JP2010073851A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010073851A
JP2010073851A JP2008238973A JP2008238973A JP2010073851A JP 2010073851 A JP2010073851 A JP 2010073851A JP 2008238973 A JP2008238973 A JP 2008238973A JP 2008238973 A JP2008238973 A JP 2008238973A JP 2010073851 A JP2010073851 A JP 2010073851A
Authority
JP
Japan
Prior art keywords
semiconductor chip
heat dissipation
heat
semiconductor device
multilayer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008238973A
Other languages
Japanese (ja)
Other versions
JP4862871B2 (en
Inventor
Shinichi Hirose
伸一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008238973A priority Critical patent/JP4862871B2/en
Publication of JP2010073851A publication Critical patent/JP2010073851A/en
Application granted granted Critical
Publication of JP4862871B2 publication Critical patent/JP4862871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat dissipation performance of a semiconductor chip without causing the enlargement of a heat-dissipation member, in a semiconductor device having the semiconductor chip in the multilayer board composed of resin. <P>SOLUTION: This semiconductor device includes: a multi-layer substrate 10 which laminates resin layers 1 to 8 formed of a plurality of resins; and a plate-like semiconductor chip 20 formed in the multi-layer substrate 10. One plate face 21 which is a face perpendicular to a thickness direction of the semiconductor chip 20 of a surface of the semiconductor chip 20 is thermally connected to a heat dissipation member 30 for dissipating the heat of the semiconductor chip 20. A heat dissipation layer 15 connected thermally to the side 23 which is a face extended in the thickness direction of the semiconductor chip 20 of the surface of the semiconductor chip 20 is formed in the multi-layer substrate 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂よりなる多層基板の内部に半導体チップを設けてなる半導体装置に関し、特に、半導体チップの放熱性の向上に関する。   The present invention relates to a semiconductor device in which a semiconductor chip is provided inside a multilayer substrate made of resin, and more particularly to improvement in heat dissipation of the semiconductor chip.

従来より、この種の半導体装置としては、樹脂よりなる複数の樹脂層が積層されてなる多層基板と、多層基板の内部に設けられた半導体チップとを備えたものが提案されている(たとえば、特許文献1参照)。   Conventionally, as this type of semiconductor device, a device including a multilayer substrate in which a plurality of resin layers made of a resin are laminated and a semiconductor chip provided inside the multilayer substrate has been proposed (for example, Patent Document 1).

ここで、半導体チップの放熱性を確保するために、従来では、一般に板状である半導体チップの表面のうち半導体チップの厚さ方向と直交する面である一方の板面に、導体膜やヒートシンクなどの放熱部材を熱的に接続している。
特開2002−329803号公報
Here, in order to ensure heat dissipation of the semiconductor chip, a conductive film or a heat sink is conventionally provided on one plate surface, which is a surface orthogonal to the thickness direction of the semiconductor chip, of the surface of the semiconductor chip that is generally plate-shaped. Etc. are thermally connected.
JP 2002-329803 A

しかしながら、従来では、半導体チップの一方の板面に放熱部材を熱的に接続しているだけなので、この従来構成にて、さらなる放熱性の向上を図るべく、放熱部材の熱容量を大きくすることは、放熱部材の大型化を招くことになり、好ましくない。   However, in the past, since the heat dissipation member is only thermally connected to one plate surface of the semiconductor chip, it is not possible to increase the heat capacity of the heat dissipation member with this conventional configuration in order to further improve heat dissipation. This leads to an increase in the size of the heat dissipating member, which is not preferable.

また、上記特許文献1では、放熱部材をCu箔などの金属箔などよりなるものとしているが、この金属箔の厚みは、たとえば通常18〜35μm程度の非常に薄いものであり熱容量が小さい。そのため、たとえば10msec〜100msecの過渡的な熱抵抗が大きくなり、瞬時に大きな電力がかかる車載デバイスなどには適用できないという問題がある。   Moreover, in the said patent document 1, although the heat radiating member shall consist of metal foils, such as Cu foil, the thickness of this metal foil is a very thin thing of about 18-35 micrometers normally, for example, and its heat capacity is small. Therefore, for example, there is a problem that a transient thermal resistance of 10 msec to 100 msec becomes large and cannot be applied to an in-vehicle device or the like in which a large amount of power is instantaneously applied.

本発明は、上記問題に鑑みてなされたものであり、樹脂よりなる多層基板の内部に半導体チップを設けてなる半導体装置において、放熱部材の大型化を招くことなく、半導体チップの放熱性を向上させることを目的とする。   The present invention has been made in view of the above problems, and in a semiconductor device in which a semiconductor chip is provided inside a multilayer substrate made of resin, the heat dissipation of the semiconductor chip is improved without causing an increase in the size of the heat dissipation member. The purpose is to let you.

上記目的を達成するため、請求項1に記載の発明では、多層基板(10)の内部に、半導体チップ(20)の表面のうち半導体チップ(20)の厚さ方向に延びる面である側面(23)に熱的に接続された放熱層(15)を設けたことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a side surface that is a surface extending in the thickness direction of the semiconductor chip (20) among the surfaces of the semiconductor chip (20) is provided inside the multilayer substrate (10). 23) is provided with a heat dissipation layer (15) thermally connected.

それによれば、半導体チップ(20)の一方の板面(21)から放熱部材(30)によって従来と同様の放熱が行われることに加えて、さらに、半導体チップ(20)の側面(23)からも放熱層(15)による放熱が行われるため、放熱経路の増加が図れることから、放熱部材の大型化を招くことなく、半導体チップ(20)の放熱性を向上させることができる。   According to this, in addition to heat radiation from the one plate surface (21) of the semiconductor chip (20) being performed by the heat radiating member (30) as in the prior art, further, from the side surface (23) of the semiconductor chip (20). Since heat dissipation is performed by the heat dissipation layer (15), the heat dissipation path can be increased, so that the heat dissipation performance of the semiconductor chip (20) can be improved without increasing the size of the heat dissipation member.

ここで、請求項2に記載の発明では、半導体チップ(20)を、その厚さ方向が、多層基板(10)における樹脂層(1〜8)の積層方向に沿った状態にて配置し、多層基板(10)に、樹脂層(1〜8)の積層方向に沿って凹んだ凹部(11)を設け、この凹部(11)に半導体チップ(20)を収納して、凹部(11)の側面と半導体チップ(20)の側面(23)とを対向させた状態とし、放熱層(15)を、複数の樹脂層(1〜8)の間に設けるとともに、凹部(11)を構成する樹脂層(1〜4)の間から凹部(11)の側面に露出させ、この放熱層(15)の露出部と半導体チップ(20)の側面(23)とを凹部(11)内にて接触させ、熱的に接続したことを特徴とする。   Here, in the invention according to claim 2, the semiconductor chip (20) is arranged in a state in which the thickness direction thereof is along the lamination direction of the resin layers (1 to 8) in the multilayer substrate (10), The multi-layer substrate (10) is provided with a recess (11) that is recessed along the laminating direction of the resin layers (1 to 8). The semiconductor chip (20) is accommodated in the recess (11), and the recess (11) Resin which makes a side surface and the side surface (23) of a semiconductor chip (20) face each other and provides a heat dissipation layer (15) between a plurality of resin layers (1 to 8) and constitutes a recess (11) It is exposed to the side surface of the recess (11) from between the layers (1 to 4), and the exposed portion of the heat dissipation layer (15) and the side surface (23) of the semiconductor chip (20) are brought into contact in the recess (11). It is characterized by thermal connection.

それによれば、多層基板(10)の内部にて、半導体チップ(20)の側面(23)と放熱層(15)との熱的な接続を適切に行える。   According to this, the thermal connection between the side surface (23) of the semiconductor chip (20) and the heat dissipation layer (15) can be appropriately performed inside the multilayer substrate (10).

この場合、請求項3に記載の発明のように、個々の樹脂層(1〜8)に、その厚さ方向に貫通する熱伝導性のビア(16)を設け、複数の樹脂層(1〜8)の間に設けられている放熱層(15)を、ビア(16)を介して樹脂層(1〜8)の積層方向にて互いに熱的に接続するとともに、放熱部材(30)に熱的に接続するようにしてもよい。   In this case, as in the invention described in claim 3, each resin layer (1-8) is provided with a thermally conductive via (16) penetrating in the thickness direction, and a plurality of resin layers (1-1) are provided. 8) The heat dissipation layer (15) provided between the heat dissipation members (30) is thermally connected to each other in the laminating direction of the resin layers (1 to 8) via the vias (16), and the heat dissipation member (30) is heated. May be connected to each other.

