JP2010076677A - 車両用動力伝達装置の制御装置 - Google Patents
車両用動力伝達装置の制御装置 Download PDFInfo
- Publication number
- JP2010076677A JP2010076677A JP2008249194A JP2008249194A JP2010076677A JP 2010076677 A JP2010076677 A JP 2010076677A JP 2008249194 A JP2008249194 A JP 2008249194A JP 2008249194 A JP2008249194 A JP 2008249194A JP 2010076677 A JP2010076677 A JP 2010076677A
- Authority
- JP
- Japan
- Prior art keywords
- electric motor
- power
- engine
- differential
- shift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
【課題】電気式差動部と変速部とを備える車両用動力伝達装置において、パワーオフアップ変速時において、好適に変速ショックを低減することができる車両用動力伝達装置の制御装置を提供する。
【解決手段】自動変速部20でのパワーオフアップ変速時において、第3電動機M3によってエンジン回転速度NEを低下させるエンジン回転低下手段94を備えるため、第1電動機M1の駆動(力行)なしにエンジン回転速度NEを低下させることができる。したがって、蓄電装置56(バッテリ)の出力制限に拘わらずエンジン回転速度NEを目標とする回転速度NE *まで低下させることができ、変速ショックを低減することができる。
【選択図】図6
【解決手段】自動変速部20でのパワーオフアップ変速時において、第3電動機M3によってエンジン回転速度NEを低下させるエンジン回転低下手段94を備えるため、第1電動機M1の駆動(力行)なしにエンジン回転速度NEを低下させることができる。したがって、蓄電装置56(バッテリ)の出力制限に拘わらずエンジン回転速度NEを目標とする回転速度NE *まで低下させることができ、変速ショックを低減することができる。
【選択図】図6
Description
本発明は、電動機によって差動状態が制御される電気式差動部と、動力伝達経路の一部を構成する有段変速部とを備えるハイブリッド型式の車両用動力伝達装置に係り、特に、パワーオフアップ変速時の変速ショック低減に関するものである。
動力源と駆動輪との間の動力伝達経路に連結された差動機構と、その差動機構の回転要素に動力伝達可能に連結された第1電動機とを有し、その第1電動機の運転状態が制御されることによりその差動機構の前記動力源に連結された入力軸の回転速度および出力軸の回転速度の差動状態が制御される電気式差動部と、前記出力軸に動力伝達可能に連結された第2電動機と、前記動力伝達経路の一部を構成する有段変速部とを、備えたハイブリッド型式の車両用動力伝達装置がよく知られている。例えば、特許文献1の車両用駆動装置の制御装置がその一例である。特許文献1では、有段変速部の変速に際して有段変速部の変速比が段階的に変化させられても、その段階的な変速比変化を抑制するように電気式差動部の変速比を制御することで、動力源回転速度の段階的な変化を抑制して変速ショックを抑制する技術が開示されている。
ところで、特許文献1のような車両用動力伝達装置において、パワーオフアップ変速が実施されるに際して、従来では、動力源回転速度を低下させるため、第1電動機の駆動(力行)による動力源回転速度低下制御が実施されてきた。ここで、電動機に電力を出力するバッテリに出力制限がある場合、第1電動機の出力が制限される可能性があり、動力源回転速度を設定された回転速度まで低下させることができず、変速ショックが生じる可能性がある。さらに、従来パワーオフアップ変速に際して、変速終期に第2電動機によるトルクアップ制御が実施されることで、変速ショックが低減されるが、バッテリに出力制限があると、第2電動機によるトルクアップ制御が十分に実施されず、変速ショックが生じる可能性があった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、電気式差動部と変速部とを備える車両用動力伝達装置において、パワーオフアップ変速時において、好適に変速ショックを低減することができる車両用動力伝達装置の制御装置を提供することにある。
上記目的を達成するための、請求項1にかかる発明の要旨とするところは、(a)動力源と駆動輪との間の動力伝達経路に連結された差動機構と、その差動機構の回転要素に動力伝達可能に連結された第1電動機とを有し、その第1電動機の運転状態が制御されることによりその差動機構の前記動力源に連結された入力軸の回転速度および出力軸の回転速度の差動状態が制御される電気式差動部と、前記出力軸に動力伝達可能に連結された第2電動機と、前記動力伝達経路の一部を構成する有段変速部と、前記動力源に動力伝達可能に連結された第3電動機とを、備えた車両用動力伝達装置の制御装置において、(b)前記有段変速部でのパワーオフアップ変速時において、前記第3電動機によって動力源回転速度を低下させる動力源回転低下手段を備えることを特徴とする。
また、請求項2にかかる発明の要旨とするところは、請求項1の車両用動力伝達装置の制御装置において、前記有段変速部のパワーオフアップ変速の変速終期において、前記第2電動機による前記差動機構の出力軸トルクのトルクアップを実施するトルクアップ制御手段を備えることを特徴とする。
また、請求項3にかかる発明の要旨とするところは、請求項1または2の車両用動力伝達装置の制御装置において、前記動力源回転低下手段は、前記有段変速部のパワーオフアップ変速時において、前記第1電動機が負回転状態である場合に、前記第3電動機によって前記動力源回転速度を低下させることを特徴とする。
また、請求項4にかかる発明の要旨とするところは、請求項1乃至3のいずれか1つの車両用動力伝達装置の制御装置において、前記動力源回転低下手段は、前記第3電動機による動力源回転速度低下に併せて、前記第1電動機による動力源回転速度低下と協調して実施することを特徴とする。
請求項1にかかる発明の車両用動力伝達装置の制御装置によれば、前記有段変速部でのパワーオフアップ変速時において、前記第3電動機によって動力源回転速度を低下させる動力源回転低下手段を備えるため、第1電動機の駆動(力行)なしに動力源回転速度を低下させることができる。したがって、バッテリの出力制限に拘わらず動力源回転速度を目標とする回転速度まで低下させることができ、変速ショックを低減することができる。なお、第3電動機による動力源回転速度低下制御は、第3電動機の回生制御によって実施されるので、バッテリの出力制限の影響なく実施することができる。
また、請求項2にかかる発明の車両用動力伝達装置の制御装置によれば、前記有段変速部のパワーオフアップ変速の変速終期において、前記第2電動機による前記差動機構の出力軸トルクのトルクアップを実施するトルクアップ制御手段を備えるため、変速ショックを一層低減することができる。ここで、バッテリの出力制限がある場合であっても、上記のように、動力源回転速度低下制御が第3電動機の回生制御によって実施されるため、第1電動機の出力に伴う第2電動機の出力制限も抑制され、第2電動機による十分なトルクアップ制御が可能となる。さらには、第3電動機の回生制御に伴って発電されるので、その回生された電力を使って第2電動機のトルクアップ制御が可能となる。したがって、第2電動機によるトルクアップ制御がバッテリの出力制限状態であっても十分に実施可能となるので、変速ショックを一層低減することができる。
また、請求項3にかかる発明の車両用動力伝達装置の制御装置によれば、前記動力源回転低下手段は、前記有段変速部のパワーオフアップ変速時において、前記第1電動機が負回転状態である場合に、前記第3電動機によって前記動力源回転速度を低下させるため、第1電動機の駆動(力行)による動力源回転速度低下制御が回避され、バッテリの放電が抑制される。なお、第1電動機が正回転状態である場合、動力源回転速度を第1電動機の回生制御によって低下させることができるので、第1電動機による動力源回転速度低下であっても構わない。
また、請求項4にかかる発明の車両用動力伝達装置の制御装置によれば、前記動力源回転低下手段は、前記第3電動機による動力源回転速度低下に併せて、前記第1電動機による動力源回転速度低下を協調して実施するため、動力源回転速度低下を実施するに際して、第1電動機の出力が、第1電動機単独による動力源回転速度低下時に比べて小さくなる。したがって、バッテリの放電量が低減されるので、バッテリ充放電収支が好適に保たれる。
ここで、好適には、パワーオフアップ変速とは、アクセル開度が零の状態で、有段変速部が高速ギヤ段側へ変速される変速を表す。
また、好適には、有段変速部のパワーオフアップ変速時において、第1電動機が正回転状態である場合、前記動力源回転低下手段は、第1電動機によって動力源回転速度を低下させることもできる。このようにすれば、第1電動機の回生制御によって動力源回転速度を低下させることができるので、バッテリの放電が回避される。
また、好適には、前記電気式差動部は、遊星歯車装置からなる差動機構と、その遊星歯車装置のサンギヤに連結された第1電動機と、遊星歯車装置のリングギヤに連結された第2電動機とを、備える電気的な無段変速部として機能するものである。このようにすれば、前記第1電動機および第2電動機によって遊星歯車装置のキャリヤに連結された動力源の回転速度を制御することができ、動力源を最適な作動状態で維持しつつ、車両を走行させるように変速比を制御することができる。
また、好適には、前記電気式差動部の変速比と前記有段変速部の変速比とに基づいて、前記車両用動力伝達装置の総合変速比が形成されるのもである。このようにすれば、有段変速部の変速比を利用することによって駆動力が幅広く得られるようになるので、電気式差動部における電気的な無段変速制御の効率が一層高められる。
また、好適には、有段変速部は有段式の自動変速機である。このようにすれば、例えば電気的な無段変速機として機能させられる電気式差動部と有段式自動変速機とで無段変速機が構成され、滑らかに駆動トルクを変化させることが可能であるとともに、電気式差動部の変速比を一定となるように制御した状態においては電気式差動部と有段式自動変速機とで有段変速機と同等の状態が構成され、車両用駆動装置の総合変速比が段階的に変化させられて速やかに駆動トルクを得ることもできる。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用されたハイブリッド車両の動力伝達装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接的に連結された無段変速部としての差動部11と、その差動部11から駆動輪34(図6参照)への動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8(本発明の動力源に対応)と一対の駆動輪34(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)32(図6参照)および一対の車軸等を順次介して一対の駆動輪34へ伝達する。
このように、本実施例の変速機構10においては、エンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介すことなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。
本発明の電気式差動部に対応する差動部11は、エンジン8と駆動輪34との間の動力伝達経路に連結されており、動力分配機構16の差動状態を制御するための差動用電動機として機能する第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、出力軸として機能する伝達部材18と一体的に回転するように作動的に連結されている第2電動機M2と、入力軸14を介しエンジン8に動力伝達可能に連結されたエンジン連結電動機である第3電動機M3とを備えている。本実施例の第1電動機M1、第2電動機M2および第3電動機M3は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1および第3電動機M3は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。また、第1電動機M1、第2電動機M2および第3電動機M3は、動力伝達装置10の筐体であるケース12内に備えられ、動力伝達装置10の作動流体である自動変速部20の作動油により冷却される。なお、本実施例では図1のように、第3電動機M3はエンジン8に直結されているが、両者の連結関係はこれに限定されるものではない。また、第3電動機M3はエンジン8に入力軸14を介して連結されているが、省スペース化のため第3電動機M3がエンジン8に付属し両者が一体的に構成されていてもよい。
本発明の差動機構に対応する動力分配機構16は、所定のギヤ比ρ0(=0.416)を有するシングルピニオン型の差動遊星歯車装置24を主体として構成されている。この差動遊星歯車装置24は、差動サンギヤS0、差動遊星歯車P0、その差動遊星歯車P0を自転および公転可能に支持する差動キャリヤCA0、差動遊星歯車P0を介して差動サンギヤS0と噛み合う差動リングギヤR0を回転要素として備えている。なお、差動サンギヤS0の歯数をZS0、差動リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。
この動力分配機構16においては、差動キャリヤCA0は入力軸14すなわちエンジン8および第3電動機M3に連結されて第1回転要素RE1を構成し、差動サンギヤS0は第1電動機M1に連結されて第2回転要素RE2を構成し、差動リングギヤR0は伝達部材18に連結されて第3回転要素RE3を構成している。このように構成された動力分配機構16は、差動遊星歯車装置24の3要素である差動サンギヤS0、差動キャリヤCA0、差動リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能すなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18に分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する。
本発明の有段変速部に対応する自動変速部20(変速部)は、エンジン8と駆動輪34との間の動力伝達経路の一部を構成しており、シングルピニオン型の第1遊星歯車装置26、シングルピニオン型の第2遊星歯車装置28を備え、有段式の自動変速部として機能する遊星歯車式の多段変速機である。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、所定のギヤ比ρ1(=0.488)を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、所定のギヤ比ρ2(=455)を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2である。
自動変速部20では、第1サンギヤS1は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1と第2リングギヤR2とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2とが一体的に連結されて出力軸22に連結され、第2サンギヤS2が第1クラッチC1を介して伝達部材18に選択的に連結されている。さらに第1キャリヤCA1と第2リングギヤR2とは一方向クラッチF1を介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容される一方、逆方向の回転が禁止されている。これにより、第1キャリヤCA1および第2リングギヤR2は、逆回転不能な回転部材として機能する。
また、この自動変速部20は、解放側係合装置の解放と係合側係合装置の係合とによりクラッチツウクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1の係合および一方向クラッチFにより変速比が「3.20」程度となる第1速ギヤ段が成立させられ、第1クラッチC1および第1ブレーキB1の係合により変速比が「1.72」程度となる第2速ギヤ速段が成立させられ、第1クラッチC1および第2クラッチC2の係合により変速比が「1.00」程度となる第3速ギヤ段が成立させられ、第2クラッチC2および第1ブレーキB1の係合により変速比が「0.67」程度となる第4速ギヤ段が成立させられ、第3クラッチC3および第2ブレーキB2の係合により変速比が「2.04」程度となる後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段および後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。
前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。
以上のように構成された変速機構10において、無段変速機として機能する差動部11と自動変速部20とで無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、自動変速部20の入力回転速度)すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、変速機構10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、変速機構10において無段変速機が構成される。この変速機構10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される変速機構10全体としてのトータル変速比γTである。
例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、変速機構10全体としてのトータル変速比γTが無段階に得られる。
また、差動部11の変速比が一定となるように制御され、且つクラッチCおよびブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する変速機構10のトータル変速比γTが各ギヤ段毎に得られる。したがって、変速機構10において有段変速機と同等の状態が構成される。
図3は、差動部11と自動変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度NEを示し、X3が差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応する差動部サンギヤS0、第1回転要素RE1に対応する差動部キャリヤCA0、第3回転要素RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動遊星歯車装置24のギヤ比ρ0に応じて定められている。さらに、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応する第2サンギヤS2を、第5回転要素RE5に対応する相互に連結された第1リングギヤR1および第2キャリヤCA2を、第6回転要素RE6に対応する相互に連結された第1キャリヤCA1および第2リングギヤR2を、第7回転要素RE7に対応する第1サンギヤS1をそれぞれ表し、それらの間隔は第1、第2遊星歯車装置26、28のギヤ比ρ1、ρ2に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(差動部11)において、差動遊星歯車装置24の第1回転要素RE1(差動キャリヤCA0)が入力軸14すなわちエンジン8および第3電動機M3に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(差動リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動サンギヤS0の回転速度と差動リングギヤR0の回転速度との関係が示される。
例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される差動リングギヤR0の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動サンギヤS0の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される差動キャリヤCA0の回転速度すなわちエンジン回転速度NEが上昇或いは下降させられる。
また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって差動サンギヤS0の回転がエンジン回転速度NEと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度NEと同じ回転で差動リングギヤR0の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって差動サンギヤS0の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度NEよりも増速されて伝達部材18が回転させられる。
また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結される。
自動変速部20では、例えば差動部11において第1電動機M1の回転速度を制御することによって差動サンギヤS0の回転速度を略零とすると、直線L0は図3に示す状態とされ、エンジン回転速度NEよりも増速されて第3回転要素RE3に出力される。そして図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速の出力軸22の回転速度が示される。
図4は、本実施例の動力伝達装置10を制御するための制御装置である電子制御装置80に入力される信号及びその電子制御装置80から出力される信号を例示している。この電子制御装置80は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1電動機M1、第2電動機M2、第3電動機M3に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
電子制御装置80には、図4に示すような各センサやスイッチなどから、エンジン8の冷却流体の温度であるエンジン水温TEMPWを表す信号、シフトレバー52(図5参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン8の回転速度であるエンジン回転速度NEを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を表す信号、車速センサ46(図1参照)により検出される出力軸22の回転速度NOUTに対応する車速V及び車両の進行方向を表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、レゾルバなどの回転速度センサ42により検出される第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」と表す)及びその回転方向を表す信号、レゾルバなどの回転速度センサ44(図1参照)により検出される第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」と表す)及びその回転方向を表す信号、レゾルバなどの回転速度センサ48により検出される第3電動機M3の回転速度NM3(以下、「第3電動機回転速度NM3」と表す)及びその回転方向を表す信号、各電動機M1,M2,M3との間でインバータ54を介して充放電を行う蓄電装置56(図6参照)の充電残量(充電状態)SOCを表す信号などが、それぞれ供給される。なお、上記回転速度センサ42、44、48及び車速センサ46は回転速度だけでなく回転方向をも検出できるセンサであり、車両走行中に自動変速部20が中立ポジションである場合には車速センサ46によって車両の進行方向が検出される。
また、上記電子制御装置80からは、エンジン8の出力PE(単位は例えば「kW」。以下、「エンジン出力PE」と表す。)を制御するエンジン出力制御装置58(図6参照)への制御信号例えばエンジン8の吸気管60に備えられた電子スロットル弁62のスロットル弁開度θTHを操作するスロットルアクチュエータ64への駆動信号や燃料噴射装置66による吸気管60或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置68によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1、M2およびM3の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路70(図6参照)に含まれる電磁弁(リニアソレノイドバルブ)を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧PLを調圧するための信号、そのライン油圧PLが調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。
図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。
そのシフトレバー52は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、自動変速モードを成立させて差動部11の無段的な変速比幅と自動変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて自動変速部20における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路70が電気的に切り換えられる。
上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1乃至第3クラッチC3のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1乃至第3クラッチC3による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1乃至第3クラッチC3の少なくとも1つが係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1乃至第3クラッチC3による動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。
図6は、電子制御装置80による制御機能の要部を説明する機能ブロック線図である。図6において、有段変速制御手段82は、図7に示すような車速Vと自動変速部20の出力トルクTOUTとを変数として予め記憶されたアップシフト線(実線)およびダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断しすなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。なお、アクセル開度Accと自動変速部20の要求出力トルクTOUT(図7の縦軸)とはアクセル開度Accが大きくなるほどそれに応じて上記要求出力トルクTOUTも大きくなる対応関係にあることから、図7の変速線図の縦軸はアクセル開度Accであっても差し支えない。
このとき、有段変速制御手段82は、例えば図2に示す係合表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合することによりクラッチツウクラッチ変速を実行させる指令を油圧制御回路70へ出力する。油圧制御回路70は、その指令に従って、例えば解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路70内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
ハイブリッド制御手段84は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力(要求エンジン出力)PERを算出し、その目標エンジン出力PERが得られるエンジン回転速度NEとエンジントルクTEとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
例えば、ハイブリッド制御手段84は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度NEと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段84は、エンジン回転速度NEとエンジン8の出力トルク(エンジントルク)TEとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められた図8の破線に示すようなエンジン8の動作曲線の一種である最適燃費率曲線(燃費マップ、関係)を予め記憶しており、その最適燃費率曲線にエンジン8の動作点(以下、「エンジン動作点」と表す)が沿わされつつエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力PEを発生するためのエンジントルクTEとエンジン回転速度NEとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内で制御する。ここで、上記エンジン動作点とは、エンジン回転速度NE及びエンジントルクTEなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。
このとき、ハイブリッド制御手段84は、第1電動機M1により発電された電気エネルギをインバータ54を通して蓄電装置56や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ54を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。また必要に応じてハイブリッド制御手段84は、エンジン8の出力軸に連結された第3電動機M3を発電機として機能させてエンジン8の動力の一部を電気エネルギに変換し、その電気エネルギはインバータ54に供給される。
また、ハイブリッド制御手段84は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度NEを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段84は、エンジン回転速度NEを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
例えば、図3の共線図からもわかるようにハイブリッド制御手段84は車両走行中にエンジン回転速度NEを引き上げる場合には、車速V(駆動輪34)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。このときハイブリッド制御手段84は、第1電動機回転速度NM1の引き上げに替えて又はこれと並行して、第3電動機回転速度NM3の引き上げを実行してエンジン回転速度NEを引き上げてもよい。また、ハイブリッド制御手段84は自動変速部20の変速中にエンジン回転速度NEを略一定に維持する場合には、エンジン回転速度NEを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
また、ハイブリッド制御手段84は、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御させる他、燃料噴射制御のために燃料噴射装置66による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置58に出力して、必要なエンジン出力PEを発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。
例えば、ハイブリッド制御手段84は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ64を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、このエンジン出力制御装置58は、ハイブリッド制御手段84による指令に従って、スロットル制御のためにスロットルアクチュエータ64により電子スロットル弁62を開閉制御する他、燃料噴射制御のために燃料噴射装置66による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置68による点火時期を制御するなどしてエンジントルク制御を実行する。
また、ハイブリッド制御手段84は、エンジン8の停止又はアイドル状態に拘わらず、差動部11の電気的CVT機能(差動作用)によって、第2電動機M2を走行用の駆動力源とするモータ走行をさせることができる。例えば、ハイブリッド制御手段84は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクTE域、或いは車速Vの比較的低車速域すなわち低負荷域において、モータ走行を実行する。また、ハイブリッド制御手段84は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、第1電動機回転速度NM1を負の回転速度で制御して例えば第1電動機M1を無負荷状態とすることにより空転させて、差動部11の電気的CVT機能(差動作用)により必要に応じてエンジン回転速度NEを零乃至略零に維持する。
また、ハイブリッド制御手段84は、エンジン8を走行用の駆動力源とするエンジン走行を行うエンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置56からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪34にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行にはエンジン8を走行用の駆動力源とする場合と、エンジン8及び第2電動機M2の両方を走行用の駆動力源とする場合とがある。そして、本実施例のモータ走行とはエンジン8を停止して第2電動機M2を走行用の駆動力源とする走行である。
また、ハイブリッド制御手段84は、第1電動機M1を無負荷状態として自由回転すなわち空転させることにより、差動部11がトルクの伝達を不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とすることが可能である。すなわち、ハイブリッド制御手段84は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とすることが可能である。
また、ハイブリッド制御手段84は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上させるために車両の運動エネルギすなわち駆動輪34からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ54を介して蓄電装置56へ充電する回生制御手段としての機能を有する。この回生制御は、蓄電装置56の充電残量SOCやブレーキペダル操作量に応じた制動力を得るための油圧ブレーキによる制動力の制動力配分等に基づいて決定された回生量となるように制御される。
ところで、図7に示す変速線図において、例えばアクセルペダルの踏み込みに伴って、車両の状態がa状態からb状態に変化すると自動変速部20が第3速ギヤ段から第2速ギヤ段へダウンシフトされる所謂パワーオンダウン変速が実行される。そして、パワーオンダウン変速完了後にアクセルペダルが戻されることによって、アクセル開度Accが零に向かって変化すると、b状態からa状態に変化するに伴い、自動変速部20が第2速ギヤ段から第3速ギヤ段へアップシフトされる所謂パワーオフアップ変速が実行されることとなる。
上記パワーオフアップ変速では、自動変速部20が第2速ギヤ段から第3速ギヤ段へアップシフトさせられると共に、上記パワーオンダウン変速が実行された際に上昇させられたエンジン回転速度NEが低下させられる。図9は、上記パワーオフアップ変速が実施された際の差動部11および自動変速部20の回転状態を示す共線図であり、図3の共線図に対応するものである。図9において、実線が変速後の第3速ギヤ段時の回転状態を示しており、破線が変速前の第2速ギヤ段時の回転状態を示している。自動変速部20が第2速ギヤ段から第3速ギヤ段へアップシフトされると、自動変速部20の入力軸として機能している第4回転要素RE4に第1クラッチC1を介して連結された伝達部材18の回転速度N18が低下させられる。そして、その回転速度低下に伴い、伝達部材18に連結されている第3回転要素RE3すなわち差動リングギヤR0、および伝達部材18に一体的に連結されている第2電動機M2の回転速度が低下させられる。
また、パワーオフアップ変速が実施されるに際して、例えば上記のようなパワーオンダウン変速直後のパワーオフアップ変速など、エンジン回転速度NEがエンジンの指令回転速度NE *を上回る場合、エンジン回転速度NEが低下させられる。ここで、エンジン回転速度NEを低下させる手段として、従来では、第1電動機M1の回転速度制御によって実施されてきた。すなわち、図9に示すように、第1電動機M1の回転速度NM1を引き下げることによって差動部11の差動作用によりエンジン回転速度NEが引き下げられる。
以下、自動変速部20が第2速ギヤ段から第3速ギヤ段へパワーオフアップ変速されるに際して、第1電動機M1によってエンジン回転速度NEを低下させる、従来の制御作動について説明する。図10は、自動変速部20がパワーオフアップ変速されるに際して、第1電動機M1によってエンジン回転速度NEが低下させられる制御作動を示すタイムチャートである。
tA1時点において、アクセルオフされるに従ってアクセル開度Accが低下し、車両の走行状態が2→3アップシフト線を跨ぐと、tA2時点において、有段変速制御手段82からアップ変速実施の命令が出力されて、第2速ギヤ段から第3速ギヤ段へのアップシフトが開始される。これより、tA2時点において、自動変速部20の解放側摩擦係合装置(第2速ギヤ段から第3速ギヤ段へのアップシフトにおいて第1ブレーキB1)の解放油圧が急激に低下させられる。また、係合側摩擦係合装置(第2速ギヤ段から第3速ギヤ段へのアップシフトにおいて第2クラッチC2)がファーストフィルされた後、予め設定されたトルク容量を有さない程度の低い油圧状態で定圧待機させられる。これに従い、tA2時点乃至tA3時点において、自動変速部20はトルク容量を殆ど持たない状態となる。また、tA2時点乃至tA3時点において、アクセルペダルが戻されてアクセル開度Accが零となるに従い、自動変速部20の入力軸トルク(以下、変速部入力軸トルクと記載)が低下させられ、負のトルクにまで低下する。なお、変速部入力軸トルクは、本実施例において伝達部材18から出力される伝達部材出力トルクT18に対応する。そして、変速部入力軸トルクが負のトルクになると、その自動変速部20の入力軸回転速度(以下、変速部入力軸回転速度と記載)が低下する。なお、変速部入力軸回転速度は、本実施例では、伝達部材18の回転速度N18および第2電動機回転速度NM2に対応する。
ここで、エンジン回転速度NEは、実線で示すように、第1電動機M1の回転速度低下制御によって引き下げされる。エンジン回転速度NEは、例えば、現在のエンジン回転速度NEと予め設定されている指令回転速度NE *との回転速度差ΔNEに基づいて、エンジン回転速度NEが指令回転速度NE *に追従するようにフィードバック制御される。なお、上記第1電動機M1によるフィードバック制御は、第1電動機M1の負トルク制御、所謂逆転力行により実施されるため、蓄電装置56から電力が放電される。また、エンジン回転速度NEが引き下げられる間は、エンジン8のフューエルカットが実施されるものとする。
そして、自動変速部20の変速終期となるtA3時点に達すると、tA3時点乃至tA4時点において、係合側摩擦係合装置の係合油圧の昇圧が開始されると共に、一点鎖線に示す第2電動機M2によるトルクアップ制御が実施される。このトルクアップ制御が実施されることで、tA3時点乃至tA4時点で生じる変速部入力軸回転速度のアンダーシュートが低減されることとなる。なお、上記トルクアップ制御を実施しない場合、図10の破線に示すようにアンダーシュートが大きくなる。そして、tA4時点において、変速部入力軸回転速度が変速後に設定される回転速度に同期されると、係合側係合装置の係合油圧が完全係合される油圧値まで急激に引き上げられることにより変速が終了する。
上記のように、自動変速部20のパワーオフアップ変速時には、エンジン回転速度NEが第1電動機M1によって低下させられると共に、係合側摩擦係合装置の係合が開始されるtA3時点乃至tA4時点において、第2電動機M2によるトルクアップ制御によって変速部入力軸回転速度のアンダーシュートが低減される。ここで、例えば、自動変速部20のパワーオンダウン後にパワーオフアップ変速が実施される場合などでは、エンジン回転速度NEが指令回転速度NE *よりも大きく上回っていることもあり、第1電動機M1の負トルクを大きくする必要があり、第1電動機M1の出力パワーが大きくなる。このため、蓄電装置56の放電量が大きくなってしまい、場合によっては、蓄電装置56の放電量が制限される。この状態で、第2電動機M2のトルクアップ制御が実施されると、蓄電装置56の放電量制限に伴い、第2電動機M2の出力が制限されるため、トルクアップ制御に必要なトルクアップ量が不足し、アンダーシュートが大きくなるに従い、変速ショックが大きくなる可能性があった。
そこで、本実施例では、自動変速部20のパワーオフアップ変速の実施に際して、第3電動機M3によってエンジン回転速度NEを低下させることで、蓄電装置56の放電量過多状態を回避して、第2電動機M2のトルクアップ量不足を抑制する。以下、本発明の要部となる上記制御について説明する。
図6に戻り、走行レンジ判定手段88は、現在の走行レンジが前進走行レンジである「D」レンジであるか否かを判定する。具体的には、走行レンジ判定手段88は、例えばシフトポジションセンサから出力されるシフトポジションPSHを示すシフトポジション信号に基づいて、シフトポジションPSHを判断し、そのシフトポジションPSHが「D」レンジであるか否かを判定する。なお、走行レンジ判定手段88は、例えば油圧制御回路70の出力油圧やハイブリッド制御手段84の走行レンジ指令等に基づいて判断しても構わない。
オフアップ変速判定手段90は、自動変速部20がオフアップ変速されるか否かを判定する。具体的には、オフアップ変速判断手段90は、例えばアクセル開度センサによってアクセル開度Accを検出し、検出されたアクセル開度Accが零か否かを判定する(パワーオフ判断)。さらに、オフアップ変速判断手段90は、予め記憶されている図7に示す変速線図に基づいて、車両の状態がアクセル開度Accの低下によってアップシフト線を跨いだか否かを判定する(アップ変速判断)。上記2つの判定が肯定されると、オフアップ変速判定手段90は、自動変速部20がパワーオフアップ変速されると判定する。
第1電動機逆転力行判定手段92(以下逆転力行判定手段92と記載する)は、第1電動機M1の状態が負のトルクを出力することにより逆転された状態か否かを判定する。ここで、第1電動機M1が負の回転方向で回転(逆回転状態)されているとき、第1電動機M1から負のトルクが出力されるので、蓄電装置56から電力が放電される状態となる。言い換えれば、逆転力行判定手段92は、第1電動機M1が蓄電装置56の放電を伴う制御状態にあるか否かを判定する手段となる。なお、第1電動機M1が正転状態にあるとき、第1電動機M1は回生状態にあるので、蓄電装置56の放電は実施されない。
エンジン回転低下手段94(本発明の動力源回転低下手段に対応)は、自動変速部20のパワーオフアップ変速が実施されるに際して、第3電動機M3によってエンジン回転速度NEを低下させる。上記自動変速部20のパワーオフアップ変速に際して、第3電動機M3よってエンジン回転速度を低下させる制御作動について、図11を用いて説明する。
図11は、自動変速部20がパワーオフアップ変速されるに際して、第3電動機M3によってエンジン回転速度NEを低下させる制御作動を示すタイムチャートである。tB2時点においてアップ変速が開始され、アクセル開度低下に伴い変速部入力軸トルクが低下すると、エンジン回転低下手段94によるエンジン回転低下制御が開始される。エンジン回転低下手段94は、第3電動機M3の回生トルクを制御することよってエンジン回転速度NEを低下させる。例えば、エンジン回転低下手段94は、エンジン回転速度NEが予め設定されている指令回転速度NE *に追従するように、第3電動機M3の回生トルクのフィードバック制御を実施することにより、図11に示すように、エンジン回転速度NE(第3電動機回転速度NM3)が自動変速部20の変速状態に応じて低下する。また、第3電動機M3の回生に伴い、蓄電装置56に電力が供給(充電)される。なお、第3電動機M3による回生制御中は、第1電動機M1は出力トルクが零すなわち惰性状態とされるので、蓄電装置56から電力は放電されない。
ここで、tB3時点において、変速終期と判定されると係合側摩擦係合装置の係合が開始されると共に、第2電動機M2によるトルクアップ制御が開始される。ここで、上記変速終期の判定は、図6の変速終期判定手段96によって判定される。変速終期判定手段96は、自動変速部20の変速終期すなわち第2電動機M2によるトルクアップ制御開始の時期を判断するものである。自動変速部20の変速終期(図11においてtB3時点)は、例えば、自動変速部20の変速後に設定される変速部入力軸回転速度(伝達部材回転速度N18)と現在の変速部入力軸回転速度との回転差が予め設定された所定回転速度差以下となった否か、或いは、自動変速部20の変速開始から予め設定された変速終期予測時間に達したか否か等に基づいて判定される。これにより、図11に示す変速終期に対応するtB3時点が判断される。
そして、変速終期判定手段96によって、自動変速部20の変速終期(tB3時点)が判断されると、図6に示すトルクアップ制御手段98による第2電動機M2のトルクアップ制御が開始される。トルクアップ制御手段98は、図11の一点鎖線に示すように、tB3時点乃至tB4時点において、第2電動機M2の出力トルクを予め設定されているトルク量にトルクアップ制御する。これに伴い、変速部入力軸トルクが一時的に正のトルクまで引き上げられ、変速部入力軸回転速度(伝達部材回転速度N18)のアンダーシュートが低減される。上記トルクアップ量は、例えばトルクアップ量学習手段100によって適宜変更されることにより、アンダーシュートが好適に低減される。トルクアップ量学習手段100は、例えば自動変速部20の変速後に設定される変速部入力軸回転速度(伝達部材回転速度N18)と、アンダーシュートの際に検出される最小回転速度との回転速度差α(アンダーシュート量)が、予め設定された閾値x以下か否かを判定し、回転速度差αが閾値xを越えるとき、次回のトルクアップ量をさらに所定値だけ増加させる。これにより、逐次好適なトルクアップ量に設定され、アンダーシュートが効果的に低減される。なお、tB3時点乃至tB4時点においても、第3電動機M3の回生制御によるエンジン回転低下制御が実施されるので、図11に示すように、tB3時点乃至tB4時点での蓄電装置56の放電量が従来(図10)よりも小さくなる。
さらに、tB4時点において変速終了が判定されると、トルクアップ制御手段98は、第2電動機M2によるトルクアップ制御を終了する。ここで、変速が終了するtB4時点の判断は、図6に示す変速終了判定手段102によって判断される。変速終了判定手段102は、例えば自動変速部20の変速比変化に基づいて変速後に設定される変速部入力軸回転速度と、現在の変速部入力軸回転速度との回転速度差δが予め設定されている閾値以下であるとき、具体的には回転速度が同期されたとき、変速が終了したものと判定する。或いは、変速終了判定手段102は、係合側摩擦係合装置の係合油圧が予め設定された変速終了油圧値となったとき、自動変速部20の変速終了を判断する。上記以外にも、自動変速部20の変速開始からの経過時間等に基づいて判定しても構わない。これにより、図11に示す変速終了に対応するtB4時点が判断される。
ここで、本実施例では、エンジン回転速度NEが第3電動機M3の回生制御によって引き下げられるので、tB2時点乃至tB4時点において、第1電動機M1の出力に伴う蓄電装置56の放電は実施されない。したがって、tB3時点乃至tB4時点では、第2電動機M2によるトルクアップ制御が実施されるが、第3電動機M3の回生制御によって蓄電装置56が充電されるなどして、蓄電装置56の充電容量SOCに余裕が生じるので、第2電動機M2のトルクアップ制御に際して出力の制限が回避される。また、蓄電装置56に出力制限が生じても、第3電動機M3によって発電された電力を第2電動機M2に供給することができる。ところで、パワーオフアップ変速時において第1電動機M1が正転状態にあるとき、第1電動機M1は回生状態にあるので、蓄電装置56の放電は実施されない。このようなとき、エンジン回転低下手段94は、従来のように、第1電動機M1の回生制御によってエンジン回転速度NEを低下させることもできる。
図12は、電子制御装置80の制御作動の要部すなわち自動変速部20のパワーオフアップ変速に際して、エンジン回転速度NEを低下させる制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。
先ず、走行レンジ判定手段88に対応するステップSA1(以下、ステップを省略)において、現在の走行レンジが前進走行レンジである「D」レンジで走行中であるか否かが判定される。SA1が否定されると、本ルーチンは終了させられる。SA1が肯定されると、オフアップ変速判定手段90に対応するSA2において、アクセル開度Accが零であるか否かが判定される。SA2が否定されると、本ルーチンは終了させられる。SA2が肯定されると、オフアップ変速判定手段90に対応するSA3において、自動変速部20がアップ変速されるか否かが判定される。SA3が否定されると、本ルーチンは終了させられる。SA3が肯定されると、逆転力行判定手段92に対応するSA4において、第1電動機M1が逆転力行状態すなわち逆転状態にあるか否かが判定される。SA4が否定される、すなわち第1電動機M1が正転回生状態にあるとき、エンジン回転低下手段94に対応するSA6において、第1電動機M1によるエンジン回転速度低下制御すなわち従来のエンジン回転速度低下制御が実施される。なお、第1電動機M1が正転回転状態にあるとき、エンジン回転速度NEは第1電動機M1の回生制御によって低下させられる。したがって、蓄電装置56の放電は生じないため、第2電動機M2のトルクアップ制御に際して第2電動機M2の出力制限は回避されることとなる。一方、SA4が肯定されると、エンジン回転低下手段94に対応するSA5において、第3電動機M3によるエンジン回転速度低下制御が実施される。なお、第3電動機M3のエンジン回転低下制御にあっては、第3電動機M3の回生トルク制御によって実施されるので、蓄電装置56の放電は生じない。したがって、蓄電装置56の放充電収支が好適に保たれて蓄電装置56の充電容量SOCに余裕が生じるため、第2電動機M2によるトルクアップ制御に際して、出力が制限されることなく、必要となるトルク量が出力される。
図13は、図12の自動変速部20のパワーオフアップ変速に際して、第2電動機M2によるトルクアップ制御の制御作動を説明するフローチャートであり、図12の制御作動と並列して実施されるものである。
先ず、変速終期判定手段96に対応するSB1において、自動変速部20の変速状態が変速終期に到達したか否かが判定される。なお、上記変速終期は、図11のタイムチャートにおいて、tB3時点が対応している。SB1が否定されると本ルーチンは終了させられる。SB1が肯定されると、トルクアップ制御手段98に対応するSB2において、第2電動機M2によるトルクアップ制御が実施される。次いで、トルクアップ量学習手段に対応するSB3において、パワーオフアップ変速制御において発生したアンダーシュート量に基づいて、トルクアップ量の学習制御が実施される。そして、変速終了判定手段102に対応するSB4において、自動変速部20の変速が終了したか否かが判定される。なお、上記変速終了時期は、図11のタイムチャートにおいて、tB4時点が対応している。SB4が否定されると、SB2に戻り、変速終了が判断されるまでトルクアップ制御が継続される。一方、SB4が肯定されると、第2電動機M2によるトルクアップ制御が終了させられる。
ここで、図12のフローチャートでは、SA4において、第1電動機M1の回転状態に応じて、エンジン回転低下手段94は、エンジン回転低下制御を第1電動機M1および第3電動機M3のいずれかに選択的に切り換えて実施しているが、第1電動機M1が正転状態であっても、第3電動機M3にエンジン回転低下制御を実施しても構わない。さらには、第1電動機M1が負回転状態すなわち負トルク出力状態であっても、第3電動機M3によるエンジン回転速度低下に併せて、第1電動機M1によるエンジン回転速度低下と協調して実施することにより、エンジン回転速度NEを低下させることもできる。このような協調制御であっても第1電動機M1の出力が低減されるので、蓄電装置56の放電量が低減されると共に、第3電動機M3の回生制御による蓄電装置56への充電が実施されるので、第2電動機M2のトルクアップ制御が実施可能となる。
上述のように、本実施例によれば、自動変速部20でのパワーオフアップ変速時において、第3電動機M3によってエンジン回転速度NEを低下させるエンジン回転低下手段94を備えるため、第1電動機M1の駆動(力行)なしにエンジン回転速度NEを低下させることができる。したがって、蓄電装置56(バッテリ)の出力制限に拘わらずエンジン回転速度NEを目標とする回転速度NE *まで低下させることができ、変速ショックを低減することができる。なお、第3電動機M3によるエンジン回転速度低下制御は、第3電動機M3の回生制御によって実施されるので、蓄電装置56(バッテリ)の出力制限の影響なく実施することができる。
また、本実施例によれば、自動有段変速部20のパワーオフアップ変速の変速終期において、第2電動機M2による変速部出力軸トルクのトルクアップを実施するトルクアップ制御手段100を備えるため、変速ショックを一層低減することができる。ここで、蓄電装置56(バッテリ)の出力制限がある場合であっても、上記のように、エンジン回転速度低下制御が第3電動機M3の回生制御によって実施されるため、第1電動機M1の出力に伴う第2電動機M2の出力制限も抑制され、第2電動機M2による十分なトルクアップ制御が可能となる。さらには、第3電動機M3の回生制御に伴って発電されるので、その回生された電力を使って第2電動機M2のトルクアップ制御が可能となる。したがって、第2電動機M2によるトルクアップ制御が蓄電装置56(バッテリ)の出力制限状態であっても十分に実施可能となるので、変速ショックを一層低減することができる。
また、本実施例によれば、エンジン回転低下手段94は、自動変速部20のパワーオフアップ変速時において、第1電動機M1が負回転状態である場合に、第3電動機M3によってエンジン回転速度NEを低下させるため、第1電動機M1の駆動(力行)によるエンジン回転速度低下制御が回避され、蓄電装置56(バッテリ)の放電が抑制される。なお、第1電動機M1が正回転状態である場合、エンジン回転速度NEを第1電動機M1の回生制御によって低下させることができるので、第1電動機M1によるエンジン回転速度低下であっても構わない。
また、本実施例によれば、エンジン回転低下手段94は、第3電動機M3によるエンジン回転速度低下に併せて、第1電動機M1によるエンジン回転速度低下を協調して実施することもできるため、エンジン回転速度低下を実施するに際して、第1電動機M1の出力が、第1電動機M1単独によるエンジン回転速度低下時に比べて小さくなる。したがって、蓄電装置56(バッテリ)の放電量が低減されるので、バッテリ充放電収支が好適に保たれる。
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
例えば、前述の実施例では、自動変速部20の第2速ギヤ段から第3速ギヤ段へのパワーオフアップ変速を一例に説明がなされているが、本発明は、上記ギヤ段に限定されるものではなく、例えば第1速ギヤ段から第2速ギヤ段へのパワーオフアップ変速や第3速ギヤ段から第4速ギヤ段へのパワーオフアップ変速など、他のパワーオフアップ変速であっても適用することができる。
また、前述の実施例では、走行レンジとして「D」レンジが選択されたときに本発明が適用されているが、前進手動変速走行レンジである「M」レンジであっても本発明を適用することができる。
また、前述の実施例では、第1電動機M1が正回転状態(回生状態)であるとき、第1電動機M1によってエンジン回転速度NEが低下させられるが、必ずしも第1電動機M1で実施する必要はなく、第1電動機M1が正回転状態であっても第3電動機M3によるエンジン回転低下制御を実施しても構わない。
また、前述の実施例では、第1電動機M1の運転状態が制御されることにより、差動部11はその変速比γ0が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能するものであったが、たとえば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであっても本発明は適用することができる。
また、前述の実施例において、差動部11は、動力分配機構16に設けられて差動作用を制限することにより少なくとも前進2段の有段変速機としても作動させられる差動制限装置を備えたものであってもよい。
また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。
また、前述の実施例では、エンジン8は入力軸14と直結されていたが、たとえばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。
また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、たとえばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。
また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁紛)クラッチ、電磁クラッチ、噛合型のドグクラッチなどの磁紛式、電磁式、機械式係合装置から構成されていてもよい。たとえば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
また、前述の実施例では、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
また、前述の実施例の差動機構として動力分配機構16は、たとえばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および伝達部材18(第2電動機M2)に作動的に連結された差動歯車装置であってもよい。
また、前述の実施例ではエンジン8と差動部11とが直接連結されているが、必ずしも直接連結される必要はなく、エンジン8と差動部11との間にクラッチを介して連結されていてもよい。
また、前述の実施例では、差動部11と自動変速部20とが直列接続されたような構成となっているが、特にこのような構成に限定されず、変速機構10全体として電気式差動を行う機能と、変速機構10全体として電気式差動による変速とは異なる原理で変速を行う機能と、を備えた構成であれば本発明は適用可能であり、機械的に独立している必要はない。また、これらの配設位置や配設順序も特に限定されない。要するに、自動変速部20は、エンジン8から駆動輪34への動力伝達経路の一部を構成するように設けられておればよい。
また、前述の実施例の動力分配機構16は、1組の遊星歯車装置(差動部遊星歯車装置24)から構成されていたが2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、差動部遊星歯車装置24はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。また、このような2以上の遊星歯車装置から構成された場合においても、これらの遊星歯車装置の各回転要素にエンジン8、第1および第2電動機M1、M2、伝達部材18、構成によっては出力軸22が動力伝達可能に連結され、さらに遊星歯車装置の各回転要素に接続されたクラッチCおよびブレーキBの制御により有段変速と無段変速とが切り換えられるような構成であっても構わない。
また、前述の実施例のシフト操作装置50は、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えていたが、そのシフトレバー52に替えて、たとえば押しボタン式のスイッチやスライド式スイッチ等の複数種類のシフトポジションPSHを選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類のシフトポジションPSHを切り換えられる装置や足の操作により複数種類のシフトポジションPSHが切り換えられる装置等であってもよい。また、シフトレバー52が「M」ポジションに操作されることにより、変速レンジが設定されるものであったが、ギヤ段が設定されることすなわち各変速レンジの最高速ギヤ段がギヤ段として設定されてもよい。この場合、自動変速部20ではギヤ段が切り換えられて変速が実行される。たとえば、シフトレバー52が「M」ポジションにおけるアップシフト位置「+」またはダウンシフト位置「−」へ手動操作されると、自動変速部20では第1速ギヤ段乃至第4速ギヤ段のいずれかがシフトレバー52の操作に応じて設定される。
また、前述の実施例の変速機構10において第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。
また、前述の実施例において、第2電動機M2はエンジン8から駆動輪34までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする変速機構10の構成であってもよい。
また、前述の実施例において、自動変速部20の構造は特に限定されず、複数の変速段に変速可能な構成であれば他の構造を有するものであっても構わない。
なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
8:エンジン(動力源)
10:変速機構(車両用動力伝達装置)
11:差動部(電気式差動部)
14:入力軸(差動機構の入力軸)
16:動力分配機構(差動機構)
18:伝達部材(差動機構の出力軸)
20:自動変速部(有段変速部)
34:駆動輪
94:エンジン回転低下手段(動力源回転低下手段)
98:トルクアップ制御手段
M1:第1電動機
M2:第2電動機
M3:第3電動機
10:変速機構(車両用動力伝達装置)
11:差動部(電気式差動部)
14:入力軸(差動機構の入力軸)
16:動力分配機構(差動機構)
18:伝達部材(差動機構の出力軸)
20:自動変速部(有段変速部)
34:駆動輪
94:エンジン回転低下手段(動力源回転低下手段)
98:トルクアップ制御手段
M1:第1電動機
M2:第2電動機
M3:第3電動機
Claims (4)
- 動力源と駆動輪との間の動力伝達経路に連結された差動機構と、該差動機構の回転要素に動力伝達可能に連結された第1電動機とを有し、該第1電動機の運転状態が制御されることにより該差動機構の前記動力源に連結された入力軸の回転速度および出力軸の回転速度の差動状態が制御される電気式差動部と、前記出力軸に動力伝達可能に連結された第2電動機と、前記動力伝達経路の一部を構成する有段変速部と、前記動力源に動力伝達可能に連結された第3電動機とを、備えた車両用動力伝達装置の制御装置であって、
前記有段変速部でのパワーオフアップ変速時において、前記第3電動機によって動力源回転速度を低下させる動力源回転低下手段を備えることを特徴とする車両用動力伝達装置の制御装置。 - 前記有段変速部のパワーオフアップ変速の変速終期において、前記第2電動機による前記差動機構の出力軸トルクのトルクアップを実施するトルクアップ制御手段を備えることを特徴とする請求項1の車両用動力伝達装置の制御装置。
- 前記動力源回転低下手段は、前記有段変速部のパワーオフアップ変速時において、前記第1電動機が負回転状態である場合に、前記第3電動機によって前記動力源回転速度を低下させることを特徴とする請求項1または2の車両用動力伝達装置の制御装置。
- 前記動力源回転低下手段は、前記第3電動機による動力源回転速度低下に併せて、前記第1電動機による動力源回転速度低下と協調して実施することを特徴とする請求項1乃至3のいずれか1つの車両用動力伝達装置の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249194A JP2010076677A (ja) | 2008-09-26 | 2008-09-26 | 車両用動力伝達装置の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008249194A JP2010076677A (ja) | 2008-09-26 | 2008-09-26 | 車両用動力伝達装置の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010076677A true JP2010076677A (ja) | 2010-04-08 |
Family
ID=42207611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008249194A Pending JP2010076677A (ja) | 2008-09-26 | 2008-09-26 | 車両用動力伝達装置の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010076677A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083988A1 (ja) * | 2016-11-07 | 2018-05-11 | ジヤトコ株式会社 | 自動変速機の制御装置及び自動変速機の制御方法 |
US10807601B1 (en) | 2019-02-22 | 2020-10-20 | Hyundai Motor Company | Shift control method for hybrid vehicle having dual clutch transmission |
-
2008
- 2008-09-26 JP JP2008249194A patent/JP2010076677A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018083988A1 (ja) * | 2016-11-07 | 2018-05-11 | ジヤトコ株式会社 | 自動変速機の制御装置及び自動変速機の制御方法 |
JPWO2018083988A1 (ja) * | 2016-11-07 | 2019-03-22 | ジヤトコ株式会社 | 自動変速機の制御装置及び自動変速機の制御方法 |
US10807601B1 (en) | 2019-02-22 | 2020-10-20 | Hyundai Motor Company | Shift control method for hybrid vehicle having dual clutch transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144805B2 (ja) | 車両用駆動装置の制御装置 | |
JP5267656B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP4683137B2 (ja) | 動力伝達装置の制御装置 | |
JP4858310B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP2008207690A (ja) | 車両用駆動装置の制御装置 | |
JP2009023446A (ja) | 車両用駆動装置の制御装置 | |
JP2009012730A (ja) | ハイブリッド車両用動力伝達装置のエンジン始動装置 | |
JP2009298175A (ja) | 車両用動力伝達装置の制御装置 | |
JP2008290555A (ja) | 車両用駆動装置の制御装置 | |
JP5120202B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP2009280176A (ja) | 車両用動力伝達装置の制御装置 | |
JP2008296610A (ja) | 車両用動力伝達装置の制御装置 | |
JP4483879B2 (ja) | 車両用駆動装置の制御装置 | |
JP2010125936A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010143491A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010076544A (ja) | 車両用動力伝達装置の制御装置 | |
JP4561760B2 (ja) | 車両用駆動装置の制御装置 | |
JP2009280177A (ja) | 車両用動力伝達装置の制御装置 | |
JP2009154723A (ja) | 車両用動力伝達装置の制御装置 | |
JP4853410B2 (ja) | ハイブリッド車両用動力伝達装置の制御装置 | |
JP2010115980A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010126094A (ja) | 車両用動力伝達装置の制御装置 | |
JP2010076677A (ja) | 車両用動力伝達装置の制御装置 | |
JP5092953B2 (ja) | 車両用動力伝達装置の制御装置 | |
JP5206559B2 (ja) | 車両用動力伝達装置の制御装置 |