JP2010082252A - Eye refracting power measuring device - Google Patents

Eye refracting power measuring device Download PDF

Info

Publication number
JP2010082252A
JP2010082252A JP2008255479A JP2008255479A JP2010082252A JP 2010082252 A JP2010082252 A JP 2010082252A JP 2008255479 A JP2008255479 A JP 2008255479A JP 2008255479 A JP2008255479 A JP 2008255479A JP 2010082252 A JP2010082252 A JP 2010082252A
Authority
JP
Japan
Prior art keywords
eye
optical system
refractive power
visual acuity
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008255479A
Other languages
Japanese (ja)
Other versions
JP5554485B2 (en
Inventor
Kenji Nakamura
健二 中村
Noriji Kawai
規二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2008255479A priority Critical patent/JP5554485B2/en
Publication of JP2010082252A publication Critical patent/JP2010082252A/en
Application granted granted Critical
Publication of JP5554485B2 publication Critical patent/JP5554485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an eye refracting power measuring device for shortening an examination time in a subjective examination by recognizing the eyesight value of the eye of a subject, with a refracting power difference corrected therein, or the appropriate eyesight value of a target to be initially presented in the subjective examination. <P>SOLUTION: The eye refracting power measuring device comprises a measuring optical system provided with a projecting optical system for projecting a measurement index onto the fundus of the eye of the subject and a light receiving optical system for receiving the eye fundus reflection image reflected from the fundus of the eye by a 2D light receiving element, and in the measuring optical system, an optical element for allowing the 2D light receiving element to receive a 2D geometrical pattern image is arranged in the projecting optical system or the light receiving optical system, and the eye refracting power measuring device obtains the refracting power difference of the eye of the subject, based on the measuring optical system and the geometrical pattern images received by the 2D light receiving element. The device includes an eyesight value estimating/determining means for estimating the eyesight value of the eye of the subject with the refracting power difference corrected therein, based on the image analysis of the geometrical pattern image received by the 2D light receiving element or determining the eyesight value of the target of the eyesight examination to be initially presented in the subjective examination. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検者眼の眼屈折力を測定する眼屈折力測定装置に関する。   The present invention relates to an eye refractive power measuring apparatus that measures the eye refractive power of a subject's eye.

被検者眼の眼底に測定指標を投影し、眼底からの反射光を受光素子で検出し、その検出結果に基づいて被検者眼の眼屈折力を測定する眼屈折力測定装置が知られている(引用文献1参照)。また、眼屈折力測定装置が持つ視標呈示光学系に、被検者眼の屈折力誤差(球面屈折力誤差、乱視屈折力誤差)を矯正する矯正光学系が設けられたものがある(引用文献2参照)。矯正光学系が設けられた装置においては、他覚式眼屈折力測定の測定結果に基づいて矯正光学系の初期値がセットされ、視標呈示光学系に視力値視標が呈示されることにより、他覚屈折力測定に続いて自覚的な眼屈折力検査(以下、自覚検査)が可能にされる。   An eye refractive power measuring device that projects a measurement index onto the fundus of the subject's eye, detects reflected light from the fundus with a light receiving element, and measures the eye refractive power of the subject's eye based on the detection result is known. (See cited document 1). In addition, there is an optical system that presents a refractive power error (spherical refractive power error, astigmatic refractive power error) of a subject's eye, which is provided in a target-presenting optical system possessed by an eye refractive power measuring device (quoted) Reference 2). In an apparatus equipped with a correction optical system, the initial value of the correction optical system is set based on the measurement result of the objective eye refractive power measurement, and the visual acuity value target is presented in the target display optical system. Then, following the objective refractive power measurement, a subjective eye refractive power test (hereinafter, subjective test) is made possible.

また、自覚検査は、左右の検眼窓に矯正レンズを切り替え配置する自覚式眼屈折力測定装置が使用される。また、簡易的な方法として、被検者に装用させたテストフレームにテストレンズを入れ替える自覚検査も行われている。これらの自覚検査においては、一般に、眼屈折力測定装置で得られた測定結果の矯正レンズが初期値として使用される。
特開2007‐89715号公報 特開2006−280613号公報
In the subjective examination, a subjective eye refractive power measuring device that switches and arranges correction lenses in the left and right optometry windows is used. As a simple method, a subjective test is also performed in which a test lens is replaced with a test frame worn by a subject. In these subjective examinations, a correction lens obtained as a result of measurement by an eye refractive power measuring apparatus is generally used as an initial value.
JP 2007-89715 A JP 2006-280613 A

ところで、自覚検査に際して、他覚式眼屈折力測定装置で得られた測定結果の矯正レンズを初期値として配置すれば、被検者眼は屈折力誤差がほぼ矯正された状態とされる。そのため、初期呈示される視力検査視標は、例えば、視力値0.8等の比較的高めの視力値視標が設定される。しかし、被検者眼に円錐角膜などの不正乱視が大きく生じている場合、または、白内障による水晶体混濁又は硝子体混濁などの中間透光体に光散乱要素を持つ被検者眼の場合には、眼鏡レンズ等の矯正具により屈折力誤差が矯正されたとしても、高めの視力値視標を判読できないことも多くある。この場合には、視力値0.8の視標の初期呈示では、検査時間が長引き、被検者にも負担となる。   By the way, in the subjective examination, if the correction lens of the measurement result obtained by the objective eye refractive power measuring device is arranged as an initial value, the eye of the subject is in a state where the refractive power error is almost corrected. Therefore, a relatively high visual acuity value target such as a visual acuity value of 0.8 or the like is set as the visual acuity test target that is initially presented. However, if the subject's eye has a large irregular astigmatism such as keratoconus, or if the subject's eye has a light scattering element in an intermediate translucent body such as opacity of the lens or vitreous opacity due to cataract Even if the refractive power error is corrected by a correction tool such as a spectacle lens, a high visual acuity index is often not readable. In this case, in the initial presentation of the visual target having a visual acuity value of 0.8, the examination time is prolonged, and the subject is burdened.