それによれば、樹脂層(1〜8)の各層間に設けられている放熱層(15)同士を熱的に接続するとともに、放熱層(15)の熱を放熱部材(30)に逃がすことができ、効率的な放熱が可能となる。   According to this, the heat dissipation layers (15) provided between the respective layers of the resin layers (1 to 8) can be thermally connected, and the heat of the heat dissipation layer (15) can be released to the heat dissipation member (30). This enables efficient heat dissipation.

さらに、請求項4に記載の発明のように、多層基板(10)に、外部と接続するためのはんだよりなるはんだボール(40)を設け、放熱層(15)を、ビア(16)を介してはんだボール(40)にも熱的に接続してもよい。   Further, as in the invention described in claim 4, a solder ball (40) made of solder for connecting to the outside is provided on the multilayer substrate (10), and the heat dissipation layer (15) is provided via the via (16). The solder balls (40) may be thermally connected.

それによれば、放熱層(15)の熱を、はんだボール(40)を介して外部にも逃がすことが可能となり、効率的な放熱のために好ましい。   Accordingly, the heat of the heat dissipation layer (15) can be released to the outside via the solder balls (40), which is preferable for efficient heat dissipation.

また、請求項5に記載の発明では、放熱層(15)は、多層基板(10)の表面から外方に突出する部位を有していることを特徴とする。   Further, the invention according to claim 5 is characterized in that the heat dissipation layer (15) has a portion protruding outward from the surface of the multilayer substrate (10).

それによれば、放熱層(15)は、その突出する部位を有することによって外部への放熱面積が大きくなり、放熱性の向上に好ましい。   According to this, the heat radiation layer (15) has a projecting portion, thereby increasing the heat radiation area to the outside, which is preferable for improving heat radiation.

また、請求項6に記載の発明では、放熱層(15)と半導体チップ(20)の側面(23)との間に、当該両部(15、23)が隔てられる方向にバネ弾性を有するバネ部材(50)を介在させ、当該両部(15、23)を、バネ部材(50)を介して熱的に接続したことを特徴とする。   In the invention according to claim 6, the spring having spring elasticity in the direction in which both the parts (15, 23) are separated between the heat radiation layer (15) and the side surface (23) of the semiconductor chip (20). The member (50) is interposed, and both the parts (15, 23) are thermally connected via the spring member (50).

それによれば、バネ部材(50)のバネ弾性によって放熱層(15)と半導体チップ(20)の側面(23)との接触性が向上し、当該両部(15、23)の熱的接続の確保のために好ましいものとなる。   According to this, the contact between the heat dissipation layer (15) and the side surface (23) of the semiconductor chip (20) is improved by the spring elasticity of the spring member (50), and the thermal connection between the two parts (15, 23) is improved. This is preferable for securing.

また、請求項7に記載の発明では、さらに、放熱層(15)は、多層基板(10)の内部にて、半導体チップ(20)の表面のうち一方の板面(21)とは反対側の他方の板面(22)にも熱的に接続されていることを特徴とする。   Further, in the invention according to claim 7, the heat dissipation layer (15) is further on the opposite side of the surface of the semiconductor chip (20) from the one plate surface (21) inside the multilayer substrate (10). The other plate surface (22) is also thermally connected.

それによれば、さらに、半導体チップ(20)の他方の板面(22)からも放熱層(15)による放熱が可能となり、好ましい。   According to this, the heat radiation by the heat radiation layer (15) is also possible from the other plate surface (22) of the semiconductor chip (20), which is preferable.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

以下、本発明の実施形態について図に基づいて説明する。以下の各実施形態に示される半導体装置は、車載用半導体装置であり、エンジンECUなどの車載電子製品に搭載されるものである。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. A semiconductor device shown in each of the following embodiments is a vehicle-mounted semiconductor device and is mounted on a vehicle-mounted electronic product such as an engine ECU. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
図1において(a)は、本発明の第1実施形態に係る半導体装置100の概略断面構成を示す図であり、(b)はこの半導体装置100における放熱層15の平面パターンを示す概略平面図である。なお、図1(b)では、多層基板10の凹部11に突出する放熱層15の部分は、折り曲げられる前の状態にて示されている。
(First embodiment)
1A is a diagram illustrating a schematic cross-sectional configuration of the semiconductor device 100 according to the first embodiment of the present invention, and FIG. 1B is a schematic plan view illustrating a planar pattern of the heat dissipation layer 15 in the semiconductor device 100. It is. In FIG. 1B, the portion of the heat dissipation layer 15 protruding into the recess 11 of the multilayer substrate 10 is shown in a state before being bent.

本実施形態の半導体装置100は、大きくは、多層基板10と、多層基板10の内部に設けられた半導体チップ20と、半導体チップ20の一方の板面21に熱的に接続された放熱部材30とを備えて構成されている。   The semiconductor device 100 of the present embodiment is broadly divided into a multilayer substrate 10, a semiconductor chip 20 provided inside the multilayer substrate 10, and a heat dissipation member 30 thermally connected to one plate surface 21 of the semiconductor chip 20. And is configured.

多層基板10は、樹脂よりなる複数の樹脂層1〜8が積層されてなるPALAP(Patterned prepreg LAy up Process)基板である。これら樹脂層1〜8は、一般のPALAP基板と同様に、液晶ポリマーなどの熱可塑性樹脂よりなり、熱プレスにより接合されている。   The multilayer substrate 10 is a PALAP (Patterned Prepay LAy up Process) substrate in which a plurality of resin layers 1 to 8 made of resin are laminated. These resin layers 1 to 8 are made of a thermoplastic resin such as a liquid crystal polymer, and bonded by hot pressing, as in a general PALAP substrate.

樹脂層1〜8の積層数は限定するものではないが、ここでは、8層構成とされている。この樹脂層1〜8の平面サイズは、例えば10mm×10mm程度であり、厚さは1層あたり25〜100μmである。   Although the number of the resin layers 1 to 8 is not limited, the number of layers is 8 here. The planar size of the resin layers 1 to 8 is, for example, about 10 mm × 10 mm, and the thickness is 25 to 100 μm per layer.

半導体チップ20は、一般的な半導体プロセスよりなるシリコン半導体などよりなるICチップやトランジスタ素子などのチップであり、板状をなす。ここでは、一般のものと同様に矩形板状のチップであり、たとえば5×5mm程度である。また、半導体チップ20の厚さは、個々の樹脂層1〜8の厚さよりも厚いものであり、たとえば0.1〜0.4mmである。   The semiconductor chip 20 is a chip such as an IC chip or a transistor element made of a silicon semiconductor made of a general semiconductor process, and has a plate shape. Here, it is a rectangular plate-shaped chip like a general one, for example, about 5 × 5 mm. Moreover, the thickness of the semiconductor chip 20 is thicker than the thickness of each resin layer 1-8, for example, is 0.1-0.4 mm.

また、多層基板10には、樹脂層1〜8の積層方向(図1(a)の上下方向)に沿って凹んだ凹部11が設けられており、この凹部11内に半導体チップ20が収納されている。ここでは、凹部11は、多層基板10の一面(図1(a)の上面)寄りに設けられている。   The multilayer substrate 10 is provided with a recess 11 that is recessed along the direction in which the resin layers 1 to 8 are stacked (the vertical direction in FIG. 1A), and the semiconductor chip 20 is accommodated in the recess 11. ing. Here, the recess 11 is provided closer to one surface of the multilayer substrate 10 (upper surface in FIG. 1A).

半導体チップ20の厚さは、1つの樹脂層の厚さよりも大きいため、凹部11に半導体チップ20を収納するためには、凹部11の深さは、2以上の樹脂層の厚さの分、凹んでいる必要がある。ここでは、凹部11は、多層基板10の一面側から2番目、3番目、4番目の3つの樹脂層2〜4の厚さ分、凹んだものとなっている。   Since the thickness of the semiconductor chip 20 is larger than the thickness of one resin layer, in order to accommodate the semiconductor chip 20 in the recess 11, the depth of the recess 11 is equal to the thickness of two or more resin layers. It needs to be recessed. Here, the recess 11 is recessed by the thickness of the second, third, and fourth three resin layers 2 to 4 from the one surface side of the multilayer substrate 10.

また、凹部11の平面形状は、図1に示されるように、半導体チップ20が挿入可能なように半導体チップ20よりも若干大きな矩形をなす。そして、凹部11は、多層基板10の一面を構成する樹脂層1、すなわち多層基板10の一面側の1番目に位置する樹脂層1により閉塞され、多層基板10の内部の空洞として構成されている。以下、この樹脂層1を1番目の樹脂層1という。   Further, as shown in FIG. 1, the planar shape of the recess 11 is a rectangle slightly larger than the semiconductor chip 20 so that the semiconductor chip 20 can be inserted. The recess 11 is closed by the resin layer 1 constituting one surface of the multilayer substrate 10, that is, the resin layer 1 positioned first on the one surface side of the multilayer substrate 10, and is configured as a cavity inside the multilayer substrate 10. . Hereinafter, this resin layer 1 is referred to as a first resin layer 1.

このような閉塞された凹部11内にて、半導体チップ20は、半導体チップ20の厚さ方向を樹脂層1〜8の積層方向に沿った状態で配置されている。言い換えれば、半導体チップ20の板面21、22と当該積層方向とが実質的に直交している。   In such a closed recess 11, the semiconductor chip 20 is arranged in a state where the thickness direction of the semiconductor chip 20 is along the stacking direction of the resin layers 1 to 8. In other words, the plate surfaces 21 and 22 of the semiconductor chip 20 and the stacking direction are substantially orthogonal.

そして、半導体チップ20の一方の板面21は、半導体チップ20の表面のうち半導体チップ20の厚さ方向と直交する面であるが、凹部11内においては、この一方の板面21が、1番目の樹脂層1に対向している。   One plate surface 21 of the semiconductor chip 20 is a surface orthogonal to the thickness direction of the semiconductor chip 20 in the surface of the semiconductor chip 20. The second resin layer 1 is opposed.

また、当該一方の板面21と反対側の面である半導体チップ20の他方の板面22は、凹部11の底部、すなわち多層基板10の一面側から5番目に位置する樹脂層5に対向している。また、半導体チップ20の側面23は、半導体チップ20の表面のうち半導体チップ20の厚さ方向に延びる面であるが、この半導体チップ20の側面23は、凹部11内にて、当該凹部11の側面と対向している。   The other plate surface 22 of the semiconductor chip 20, which is the surface opposite to the one plate surface 21, faces the bottom of the recess 11, that is, the resin layer 5 located fifth from the one surface side of the multilayer substrate 10. ing. Further, the side surface 23 of the semiconductor chip 20 is a surface extending in the thickness direction of the semiconductor chip 20 in the surface of the semiconductor chip 20, and the side surface 23 of the semiconductor chip 20 is within the recess 11. Opposite the side.

ここで、多層基板10には、一般的なPALAP基板と同様に、半導体チップ20から信号を取り出すための電気配線12、13が形成されている。ここでは、電気配線12、13は多層基板10の他面(図1(a)の下面)側に位置する4つの樹脂層5〜8に設けられている。   Here, like the general PALAP substrate, electrical wirings 12 and 13 for taking out signals from the semiconductor chip 20 are formed on the multilayer substrate 10. Here, the electrical wirings 12 and 13 are provided on the four resin layers 5 to 8 located on the other surface (the lower surface in FIG. 1A) side of the multilayer substrate 10.

この電気配線12、13は一般のものと同様、樹脂層5〜8の層間に位置し所望のパターンに形成された層間配線12と、個々の樹脂層5〜8を貫通して設けられ各層間配線12を電気的に接続するビア13とにより構成されている。   The electrical wirings 12 and 13 are located between the resin layers 5 to 8 and are formed in a desired pattern between the resin layers 5 to 8 and the individual resin layers 5 to 8 so as to pass through each interlayer. A via 13 that electrically connects the wiring 12 is formed.

層間配線12は、エッチングなどでパターニングされたCuなどの金属箔よりなり、ビア13は、樹脂層5〜8を貫通する貫通穴に充填されて硬化された金属ペーストなどの導電性および熱伝導性に優れた材料よりなる。   The interlayer wiring 12 is made of a metal foil such as Cu patterned by etching or the like, and the via 13 is conductive and thermally conductive such as a metal paste filled in a through hole penetrating the resin layers 5 to 8 and cured. Made of excellent material.

より具体的には、層間配線12は、たとえば厚さが9〜35μm程度のCu箔であり、ビア13は、たとえば径が一般的な75〜300μmでAg−Snなどのはんだよりも融点の高い金属ペーストよりなる。   More specifically, the interlayer wiring 12 is, for example, a Cu foil having a thickness of about 9 to 35 μm, and the via 13 is, for example, 75 to 300 μm in diameter and has a higher melting point than a solder such as Ag—Sn. Made of metal paste.

そして、電気配線12、13は、半導体チップ20の他方の板面22に設けられたパッド24に接して電気的に接続されている。このパッド24は、Au、Cu、はんだなどよりなる。たとえば、電気配線のビア13とパッド24とは、お互いが合金反応することによって電気的に接続されている。   The electrical wirings 12 and 13 are electrically connected in contact with pads 24 provided on the other plate surface 22 of the semiconductor chip 20. The pad 24 is made of Au, Cu, solder or the like. For example, the via 13 and the pad 24 of the electrical wiring are electrically connected by mutual alloy reaction.

次に、半導体装置100における放熱構成について述べる。まず、1番目の樹脂層1のうち半導体チップ20の一面21と対向する部位には、放熱用ビア14が設けられている。この放熱用ビア14は、当該1番目の樹脂層1をその厚さ方向に貫通する熱伝導性のビアである。   Next, a heat dissipation configuration in the semiconductor device 100 will be described. First, a heat radiating via 14 is provided in a portion of the first resin layer 1 facing the one surface 21 of the semiconductor chip 20. The heat dissipation via 14 is a thermally conductive via that penetrates the first resin layer 1 in the thickness direction.

この放熱用ビア14は、上記電気配線のビア13と同様の導電性および熱伝導性に優れた材料よりなる。なお、ここでは、放熱用ビア14は、半導体チップ20と同一の平面形状を持つものであるが、これに限定されるものではなく、たとえば、上記電気配線のビア13と同様の75〜300μmの径を持つ円柱状のものが、1番目の樹脂層1のうち半導体チップ20の一面21と対向する部位に、複数個、規則的もしくはランダムに点在した構成であってもよい。   The heat dissipation via 14 is made of a material having excellent conductivity and thermal conductivity similar to the via 13 of the electric wiring. Here, the heat radiating via 14 has the same planar shape as the semiconductor chip 20, but is not limited to this. For example, the heat radiating via 14 has the same 75 to 300 μm as the via 13 of the electric wiring. A cylindrical shape having a diameter may have a configuration in which a plurality of the resin layers 1 are regularly or randomly scattered in a portion of the first resin layer 1 facing the one surface 21 of the semiconductor chip 20.

そして、この放熱用ビア14を介して、半導体チップ20の一方の板面21と放熱部材30とが熱的に接続されている。ここで、半導体チップ20の一方の板面21には、AuやNiなどのメッキを施し、当該一方の板面21と放熱用ビア14との接続性を確保することが好ましい。   The one plate surface 21 of the semiconductor chip 20 and the heat dissipation member 30 are thermally connected through the heat dissipation via 14. Here, it is preferable that one plate surface 21 of the semiconductor chip 20 is plated with Au, Ni or the like to ensure the connectivity between the one plate surface 21 and the heat dissipation via 14.

この放熱部材30としては、一般的な板状のヒートシンクが採用される。ここでは、放熱部材30は、多層基板10とほぼ同じ平面サイズであって、たとえば厚さが0.1〜1mmで、材質はCuやAlなどの熱伝導の良い金属材料とする。   As the heat radiating member 30, a general plate-shaped heat sink is employed. Here, the heat radiating member 30 is substantially the same plane size as the multilayer substrate 10 and has a thickness of, for example, 0.1 to 1 mm, and is made of a metal material having good thermal conductivity such as Cu or Al.

この放熱部材30によって、半導体チップ20の一方の板面21から、半導体チップ20の熱が放熱される。さらに、本実施形態では、半導体チップ20の熱を放熱する構成として、多層基板10の内部に、半導体チップ20の側面23に熱的に接続された放熱層15が設けられている。   The heat of the semiconductor chip 20 is radiated from one plate surface 21 of the semiconductor chip 20 by the heat radiating member 30. Further, in the present embodiment, as a configuration for radiating the heat of the semiconductor chip 20, the heat radiation layer 15 thermally connected to the side surface 23 of the semiconductor chip 20 is provided in the multilayer substrate 10.

ここでは、放熱層15は、複数の樹脂層1〜8の間に設けられている層状のものである。この放熱層15は、上記電気配線の層間配線12と同様の材質、厚さ、作製方法とすることができる。また、その平面パターンは、図1(b)に示されるように、一端が凹部11側に位置し、他端側が多層基板10の周辺部に延びる配線形状とされている。   Here, the heat dissipation layer 15 is a layered layer provided between the plurality of resin layers 1 to 8. The heat dissipation layer 15 can be made of the same material, thickness, and manufacturing method as the interlayer wiring 12 of the electric wiring. Further, as shown in FIG. 1B, the planar pattern has a wiring shape in which one end is located on the concave portion 11 side and the other end side extends to the peripheral portion of the multilayer substrate 10.

放熱層15のなかでも、凹部11を構成する樹脂層1〜4の間に位置するものは、その一端が凹部11の側面にて凹部11内に露出している。この凹部11の側面には、当該凹部11を構成する樹脂層1〜4同士の層間が位置しており、当該層間にて放熱層15が露出している。   Among the heat radiation layers 15, those located between the resin layers 1 to 4 constituting the recess 11 have one end exposed in the recess 11 on the side surface of the recess 11. On the side surface of the recess 11, an interlayer between the resin layers 1 to 4 constituting the recess 11 is located, and the heat dissipation layer 15 is exposed between the interlayer.

そして、この放熱層15の露出部と半導体チップ20の側面23とが凹部11内にて接触し、放熱層15と半導体チップ20とが熱的に接続されている。この放熱層15の露出部は、元々は、図1(b)に示されるように凹部11内に突出したものであり、これが、図1(a)のように、凹部11の底部側へ向かって折り曲げられた状態で半導体チップ20の側面23に接している。   The exposed portion of the heat dissipation layer 15 and the side surface 23 of the semiconductor chip 20 are in contact with each other in the recess 11, and the heat dissipation layer 15 and the semiconductor chip 20 are thermally connected. The exposed portion of the heat dissipation layer 15 originally protrudes into the recess 11 as shown in FIG. 1B, and this is directed toward the bottom of the recess 11 as shown in FIG. In contact with the side surface 23 of the semiconductor chip 20.

また、図1(a)に示されるように、個々の樹脂層1〜8には、その厚さ方向に貫通する熱伝導性のビア16が設けられている。この熱伝導性のビア16は、上記電気信号のビア13と同様の材質、形状、作製方法とされるものである。   Further, as shown in FIG. 1A, each of the resin layers 1 to 8 is provided with a thermally conductive via 16 penetrating in the thickness direction. The thermally conductive via 16 is made of the same material, shape, and manufacturing method as the electrical signal via 13.

そして、複数の樹脂層1〜8の間に設けられている各放熱層15は、熱伝導性のビア16を介して個々の樹脂層1〜8を越えて熱的に接続されている。つまり、これら各放熱層15は、樹脂層1〜8の積層方向にて互いに熱的に接続されている。   And each heat dissipation layer 15 provided between the plurality of resin layers 1 to 8 is thermally connected across the individual resin layers 1 to 8 through thermally conductive vias 16. That is, these heat dissipation layers 15 are thermally connected to each other in the stacking direction of the resin layers 1 to 8.

さらに、各放熱層15は、1番目の放熱層1に設けられた熱伝導性のビア16を介して、放熱部材30に熱的に接続されている。なお、この放熱層15のビア16を介した熱的接続の構成は、図1(b)において凹部11の辺部から延びる配線形状の放熱層15だけでなく、多層基板10の四隅部に位置する矩形の放熱層15についても同様のものとされている。   Further, each heat radiation layer 15 is thermally connected to the heat radiation member 30 through a thermally conductive via 16 provided in the first heat radiation layer 1. The thermal connection configuration of the heat dissipation layer 15 through the via 16 is not limited to the wiring-shaped heat dissipation layer 15 extending from the side of the recess 11 in FIG. The rectangular heat radiation layer 15 is also the same.

また、これら放熱層15、熱伝導性のビア16は、それぞれ電気配線の層間配線12、ビア13と同様の材質により、各層間、各樹脂層に設けられているが、その機能は電気配線12、13とは異なり、半導体チップ20を動作させるための電気的信号の接続には寄与しないものである。   The heat dissipation layer 15 and the heat conductive via 16 are provided in each layer and each resin layer by the same material as the interlayer wiring 12 and via 13 of the electric wiring, respectively, but the function thereof is the electric wiring 12. , 13 does not contribute to the connection of electrical signals for operating the semiconductor chip 20.

また、多層基板10の他面には、はんだよりなるはんだボール40が設けられており、半導体装置100は、このはんだボール40を介して外部の部材と接続されるようになっている。それぞれの層間配線12は、電気配線のビア13を介して、はんだボール40に電気的に接続されている。また、それぞれの放熱層15は、熱伝導性のビア16を介して、はんだボール40に熱的に接続されている。   A solder ball 40 made of solder is provided on the other surface of the multilayer substrate 10, and the semiconductor device 100 is connected to an external member via the solder ball 40. Each interlayer wiring 12 is electrically connected to a solder ball 40 through a via 13 of electrical wiring. In addition, each heat dissipation layer 15 is thermally connected to the solder ball 40 through a thermally conductive via 16.

次に、本半導体装置100の製造方法について、図2、図3を参照して述べる。図2は本製造方法を示す工程図、図3は図2に続く製造方法の工程図であり、各工程におけるワークを図1(a)に対応した断面にて示してある。   Next, a method for manufacturing the semiconductor device 100 will be described with reference to FIGS. FIG. 2 is a process diagram showing the present manufacturing method, and FIG. 3 is a process diagram of the manufacturing method subsequent to FIG. 2. The work in each process is shown in a cross section corresponding to FIG.

まず、1番目の樹脂層1を除く7つの樹脂層2〜8において、凹部11を形成するための開口部、電気配線12、13、放熱層15、熱伝導性のビア16を形成しておく。ここで、電気配線12、13および放熱層15、熱伝導性のビア16の作製方法は、樹脂層への穴開け加工、金属箔のエッチング、金属ペーストの印刷・硬化などの一般的な方法によって行われる。   First, in the seven resin layers 2 to 8 except for the first resin layer 1, openings for forming the recesses 11, electric wirings 12 and 13, a heat radiation layer 15, and a heat conductive via 16 are formed. . Here, the electrical wirings 12 and 13 and the heat radiation layer 15 and the heat conductive via 16 are produced by a general method such as drilling a resin layer, etching a metal foil, printing / curing a metal paste, or the like. Done.

そして、図2(a)に示されるように、これら7つの樹脂層2〜8を位置あわせして積層する。このとき、凹部11を構成する3つの樹脂層2〜4に設けられている放熱層15は、凹部11内に個々の樹脂層の厚さ程度(たとえば25〜100μm)、突出させておく。それにより、図2(b)に示されるようなワークができあがる。なお、この図2(b)のワークの平面構成は上記図1(b)に示されるものに相当する。   Then, as shown in FIG. 2A, these seven resin layers 2 to 8 are aligned and laminated. At this time, the heat radiation layer 15 provided in the three resin layers 2 to 4 constituting the recess 11 is protruded into the recess 11 by about the thickness of each resin layer (for example, 25 to 100 μm). Thereby, a work as shown in FIG. 2B is completed. Note that the planar configuration of the workpiece in FIG. 2B corresponds to that shown in FIG.

次に、図2(c)に示されるように、凹部11の開口部から半導体チップ20を挿入し、凹部11内に半導体チップ20を設置する。このとき、半導体チップ20により、凹部11に突出する放熱層15の部分を押し倒しながら、半導体チップ20を凹部11に挿入していく。   Next, as shown in FIG. 2C, the semiconductor chip 20 is inserted from the opening of the recess 11, and the semiconductor chip 20 is installed in the recess 11. At this time, the semiconductor chip 20 is inserted into the recess 11 while the semiconductor chip 20 pushes down the portion of the heat dissipation layer 15 protruding into the recess 11.

図4は、この放熱層15が半導体チップ20によって押し倒された部分を示す拡大図である。こうすることで、上述のように、放熱層15は凹部11内にて折り曲げられた状態で半導体チップ20の側面23に接し、半導体チップ20の側面23と放熱層15とが強固に接触する。   FIG. 4 is an enlarged view showing a portion where the heat dissipation layer 15 is pushed down by the semiconductor chip 20. By doing so, as described above, the heat dissipation layer 15 is in contact with the side surface 23 of the semiconductor chip 20 while being bent in the recess 11, and the side surface 23 of the semiconductor chip 20 and the heat dissipation layer 15 are firmly in contact.

また、この半導体チップ20の設置においては、凹部11の底部では、半導体チップ20のパッド24と電気配線のビア13とを接触させる。こうして多層基板10への半導体チップ20の搭載が終了すると、図3(a)に示されるワークができあがる。   In the installation of the semiconductor chip 20, the pad 24 of the semiconductor chip 20 and the via 13 of the electrical wiring are brought into contact with each other at the bottom of the recess 11. When the mounting of the semiconductor chip 20 on the multilayer substrate 10 is completed in this way, the work shown in FIG. 3A is completed.

次に、図3(b)に示されるように、その上に、放熱用ビア14が形成された1番目の樹脂層1を積層し、凹部11を閉塞する。次に、図3(c)に示されるように、その上に放熱部材30を積み重ねる。   Next, as shown in FIG. 3B, the first resin layer 1 in which the heat dissipation vias 14 are formed is laminated thereon, and the recess 11 is closed. Next, as shown in FIG.3 (c), the thermal radiation member 30 is stacked on it.

その後、このワークを、所定の熱と圧力をもって一括してプレスする。それにより、各樹脂層1〜8同士、樹脂層と放熱部材30との間、および、半導体チップ20のパッド24と熱伝導性のビア16との間、半導体チップ20と放熱用ビア14との間が、熱圧着や合金反応などにより接合される。   Thereafter, the workpiece is pressed together with a predetermined heat and pressure. Thereby, between each resin layer 1-8, between the resin layer and the heat radiating member 30, between the pad 24 of the semiconductor chip 20 and the thermally conductive via 16, and between the semiconductor chip 20 and the heat radiating via 14 The space is joined by thermocompression bonding or alloy reaction.

その後は、一般の方法により多層基板10の他面に、はんだボール40を装着する。こうして、本実施形態の半導体装置100ができあがる。そして、この半導体装置100は、はんだボール40を介して、外部の部材に接続されて使用される。   Thereafter, the solder balls 40 are mounted on the other surface of the multilayer substrate 10 by a general method. Thus, the semiconductor device 100 of this embodiment is completed. The semiconductor device 100 is used by being connected to an external member via the solder ball 40.

図5は、本半導体装置100を外部の部材に取り付けた一具体例を示すものであり、本半導体装置100を外部の部材としてのマザーボード200およびケース300に搭載した例を示す概略断面図である。   FIG. 5 shows a specific example in which the semiconductor device 100 is attached to an external member, and is a schematic cross-sectional view showing an example in which the semiconductor device 100 is mounted on a mother board 200 and a case 300 as external members. .

マザーボード200は、たとえば一般的な回路基板などであり、ケース300は、このマザーボード200を納めるAlなどの金属ケースである。半導体装置100は、多層基板10の他面側にて、はんだボール40を介してマザーボード200に電気的・熱的に接続されており、多層基板10の一面側では、放熱部材30が、シリコーンゲルなどよりなる熱伝導性のゲル310を介して接着される。   The mother board 200 is, for example, a general circuit board, and the case 300 is a metal case such as Al that houses the mother board 200. The semiconductor device 100 is electrically and thermally connected to the mother board 200 via the solder balls 40 on the other surface side of the multilayer substrate 10. On the one surface side of the multilayer substrate 10, the heat dissipation member 30 is a silicone gel. It adheres via the heat conductive gel 310 which consists of these.

ところで、本実施形態によれば、半導体チップ20の一方の板面21に、放熱部材30が熱的に接続されているだけでなく、多層基板10の内部に、半導体チップ20の側面23に熱的に接続された放熱層15が設けられている。つまり、放熱部材30による放熱経路に加えて、さらに、半導体チップ20の側面23からの放熱層15による放熱経路が形成されることになる。   By the way, according to the present embodiment, not only the heat radiating member 30 is thermally connected to one plate surface 21 of the semiconductor chip 20, but also heat is applied to the side surface 23 of the semiconductor chip 20 inside the multilayer substrate 10. A thermally connected heat dissipation layer 15 is provided. That is, in addition to the heat dissipation path by the heat dissipation member 30, a heat dissipation path by the heat dissipation layer 15 from the side surface 23 of the semiconductor chip 20 is further formed.

そのため、本実施形態によれば、従来に比べて放熱部材を大型化することなく、半導体チップ20の放熱性を向上させることができる。具体的に放熱層15による放熱経路について、上記図5の例を採って述べると、半導体チップ20の熱は、その側面23から放熱層15を介して熱伝導性のビア16に到達し、放熱部材30という放熱層15よりも熱容量の大きい放熱体へ逃がすことができる。   Therefore, according to this embodiment, the heat dissipation of the semiconductor chip 20 can be improved without increasing the size of the heat dissipation member as compared with the conventional case. Specifically, the heat dissipation path by the heat dissipation layer 15 will be described with reference to the example of FIG. 5 described above. The heat of the semiconductor chip 20 reaches the heat conductive via 16 from the side surface 23 through the heat dissipation layer 15 and dissipates heat. The member 30 can escape to a heat radiating body having a larger heat capacity than the heat radiating layer 15.

そして、放熱部材30からは、ゲル310を介してケース300というさらに熱容量の大きい放熱体へ放熱が行われる。また、上記図5では、チップ20の側面23からの熱は、放熱層15から熱伝導性のビア16を介して、はんだボール40、さらにはマザーボード200に逃がすことも可能である。   Then, heat is radiated from the heat radiating member 30 to the heat radiating body having a larger heat capacity such as the case 300 through the gel 310. In FIG. 5, heat from the side surface 23 of the chip 20 can be released from the heat dissipation layer 15 to the solder ball 40 and further to the mother board 200 through the heat conductive via 16.

さらに、半導体チップ20の側面23と接触する放熱層15、および熱伝導性のビア16を可能な限り多く配置することで、多層基板10全体としての熱伝導率が大きくなるので半導体装置100全体としての放熱性が向上する。   Further, by disposing as many heat radiation layers 15 and heat conductive vias 16 as possible in contact with the side surfaces 23 of the semiconductor chip 20, the thermal conductivity of the multilayer substrate 10 as a whole is increased, and therefore the semiconductor device 100 as a whole. The heat dissipation is improved.

ここで、図6、図7は、放熱層15の他の平面形状を示す概略平面図である。放熱層15の平面形状としては、上記図1(b)に示されるような凹部11の辺部から延びる配線形状とされたもの以外にも、種々の形態が可能であり、たとえば図6や図7に示されるような形状が可能である。   Here, FIGS. 6 and 7 are schematic plan views showing other planar shapes of the heat dissipation layer 15. As the planar shape of the heat radiation layer 15, various forms are possible other than the wiring shape extending from the side of the recess 11 as shown in FIG. 1B, for example, FIG. A shape as shown in FIG. 7 is possible.

図6に示される放熱層15は、凹部11内に突出する部位は上記図1(b)と同様であるが、凹部11以外の部位すなわち樹脂層の層間に位置する部分では、放熱層15が連続的につながった形状となっている。   The heat radiation layer 15 shown in FIG. 6 is the same as the part shown in FIG. 1B in the portion protruding into the concave portion 11, but in the portion other than the concave portion 11, that is, the portion located between the resin layers, It has a continuously connected shape.

また、図7に示される放熱層15では、さらに凹部11内に突出する部位も連続的につながった形状となっている。これら図6、図7に示される放熱層15においても、上記同様に熱伝導性のビア16により各層間で接続され、上記同様の効果が発揮される。   Moreover, in the heat radiating layer 15 shown in FIG. 7, the part which protrudes in the recessed part 11 is also the shape connected continuously. 6 and 7 are connected to each other through the heat conductive vias 16 as described above, and the same effects as described above are exhibited.

また、図8は、熱伝導性のビア16の他の形状を示す概略断面図である。図8では、熱伝導性のビア16を、上記図1のものに比べて大口径としたものである。このように、熱伝導性のビア16のサイズや数については、特に限定されるものではない。   FIG. 8 is a schematic cross-sectional view showing another shape of the thermally conductive via 16. In FIG. 8, the heat conductive via 16 has a larger diameter than that of FIG. Thus, the size and number of the thermally conductive vias 16 are not particularly limited.

(第2実施形態)
図9は、本発明の第2実施形態に係る半導体装置110の概略断面構成を示す図である。ここでは、上記第1実施形態との相違点を中心に述べることとする。
(Second Embodiment)
FIG. 9 is a diagram showing a schematic cross-sectional configuration of a semiconductor device 110 according to the second embodiment of the present invention. Here, the difference from the first embodiment will be mainly described.

上記第1実施形態と同様に、放熱層15は、一端が凹部11側に位置し、他端側が多層基板10の周辺部に延びる配線形状とされているが、本実施形態では、当該放熱層15の他端は、多層基板10の側面から外方に突出している。つまり、放熱層15のうち半導体チップ20の側面23と熱的に接続された一端とは反対側の部位である他端が、多層基板10の表面から外方に突出している。   As in the first embodiment, the heat dissipation layer 15 has a wiring shape with one end positioned on the concave portion 11 side and the other end extending to the peripheral portion of the multilayer substrate 10. The other end of 15 protrudes outward from the side surface of the multilayer substrate 10. In other words, the other end of the heat dissipation layer 15 that is opposite to the one end thermally connected to the side surface 23 of the semiconductor chip 20 protrudes outward from the surface of the multilayer substrate 10.

本実施形態によれば、放熱層15の他端が、多層基板10の外部に突出している部位となっているため、その分、放熱層15の外部への放熱面積が大きくなる。そのため、半導体チップ20の側面23からの熱の放熱効率が大きくなり、放熱性の向上が図れるという利点がある。   According to this embodiment, since the other end of the heat dissipation layer 15 is a portion protruding to the outside of the multilayer substrate 10, the heat dissipation area to the outside of the heat dissipation layer 15 is increased accordingly. Therefore, there is an advantage that the heat dissipation efficiency of the heat from the side surface 23 of the semiconductor chip 20 is increased, and the heat dissipation can be improved.

さらに、図10は、本第2実施形態に係る半導体装置110に別の放熱部材31を取り付けた例を示す概略断面図である。図10では、多層基板10の側面から突出する放熱層15の他端に対して、さらに別の放熱部材31を熱的に接触させたものである。この別の放熱部材31は、放熱部材30と同様の板材であり、図示しない締結手段などにより固定される。これにより、放熱層15の他端から別の放熱部材31に放熱がなされ、放熱性の向上が期待できる。   FIG. 10 is a schematic cross-sectional view showing an example in which another heat dissipation member 31 is attached to the semiconductor device 110 according to the second embodiment. In FIG. 10, another heat radiating member 31 is brought into thermal contact with the other end of the heat radiating layer 15 protruding from the side surface of the multilayer substrate 10. The other heat radiating member 31 is a plate material similar to the heat radiating member 30, and is fixed by a fastening means (not shown). As a result, heat is radiated from the other end of the heat radiating layer 15 to another heat radiating member 31, and an improvement in heat dissipation can be expected.

(第3実施形態)
図11(a)は、本発明の第3実施形態に係る半導体装置120の概略断面構成を示す図であり、図11(b)は、同半導体装置120中のバネ部材50の単体構成を示す外観図である。ここでは、上記第1実施形態との相違点を中心に述べることとする。
(Third embodiment)
FIG. 11A is a diagram illustrating a schematic cross-sectional configuration of the semiconductor device 120 according to the third embodiment of the present invention, and FIG. 11B illustrates a single configuration of the spring member 50 in the semiconductor device 120. It is an external view. Here, the difference from the first embodiment will be mainly described.

図11に示されるように、本実施形態の半導体装置120は、上記第1実施形態の半導体装置において、放熱層15と半導体チップ20の側面23との間に、バネ部材50を介在させている。このバネ部材50は、当該両部15、23が隔てられる方向、つまり図11(a)中の左右方向にバネ弾性を有するものである。   As shown in FIG. 11, in the semiconductor device 120 of the present embodiment, the spring member 50 is interposed between the heat dissipation layer 15 and the side surface 23 of the semiconductor chip 20 in the semiconductor device of the first embodiment. . The spring member 50 has spring elasticity in the direction in which both the parts 15 and 23 are separated, that is, in the left-right direction in FIG.

ここでは、バネ部材50は、当該隔てられる方向に凹凸を持つ波形の板状をなしており、CuやAlなどの熱伝導の高い金属よりなる。そして、放熱層15と半導体チップ20の側面23とは、同方向に発揮されるバネ弾性によりバネ部材50を介して接触し、熱的に接続されている。   Here, the spring member 50 has a corrugated plate shape with projections and depressions in the separated direction, and is made of a metal having high thermal conductivity such as Cu or Al. The heat dissipation layer 15 and the side surface 23 of the semiconductor chip 20 are in thermal contact with each other via the spring member 50 due to spring elasticity exerted in the same direction.

本構成は、バネ部材50を凹部11内に配置した後で、このバネ部材50を凹部11の側面に押しつけるように、半導体チップ20を凹部11に挿入することにより、形成される。本実施形態によれば、バネ部材50のバネ弾性によって放熱層15と半導体チップ20の側面23との接触性が向上し、当該両部15および23の熱的接続を確保しやすくなる。   This configuration is formed by inserting the semiconductor chip 20 into the recess 11 so as to press the spring member 50 against the side surface of the recess 11 after the spring member 50 is disposed in the recess 11. According to the present embodiment, the spring elasticity of the spring member 50 improves the contact between the heat dissipation layer 15 and the side surface 23 of the semiconductor chip 20, and it is easy to ensure the thermal connection between the both parts 15 and 23.

また、本実施形態では、さらに、凹部11内にて放熱層15と半導体チップ20の側面23との間には、バネ部材50を封止するように熱伝導性を有する樹脂60が充填されており、さらなる放熱性の向上が期待できる。この樹脂60は、たとえばアルミナフィラー入りエポキシ樹脂などであり、半導体チップ20を凹部11に挿入した後、半導体チップ20と凹部11の側面との間に注入することで形成される。   Further, in the present embodiment, a resin 60 having thermal conductivity is filled between the heat radiation layer 15 and the side surface 23 of the semiconductor chip 20 in the recess 11 so as to seal the spring member 50. Therefore, further improvement in heat dissipation can be expected. This resin 60 is, for example, an epoxy resin containing an alumina filler, and is formed by inserting the semiconductor chip 20 into the recess 11 and then injecting it between the semiconductor chip 20 and the side surface of the recess 11.

(第4実施形態)
図12(a)は、本発明の第4実施形態に係る半導体装置130の概略断面構成を示す図であり、図12(b)は、同半導体装置130中のバネ部材50の単体構成を示す外観図である。本実施形態は、上記第3実施形態と同様に、バネ部材50を有するものであり、このバネ部材50の形状を変更したものである。
(Fourth embodiment)
FIG. 12A is a diagram showing a schematic cross-sectional configuration of a semiconductor device 130 according to the fourth embodiment of the present invention, and FIG. 12B shows a single configuration of the spring member 50 in the semiconductor device 130. It is an external view. The present embodiment has a spring member 50 as in the third embodiment, and the shape of the spring member 50 is changed.

本実施形態のバネ部材50は、図12に示されるように、板バネ形状をなすものである。この場合も、バネ部材50の配置方法は、上記第3実施形態と同様であり、バネ部材50による効果も同様である。   The spring member 50 of the present embodiment has a leaf spring shape as shown in FIG. Also in this case, the arrangement method of the spring member 50 is the same as that of the third embodiment, and the effect of the spring member 50 is also the same.

(第5実施形態)
図13(a)は、本発明の第5実施形態に係る半導体装置140の概略断面構成を示す図であり、図13(b)は、バネ部材50を半導体チップ20に取り付けた状態を示す外観図である。
(Fifth embodiment)
FIG. 13A is a view showing a schematic cross-sectional configuration of a semiconductor device 140 according to the fifth embodiment of the present invention, and FIG. 13B is an external view showing a state in which the spring member 50 is attached to the semiconductor chip 20. FIG.

本実施形態は、上記第4実施形態のバネ部材50を、あらかじめ半導体チップ20に取り付けた後に、半導体チップ20を凹部11に挿入することにより、製造される。そして、このバネ部材50による効果は、上記同様である。   This embodiment is manufactured by inserting the semiconductor chip 20 into the recess 11 after attaching the spring member 50 of the fourth embodiment to the semiconductor chip 20 in advance. The effect of the spring member 50 is the same as described above.

(第6実施形態)
図14は、本発明の第6実施形態に係る半導体装置150の概略断面構成を示す図である。ここでは、上記第1実施形態との相違点を中心に述べることとするが、本実施形態は、上記各実施形態に適用可能なものである。
(Sixth embodiment)
FIG. 14 is a diagram showing a schematic cross-sectional configuration of a semiconductor device 150 according to the sixth embodiment of the present invention. Here, the differences from the first embodiment will be mainly described, but the present embodiment is applicable to each of the above embodiments.

図14に示されるように、さらに、多層基板10の内部にて、半導体チップ20の他方の板面22に正対して、放熱層15が設けられており、この放熱層15は熱伝導性のビア16を介して、半導体チップ20の他方の板面22に接して熱的に接続されている。   As shown in FIG. 14, a heat dissipation layer 15 is further provided inside the multilayer substrate 10 so as to face the other plate surface 22 of the semiconductor chip 20, and the heat dissipation layer 15 is thermally conductive. The other plate surface 22 of the semiconductor chip 20 is contacted and thermally connected via the via 16.

そして、当該放熱層15は、上記実施形態に示した放熱層15と同様に、はんだボール40に熱的に接続されている。本実施形態によれば、上記各実施形態における放熱層15の効果に加えて、さらに、半導体チップ20の他方の板面22からも放熱層15による放熱が可能となる。   The heat dissipation layer 15 is thermally connected to the solder balls 40 in the same manner as the heat dissipation layer 15 shown in the above embodiment. According to the present embodiment, in addition to the effects of the heat dissipation layer 15 in each of the embodiments described above, heat dissipation by the heat dissipation layer 15 is also possible from the other plate surface 22 of the semiconductor chip 20.

(他の実施形態)
なお、上記各実施形態では、半導体チップ20を収納した凹部11を、上記1番目の樹脂層1で閉塞しているが、この1番目の樹脂層1を省略して、半導体チップ20と放熱部材30とをダイボンド材などを介して直接接触させるようにしてもよい。
(Other embodiments)
In each of the above embodiments, the recess 11 in which the semiconductor chip 20 is housed is closed with the first resin layer 1. However, the first resin layer 1 is omitted, and the semiconductor chip 20 and the heat dissipation member are omitted. 30 may be brought into direct contact with a die bonding material or the like.

また、上記各実施形態においては、熱伝導性のビア16により各層間の放熱層15が接続され、さらに放熱部材30にまで接続されて放熱性の向上が図られているが、この熱伝導性のビア16が無い構成であってもよい。   In each of the above embodiments, the heat dissipation layer 15 is connected by the heat conductive via 16 and further connected to the heat dissipation member 30 to improve heat dissipation. The configuration without the via 16 may be used.

また、上記各実施形態のように、放熱層15が、はんだボール40に熱的に接続されていれば、放熱性の点で好ましいが、特に接続されていなくてもよい。つまり、放熱層15に接続されるはんだボール40は無い構成であってもよい。   In addition, as in each of the embodiments described above, it is preferable in terms of heat dissipation if the heat dissipation layer 15 is thermally connected to the solder balls 40, but it may not be particularly connected. That is, the structure without the solder balls 40 connected to the heat dissipation layer 15 may be used.

また、上記各実施形態では、放熱層15は、隣り合う樹脂層1〜8の層間に設けるものであったが、それ以外にも、樹脂成形などにより、個々の樹脂層1〜8の内部に放熱層が埋め込まれたものであってもよい。   Moreover, in each said embodiment, although the thermal radiation layer 15 was provided between the layers of the adjacent resin layers 1-8, besides that, by resin molding etc., inside each resin layer 1-8. The heat dissipation layer may be embedded.

(a)は、本発明の第1実施形態に係る半導体装置の概略断面図であり、(b)は同半導体装置における放熱層の平面パターンを示す概略平面図である。(A) is a schematic sectional drawing of the semiconductor device which concerns on 1st Embodiment of this invention, (b) is a schematic plan view which shows the planar pattern of the thermal radiation layer in the semiconductor device. 第1実施形態の半導体装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the semiconductor device of 1st Embodiment. 図2に続く製造方法の工程図である。It is process drawing of the manufacturing method following FIG. 放熱層が半導体チップによって押し倒された部分を示す拡大図である。It is an enlarged view which shows the part by which the thermal radiation layer was pushed down by the semiconductor chip. 第1実施形態に係る半導体装置を外部の部材に取り付けた一具体例を示す概略断面図である。It is a schematic sectional drawing which shows one specific example which attached the semiconductor device which concerns on 1st Embodiment to the external member. 第1実施形態における放熱層の他の平面形状を示す概略平面図である。It is a schematic plan view which shows the other planar shape of the thermal radiation layer in 1st Embodiment. 第1実施形態における放熱層の他の平面形状を示す概略平面図である。It is a schematic plan view which shows the other planar shape of the thermal radiation layer in 1st Embodiment. 第1実施形態における熱伝導性のビアの他の形状を示す概略断面図である。It is a schematic sectional drawing which shows the other shape of the heat conductive via in 1st Embodiment. 本発明の第2実施形態に係る半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device which concerns on 2nd Embodiment of this invention. 第2実施形態に係る半導体装置に別の放熱部材を取り付けた例を示す概略断面図である。It is a schematic sectional drawing which shows the example which attached another heat radiating member to the semiconductor device which concerns on 2nd Embodiment. (a)は、本発明の第3実施形態に係る半導体装置の概略断面図であり、(b)は、同半導体装置中のバネ部材の単体構成を示す外観図である。(A) is a schematic sectional drawing of the semiconductor device which concerns on 3rd Embodiment of this invention, (b) is an external view which shows the single-piece | unit structure of the spring member in the semiconductor device. (a)は、本発明の第4実施形態に係る半導体装置の概略断面図であり、(b)は、同半導体装置中のバネ部材の単体構成を示す外観図である。(A) is a schematic sectional drawing of the semiconductor device which concerns on 4th Embodiment of this invention, (b) is an external view which shows the single-piece | unit structure of the spring member in the semiconductor device. (a)は、本発明の第5実施形態に係る半導体装置の概略断面図であり、(b)は、バネ部材を半導体チップに取り付けた状態を示す外観図である。(A) is a schematic sectional drawing of the semiconductor device which concerns on 5th Embodiment of this invention, (b) is an external view which shows the state which attached the spring member to the semiconductor chip. 本発明の第6実施形態に係る半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device which concerns on 6th Embodiment of this invention.

符号の説明Explanation of symbols

1〜8 樹脂層
10 多層基板
11 凹部
15 放熱層
16 熱伝導性のビア
20 半導体チップ
21 半導体チップの一方の板面
22 半導体チップの他方の板面
23 半導体チップの側面
30 放熱部材
40 はんだボール
50 バネ部材
1-8 Resin layer 10 Multilayer substrate 11 Recess 15 Heat dissipation layer 16 Thermally conductive via 20 Semiconductor chip 21 One plate surface 22 of semiconductor chip 23 Other plate surface 23 of semiconductor chip Side surface 30 of semiconductor chip Heat dissipation member 40 Solder ball 50 Spring member

Claims (7)

樹脂よりなる複数の樹脂層(1〜8)が積層されてなる多層基板(10)と、
前記多層基板(10)の内部に設けられた板状をなす半導体チップ(20)とを備え、
前記半導体チップ(20)の表面のうち前記半導体チップ(20)の厚さ方向と直交する面である一方の板面(21)には、前記半導体チップ(20)の熱を放熱する放熱部材(30)が熱的に接続されており、
前記多層基板(10)の内部には、前記半導体チップ(20)の表面のうち前記半導体チップ(20)の厚さ方向に延びる面である側面(23)に熱的に接続された放熱層(15)が設けられていることを特徴とする半導体装置。
A multilayer substrate (10) in which a plurality of resin layers (1-8) made of resin are laminated;
A semiconductor chip (20) having a plate shape provided inside the multilayer substrate (10),
Of one surface of the semiconductor chip (20), which is a surface orthogonal to the thickness direction of the semiconductor chip (20), a heat radiating member that radiates heat from the semiconductor chip (20) is provided on one plate surface (21). 30) are thermally connected,
In the multilayer substrate (10), a heat dissipation layer (thermally connected to a side surface (23) which is a surface extending in the thickness direction of the semiconductor chip (20) of the surface of the semiconductor chip (20)). 15). A semiconductor device comprising:
前記半導体チップ(20)は、その厚さ方向が、前記多層基板(10)における前記樹脂層(1〜8)の積層方向に沿った状態にて配置されており、
前記多層基板(10)には、前記樹脂層(1〜8)の積層方向に沿って凹んだ凹部(11)が設けられており、
この凹部(11)に前記半導体チップ(20)が収納されて、前記凹部(11)の側面と前記半導体チップ(20)の側面(23)とを対向させた状態とされており、
前記放熱層(15)は、複数の前記樹脂層(1〜8)の間に設けられるとともに、前記凹部(11)を構成する前記樹脂層(1〜4)の間から前記凹部(11)の側面に露出するものであり、
この放熱層(15)の露出部と前記半導体チップ(20)の側面(23)とが前記凹部(11)内にて接触し、熱的に接続されていることを特徴とする請求項1に記載の半導体装置。
The semiconductor chip (20) is arranged in a state in which the thickness direction is along the lamination direction of the resin layers (1 to 8) in the multilayer substrate (10),
The multilayer substrate (10) is provided with a recess (11) that is recessed along the stacking direction of the resin layers (1-8),
The semiconductor chip (20) is housed in the recess (11), and the side surface of the recess (11) and the side surface (23) of the semiconductor chip (20) are opposed to each other.
The heat dissipation layer (15) is provided between the plurality of resin layers (1 to 8) and between the resin layers (1 to 4) constituting the recess (11). Is exposed on the side,
The exposed portion of the heat dissipation layer (15) and the side surface (23) of the semiconductor chip (20) are in contact with each other in the recess (11) and are thermally connected. The semiconductor device described.
個々の前記樹脂層(1〜8)には、その厚さ方向に貫通する熱伝導性のビア(16)が設けられており、
複数の前記樹脂層(1〜8)の間に設けられている前記放熱層(15)は、前記ビア(16)を介して前記樹脂層(1〜8)の積層方向にて互いに熱的に接続されているとともに、前記放熱部材(30)に熱的に接続されていることを特徴とする請求項2に記載の半導体装置。
Each of the resin layers (1 to 8) is provided with a thermally conductive via (16) penetrating in the thickness direction,
The heat-dissipating layer (15) provided between the plurality of resin layers (1-8) is thermally coupled to each other in the stacking direction of the resin layers (1-8) via the vias (16). The semiconductor device according to claim 2, wherein the semiconductor device is connected and thermally connected to the heat radiating member.
前記多層基板(10)には、外部と接続するためのはんだよりなるはんだボール(40)が設けられており、
前記放熱層(15)は前記ビア(16)を介して前記はんだボール(40)にも熱的に接続されていることを特徴とする請求項3に記載の半導体装置。
The multilayer substrate (10) is provided with solder balls (40) made of solder for connecting to the outside,
The semiconductor device according to claim 3, wherein the heat dissipation layer (15) is also thermally connected to the solder ball (40) through the via (16).
前記放熱層(15)は、前記多層基板(10)の表面から外方に突出している部位を有することを特徴とする請求項1ないし4のいずれか1つに記載の半導体装置。   The semiconductor device according to any one of claims 1 to 4, wherein the heat dissipation layer (15) has a portion protruding outward from a surface of the multilayer substrate (10). 前記放熱層(15)と前記半導体チップ(20)の側面(23)との間には、当該両部(15、23)が隔てられる方向にバネ弾性を有するバネ部材(50)が介在しており、当該両部(15、23)は、前記バネ部材(50)を介して熱的に接続されていることを特徴とする請求項1ないし5のいずれか1つに記載の半導体装置。   Between the heat dissipation layer (15) and the side surface (23) of the semiconductor chip (20), a spring member (50) having spring elasticity is interposed in a direction in which both the parts (15, 23) are separated. The semiconductor device according to claim 1, wherein both the parts (15, 23) are thermally connected via the spring member (50). さらに、前記放熱層(15)は、前記多層基板(10)の内部にて、前記半導体チップ(20)の表面のうち前記一方の板面(21)とは反対側の他方の板面(22)にも熱的に接続されていることを特徴とする請求項1ないし6のいずれか1つに記載の半導体装置。   Further, the heat dissipation layer (15) is formed on the other plate surface (22) of the surface of the semiconductor chip (20) opposite to the one plate surface (21) inside the multilayer substrate (10). The semiconductor device according to claim 1, wherein the semiconductor device is also thermally connected.
JP2008238973A 2008-09-18 2008-09-18 Semiconductor device Expired - Fee Related JP4862871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238973A JP4862871B2 (en) 2008-09-18 2008-09-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238973A JP4862871B2 (en) 2008-09-18 2008-09-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2010073851A true JP2010073851A (en) 2010-04-02
JP4862871B2 JP4862871B2 (en) 2012-01-25

Family

ID=42205375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238973A Expired - Fee Related JP4862871B2 (en) 2008-09-18 2008-09-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4862871B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038361A (en) * 2011-08-11 2013-02-21 Fujikura Ltd Component built-in printed board and manufacturing method of the same
CN103096617A (en) * 2011-11-07 2013-05-08 株式会社电装 Electrically conductive material and electronic device using same
JP2013211480A (en) * 2012-03-30 2013-10-10 Fujikura Ltd Component built-in substrate
US20130308278A1 (en) * 2012-05-21 2013-11-21 International Business Machines Corporation Achieving power supply and heat dissipation (cooling) in three-dimensional multilayer package
WO2014171403A1 (en) * 2013-04-17 2014-10-23 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
JP2014220428A (en) * 2013-05-09 2014-11-20 株式会社デンソー Multilayer wiring board and manufacturing method therefor
JP2016219798A (en) * 2015-05-15 2016-12-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Electronic component package and package-on-package structure
US10109588B2 (en) 2015-05-15 2018-10-23 Samsung Electro-Mechanics Co., Ltd. Electronic component package and package-on-package structure including the same
CN109085898A (en) * 2018-09-30 2018-12-25 贵州大学 A kind of antidetonation dust protected computer housing
KR20200028216A (en) * 2018-09-06 2020-03-16 삼성전자주식회사 Fan-out semiconductor package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289120A (en) * 2002-01-24 2003-10-10 Nec Electronics Corp Flip-chip semiconductor device and method for manufacturing the same
JP2008147596A (en) * 2006-12-13 2008-06-26 Internatl Business Mach Corp <Ibm> Semiconductor package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289120A (en) * 2002-01-24 2003-10-10 Nec Electronics Corp Flip-chip semiconductor device and method for manufacturing the same
JP2008147596A (en) * 2006-12-13 2008-06-26 Internatl Business Mach Corp <Ibm> Semiconductor package

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038361A (en) * 2011-08-11 2013-02-21 Fujikura Ltd Component built-in printed board and manufacturing method of the same
CN103096617A (en) * 2011-11-07 2013-05-08 株式会社电装 Electrically conductive material and electronic device using same
JP2013211480A (en) * 2012-03-30 2013-10-10 Fujikura Ltd Component built-in substrate
US9330213B2 (en) 2012-05-21 2016-05-03 International Business Machines Corporation Achieving power supply and heat dissipation (cooling) in three-dimensional multilayer package
US20130308278A1 (en) * 2012-05-21 2013-11-21 International Business Machines Corporation Achieving power supply and heat dissipation (cooling) in three-dimensional multilayer package
US10169504B2 (en) 2012-05-21 2019-01-01 International Business Machines Corporation Achieving power supply and heat dissipation (cooling) in three-dimensional multilayer package
WO2014171403A1 (en) * 2013-04-17 2014-10-23 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
JP2014220428A (en) * 2013-05-09 2014-11-20 株式会社デンソー Multilayer wiring board and manufacturing method therefor
JP2016219798A (en) * 2015-05-15 2016-12-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Electronic component package and package-on-package structure
US10109588B2 (en) 2015-05-15 2018-10-23 Samsung Electro-Mechanics Co., Ltd. Electronic component package and package-on-package structure including the same
KR20200028216A (en) * 2018-09-06 2020-03-16 삼성전자주식회사 Fan-out semiconductor package
US10748833B2 (en) 2018-09-06 2020-08-18 Samsung Electronics Co., Ltd. Fan-out semiconductor package
KR102164795B1 (en) * 2018-09-06 2020-10-13 삼성전자주식회사 Fan-out semiconductor package
CN109085898A (en) * 2018-09-30 2018-12-25 贵州大学 A kind of antidetonation dust protected computer housing

Also Published As

Publication number Publication date
JP4862871B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4862871B2 (en) Semiconductor device
US20140251658A1 (en) Thermally enhanced wiring board with built-in heat sink and build-up circuitry
JP5436614B2 (en) Package structure and manufacturing method thereof
JP2010080572A (en) Electronic equipment
JP5100878B1 (en) Component built-in board mounting body, manufacturing method thereof, and component built-in board
JP2007158279A (en) Semiconductor device and electronic controller using the same
US20140048313A1 (en) Thermally enhanced wiring board with thermal pad and electrical post
CN106255308B (en) Printed circuit board and electronic device
US9271388B2 (en) Interposer and package on package structure
TW201507556A (en) Thermally enhanced wiring board with thermal pad and electrical post
JP5760260B2 (en) Printed circuit board with built-in component and manufacturing method thereof
KR101139084B1 (en) Multilayer printed circuit board and method of making same
JP5462450B2 (en) Component built-in printed wiring board and method for manufacturing component built-in printed wiring board
JP2009135391A (en) Electronic device and method of manufacturing the same
CN112040629B (en) Circuit board and manufacturing method thereof
KR100919539B1 (en) Heat-radiating substrate and manufacturing method thereof
JP5884611B2 (en) Electronic equipment
WO2014181509A1 (en) Multilayer substrate and electronic device using same, and method for manufacturing electronic device
JP3611957B2 (en) Stacked package
CN116669286A (en) Flexible circuit board structure capable of conducting heat
JP2002043510A (en) Semiconductor power module and its manufacturing method
JP5062583B2 (en) Package for electronic components
JP2017085073A (en) Printed circuit board and manufacturing method of the same
JP5146016B2 (en) Electronic device and manufacturing method thereof
KR101027984B1 (en) PBA Having Heat Sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees