contained. The amount of water added is not particularly limited as long as the polymer electrolyte is not separated to cause white turbidity or gelation.
In the formation process of the composite catalyst particles 11 and the formation process of the aggregates 12, a dispersion process is performed as necessary. The particle size of the composite catalyst particle 11 and the aggregate 12 can be controlled by the conditions of the dispersion treatment in each step. Even in the production of the catalyst ink, a dispersion process is performed as necessary. The viscosity and particle size of the catalyst ink can be controlled by the conditions for the dispersion treatment of the catalyst ink.

分散処理は、様々な装置を用いておこなうことができる。例えば、分散処理としては、ボールミルやロールミルによる処理、超音波分散処理などが挙げられる。
触媒インク中の固形分含有量は、多すぎると触媒インクの粘度が高くなるため電極触媒層21の表面にクラックが入りやすくなり、また逆に少なすぎると成膜レートが非常に遅く、生産性が低下してしまうため、1〜50質量%であることが好ましい。
固形分は触媒物質および電子伝導性物質と高分子電解質からなるが、電子伝導性物質多くすると、電子伝導性物質は嵩高い物質が好適に用いられるため、同じ固形分含有量でも粘度は高くなり、少なくすると粘度は低くなる。また、このときの触媒インクの粘度は、0.1〜500cP程度が好ましく、さらに好ましくは5〜100cPが良い。また触媒インクの分散時に分散剤を添加することで、粘度の制御をすることもできる。
Distributed processing can be performed using various devices. For example, examples of the dispersion process include a process using a ball mill and a roll mill, and an ultrasonic dispersion process.
If the content of the solid content in the catalyst ink is too large, the viscosity of the catalyst ink becomes high, so that the surface of the electrode catalyst layer 21 is likely to crack, and conversely if too small, the film formation rate is very slow and the productivity is low. Since it will fall, it is preferable that it is 1-50 mass%.
The solid content consists of a catalyst material, an electron conductive material, and a polymer electrolyte. However, if the amount of the electron conductive material is increased, a bulky material is preferably used as the electron conductive material, so that the viscosity increases even with the same solid content. If it is decreased, the viscosity is lowered. Further, the viscosity of the catalyst ink at this time is preferably about 0.1 to 500 cP, more preferably 5 to 100 cP. Further, the viscosity can be controlled by adding a dispersing agent when the catalyst ink is dispersed.

また、触媒インクに造孔剤が含まれても良い。
造孔剤は、電極触媒層21の形成後に除去することで、細孔を形成することができる。
酸やアルカリ、水に溶ける物質や、ショウノウなどの昇華する物質、熱分解する物質などを挙げることができる。温水で溶ける物質であれば、発電時に発生する水で取り除いても良い。
そして、触媒インクの作製工程の後、ガス拡散層、転写シートおよび高分子電解質膜のうちから選択される基材上に、触媒インクを塗布し、乾燥工程を経て電極触媒層21を形成する(電極触媒層の形成工程)。これにより、電極触媒層21が完成する。
The catalyst ink may contain a pore forming agent.
By removing the pore former after the formation of the electrode catalyst layer 21, pores can be formed.
Examples include substances that are soluble in acids, alkalis, and water, substances that sublime such as camphor, and substances that thermally decompose. If the substance is soluble in hot water, it may be removed with water generated during power generation.
Then, after the catalyst ink preparation step, the catalyst ink is applied onto a substrate selected from among a gas diffusion layer, a transfer sheet, and a polymer electrolyte membrane, and an electrode catalyst layer 21 is formed through a drying step ( Step of forming an electrode catalyst layer). Thereby, the electrode catalyst layer 21 is completed.

ここで、基材として、ガス拡散層もしくは転写シートを用いた場合には、接合工程によって高分子電解質膜の両面に電極触媒層21は接合される。また、本発明の膜電極接合体31にあっては、基材として高分子電解質膜を用い、高分子電解質膜の両面に直接触媒インクを塗布し、高分子電解質膜両面に直接電極触媒層を形成することもできる。
このとき、触媒インクの塗布方法としては、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などを用いることができる。
Here, when a gas diffusion layer or a transfer sheet is used as the substrate, the electrode catalyst layer 21 is bonded to both surfaces of the polymer electrolyte membrane by a bonding process. In the membrane electrode assembly 31 of the present invention, a polymer electrolyte membrane is used as a base material, a catalyst ink is directly applied to both sides of the polymer electrolyte membrane, and an electrode catalyst layer is directly applied to both sides of the polymer electrolyte membrane. It can also be formed.
At this time, as a method for applying the catalyst ink, a doctor blade method, a dipping method, a screen printing method, a roll coating method, a spray method, or the like can be used.

電極触媒層の作製工程で用いられる基材としては、ガス拡散層、転写シートもしくは高分子電解質膜を用いることができる。ガス拡散層としては、ガス拡散性と導電性とを有する材質のものを用いることができる。また転写シートとしては、転写性がよい材質であればよく、例えばフッ素樹脂製のフィルムを用いることができる。
基材として転写シートを用いた場合には、高分子電解質膜23に電極触媒層21,22を接合後に転写シートを剥離し、高分子電解質膜23の両面に電極触媒層21,22を備える膜電極接合体31とすることができる。基材としてガス拡散層を接合工程後にガス拡散層である基材を剥離する必要は無い。
As a base material used in the production process of the electrode catalyst layer, a gas diffusion layer, a transfer sheet, or a polymer electrolyte membrane can be used. As the gas diffusion layer, a material having gas diffusibility and conductivity can be used. The transfer sheet may be any material having good transferability, and for example, a fluororesin film can be used.
When a transfer sheet is used as the substrate, the transfer sheet is peeled after the electrode catalyst layers 21 and 22 are bonded to the polymer electrolyte membrane 23, and the electrode catalyst layers 21 and 22 are provided on both sides of the polymer electrolyte membrane 23. The electrode assembly 31 can be obtained. It is not necessary to peel off the base material that is the gas diffusion layer after the joining step of the gas diffusion layer as the base material.

以上述べた電極触媒層21の製造方法により、触媒物質1を表面に担持した触媒物質担持粒子2が複数凝集して形成され、触媒物質1及び触媒物質担持粒子2の表面が高分子電解質層3によって被覆されている複数の複合触媒粒子11と、高分子電解質が凝集することによって形成された複数の凝集体12とで構成され、複数の複合触媒粒子11を複数の凝集体12で連結した電極触媒層21が得られる。この電極触媒層21によれば、電極触媒層21内のプロトン伝導性を高めるだけでなく、ガス拡散性も確保することで反応活性点を増加させ出力性能を向上させることができる。高分子電解質で被覆した複合触媒粒子を用いた従来の電極触媒層及びその製造方法では、触媒物質の表面にある高分子電解質層の量を調整しがたく、触媒表面のプロトン伝導性とガス拡散性を同時に十分に確保することができない。また、高分子電解質層3で触媒物質1を被覆したのみでは、高分子電解質の量でガス拡散性や電極触媒層の強度を詳細に調整することが困難である。   By the method for producing the electrode catalyst layer 21 described above, a plurality of catalyst material-supporting particles 2 supporting the catalyst material 1 on the surface are formed by agglomeration, and the surfaces of the catalyst material 1 and the catalyst material-supporting particles 2 are formed on the polymer electrolyte layer 3. Electrode composed of a plurality of composite catalyst particles 11 coated with a plurality of aggregates 12 formed by aggregation of polymer electrolytes, and a plurality of composite catalyst particles 11 connected by a plurality of aggregates 12. A catalyst layer 21 is obtained. According to the electrode catalyst layer 21, not only the proton conductivity in the electrode catalyst layer 21 is increased, but also the gas diffusibility is secured, thereby increasing the reaction active point and improving the output performance. In the conventional electrocatalyst layer using the composite catalyst particles coated with the polymer electrolyte and the manufacturing method thereof, it is difficult to adjust the amount of the polymer electrolyte layer on the surface of the catalyst material, and the proton conductivity and gas diffusion on the catalyst surface are difficult to adjust. It is impossible to secure sufficient sex at the same time. Further, it is difficult to adjust the gas diffusibility and the strength of the electrode catalyst layer in detail by the amount of the polymer electrolyte only by coating the catalyst substance 1 with the polymer electrolyte layer 3.

また、複数の凝集体12が、高分子電解質を溶かしてなる溶液を乾燥して形成されるので、触媒インクの作製に際し、乾燥温度により凝集体12中の高分子電解質の溶媒への溶出量を制御することができ、これにより、複合触媒粒子11の凝集を回避でき、触媒物質1の表面を十分利用することができる。触媒インクの分散溶媒として高分子電解質の凝集体を析出させる様な貧溶媒を用いる製造方法では、高分子電解質の凝集体が析出するのみでなく、複合触媒粒子の凝集も起こりうるため、触媒の表面を十分に利用できない。   Further, since the plurality of aggregates 12 are formed by drying a solution in which the polymer electrolyte is dissolved, the amount of polymer electrolyte in the aggregates 12 in the aggregate 12 can be determined depending on the drying temperature when the catalyst ink is produced. Therefore, the aggregation of the composite catalyst particles 11 can be avoided, and the surface of the catalyst material 1 can be fully utilized. In the production method using a poor solvent that precipitates a polymer electrolyte aggregate as a dispersion solvent of the catalyst ink, not only the polymer electrolyte aggregate but also the aggregation of the composite catalyst particles may occur. The surface is not fully utilized.

燃料電池40におけるガス拡散層24,25およびセパレータ板30a,30bとしては、通常の燃料電池に用いられているものを用いることができる。具体的にはガス拡散層24,25としてはカーボンクロス、カーボンペーパー、不織布などのポーラスカーボン材を用いることができる。セパレータ板30a,30bとしては、カーボンタイプあるいは金属タイプのものなどを用いることができる。燃料電池40としては、ガス供給装置、冷却装置などその他付随する装置を組み立てることにより製造される。   As the gas diffusion layers 24 and 25 and the separator plates 30a and 30b in the fuel cell 40, those used in ordinary fuel cells can be used. Specifically, porous carbon materials such as carbon cloth, carbon paper, and nonwoven fabric can be used as the gas diffusion layers 24 and 25. As the separator plates 30a and 30b, carbon type or metal type can be used. The fuel cell 40 is manufactured by assembling other accompanying devices such as a gas supply device and a cooling device.

本発明における燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法について、以下に具体的な実施例および比較例を挙げて説明するが、本発明は下記実施例によって制限されるものではない。   The fuel cell electrode catalyst layer, the fuel cell membrane electrode assembly including the electrode catalyst layer, the fuel cell including the membrane electrode assembly, and the method for producing the fuel cell electrode catalyst layer according to the present invention will be described in detail below. The present invention will be described with reference to specific examples and comparative examples, but the present invention is not limited to the following examples.

(実施例)
〔複合触媒粒子の形成方法〕
図1において、触媒物質1を担持した触媒物質担持粒子2と、高分子電解質層3を構成する高分子電解質溶液(Nafion:登録商標、デュポン社製)とを加えた溶媒に分散処理を行い、当該触媒物質担持粒子2と高分子電解質層3の混合物を作製した。続いて、ドクターブレードにより混合物を基材上に塗布し、大気雰囲気中120℃で5分間乾燥させた。その後、複合触媒粒子11を基材上から回収した。
(Example)
[Method of forming composite catalyst particles]
In FIG. 1, a dispersion treatment is performed in a solvent in which catalyst material-supporting particles 2 supporting the catalyst material 1 and a polymer electrolyte solution (Nafion: registered trademark, manufactured by DuPont) constituting the polymer electrolyte layer 3 are added. A mixture of the catalyst substance-supporting particles 2 and the polymer electrolyte layer 3 was produced. Then, the mixture was apply | coated on the base material with the doctor blade, and was dried for 5 minutes at 120 degreeC in air | atmosphere. Thereafter, the composite catalyst particles 11 were collected from the substrate.

〔凝集体の形成方法〕
高分子電解質溶液(Nafion:登録商標、デュポン社製)を加えた溶媒に分散処理を行い、ドクターブレードにより基材上に塗布し、大気雰囲気中70℃で5分間乾燥させた。その後、凝集体12を基材上から回収した。
〔触媒インクの作製〕
基材上から回収した複合触媒粒子11と基材上から回収した凝集体12を溶媒中で混合し、分散処理を行った。
[Method of forming aggregate]
Dispersion treatment was performed in a solvent to which a polymer electrolyte solution (Nafion: registered trademark, manufactured by DuPont) was added, and the mixture was applied onto a substrate with a doctor blade and dried at 70 ° C. for 5 minutes in an air atmosphere. Thereafter, the aggregate 12 was recovered from the substrate.
[Preparation of catalyst ink]
The composite catalyst particles 11 recovered from the substrate and the aggregates 12 recovered from the substrate were mixed in a solvent and subjected to a dispersion treatment.

〔電極触媒層の形成方法〕
作製された触媒インクをドクターブレードにより転写シートに塗布し、大気雰囲気中80℃で5分間乾燥させ、これにより電極触媒層21を形成した。電極触媒層21の厚さは、触媒物質1の量が0.3mg/cmになるように調節し、電極触媒層21を形成した。
[Method for forming electrode catalyst layer]
The produced catalyst ink was applied to the transfer sheet with a doctor blade and dried at 80 ° C. for 5 minutes in the air atmosphere, whereby the electrode catalyst layer 21 was formed. The thickness of the electrode catalyst layer 21 was adjusted so that the amount of the catalyst material 1 was 0.3 mg / cm 2 to form the electrode catalyst layer 21.

(比較例)
〔複合触媒粒子の形成方法〕
実施例と同様の手法で、複合触媒粒子の形成を行った。
〔凝集体の形成方法〕
高分子電解質溶液(Nafion:登録商標、デュポン社製)を有機溶媒に少量ずつ添加し、分散処理を行い、電解質の凝集体を含む溶液を得た。
(Comparative example)
[Method of forming composite catalyst particles]
Composite catalyst particles were formed in the same manner as in the examples.
[Method of forming aggregate]
A polymer electrolyte solution (Nafion: registered trademark, manufactured by DuPont) was added to an organic solvent little by little, and a dispersion treatment was performed to obtain a solution containing an electrolyte aggregate.

〔触媒インクの作製〕
複合触媒粒子と電解質の凝集体を含む溶液を溶媒中で混合し、分散処理を行った。
〔電極触媒層の形成方法〕
実施例と同様の手法で、転写シートに触媒インクを塗布し、乾燥させ、これにより電極触媒層121を形成した。電極触媒層121の厚さは触媒物質101の量が0.3mg/cmになるように調節し、電極触媒層121を形成した。
[Preparation of catalyst ink]
A solution containing the composite catalyst particles and the aggregate of the electrolyte was mixed in a solvent and subjected to a dispersion treatment.
[Method for forming electrode catalyst layer]
In the same manner as in the example, the catalyst ink was applied to the transfer sheet and dried, whereby the electrode catalyst layer 121 was formed. The electrode catalyst layer 121 was formed by adjusting the thickness of the electrode catalyst layer 121 so that the amount of the catalyst material 101 was 0.3 mg / cm 2 .

〔膜電極接合体及び燃料電池の作製〕
(実施例)および(比較例)において作製した電極触媒層21,121が形成された基材を5cmの正方形に打ち抜き、図2における高分子電解質膜(Nafion212:登録商標、デュポン社製)23の両面に対面するように転写シートを配置し、130℃でホットプレスを行い、膜電極接合体31を得た。得られた膜電極接合体31の両面に、ガス拡散層24,25として目処め層が形成されたカーボンクロスを配置し、更に、一対のセパレータ板30で挟持し、単セルの固体高分子形燃料電池40を作製した。
[Production of membrane electrode assembly and fuel cell]
The base material on which the electrode catalyst layers 21 and 121 produced in (Example) and (Comparative Example) were formed was punched into a 5 cm 2 square, and the polymer electrolyte membrane (Nafion 212: registered trademark, manufactured by DuPont) 23 in FIG. A transfer sheet was placed so as to face both surfaces of the film, and hot pressing was performed at 130 ° C. to obtain a membrane electrode assembly 31. On both surfaces of the obtained membrane electrode assembly 31, carbon cloth having a sealing layer formed as a gas diffusion layer 24, 25 is disposed, and is further sandwiched between a pair of separator plates 30, and a single cell solid polymer type A fuel cell 40 was produced.

〔発電特性〕
(評価条件)
東陽テクニカ社製GFT−SG1の燃料電池測定装置を用いて、セル温度80℃で発電特性評価を行った。燃料ガスとして水素ガス、酸化剤ガスとして空気ガスを用い、流量一定による流量制御を行った。
(測定結果)
発電評価を行ったところ、実施例の固体高分子形燃料電池は、プロトン伝導性が高まるとともにガス拡散性を十分に保つことができたため、比較例に比べて高出力でフラッディングが抑制され、良好な発電特性を得ることができた。
[Power generation characteristics]
(Evaluation conditions)
Using a GFT-SG1 fuel cell measuring device manufactured by Toyo Technica Co., Ltd., power generation characteristics were evaluated at a cell temperature of 80 ° C. Using hydrogen gas as the fuel gas and air gas as the oxidant gas, the flow rate was controlled at a constant flow rate.
(Measurement result)
As a result of power generation evaluation, the polymer electrolyte fuel cell of the example had high proton conductivity and sufficiently maintained gas diffusibility, so that flooding was suppressed at a high output compared with the comparative example, and good A good power generation characteristic was obtained.

本発明に係る燃料電池用電極触媒層は、少なくとも表面に触媒物質を備え、該触媒物質の表面が高分子電解質層によって被覆されている複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、前記複数の複合触媒粒子を前記複数の凝集体で連結するとともに、前記複数の凝集体が、高分子電解質を溶かしてなる溶液を乾燥して形成されることを特徴としている。   The electrode catalyst layer for a fuel cell according to the present invention comprises a plurality of composite catalyst particles that are provided with a catalyst substance on at least a surface and the surface of the catalyst substance is covered with a polymer electrolyte layer, and the polymer electrolyte aggregates. A plurality of aggregates formed, and the plurality of composite catalyst particles are connected by the plurality of aggregates, and the plurality of aggregates are formed by drying a solution in which a polymer electrolyte is dissolved. It is characterized by that.

また、本発明に係る燃料電池用電極触媒層の製造方法は、燃料電池用電極触媒層の製造方法であって、触媒物質、又は、該触媒物質を担持した触媒物質担持粒子と、高分子電解質とを溶媒に分散させた混合物を乾燥させ、前記高分子電解質で、前記触媒物質、又は、前記触媒物質を担持した触媒物質担持粒子及び前記触媒物質の表面を被覆して複数の複合触媒粒子を形成する工程と、高分子電解質を溶かした溶液を乾燥させ、複数の凝集体を形成する工程と、前記複合触媒粒子と前記凝集体とを溶媒に分散させ、触媒インクを作製する工程と、ガス拡散層、転写シートおよび高分子電解質膜のうちから選択される基材上に、前記触媒インクを塗布して電極触媒層を形成する工程とを備えたことを特徴としている。
これにより、触媒表面への十分なプロトン伝導性とガス拡散性を確保することで、反応活性点を増加させ出力性能を向上させた燃料電池を提供することができる。したがって、従来の製造方法よりも発電特性が良好な燃料電池を提供でき、さらには触媒使用量の削減にも繋がることからコスト削減の可能性を有するため、産業上の利用価値が高い。
The method for producing an electrode catalyst layer for a fuel cell according to the present invention is a method for producing an electrode catalyst layer for a fuel cell, comprising a catalyst substance, or catalyst substance-supported particles carrying the catalyst substance, and a polymer electrolyte. And the catalyst material, the catalyst material-supporting particles supporting the catalyst material, and the surface of the catalyst material are coated with the polymer electrolyte to form a plurality of composite catalyst particles. A step of forming, drying a solution in which the polymer electrolyte is dissolved to form a plurality of aggregates, a step of dispersing the composite catalyst particles and the aggregates in a solvent to produce a catalyst ink, and a gas And a step of forming an electrode catalyst layer by applying the catalyst ink on a substrate selected from a diffusion layer, a transfer sheet, and a polymer electrolyte membrane.
Thus, by ensuring sufficient proton conductivity and gas diffusibility to the catalyst surface, it is possible to provide a fuel cell having an increased reaction active point and improved output performance. Therefore, it is possible to provide a fuel cell with better power generation characteristics than the conventional manufacturing method, and further to reduce the amount of catalyst used.

1 触媒物質
2 触媒物質担持粒子
3 高分子電解質層
11 複合触媒粒子
12 凝集体
21,22 電極触媒層
23 高分子電解質膜
24,25 ガス拡散層
26 電極(空気極)
27 電極(燃料極)
28 ガス流路
29 冷却水流路
30a セパレータ板
30b セパレータ板
31 膜電極接合体
40 燃料電池
101 触媒物質
102 触媒物質担持粒子
103 高分子電解質層
111 複合触媒粒子
121 電極触媒層
DESCRIPTION OF SYMBOLS 1 Catalytic substance 2 Catalytic substance carrying particle 3 Polymer electrolyte layer 11 Composite catalyst particle 12 Aggregate 21 and 22 Electrode catalyst layer 23 Polymer electrolyte membrane 24 and 25 Gas diffusion layer 26 Electrode (air electrode)
27 Electrode (fuel electrode)
28 Gas Channel 29 Cooling Water Channel 30a Separator Plate 30b Separator Plate 31 Membrane Electrode Assembly 40 Fuel Cell 101 Catalytic Material 102 Catalytic Material Supporting Particle 103 Polymer Electrolyte Layer 111 Composite Catalyst Particle 121 Electrode Catalyst Layer

Claims (8)

少なくとも表面に触媒物質を備え、該触媒物質の表面が高分子電解質層によって被覆されている複数の複合触媒粒子と、高分子電解質が凝集することによって形成された複数の凝集体とで構成され、
前記複数の複合触媒粒子を前記複数の凝集体で連結するとともに、前記複数の凝集体が、高分子電解質を溶かしてなる溶液を乾燥して形成されることを特徴とする燃料電池用電極触媒層。
Comprising at least a catalyst substance on the surface, and a plurality of composite catalyst particles, the surface of the catalyst substance being covered with a polymer electrolyte layer, and a plurality of aggregates formed by aggregation of the polymer electrolyte;
The electrode catalyst layer for a fuel cell, wherein the plurality of composite catalyst particles are connected by the plurality of aggregates, and the plurality of aggregates are formed by drying a solution obtained by dissolving a polymer electrolyte. .
前記複数の複合触媒粒子の各々は、前記触媒物質、又は、前記触媒物質を表面に担持した触媒物質担持粒子が複数凝集して形成され、前記触媒物質、又は、前記触媒物質及び前記触媒物質担持粒子の表面が前記高分子電解質層によって被覆されていることを特徴とする請求項1記載の燃料電池用電極触媒層。   Each of the plurality of composite catalyst particles is formed by agglomerating a plurality of the catalyst material or a plurality of catalyst material support particles supporting the catalyst material on the surface, and the catalyst material, or the catalyst material and the catalyst material support The electrode catalyst layer for a fuel cell according to claim 1, wherein the surface of the particles is covered with the polymer electrolyte layer. プロトン伝導性高分子電解質膜と、該プロトン伝導性高分子電解質膜を挟む一対の燃料電池用電極触媒層とで構成される燃料電池用膜接合体であって、
前記一対の燃料電池用電極触媒層のうち少なくとも一方が、請求項1又は2記載の燃料電池用電極触媒層からなることを特徴とする燃料電池用膜電極接合体。
A fuel cell membrane assembly comprising a proton conductive polymer electrolyte membrane and a pair of fuel cell electrode catalyst layers sandwiching the proton conductive polymer electrolyte membrane,
3. A fuel cell membrane electrode assembly, wherein at least one of the pair of fuel cell electrode catalyst layers comprises the fuel cell electrode catalyst layer according to claim 1 or 2.
請求項3に記載の燃料電池用膜電極接合体と、該燃料電池用膜電極接合体を挟持する一対のガス拡散層と、該一対のガス拡散層を挟持する一対のセパレータ板とを具備していることを特徴とする燃料電池。   A fuel cell membrane electrode assembly according to claim 3, a pair of gas diffusion layers sandwiching the fuel cell membrane electrode assembly, and a pair of separator plates sandwiching the pair of gas diffusion layers. A fuel cell characterized by comprising: 燃料電池用電極触媒層の製造方法であって、
触媒物質、又は、該触媒物質を担持した触媒物質担持粒子と、高分子電解質とを溶媒に分散させた混合物を乾燥させ、前記高分子電解質で、前記触媒物質、又は、前記触媒物質を担持した触媒物質担持粒子及び前記触媒物質の表面を被覆して複数の複合触媒粒子を形成する工程と、
高分子電解質を溶かした溶液を乾燥させ、複数の凝集体を形成する工程と、
前記複合触媒粒子と前記凝集体とを溶媒に分散させ、触媒インクを作製する工程と、
ガス拡散層、転写シートおよび高分子電解質膜のうちから選択される基材上に、前記触媒インクを塗布して電極触媒層を形成する工程と、
を備えることを特徴とする燃料電池用電極触媒層の製造方法。
A method for producing an electrode catalyst layer for a fuel cell, comprising:
A catalyst material or a mixture of catalyst material-supported particles supporting the catalyst material and a polymer electrolyte dispersed in a solvent is dried, and the catalyst material or the catalyst material is supported by the polymer electrolyte. Coating the catalyst material-supporting particles and the surface of the catalyst material to form a plurality of composite catalyst particles;
Drying a solution in which the polymer electrolyte is dissolved to form a plurality of aggregates;
A step of dispersing the composite catalyst particles and the aggregates in a solvent to prepare a catalyst ink;
A step of applying the catalyst ink on a substrate selected from a gas diffusion layer, a transfer sheet, and a polymer electrolyte membrane to form an electrode catalyst layer;
A method for producing an electrode catalyst layer for a fuel cell, comprising:
前記複数の複合触媒粒子を形成する工程における乾燥温度が、前記複数の凝集体を形成する乾燥温度と等しいか高いことを特徴とする請求項5記載の燃料電池用電極触媒層の製造方法。   6. The method for producing an electrode catalyst layer for a fuel cell according to claim 5, wherein a drying temperature in the step of forming the plurality of composite catalyst particles is equal to or higher than a drying temperature for forming the plurality of aggregates. 前記複数の複合触媒粒子を形成する工程における乾燥温度が、50℃以上180℃以下の範囲内であることを特徴とする請求項5又は6記載の燃料電池用電極触媒層の製造方法。   The method for producing a fuel cell electrode catalyst layer according to claim 5 or 6, wherein a drying temperature in the step of forming the plurality of composite catalyst particles is in a range of 50 ° C or higher and 180 ° C or lower. 前記複数の凝集体を形成する工程における乾燥温度が、30℃以上140℃以下の範囲内であることを特徴とする請求項5乃至7のうちいずれか一項に記載の燃料電池用電極触媒層の製造方法。   8. The fuel cell electrode catalyst layer according to claim 5, wherein a drying temperature in the step of forming the plurality of aggregates is in a range of 30 ° C. or more and 140 ° C. or less. 9. Manufacturing method.
JP2010073071A 2010-03-26 2010-03-26 Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell Pending JP2011204605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073071A JP2011204605A (en) 2010-03-26 2010-03-26 Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073071A JP2011204605A (en) 2010-03-26 2010-03-26 Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell

Publications (1)

Publication Number Publication Date
JP2011204605A true JP2011204605A (en) 2011-10-13

Family

ID=44881041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073071A Pending JP2011204605A (en) 2010-03-26 2010-03-26 Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell

Country Status (1)

Country Link
JP (1) JP2011204605A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126615A (en) * 1997-10-23 1999-05-11 Toyota Motor Corp Electrode for fuel cell and manufacture of electrode for fuel cell
JP2003282075A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell, and manufacturing method of the same
JP2004281305A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Fuel cell and its manufacturing method
JP2005235461A (en) * 2004-02-17 2005-09-02 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane/electrode junction
JP2005235521A (en) * 2004-02-18 2005-09-02 Aisin Seiki Co Ltd Electrode for solid polymer fuel cell
JP2008171702A (en) * 2007-01-12 2008-07-24 Toyota Motor Corp Manufacturing method of fuel cell assembly, manufacturing method of fuel cell, fuel cell assembly and fuel cell
JP2008300272A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Method of manufacturing catalyst layer for fuel cell, and fuel cell
JP2010027271A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Fuel cell catalyst layer forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126615A (en) * 1997-10-23 1999-05-11 Toyota Motor Corp Electrode for fuel cell and manufacture of electrode for fuel cell
JP2003282075A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell, and manufacturing method of the same
JP2004281305A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Fuel cell and its manufacturing method
JP2005235461A (en) * 2004-02-17 2005-09-02 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane/electrode junction
JP2005235521A (en) * 2004-02-18 2005-09-02 Aisin Seiki Co Ltd Electrode for solid polymer fuel cell
JP2008171702A (en) * 2007-01-12 2008-07-24 Toyota Motor Corp Manufacturing method of fuel cell assembly, manufacturing method of fuel cell, fuel cell assembly and fuel cell
JP2008300272A (en) * 2007-06-01 2008-12-11 Toyota Motor Corp Method of manufacturing catalyst layer for fuel cell, and fuel cell
JP2010027271A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Fuel cell catalyst layer forming method

Similar Documents

Publication Publication Date Title
JP4655167B2 (en) Method for producing electrode catalyst layer for fuel cell
KR20090058406A (en) Process to prepare the self-stand electrode using porous supporter of electrode catalyst for fuel cell, a membrane electrode assembly comprising the same
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
JP4655168B1 (en) Method for producing electrode catalyst layer for fuel cell
US20200335808A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
JP5332294B2 (en) Manufacturing method of membrane electrode assembly
JP2010205466A (en) Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
JP2019083167A (en) Electrode catalyst layer
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2012074234A (en) Carbon-coated catalyst material for solid polymer fuel cell, production method therefor, electrode catalyst layer, and membrane electrode assembly
JP5439875B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2009037902A (en) Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
WO2012043337A1 (en) Fuel-cell electrode catalyst layer manufacturing method, fuel-cell membrane-electrode assembly, and polymer electrolyte fuel cell
JP2012212661A (en) Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
JP2011070984A (en) Method of manufacturing electrode catalyst layer for fuel cell, and membrane-electrode assembly having the electrode catalyst layer
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP5569093B2 (en) Method for producing electrode catalyst layer for fuel cell
JP2006139947A (en) Method of manufacturing electrode structure for solid polymer fuel cell
JP2019139952A (en) Membrane electrode assembly and polymer electrolyte fuel cell having the same
JP2011204605A (en) Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell
JP5682390B2 (en) Electrode catalyst layer and production method thereof, membrane electrode assembly and production method thereof, polymer electrolyte fuel cell, composite particle and production method thereof
WO2022186323A1 (en) Membrane electrode assembly and solid-polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701