本発明は、上記問題点に鑑み、屈折力誤差が矯正された被検者眼の視力値、又は自覚検査時に初期呈示する視標の適切な視力値を知ることができ、自覚検査時の検査時間を短縮することができる眼屈折力測定装置を提供することを技術課題とする。   In view of the above problems, the present invention can know the visual acuity value of the subject's eye whose refractive power error has been corrected, or the appropriate visual acuity value of the visual target initially presented during the subjective examination, and the examination during the subjective examination It is an object of the present invention to provide an ocular refractive power measuring device capable of reducing time.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 被検者眼の眼底に測定指標を投影する投影光学系と眼底から反射された眼底反射像を二次元受光素子で受光する受光光学系とを有する測定光学系であって、前記二次元受光素子に二次元的な幾何学パターン像を受光させる光学素子が前記投影光学系又は受光光学系に配置された測定光学系と、前記二次元受光素子に受光された前記幾何学パターン像に基づいて被検者眼の屈折力誤差を得る眼屈折力測定装置において、前記二次元受光素子に受光された幾何学パターン像の画像解析に基づいて前記屈折力誤差が矯正された被検者眼の視力値を推定するか、又は自覚検査時に初期呈示する視力検査視標の視力値を判定する視力値推測・判定手段を備えることを特徴とする。
(2) (1)の眼屈折力測定装置において、前記視力値推測・判定手段は、前記二次元受光素子に受光された幾何学パターン像を画像解析して被検者眼の不正乱視の度合及び中間透光体の混濁度合の少なくとも一方を検出する検出手段を持ち、該検出手段の検出結果に基づいて前記屈折力誤差が矯正された被検者眼の視力値を推測するか、又は自覚検査時に初期呈示する視力検査視標の視力値を判定する手段であることを特徴とする。
(3) (2)の眼屈折力測定装置において、前記検出手段は、被検者眼の屈折力誤差である球面度数S、乱視度数C及び乱視軸角度Aを得たときの幾何学パターンに対して各経線方向で変化した幾何学パターンに基づいて不正乱視の度合を検出するか、又は前記二次元受光素子で受光された幾何学パターンの輝度信号の分布状態に基づいて中間透光体の混濁度合を検出することを特徴とする。
(4) (1)〜(3)の何れかの眼屈折力測定装置は、被検者眼に視力値視標を切換え配置する視標呈示光学系と、前記視標呈示光学系の光路に配置され、被検者眼の屈折力誤差を矯正する乱視矯正光学系及び球面矯正光学系を持つ矯正光学系と、他覚測定モードと前記矯正光学系による自覚測定モードとを切換える測定モード切換手段と、自覚測定モードに切換えられたときに、前記測定光学系で得られた屈折力誤差に基づいて矯正光学系を駆動し、前記視力値推測・判定手段により推測又判定された視力値を持つ検査視標を前記視標呈示光学系に呈示させる制御手段と、を備えることを特徴とする。
(5) (1)〜(4)の何れかの眼屈折力測定装置は、前記測定光学系により得られた屈折力誤差の測定結果と共に前記視力値推測・判定手段により得られた視力値を画面に表示するか、プリントアウトするか、又は通信手段を介して出力する、何れかの出力手段を備えることを特徴とする。
(1) A measurement optical system having a projection optical system for projecting a measurement index onto the fundus of a subject's eye and a light receiving optical system for receiving a fundus reflection image reflected from the fundus with a two-dimensional light receiving element. An optical element that causes a two-dimensional light receiving element to receive a two-dimensional geometric pattern image is disposed in the projection optical system or the light receiving optical system, and the geometric pattern image received by the two-dimensional light receiving element. In the eye refractive power measurement device for obtaining the refractive power error of the subject's eye based on the subject's eye whose refractive power error has been corrected based on the image analysis of the geometric pattern image received by the two-dimensional light receiving element A visual acuity value estimating / determining means for estimating a visual acuity value of the visual acuity test target to be initially estimated during subjective examination.
(2) In the eye refractive power measurement device according to (1), the visual acuity value estimation / determination means performs image analysis on the geometric pattern image received by the two-dimensional light receiving element to measure the degree of irregular astigmatism of the subject's eye. And detecting means for detecting at least one of the turbidity of the intermediate translucent body, and estimating the visual acuity value of the subject's eye whose refractive power error has been corrected based on the detection result of the detecting means, or being aware It is means for determining a visual acuity value of a visual acuity test target initially presented at the time of inspection.
(3) In the eye refractive power measurement device according to (2), the detection means uses a geometric pattern obtained when the spherical power S, the astigmatic power C, and the astigmatic axis angle A, which are refractive power errors of the subject's eye, are obtained. On the other hand, the degree of irregular astigmatism is detected based on the geometric pattern changed in each meridian direction, or the intermediate translucent body is detected based on the distribution state of the luminance signal of the geometric pattern received by the two-dimensional light receiving element. It is characterized by detecting the degree of turbidity.
(4) The eye refractive power measurement device according to any one of (1) to (3) includes a target presentation optical system that switches and arranges a visual acuity target for a subject's eye, and an optical path of the target presentation optical system. A correction optical system having an astigmatism correction optical system and a spherical correction optical system arranged to correct a refractive power error of a subject's eye, and a measurement mode switching means for switching between an objective measurement mode and a subjective measurement mode by the correction optical system And when driving to the subjective measurement mode, the correction optical system is driven based on the refractive power error obtained by the measurement optical system, and has the visual acuity value estimated or determined by the visual acuity value estimation / determination means And a control means for presenting the inspection target on the target display optical system.
(5) The eye refractive power measurement device according to any one of (1) to (4) uses the visual acuity value obtained by the visual acuity value estimation / determination means together with the measurement result of the refractive power error obtained by the measurement optical system. Any one of output means for displaying on a screen, printing out, or outputting via communication means is provided.

本発明によれば、他覚測定による屈折力誤差が矯正された被検者眼の視力値、又は自覚検査時に初期呈示する視標の適切な視力値を知ることができ、自覚検査時の検査時間を短縮することができる。   According to the present invention, it is possible to know the visual acuity value of a subject's eye whose refractive power error due to objective measurement has been corrected, or an appropriate visual acuity value of a visual target initially presented at the time of subjective examination, and an examination at the time of subjective examination Time can be shortened.

以下、本発明の実施形態を図面に基づいて説明する。図1は本実施形態に係る他覚式眼屈折力測定装置の外観構成図である。他覚式眼屈折力測定装置100は、基台1と、基台1に取り付けられた顔支持ユニット2と、基台1上に移動可能に設けられた移動台3と、移動台3に移動可能に設けられ、後述する光学系を収納する測定部4を備える。測定部4は、移動台3に設けられた駆動部6により、被検者眼Eに対して左右方向、上下方向及び前後方向に移動される。移動台3は、ジョイスティック5の操作により、基台1上を左右方向及び前後方向に移動される。また、回転ノブ5aの回転操作により、測定部4は駆動部6の駆動で上下方向に移動される。ジョイスティック5の頂部には、測定開始スイッチ5bが設けられている。移動台3には、表示モニタ7が設けられている。また、基台1の下側には通信ケーブルを接続するためのコネクタ8が接続されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external configuration diagram of an objective eye refractive power measurement apparatus according to this embodiment. The objective eye refracting power measuring apparatus 100 moves to the base 1, the face support unit 2 attached to the base 1, the moving base 3 movably provided on the base 1, and the moving base 3. The measuring unit 4 is provided so as to accommodate an optical system described later. The measuring unit 4 is moved in the left-right direction, the up-down direction, and the front-rear direction with respect to the subject's eye E by the driving unit 6 provided on the moving table 3. The movable table 3 is moved on the base 1 in the left-right direction and the front-rear direction by operating the joystick 5. Further, the measurement unit 4 is moved in the vertical direction by the drive of the drive unit 6 by the rotation operation of the rotary knob 5a. On the top of the joystick 5, a measurement start switch 5b is provided. A display monitor 7 is provided on the movable table 3. A connector 8 for connecting a communication cable is connected to the lower side of the base 1.

図2は、装置の光学系及び制御系の概略構成図である。図3はモニタ表示とスイッチ部のスイッチ構成の説明図である。測定光学系10は、被検者眼Eの瞳孔中心部を介して眼底Efにスポット状の測定指標を投影する投影光学系10aと、眼底Efから反射された眼底反射光を瞳孔周辺部を介してリング状に取り出し、二次元受光素子の撮像素子にリング状の眼底反射像を撮像させる受光光学系10bと、から構成される。   FIG. 2 is a schematic configuration diagram of an optical system and a control system of the apparatus. FIG. 3 is an explanatory diagram of the monitor display and the switch configuration of the switch unit. The measurement optical system 10 includes a projection optical system 10a that projects a spot-like measurement index on the fundus oculi Ef via the center of the pupil of the subject eye E, and fundus reflection light reflected from the fundus oculi Ef via the pupil periphery. And a light receiving optical system 10b for picking up a ring-like fundus reflection image on the image pickup device of the two-dimensional light receiving device.

投影光学系10aは、測定光学系10の光軸L1上に配置された測定光源11,リレーレンズ12,ホールミラー13,及び測定用対物レンズ14を含む。測定光源11は、正視眼の眼底Efと光学的に共役な位置関係に配置されている。また、ホールミラー13の開口は、被検者眼Eの瞳孔と光学的に共役な位置関係にされている。   The projection optical system 10 a includes a measurement light source 11, a relay lens 12, a hall mirror 13, and a measurement objective lens 14 disposed on the optical axis L <b> 1 of the measurement optical system 10. The measurement light source 11 is arranged in a positional relationship optically conjugate with the fundus oculi Ef of the normal eye. The opening of the Hall mirror 13 is optically conjugate with the pupil of the subject's eye E.

受光光学系10bは、投影光学系10aの対物レンズ14、ホールミラー13が共用され、ホールミラー13の反射方向の光軸L1上に配置されたリレーレンズ16及び全反射ミラー17と、全反射ミラー17の反射方向の光軸上に配置された受光絞り18、コリメータレンズ19、リングレンズ20、及び二次元受光素子である撮像素子22を含む。受光絞り18及び撮像素子22は、眼底Efと光学的に共役な位置関係に配置されている。リングレンズ20は、透明平板状に円筒レンズがリング状に形成されたレンズ部と、リング状のレンズ部分以外が遮光された遮光部と、から構成され、被検者眼Eの瞳孔と光学的に共役な位置関係となっている。撮像素子22からの出力は制御部70に入力される。また、投影光学系10aの測定光源11,リレーレンズ12と、受光光学系10bのコリメータレンズ19、リングレンズ20、及び撮像素子22とは、移動機構23により一体的に光軸方向に移動される。   In the light receiving optical system 10b, the objective lens 14 and the hall mirror 13 of the projection optical system 10a are shared, and the relay lens 16 and the total reflection mirror 17 disposed on the optical axis L1 in the reflection direction of the hall mirror 13, and the total reflection mirror. 17 includes a light receiving stop 18, a collimator lens 19, a ring lens 20, and an imaging element 22 that is a two-dimensional light receiving element. The light receiving aperture 18 and the image sensor 22 are disposed in a positional relationship optically conjugate with the fundus oculi Ef. The ring lens 20 includes a lens portion in which a cylindrical lens is formed in a ring shape on a transparent flat plate shape, and a light shielding portion where light is shielded except for the ring-shaped lens portion. The positional relationship is conjugate to the above. An output from the image sensor 22 is input to the control unit 70. In addition, the measurement light source 11 and the relay lens 12 of the projection optical system 10a, and the collimator lens 19, the ring lens 20, and the imaging element 22 of the light receiving optical system 10b are integrally moved in the optical axis direction by the moving mechanism 23. .

なお、本装置では二次元的な幾何学パターンの測定指標であるリング像を撮像素子22に受光させるためにリングレンズ20を使用しているが、二次元的な幾何学パターンの測定指標としては、リング状に分布したドット、格子状に分布したドット等を持つ指標板又はマイクロレンズ等の光学素子(例えば、特開2001−204690号公報に記載されたもの)を測定光学系10に配置しても良い。また、これらの二次元的な幾何学パターンを撮像素子22に受光させる光学素子は、受光光学系10bに配置されるのではなく、特開平10−14876号公報に記載された光学系のように、投影光学系10aに配置されても良い。   In this apparatus, the ring lens 20 is used to cause the image sensor 22 to receive a ring image that is a measurement index of a two-dimensional geometric pattern. However, as a measurement index of a two-dimensional geometric pattern, An optical element (for example, one described in Japanese Patent Application Laid-Open No. 2001-204690) having a dot distributed in a ring shape, a dot distributed in a lattice shape, or a micro lens is disposed in the measurement optical system 10. May be. An optical element that causes the image sensor 22 to receive these two-dimensional geometric patterns is not arranged in the light receiving optical system 10b, but as in the optical system described in Japanese Patent Laid-Open No. 10-14876. The projection optical system 10a may be disposed.

対物レンズ14と被検者眼Eとの間には、視標呈示光学系30からの視標光束を被検者眼Eに導き、被検者眼Eの前眼部からの反射光を観察光学系50に導くダイクロイックミラー29が配置されている。ダイクロイックミラー29は、測定光学系10に用いられる測定光束の波長を透過する。   Between the objective lens 14 and the subject eye E, the target luminous flux from the target presentation optical system 30 is guided to the subject eye E, and the reflected light from the anterior eye part of the subject eye E is observed. A dichroic mirror 29 leading to the optical system 50 is disposed. The dichroic mirror 29 transmits the wavelength of the measurement light beam used in the measurement optical system 10.

観察光学系50は、ハーフミラー38の反射方向の光軸上に配置された撮像レンズ51及び二次元撮像素子52を備える。撮像素子52からの出力は、制御部70に入力される。これにより、被検者眼Eの前眼部像は二次元撮像素子52により撮像され、モニタ7上に表示される。   The observation optical system 50 includes an imaging lens 51 and a two-dimensional imaging device 52 that are arranged on the optical axis in the reflection direction of the half mirror 38. An output from the image sensor 52 is input to the control unit 70. As a result, the anterior segment image of the subject's eye E is captured by the two-dimensional image sensor 52 and displayed on the monitor 7.

視標呈示光学系30は、観察光学系50の対物レンズ39が共用され、ダイクロイックミラー29により光軸L1と同軸にされた光軸L2上に配置されたLED等の光源31,視標板32,リレーレンズ33、反射ミラー36を含む。また、視標呈示光学系30は被検者眼の屈折力を矯正するための屈折力矯正光学系と共用され、反射ミラー36とリレーレンズ33との間には乱視矯正光学系34が配置されている。   The optotype presenting optical system 30 shares the objective lens 39 of the observation optical system 50, and includes a light source 31 such as an LED disposed on the optical axis L <b> 2 coaxial with the optical axis L <b> 1 by the dichroic mirror 29, and a target plate 32. , Relay lens 33 and reflecting mirror 36. The optotype presenting optical system 30 is shared with the refractive power correcting optical system for correcting the refractive power of the subject's eye, and the astigmatism correcting optical system 34 is disposed between the reflecting mirror 36 and the relay lens 33. ing.

視標板32には、他覚測定時に被検者眼Eに雲霧を行うための固視標と、自覚測定時に使用される視力検査用視標を含む複数の視標32aが同心円上に配置されている。視力検査視標は、視力値毎の視標(視力値0.1、0.3、・・・、1.5)が用意されている。視標板32はモータ37によって回転され、視標32aが視標呈示光学系30の光軸L2上に切換え配置される。光源31によって照明された視標32aの視標光束は、リレーレンズ33からダイクロイックミラー29までの光学部材を介して被検者眼Eに向かう。   On the optotype plate 32, a plurality of optotypes 32a including a fixation target for performing cloud fog on the subject's eye E at the time of objective measurement and an optotype for visual acuity test used at the time of subjective measurement are arranged on a concentric circle. Has been. As the visual acuity test target, visual targets for each visual acuity value (visual acuity values 0.1, 0.3,..., 1.5) are prepared. The optotype plate 32 is rotated by a motor 37, and the optotype 32a is switched and disposed on the optical axis L2 of the optotype presenting optical system 30. The target luminous flux of the target 32a illuminated by the light source 31 travels toward the subject's eye E via an optical member from the relay lens 33 to the dichroic mirror 29.

光源31及び視標板32(視標32a)は、モータ及びスライド機構からなる駆動機構38により光軸L2の方向に一体的に移動される。光源31及び視標32aが移動されることにより、他覚測定時には被験者眼Eに雲霧が掛けられ、また、自覚測定時には被検者眼に対する視標の呈示位置(呈示距離)が光学的に変えられることにより、被検者眼の球面屈折力が矯正される。すなわち、対物レンズ39、リレーレンズ33、光源31及び視標32aの移動により、球面度数の矯正光学系が構成される。   The light source 31 and the target plate 32 (target 32a) are integrally moved in the direction of the optical axis L2 by a drive mechanism 38 including a motor and a slide mechanism. By moving the light source 31 and the target 32a, cloud is applied to the subject's eye E during objective measurement, and the target presentation position (presentation distance) with respect to the subject's eye is optically changed during subjective measurement. As a result, the spherical refractive power of the subject's eye is corrected. That is, a correction optical system having a spherical power is configured by the movement of the objective lens 39, the relay lens 33, the light source 31, and the target 32a.

乱視矯正光学系34は、焦点距離の等しい、2枚の正の円柱レンズ34a,34bから構成される。円柱レンズ34a,34bは、それぞれ回転機構35a、35bの駆動により、光軸L2を中心に各々独立して回転される。矯正光学系は、矯正レンズを視標呈示光学系の光路に出し入れする構成でも良い。球面度数の矯正光学系は、光軸方向に移動可能なリレーレンズを視標呈示光学系に追加する構成でも可能である。   The astigmatism correction optical system 34 includes two positive cylindrical lenses 34a and 34b having the same focal length. The cylindrical lenses 34a and 34b are independently rotated about the optical axis L2 by driving the rotation mechanisms 35a and 35b, respectively. The correction optical system may have a configuration in which the correction lens is taken in and out of the optical path of the optotype presenting optical system. The correction optical system having a spherical power may be configured by adding a relay lens that can move in the optical axis direction to the visual target presenting optical system.

制御部70は、撮像素子22に接続され、撮像素子22の出力に基づいて屈折力の演算処理を行う。また、制御部70は、撮像素子52、移動機構23、駆動機構38、モータ37、光源31、回転機構35a,35b、表示モニタ7、各種設定に用いられるスイッチ部80(他覚測定と自覚測定とを切換えるスイッチ80a、呈示視標の視力値を変更するスイッチ80bおよび80c、測定結果をプリントアウトする為のスイッチ80b、矯正レンズの球面度数を変更するためのスイッチ80eおよび80fを含む)、測定開始スイッチ5b、画像メモリ75、駆動部6、プリンタ90等に接続されている。   The control unit 70 is connected to the image sensor 22 and performs a refractive power calculation process based on the output of the image sensor 22. The control unit 70 includes an image sensor 52, a moving mechanism 23, a driving mechanism 38, a motor 37, a light source 31, rotating mechanisms 35a and 35b, a display monitor 7, and a switch unit 80 used for various settings (an objective measurement and a subjective measurement). A switch 80a for changing the visual acuity, switches 80b and 80c for changing the visual acuity value of the presented target, a switch 80b for printing out the measurement result, and switches 80e and 80f for changing the spherical power of the correction lens), measurement The start switch 5b, the image memory 75, the drive unit 6, the printer 90, and the like are connected.

次に、以上のような構成を備える装置の測定動作について説明する。装置が起動されると、他覚屈折力測定モードに設定される。視標呈示光学系30の視標32aは、被検者眼Eに雲霧を行うための他覚測定用の固視標が光路にセットされる。検者は被検者の顔を顔支持ユニット2に固定させ、被検者眼には測定部4の測定窓4a(図1参照)を介して測定部4内に配置された固視標を固視させる。   Next, the measurement operation of the apparatus having the above configuration will be described. When the device is activated, the objective power measurement mode is set. The visual target 32a of the visual target presenting optical system 30 has a fixation target for objective measurement for performing cloud fog on the subject eye E set in the optical path. The examiner fixes the subject's face to the face support unit 2, and a fixation target arranged in the measurement unit 4 via the measurement window 4 a (see FIG. 1) of the measurement unit 4 is applied to the subject's eyes. Let me fix it.

他覚屈折力測定に際して、被検者眼Eの前眼部は、観察光学系50の撮像素子52により撮像され、モニタ7に前眼部像が映し出される。検者は、モニタ上の前眼部像と図示を略すアライメント視標像、レチクルとを観察し、測定部4及び移動台3をジョイスティック5等の操作により移動して、被検者眼と装置の光学系とを所定の位置関係にアライメントする。アライメント完了後、測定開始スイッチ5bから測定開始信号が入力されると、屈折力測定が行われる。   When measuring objective refractive power, the anterior segment of the subject's eye E is imaged by the imaging element 52 of the observation optical system 50, and an anterior segment image is displayed on the monitor 7. The examiner observes the anterior segment image on the monitor, the alignment target image (not shown), and the reticle, and moves the measurement unit 4 and the movable table 3 by operating the joystick 5 or the like, thereby The optical system is aligned with a predetermined positional relationship. When the measurement start signal is input from the measurement start switch 5b after the alignment is completed, the refractive power is measured.

光源11から出射された測定光は、リレーレンズ12からダイクロイックミラー29までを介して眼底Efに投影され、眼底Ef上でスポット状の点光源像を形成する。眼底Ef上に形成された点光源像の光は、反射・散乱されて被検者眼Eを射出し、対物レンズ14によって集光され、ホールミラー13から全反射ミラー17までを介して受光絞り18の開口上で再び集光され、コリメータレンズ19にて略平行光束(正視眼の場合)とされ、リングレンズ20によってリング状光束として取り出され、リング像Rとして撮像素子22に受光される。   The measurement light emitted from the light source 11 is projected onto the fundus oculi Ef via the relay lens 12 to the dichroic mirror 29, and forms a spot-like point light source image on the fundus oculi Ef. The light of the point light source image formed on the fundus oculi Ef is reflected and scattered, exits the subject's eye E, is condensed by the objective lens 14, and is received through the hole mirror 13 through the total reflection mirror 17. The light is condensed again on the aperture 18, is made into a substantially parallel light beam (in the case of a normal eye) by the collimator lens 19, is taken out as a ring-shaped light beam by the ring lens 20, and is received by the image sensor 22 as a ring image R.

他覚眼屈折力の測定においては、はじめに眼屈折力の予備測定が行われ、予備測定の結果に基づいて光源31及び固視標板32が光軸L2方向に移動されることにより、被検眼Eに対して雲霧がかけられる。その後、雲霧がかけられた被検眼に対して眼屈折力の本測定が行われる。   In the measurement of objective eye refractive power, preliminary measurement of the eye refractive power is first performed, and the eye to be examined is moved by moving the light source 31 and the fixation target plate 32 in the direction of the optical axis L2 based on the result of the preliminary measurement. E is clouded. Thereafter, the main measurement of the eye refractive power is performed on the eye to be inspected with fog.

図4(a)は、測定の際に撮像素子22に撮像されたリング像Rの例である。撮像素子22からの出力信号は、画像メモリ75に画像データ(測定画像)として記憶される。その後、制御部70は、画像メモリ75に記憶されたリング像を画像解析して各経線方向にリング像の位置を特定する。制御部70は、リング像の輝度信号の分布を所定の閾値(例えば、輝度のピークに対して75%の閾値)にて切断し、その切断位置で輝度信号分布の中間点、輝度信号の重心位置などを求めることにより、リング像の1度毎の各経線位置を特定する。次に、制御部70は、特定されたリング像位置に基づいて、最小二乗法等を用いて楕円を近似する。   FIG. 4A is an example of a ring image R imaged on the image sensor 22 at the time of measurement. An output signal from the image sensor 22 is stored in the image memory 75 as image data (measurement image). After that, the control unit 70 analyzes the ring image stored in the image memory 75 and specifies the position of the ring image in each meridian direction. The control unit 70 cuts the luminance signal distribution of the ring image at a predetermined threshold (for example, a threshold of 75% with respect to the luminance peak), and at the cutting position, the midpoint of the luminance signal distribution and the luminance signal centroid By obtaining the position and the like, each meridian position for each degree of the ring image is specified. Next, the control unit 70 approximates the ellipse using the least square method or the like based on the specified ring image position.

図4(b)は、近似された楕円形状Eaの例である。制御部70は、楕円形状Eaから各経線方向の屈折力誤差を求め、これに基づいて被検者眼の球面度数S、乱視度数C、乱視軸角度Aの屈折力(正視に対する屈折力誤差)を演算する。球面度数Sのみの屈折力誤差がある場合、楕円形状Eaは真円となり、円の中心Oからの円形状までの距離rが変化する。この距離rの変化に基づいて球面度数Sが求められる。また、乱視度数Cの屈折力誤差がある場合、楕円形状Eaの弱主経線及び強主経線の距離rの違いにより乱視度数Cが求められ、弱主経線又は強主経線の方向により乱視軸角度Aが求められる。測定結果はモニタ7に表示される。通常、他覚式眼屈折力測定装置の測定値は、トーリックの眼鏡レンズ又はコンタクトレンズ等により眼を矯正するときの度数として算出される。   FIG. 4B is an example of the approximated elliptical shape Ea. The control unit 70 obtains the refractive power error in each meridian direction from the elliptical shape Ea, and based on this, the refractive power of the spherical power S, astigmatism power C, and astigmatic axis angle A of the subject eye (refractive power error for normal vision). Is calculated. When there is a refractive power error of only the spherical power S, the elliptical shape Ea becomes a perfect circle, and the distance r from the center O of the circle to the circular shape changes. A spherical power S is obtained based on the change in the distance r. Further, when there is a refractive power error of the astigmatic power C, the astigmatic power C is obtained from the difference in the distance r between the weak main meridian and the strong main meridian of the elliptical shape Ea, and the astigmatic axis angle depends on the direction of the weak main meridian or the strong main meridian. A is required. The measurement result is displayed on the monitor 7. Usually, the measurement value of the objective eye refractive power measurement device is calculated as a frequency when the eye is corrected with a toric eyeglass lens or contact lens.

また、制御部70は画像メモリ75に記憶された二次元的な幾何学パターンのリング像を基に、被検者眼が他覚測定結果の屈折力誤差が矯正された場合の視力値(以下、矯正視力値)を推測又は自覚検査時に初期呈示する視力検査視標の視力値を判定する。矯正視力値が変動する要因としては、主に、不正乱視の影響と、中間透光体の混濁状態(光散乱要素の状態)による影響と、がある。   Further, the control unit 70 uses the two-dimensional geometric pattern ring image stored in the image memory 75 to determine the visual acuity value (hereinafter referred to as the visual acuity value) when the subject's eye corrects the refractive error of the objective measurement result. The corrected visual acuity value) is estimated or the visual acuity value of the visual acuity test target initially presented at the time of subjective examination is determined. Factors that cause the corrected visual acuity value to fluctuate mainly include the influence of irregular astigmatism and the influence of the turbid state of the intermediate translucent body (the state of the light scattering element).

不正乱視の度合状態の検出結果に基づいて矯正視力値を推測する方法を説明する。なお、先に示した図4(a)のリング像Rは、円錐角膜などの不正乱視、中間透光体(水晶体又は硝子体)の混濁が無い状態の例である。この場合、リング像Rの幅は比較的狭く、輝度の高いリング像として検出される。これに対して、図5(a)は、円錐角膜などの不正乱視を持つ眼のリング像Rの例である。図5(b)は、リング像Rから特定されたリング像位置Raと、このリング像位置Raに近似された楕円形状Eaの例である。リング像位置Raは、近似された楕円形状Eaとのずれが大きく、不規則な歪部分が現れている。   A method for estimating the corrected visual acuity value based on the detection result of the degree of irregular astigmatism will be described. The ring image R shown in FIG. 4A is an example of a state in which there is no irregular astigmatism such as a keratoconus and turbidity of an intermediate light transmitting body (a crystalline lens or a vitreous body). In this case, the width of the ring image R is relatively narrow and is detected as a ring image with high brightness. In contrast, FIG. 5A is an example of a ring image R of an eye having irregular astigmatism such as a keratoconus. FIG. 5B is an example of the ring image position Ra specified from the ring image R and an elliptical shape Ea approximated to the ring image position Ra. The ring image position Ra has a large deviation from the approximated elliptical shape Ea, and irregular distortion portions appear.

制御部70は、リング像位置Raに対応した屈折力pRθ(ディオプタ)と、楕円形状Eaに対応した屈折力pEθ(ディオプタ)と、のずれ量Δpθを各経線方向θで求めた後、ずれ量Δpθの絶対値の総和Tp(ディオプタ)を求める。ずれ量Δpθは、例えば、1度ごとに求める。なお、総和Tp(ディオプタ)の演算に際しては、リング像位置Raと楕円形状Eaとの距離のずれ量Δrを各経線方向で求めた後、このずれ量の総和Rrを求め、次に、リング像位置Raの距離に対応する屈折力との関係からずれ量の総和Rrを屈折力に変換しても良い。   The control unit 70 obtains a deviation amount Δpθ between the refractive power pRθ (diopter) corresponding to the ring image position Ra and the refractive power pEθ (diopter) corresponding to the elliptical shape Ea in each meridian direction θ, and then the deviation amount. A sum Tp (diopter) of absolute values of Δpθ is obtained. The shift amount Δpθ is obtained, for example, every 1 degree. In calculating the total sum Tp (diopter), after obtaining the deviation amount Δr of the distance between the ring image position Ra and the elliptical shape Ea in each meridian direction, the total amount Rr of the deviation amount is obtained, and then the ring image From the relationship with the refractive power corresponding to the distance of the position Ra, the total deviation amount Rr may be converted into refractive power.

制御部70は、総和Tpに基づいて矯正視力値を推測する。総和Tpが大きいほど、不正乱視の度合が大きいことを示す。したがって、総和Tpが大きくになるにつれて矯正視力値が低下することになる。図8は、不正乱視に応じた矯正視力値の推測例である。矯正視力値は、例えば、総和Tpに応じてレベル1〜レベル5の5段階で推測される。レベル1、2,3、4,5の順に不正乱視の度合いが大きく、矯正視力値も低下するものとする。各レベルは、総和Tpの値が2.00D未満と、2.00D以上、5.00D未満と、5.00以上、8.00D未満と、8.00D以上、11.00D未満と、11.00D以上で区分けされ、それぞれ視力値0.9以上、0.8、0.7、0.5、0.4以下として推測される。この矯正視力値は、経験に基づいて設定されている。   The control unit 70 estimates a corrected visual acuity value based on the total sum Tp. A larger total sum Tp indicates a greater degree of irregular astigmatism. Therefore, the corrected visual acuity value decreases as the total sum Tp increases. FIG. 8 is an example of estimating a corrected visual acuity value corresponding to irregular astigmatism. The corrected visual acuity value is estimated in, for example, five levels from level 1 to level 5 according to the total Tp. Assume that the degree of irregular astigmatism increases in the order of levels 1, 2, 3, 4 and 5, and the corrected visual acuity value also decreases. Each level has a total Tp value of less than 2.00D, 2.00D or more and less than 5.00D, 5.00 or more and less than 8.00D, 8.00D or more and less than 11.00D, and 11. It is classified as 00D or more and estimated as visual acuity values of 0.9 or more, 0.8, 0.7, 0.5, or 0.4 or less, respectively. This corrected visual acuity value is set based on experience.

次に、中間透光体の混濁度合の検出結果に基づいて矯正視力値を推測する方法を説明する。図6は、中間透光体に混濁がある眼のリング像の例である。この場合には眼の混濁部分によって測定光が散乱するため、図4(a)に対してリング像の幅が太くなり、全体の輝度も低くなっている。図7は、図6のリング像に対して、ある経線方向の断面の輝度信号Iの分布を示した図である。制御部70は、輝度信号Iの分布を所定の閾値S(例えば、輝度のピークに対して75%の閾値)で切断し、中心Oからの切断位置ra、rbから幅Wを求める。また、中心Oからの切断位置ra、rb(又は両者の中間点)における屈折力を基にして幅Wを屈折力pW(ディオプタ)に変換する。そして、制御部70は、各経線方向(例えば、1度毎)の屈折力pWを求めた後、その平均の屈折力AVpW(ディオプタ)を求める。   Next, a method for estimating the corrected visual acuity value based on the detection result of the turbidity of the intermediate translucent body will be described. FIG. 6 is an example of an eye ring image in which the intermediate translucent body is turbid. In this case, since the measurement light is scattered by the cloudy part of the eye, the width of the ring image is thicker than that in FIG. FIG. 7 is a diagram showing the distribution of the luminance signal I in a cross section in a certain meridian direction with respect to the ring image of FIG. The control unit 70 cuts the distribution of the luminance signal I at a predetermined threshold S (for example, a threshold of 75% with respect to the luminance peak), and obtains the width W from the cutting positions ra and rb from the center O. Further, the width W is converted into a refractive power pW (diopter) based on the refractive power at the cutting positions ra and rb from the center O (or an intermediate point between them). Then, after obtaining the refractive power pW in each meridian direction (for example, every 1 degree), the control unit 70 obtains the average refractive power AVpW (diopter).

次に、制御部70は、平均の屈折力AVpWに基づいて矯正視力値を推測する。屈折力AVpWの値が大きいほど、中間透光体の混濁度合が大きいことを示す。したがって、屈折力AVpWの値が大きくになるにつれて矯正視力値が低下することになる。図9は、中間透光体の混濁状態に応じた矯正視力値の推測例である。矯正視力値は、図8の不正乱視の場合と同じく、屈折力AVpWに応じてレベル1〜レベル5の5段階で推測される。レベル1、2,3、4,5の順に中間透光体の混濁が多くなり、矯正視力値も低下するものとする。各レベルは、屈折力AVpWが0.10D未満と、0.10D以上、0.20D未満と、0.20D以上、0.30D未満と、0.30D以上、0.40D未満と、0.40D以上で区分けされ、それぞれ視力値0.9以上、0.8、0.7、0.5、0.4以下として推測される。この矯正視力値は、経験に基づいて設定されている。   Next, the control unit 70 estimates a corrected visual acuity value based on the average refractive power AVpW. It shows that the turbidity degree of an intermediate | middle translucent body is so large that the value of refractive power AVpW is large. Accordingly, the corrected visual acuity value decreases as the refractive power AVpW increases. FIG. 9 is an example of estimating the corrected visual acuity value according to the turbid state of the intermediate translucent body. The corrected visual acuity value is estimated in five levels from level 1 to level 5 according to the refractive power AVpW, as in the case of irregular astigmatism in FIG. It is assumed that the opacity of the intermediate translucent body increases in the order of levels 1, 2, 3, 4 and 5, and the corrected visual acuity value also decreases. For each level, the refractive power AVpW is less than 0.10D, 0.10D or more, less than 0.20D, 0.20D or more, less than 0.30D, 0.30D or more, less than 0.40D, 0.40D They are classified as described above, and are estimated as visual acuity values of 0.9 or more, 0.8, 0.7, 0.5, and 0.4 or less, respectively. This corrected visual acuity value is set based on experience.

以上のように、制御部70は、不正乱視の度合及び中間透光体の混濁度合の検出結果に基づいてそれぞれ矯正視力値を推測し、それぞれの結果が異なるときは、矯正視力値の低い方を推測の矯正視力値とする。推測された矯正視力値は、「VA* 0.5」のように、他覚測定の測定結果S、C、Aと共にモニタ7の画面上に表示される。また、スイッチ80bが押されると、他覚測定の測定結果S、C、Aと共に推測された矯正視力値がプリンタ90からプリントアウトされる。なお、自覚検査時に初期呈示する視力検査視標を選定する上では、必ずしも矯正視力値が推測されなくても良く、図8、図9のレベル1〜5に応じて、初期呈示の視力値視標が判定される構成で良い。   As described above, the control unit 70 estimates the corrected visual acuity values based on the detection results of the degree of irregular astigmatism and the opacity of the intermediate translucent body. Is the estimated corrected visual acuity value. The estimated corrected visual acuity value is displayed on the screen of the monitor 7 together with the measurement results S, C, and A of the objective measurement as “VA * 0.5”. When the switch 80b is pressed, the corrected visual acuity value estimated together with the measurement results S, C, and A of the objective measurement is printed out from the printer 90. In selecting the visual acuity test target to be initially presented at the subjective examination, the corrected visual acuity value does not necessarily have to be estimated, and the visual acuity value of the initial presentation is determined according to levels 1 to 5 in FIGS. The structure by which a mark is determined may be sufficient.

他覚測定が完了し、自覚検査の測定画面に切換えるスイッチ80aが選択されると、制御部70は他覚測定で得られた被検者眼の屈折度数(球面度数S、乱視度数C、乱視軸角度A)に基づいて矯正光学系を駆動し、被検者眼の屈折力誤差を矯正する。すなわち、球面度数Sに基づいて光源31及び視標板32が光軸L2方向に移動されて、球面屈折力Sの屈折力誤差が補正された状態にされる。また、乱視度数C及び乱視軸角度Aに基づいて乱視矯正光学系34が駆動され、乱視の屈折力誤差が補正された矯正状態とされる。   When the objective measurement is completed and the switch 80a for switching to the subjective examination measurement screen is selected, the control unit 70 determines the refractive power (spherical power S, astigmatism power C, astigmatism) of the subject's eye obtained by the objective measurement. The correction optical system is driven based on the axial angle A) to correct the refractive power error of the subject's eye. That is, the light source 31 and the target plate 32 are moved in the direction of the optical axis L2 based on the spherical power S so that the refractive power error of the spherical refractive power S is corrected. Further, the astigmatism correction optical system 34 is driven based on the astigmatism power C and the astigmatism axis angle A, and a correction state in which the refractive power error of astigmatism is corrected is obtained.

また、制御部70は、他覚測定時に推測した矯正視力値に基づいて視標板32の視力値視標を切換える。例えば、被検者眼に不正乱視があり、又は中間透光体の混濁があり、その程度がレベル4と判定された場合には、図8又は図9のように、矯正視力値は0.5と推測される。制御部70は、モータ37の駆動により視標板32を回転させて、視力値0.5を持つ視力検査視標を自覚検査の初期呈示視標として光軸L2上に配置させる。なお、不正乱視又は中間透光体の混濁状態のレベルがレベル1と判定された場合であっても、初期呈示視標は、視力値0.9でなくても、視力確認のために、従来と同じく視力値0.8に設定されても良い。   Moreover, the control part 70 switches the visual acuity value visual target of the visual target board 32 based on the correction visual acuity value estimated at the time of objective measurement. For example, when the subject's eyes have irregular astigmatism or the intermediate translucent body is turbid and the degree thereof is determined to be level 4, the corrected visual acuity value is 0, as shown in FIG. 5 is estimated. The control unit 70 rotates the target plate 32 by driving the motor 37, and arranges the visual acuity test target having a visual acuity value of 0.5 on the optical axis L2 as an initial presentation target for the subjective examination. Even if the level of the irregular astigmatism or the opacity state of the intermediate translucent body is determined to be level 1, even if the initial presentation target is not a visual acuity value of 0.9, it is conventional for visual acuity confirmation. Similarly, the visual acuity value may be set to 0.8.

以上のように、被検者眼に初期呈示視標が呈示されたら、検者は被検者の視力検査を行う。被検者の応答によってスイッチ80b,80cの操作により呈示視標を切換える。被検者の回答が正答の場合には、スイッチ80bを選択して1段階高い視力値の視標に切換える。一方、被検者の回答が誤答の場合にはスイッチ80cを選択して1段階低い視力値の視標に切換える。以上の手順を繰返すことで被検者が判読可能な限界の最高視力を検査する。この最高視力の検査に際して、他覚測定時に推測され矯正視力値に基づいて初期呈示の視力検査視標が設定されているので、各被検者の最高視力値に近い視力値から視力検査が開始される。このため、不要な視力検査の繰り返しが少なくなり、検査時間が短縮される。   As described above, when the initial presentation target is presented to the subject's eye, the examiner performs a visual acuity test on the subject. The visual target is switched by operating the switches 80b and 80c according to the response of the subject. When the test subject's answer is correct, the switch 80b is selected to switch to a visual target having a higher visual acuity value. On the other hand, if the subject's answer is an incorrect answer, the switch 80c is selected to switch to a target with a visual acuity value that is one step lower. By repeating the above procedure, the maximum visual acuity that can be read by the subject is examined. At the time of this highest visual acuity test, the visual acuity test target that is initially presented is set based on the corrected visual acuity value estimated at the time of objective measurement, so the visual acuity test starts from the visual acuity value close to the highest visual acuity value of each subject Is done. For this reason, unnecessary repetition of the visual acuity test is reduced, and the examination time is shortened.

他覚測定結果の矯正度数による最高視力値が得られたら、検者は被検者が最高視力値を得られる最もプラスよりの球面度数(最弱の度数)に調節するため、スイッチ80e,80fの操作によって球面度数Sを変更する。スイッチ80eまたはスイッチ80fが選択されると、光源31及び視標板32が光軸L2方向に移動されて球面度数が変更される。これにより、最高視力が得られる最も弱い球面度数Sが決定され、眼鏡レンズ又はコンタクトレンズ等の度数を処方する際の参考値が得られる。   When the maximum visual acuity value based on the correction power of the objective measurement result is obtained, the examiner adjusts the spherical power (the weakest power) more positive than the subject to obtain the maximum visual acuity value. The spherical power S is changed by the above operation. When the switch 80e or 80f is selected, the light source 31 and the target plate 32 are moved in the direction of the optical axis L2, and the spherical power is changed. As a result, the weakest spherical power S that provides the highest visual acuity is determined, and a reference value for prescribing the power of a spectacle lens or a contact lens is obtained.

上記の矯正視力値の推測結果について、矯正視力値の推測が不正乱視によるものか、中間透光体の混濁状態によるものかが同時に表示され、また、その段階的な判定のレベル1〜レベル5が表示されると都合が良い。これにより、検者は、被検者の矯正視力値が低いときに、その原因となる被検者眼の状態について説明できるようになる。また、眼科等の医療機関では、最初に行われる眼屈折力測定装置での他覚測定結果から、被検者眼の状態についての評価が得られるので、その後の検査手順の参考にすることができる。   Regarding the above estimated visual acuity value estimation result, whether the corrected visual acuity value is estimated based on irregular astigmatism or due to the opacity of the intermediate translucent body is displayed at the same time. It is convenient if is displayed. Thus, the examiner can explain the condition of the subject's eye that is the cause when the corrected visual acuity value of the subject is low. Also, in medical institutions such as ophthalmologists, evaluation of the condition of the subject's eye can be obtained from the objective measurement result of the eye refractive power measurement device that is first performed. it can.

なお、前述の場合には自覚屈折力測定機能付きの眼屈折力測定装置で、被検者眼の他覚測定と自覚測定との両方を行う場合について述べているが、他覚測定のみを眼屈折力測定装置で行い、自覚検査を他の自覚検査装置とデータを共有して行う場合にも本発明を適用できる。   In the above-described case, the eye refractive power measurement device with the subjective refractive power measurement function is used to perform both objective measurement and subjective measurement of the subject's eye. The present invention can also be applied to a case where the refractive power measurement device is used and the subjective examination is performed by sharing data with other subjective examination devices.

図10は、他覚式眼屈折力測定装置100で他覚測定を行い、自覚式眼屈折力測定装置で自覚検査を行う場合の検眼システムの例である。検眼システムは、左右の検査窓501に種々の光学素子(矯正レンズ、補助レンズ)を切換え配置される自覚式眼屈折力測定ユニット500と、液晶等のディスプレイ531に検査視標が表示される視標呈示装置530と、測定ユニット500及び視標呈示装置530を動作させる指令信号を入力する操作ユニット520と、各ユニット間の指令信号の送受信を中継する中継ユニット510と、で構成される。なお、操作ユニット520には通信ケーブル800を接続するためのコネクタ521が設けられており、操作ユニット520と眼屈折力測定装置100とが通信ケーブル800を介して接続されている。   FIG. 10 shows an example of an optometry system in which objective measurement is performed by the objective eye refractive power measurement apparatus 100 and subjective examination is performed by the subjective eye refractive power measurement apparatus. The optometry system includes a subjective eye refractive power measurement unit 500 in which various optical elements (correction lenses and auxiliary lenses) are switched and arranged in the left and right inspection windows 501 and a visual display in which an inspection target is displayed on a display 531 such as a liquid crystal display. The sign presenting device 530, an operation unit 520 for inputting a command signal for operating the measurement unit 500 and the optotype presenting device 530, and a relay unit 510 for relaying transmission / reception of the command signal between the units. The operation unit 520 is provided with a connector 521 for connecting the communication cable 800, and the operation unit 520 and the eye refractive power measuring apparatus 100 are connected via the communication cable 800.

眼屈折力測定装置100での他覚測定が終了し、検者によってプリントスイッチ80dが押されると、他覚測定結果および推測された矯正視力値のデータが出力され、通信ケーブル800を介して操作ユニット520へと送信される。他覚測定データ(S、C、A)は測定ユニット500に送られ、矯正光学系の初期値が他覚測定データに基づいてセットされる。矯正視力値データは視標呈示装置530に送られ、そのデータに基づいて初期呈示の視力視標がセットされる。   When the objective measurement in the eye refractive power measuring apparatus 100 is completed and the print switch 80d is pressed by the examiner, the objective measurement result and the estimated corrected visual acuity value data are output and operated via the communication cable 800. To unit 520. The objective measurement data (S, C, A) is sent to the measurement unit 500, and the initial value of the correction optical system is set based on the objective measurement data. The corrected visual acuity value data is sent to the visual target presenting device 530, and the visual acuity visual target for initial presentation is set based on the data.

以上のように他覚式眼屈折力測定装置100で得られた矯正視力値が出力されることにより、自覚式の検眼システムで利用される。このとき、矯正視力値の推測が視力値0.3、0.5等のように低い場合には、従来の視力値1.0、0.8等から視力検査を開始する場合に比べて、自覚検査段階の視力検査時間が短縮される。   As described above, the corrected visual acuity value obtained by the objective eye refracting power measuring apparatus 100 is output, so that it is used in the subjective optometry system. At this time, if the guess of the corrected visual acuity value is low such as a visual acuity value of 0.3, 0.5, etc., compared to the case where the visual acuity test is started from a conventional visual acuity value of 1.0, 0.8, etc. The time required for visual acuity testing at the subjective examination stage is shortened.

また、自覚式眼屈折力測定ユニット500に代えて、テストフレームとテストレンズを使用した自覚検査においては、検者は、眼屈折力測定装置100のプリンタ90から出力された矯正視力値の結果を基に視標呈示装置530に呈示させる視力検査視標の初期値を決定できる。この場合も、上記と同様に自覚検査段階の視力検査時間が短縮される。   In the subjective examination using the test frame and the test lens instead of the subjective eye refractive power measurement unit 500, the examiner uses the corrected visual acuity value output from the printer 90 of the eye refractive power measuring apparatus 100 as a result. Based on this, it is possible to determine the initial value of the visual acuity test target to be presented to the visual target presentation device 530. In this case as well, the visual acuity test time at the subjective examination stage is shortened as described above.

他覚式眼屈折力測定装置の外観構成図である。It is an external appearance block diagram of an objective type eye refractive power measuring apparatus. 装置の光学系及び制御系の概略構成図である。It is a schematic block diagram of the optical system and control system of an apparatus. モニタ表示とスイッチ部のスイッチ構成の説明図である。It is explanatory drawing of a monitor display and the switch structure of a switch part. 撮像素子で撮像されたリング像および近似された楕円形状の例である。It is an example of the ring image imaged with the image pick-up element, and the approximate ellipse shape. 不正乱視を持つ眼のリング像および近似された楕円形状の例である。It is an example of a ring image of an eye with irregular astigmatism and an approximate elliptic shape. 中間透光体に混濁がある眼のリング像の例である。It is an example of the ring image of the eye which has turbidity in an intermediate translucent body. 図6のリング像のある経線方向の断面の輝度信号分布を示した図である。It is the figure which showed the luminance signal distribution of the cross section of the meridian direction with the ring image of FIG. 不正乱視に応じた矯正視力値の推測例である。It is an estimation example of the corrected visual acuity value according to irregular astigmatism. 中間透光体の混濁状態に応じた矯正視力値の推測例である。It is an estimation example of the corrected visual acuity value according to the turbid state of the intermediate translucent body. 他覚式眼屈折力測定装置で他覚測定を行い、自覚式眼屈折力測定装置で自覚検査を行う場合の検眼システムの例である。It is an example of an optometry system in a case where objective measurement is performed by an objective eye refractive power measurement device and a subjective examination is performed by the subjective eye refractive power measurement device.

符号の説明Explanation of symbols

7 表示モニタ
10 測定光学系
10a 投影光学系
10b 受光光学系
22 撮像素子
30 視標呈示光学系
70 制御部
80 スイッチ部
100 他覚式眼屈折力測定装置
531 ディスプレイ
800 通信ケーブル
7 Display Monitor 10 Measurement Optical System 10a Projection Optical System 10b Light Receiving Optical System 22 Image Sensor 30 Target Display Optical System 70 Control Unit 80 Switch Unit 100 Objective Eye Refractive Power Measurement Device 531 Display 800 Communication Cable

Claims (5)

被検者眼の眼底に測定指標を投影する投影光学系と眼底から反射された眼底反射像を二次元受光素子で受光する受光光学系とを有する測定光学系であって、前記二次元受光素子に二次元的な幾何学パターン像を受光させる光学素子が前記投影光学系又は受光光学系に配置された測定光学系と、前記二次元受光素子に受光された前記幾何学パターン像に基づいて被検者眼の屈折力誤差を得る眼屈折力測定装置において、
前記二次元受光素子に受光された幾何学パターン像の画像解析に基づいて前記屈折力誤差が矯正された被検者眼の視力値を推定するか、又は自覚検査時に初期呈示する視力検査視標の視力値を判定する視力値推測・判定手段を備えることを特徴とする眼屈折力測定装置。
A measurement optical system having a projection optical system for projecting a measurement index onto the fundus of a subject's eye and a light receiving optical system for receiving a fundus reflection image reflected from the fundus with a two-dimensional light receiving element, the two-dimensional light receiving element An optical element that receives a two-dimensional geometric pattern image on the projection optical system or the light receiving optical system and a geometric pattern image received on the two-dimensional light receiving element. In an eye refractive power measuring device that obtains a refractive power error of an examiner's eye,
A visual acuity test target that estimates a visual acuity value of a subject's eye whose refractive power error has been corrected based on an image analysis of a geometric pattern image received by the two-dimensional light receiving element, or initially presented during a subjective examination An eye refractive power measuring apparatus comprising eyesight value estimation / determination means for determining a visual acuity value of the eyesight.
請求項1の眼屈折力測定装置において、
前記視力値推測・判定手段は、前記二次元受光素子に受光された幾何学パターン像を画像解析して被検者眼の不正乱視の度合及び中間透光体の混濁度合の少なくとも一方を検出する検出手段を持ち、該検出手段の検出結果に基づいて前記屈折力誤差が矯正された被検者眼の視力値を推測するか、又は自覚検査時に初期呈示する視力検査視標の視力値を判定する手段であることを特徴とする眼屈折力測定装置。
In the eye refractive power measuring device according to claim 1,
The visual acuity value estimation / determination means detects at least one of the degree of irregular astigmatism of the subject's eye and the opacity of the intermediate translucent body by performing image analysis on the geometric pattern image received by the two-dimensional light receiving element. Having a detection means, based on the detection result of the detection means, the visual acuity value of the eye of the subject whose refractive power error has been corrected is estimated, or the visual acuity value of the visual acuity test target initially presented at the subjective examination is determined An eye refractive power measuring apparatus characterized by comprising:
請求項2の眼屈折力測定装置において、
前記検出手段は、被検者眼の屈折力誤差である球面度数S、乱視度数C及び乱視軸角度Aを得たときの幾何学パターンに対して各経線方向で変化した幾何学パターンに基づいて不正乱視の度合を検出するか、又は前記二次元受光素子で受光された幾何学パターンの輝度信号の分布状態に基づいて中間透光体の混濁度合を検出することを特徴とする眼屈折力測定装置。
In the eye refractive power measuring device according to claim 2,
The detecting means is based on a geometric pattern that changes in each meridian direction with respect to the geometric pattern when the spherical power S, the astigmatic power C, and the astigmatic axis angle A, which are refractive power errors of the subject's eye, are obtained. Detecting the degree of irregular astigmatism, or detecting the opacity of the intermediate translucent body based on the distribution state of the luminance signal of the geometric pattern received by the two-dimensional light receiving element. apparatus.
請求項1〜3の何れかの眼屈折力測定装置は、
被検者眼に視力値視標を切換え配置する視標呈示光学系と、
前記視標呈示光学系の光路に配置され、被検者眼の屈折力誤差を矯正する乱視矯正光学系及び球面矯正光学系を持つ矯正光学系と、
他覚測定モードと前記矯正光学系による自覚測定モードとを切換える測定モード切換手段と、
自覚測定モードに切換えられたときに、前記測定光学系で得られた屈折力誤差に基づいて矯正光学系を駆動し、前記視力値推測・判定手段により推測又判定された視力値を持つ検査視標を前記視標呈示光学系に呈示させる制御手段と、
を備えることを特徴とする眼屈折力測定装置。
The eye refractive power measuring device according to any one of claims 1 to 3,
An optotype presenting optical system that switches and arranges a visual acuity target on the subject's eye;
A correction optical system disposed in the optical path of the target presentation optical system and having an astigmatism correction optical system and a spherical correction optical system for correcting a refractive power error of the subject's eye;
Measurement mode switching means for switching between an objective measurement mode and a subjective measurement mode by the correction optical system;
When switched to the subjective measurement mode, the correction optical system is driven based on the refractive power error obtained by the measurement optical system, and the visual inspection value has the visual acuity value estimated or determined by the visual acuity value estimation / determination means. Control means for presenting a target on the visual target presenting optical system;
An eye refractive power measuring device comprising:
請求項1〜4の何れかの眼屈折力測定装置は、前記測定光学系により得られた屈折力誤差の測定結果と共に前記視力値推測・判定手段により得られた視力値を画面に表示するか、プリントアウトするか、又は通信手段を介して出力する、何れかの出力手段を備えることを特徴とする眼屈折力測定装置。 Whether the eye refractive power measurement device according to any one of claims 1 to 4 displays the visual acuity value obtained by the visual acuity value estimation / determination means together with the measurement result of the refractive power error obtained by the measurement optical system on the screen. An eye refractive power measuring device comprising any output means for printing out or outputting via a communication means.
JP2008255479A 2008-09-30 2008-09-30 Eye refractive power measuring device Expired - Fee Related JP5554485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255479A JP5554485B2 (en) 2008-09-30 2008-09-30 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255479A JP5554485B2 (en) 2008-09-30 2008-09-30 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JP2010082252A true JP2010082252A (en) 2010-04-15
JP5554485B2 JP5554485B2 (en) 2014-07-23

Family

ID=42246792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255479A Expired - Fee Related JP5554485B2 (en) 2008-09-30 2008-09-30 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP5554485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045921A (en) * 2012-08-31 2014-03-17 Nidek Co Ltd Eye refractive power measuring apparatus and calibration method therefor
JP2014507234A (en) * 2011-02-24 2014-03-27 クラリティ メディカル システムズ インコーポレイテッド Measurement / display / record / replay of wavefront data for use in vision correction procedures
JP2020081450A (en) * 2018-11-27 2020-06-04 国立大学法人 筑波大学 Image analysis apparatus, image analysis method, and ophthalmologic apparatus
EP4252621A1 (en) * 2022-03-29 2023-10-04 Topcon Corporation Ophthalmologic apparatus
EP4342359A1 (en) * 2022-09-20 2024-03-27 Topcon Corporation Ophthalmologic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334714B2 (en) 2020-11-27 2023-08-29 カシオ計算機株式会社 module and clock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122076A (en) * 1995-10-31 1997-05-13 Nidek Co Ltd Eye refractivity measuring apparatus
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2003235802A (en) * 2002-02-15 2003-08-26 Topcon Corp Ocular optical characteristic measuring instrument
JP2005279022A (en) * 2004-03-30 2005-10-13 Topcon Corp Ophthalmic apparatus
JP2007089715A (en) * 2005-09-27 2007-04-12 Nidek Co Ltd Eye refraction measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122076A (en) * 1995-10-31 1997-05-13 Nidek Co Ltd Eye refractivity measuring apparatus
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2003235802A (en) * 2002-02-15 2003-08-26 Topcon Corp Ocular optical characteristic measuring instrument
JP2005279022A (en) * 2004-03-30 2005-10-13 Topcon Corp Ophthalmic apparatus
JP2007089715A (en) * 2005-09-27 2007-04-12 Nidek Co Ltd Eye refraction measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507234A (en) * 2011-02-24 2014-03-27 クラリティ メディカル システムズ インコーポレイテッド Measurement / display / record / replay of wavefront data for use in vision correction procedures
JP2014045921A (en) * 2012-08-31 2014-03-17 Nidek Co Ltd Eye refractive power measuring apparatus and calibration method therefor
JP2020081450A (en) * 2018-11-27 2020-06-04 国立大学法人 筑波大学 Image analysis apparatus, image analysis method, and ophthalmologic apparatus
JP7218858B2 (en) 2018-11-27 2023-02-07 国立大学法人 筑波大学 Image analysis device, method of operating image analysis device, and ophthalmic device
EP4252621A1 (en) * 2022-03-29 2023-10-04 Topcon Corporation Ophthalmologic apparatus
EP4342359A1 (en) * 2022-09-20 2024-03-27 Topcon Corporation Ophthalmologic apparatus

Also Published As

Publication number Publication date
JP5554485B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5085858B2 (en) Eye refractive power measuring device
JP5643078B2 (en) Eye refractive power measuring device
JP5248926B2 (en) Eye refractive power measuring device
JP5342211B2 (en) Eye refractive power measuring device
JP5954982B2 (en) Ophthalmic apparatus, control method, and control program
JP5554485B2 (en) Eye refractive power measuring device
JP5101370B2 (en) Fundus photographing device
KR102245596B1 (en) Opthalmic apparatus
US10470658B2 (en) Optometry apparatus and optometry program
JP6295535B2 (en) Optometry equipment
JP2018047049A (en) Subjective optometer and subjective optometric program
JP2013128648A (en) Ophthalmologic apparatus, and ophthalmologic control method, and program
JP6853496B2 (en) Optometry device and optometry program
JP4749836B2 (en) Ophthalmic equipment
WO2020050233A1 (en) Ocular refractivity measuring device
WO2019111788A1 (en) Ocular refractive power measurement device
JP5916301B2 (en) Optometry equipment
JP6057061B2 (en) Eye refractive power measuring device
JP6605279B2 (en) Ophthalmic apparatus and ophthalmic measurement method
JP2019058437A (en) Ophthalmologic apparatus
JP6064445B2 (en) Eye refractive power measuring device
JP2008073415A (en) Ophthalmologic apparatus
JP2019058441A (en) Ophthalmologic apparatus and control method
JP7101578B2 (en) Ophthalmic device and its operation method
JP6895780B2 (en) Ophthalmic device and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5554485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees