JP2010073742A - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
JP2010073742A
JP2010073742A JP2008236796A JP2008236796A JP2010073742A JP 2010073742 A JP2010073742 A JP 2010073742A JP 2008236796 A JP2008236796 A JP 2008236796A JP 2008236796 A JP2008236796 A JP 2008236796A JP 2010073742 A JP2010073742 A JP 2010073742A
Authority
JP
Japan
Prior art keywords
inorganic insulating
film
insulating film
metal substrate
intermediate film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008236796A
Other languages
Japanese (ja)
Inventor
Naoteru Kinoshita
直輝 木下
Masahide Muto
正英 武藤
Yoshiyuki Uchinoya
良幸 内野々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008236796A priority Critical patent/JP2010073742A/en
Publication of JP2010073742A publication Critical patent/JP2010073742A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit board that is prevented from causing a short circuit or disconnection while maintaining high heat dissipation. <P>SOLUTION: The circuit board is formed by forming an inorganic insulating film 2 formed of an inorganic material on a metal substrate 1 formed of a metal material and also providing a circuit 3 on the inorganic insulating film 2. An intermediate film 4 for relaxing a difference in coefficient of linear expansion between the metal substrate 1 and the inorganic insulating film 2 is formed between the metal substrate 1 and the inorganic insulating film 2. The high dissipation is maintained by the inorganic insulating film 2 having high heat conductivity, and a difference in coefficient of linear expansion between the metal substrate 1 and the inorganic insulating film 2 is alleviated by the intermediate layer 4 to prevent the inorganic insulating film 2 from being cracked due to a thermal shock. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板が金属材料から形成された回路基板、特に三次元立体構造を有する立体回路基板に関するものである。   The present invention relates to a circuit board in which the substrate is formed of a metal material, and more particularly to a three-dimensional circuit board having a three-dimensional structure.

基板の表面に回路を設けた回路基板として、例えば特許文献1に示す方法で製造したものがある。このものは、絶縁性の基板の表面に導電膜を形成し、回路を形成する部分と回路を形成しない部分との境界領域に沿って導電膜にレーザ等の電磁波を照射して、この境界領域の導電膜を除去した後、回路形成部に残る導電膜に電気めっきを施して回路を形成することによって、回路基板を製造するようにしたものである。   As a circuit board in which a circuit is provided on the surface of the board, for example, there is one manufactured by the method shown in Patent Document 1. In this case, a conductive film is formed on the surface of an insulating substrate, and the conductive film is irradiated with an electromagnetic wave such as a laser along a boundary region between a portion where a circuit is formed and a portion where a circuit is not formed. After removing the conductive film, the circuit board is manufactured by electroplating the conductive film remaining in the circuit formation portion to form a circuit.

上記の特許文献1のものは、基板として樹脂などの絶縁材料で形成したものを用いるようにしているが、耐熱性や放熱性を向上させるために、特許文献2のように基板として金属材料を用いた金属基板の回路板が使用されつつある。このように金属製の基板を用いる場合、金属基板と回路との間の絶縁性を確保するために、特許文献2にも記載されているように、金属基板の表面を絶縁膜で被覆し、この絶縁膜の上に回路を形成する必要がある。   Although the thing of said patent document 1 uses what was formed with insulating materials, such as resin, as a board | substrate, in order to improve heat resistance and heat dissipation, metal material as a board | substrate like patent document 2 is used. The circuit board of the used metal substrate is being used. When using a metal substrate as described above, in order to ensure insulation between the metal substrate and the circuit, as described in Patent Document 2, the surface of the metal substrate is covered with an insulating film, It is necessary to form a circuit on this insulating film.

図7は、このように金属製の基板1の表面に絶縁膜2を設け、絶縁膜2の上に回路3を形成した回路基板を製造する方法の一例を示すものである。すなわち、例えば図7(a)のように表面を三次元立体形状に形成された金属基板1を用い、この金属基板1の表面の全面に図7(b)のように絶縁膜2を形成する。次に絶縁膜2の上から金属基板1の表面の全面に図7(c)のようにスパッタ等で銅などの導電膜10を形成する。次いで回路を形成する回路形成部12と、回路を形成しない回路非形成部13との境界に沿ってレーザ等を照射して、図7(d)のようにレーザ等を照射した部分の導電膜10を除去した後、回路形成部12に残る導電膜10に通電して、回路形成部12の導電膜10の上に電気銅めっきなどを施して図7(e)のように回路3を形成する。そして軽くエッチングして回路非形成部13の導電膜10を除去することによって、図7(f)のように絶縁膜2を介して金属基板1の表面に回路3を設けた回路基板Aを得ることができるものである。   FIG. 7 shows an example of a method of manufacturing a circuit board in which the insulating film 2 is provided on the surface of the metal substrate 1 and the circuit 3 is formed on the insulating film 2. That is, for example, a metal substrate 1 having a three-dimensional surface formed as shown in FIG. 7A is used, and an insulating film 2 is formed on the entire surface of the metal substrate 1 as shown in FIG. . Next, a conductive film 10 such as copper is formed on the entire surface of the metal substrate 1 from above the insulating film 2 by sputtering or the like as shown in FIG. Next, a portion of the conductive film irradiated with laser or the like as shown in FIG. 7D is irradiated along the boundary between the circuit forming portion 12 that forms a circuit and the circuit non-forming portion 13 that does not form a circuit. After removing 10, the conductive film 10 remaining in the circuit forming portion 12 is energized, and electrolytic copper plating or the like is performed on the conductive film 10 of the circuit forming portion 12 to form the circuit 3 as shown in FIG. To do. Then, light etching is performed to remove the conductive film 10 in the circuit non-forming portion 13 to obtain a circuit board A in which the circuit 3 is provided on the surface of the metal substrate 1 through the insulating film 2 as shown in FIG. It is something that can be done.

そして特許文献2では、絶縁膜2を金属基板1の側の第1の絶縁層と回路の側の第2の絶縁層から形成し、第1の絶縁層を低膨張性のポリイミド樹脂、第2の絶縁層を熱可塑性のポリイミド樹脂でそれぞれ形成することによって、反りの発生を低減するなどしている。しかし、金属基板1の表面を被覆する絶縁膜2をポリイミド樹脂のような有機樹脂で形成すると、金属基板1からの放熱性が熱伝導率の低い有機樹脂の絶縁膜2で阻害され、金属基板1を用いることによる特性を十分に活かすことができなくなるおそれがある。   In Patent Document 2, the insulating film 2 is formed of a first insulating layer on the metal substrate 1 side and a second insulating layer on the circuit side, and the first insulating layer is a low-expansion polyimide resin, second Each of the insulating layers is formed of a thermoplastic polyimide resin to reduce the occurrence of warp. However, if the insulating film 2 that covers the surface of the metal substrate 1 is formed of an organic resin such as polyimide resin, the heat dissipation from the metal substrate 1 is hindered by the organic resin insulating film 2 having a low thermal conductivity. There is a possibility that the characteristics of using 1 cannot be fully utilized.

そこで、絶縁膜2を熱伝導性の高い材料で形成することによって、金属基板1からの放熱性が損なわれないようにすることが行なわれている(特許文献3等参照)。そしてこのような熱伝導性の高い材料としては、Al、AlN、SiO、SiN、SiCなどの無機材料を用いるのが一般的である。
特許第3153682号公報 特開2005−353773号公報 特開2008−28255号公報
Therefore, the insulating film 2 is formed of a material having high thermal conductivity so that the heat dissipation from the metal substrate 1 is not impaired (see Patent Document 3). In general, an inorganic material such as Al 2 O 3 , AlN, SiO 2 , SiN, or SiC is used as such a material having high thermal conductivity.
Japanese Patent No. 3153682 JP 2005-353773 A JP 2008-28255 A

ところが、このように無機材料で形成される無機絶縁膜2は線膨張係数が金属基板1と比較して著しく小さく、また脆い材質であるのが一般的である。このため、熱が作用すると金属基板1と無機絶縁膜2との線膨張係数の差で、無機絶縁膜2にクラックが発生し易いものであり、熱衝撃に弱いという問題を有するものであった。すなわち、例えば回路3を形成する際の熱衝撃で無機絶縁膜2にクラックが発生すると、クラックの箇所で回路3が金属基板1と短絡することになり、また回路形成後の熱衝撃で無機絶縁膜2にクラックが発生すると、クラックの箇所で回路3が断線するという問題を有するものであった。   However, the inorganic insulating film 2 formed of an inorganic material as described above is generally made of a brittle material whose linear expansion coefficient is significantly smaller than that of the metal substrate 1. For this reason, when heat acts, the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 is likely to cause cracks in the inorganic insulating film 2 and has a problem that it is vulnerable to thermal shock. . That is, for example, when a crack is generated in the inorganic insulating film 2 due to a thermal shock when forming the circuit 3, the circuit 3 is short-circuited with the metal substrate 1 at the location of the crack. When a crack is generated in the film 2, the circuit 3 is disconnected at the crack.

本発明は上記の点に鑑みてなされたものであり、放熱性を高く維持しつつ、回路に短絡や断線が発生することを防ぐことができる回路基板を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a circuit board capable of preventing the occurrence of short circuit or disconnection in a circuit while maintaining high heat dissipation. .

本発明の請求項1に係る回路基板は、金属材料で形成された金属基板1の上に無機材料で形成された無機絶縁膜2を設けると共に無機絶縁膜2の上に回路3を設けて形成される回路基板であって、金属基板1と無機絶縁膜2との間に、金属基板1と無機絶縁膜2の線膨張係数の差を緩和するための中間膜4を設けて成ることを特徴とするものである。   A circuit board according to claim 1 of the present invention is formed by providing an inorganic insulating film 2 formed of an inorganic material on a metal substrate 1 formed of a metal material and providing a circuit 3 on the inorganic insulating film 2. An intermediate film 4 for reducing a difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 is provided between the metal substrate 1 and the inorganic insulating film 2. It is what.

この発明によれば、高い熱伝導率を有する無機絶縁膜2によって、高い放熱性を維持することができるものであり、しかも中間膜4によって金属基板1と無機絶縁膜2の線膨張係数の差が緩和され、無機絶縁膜2に熱衝撃でクラックが発生することを防止して、回路3に短絡や断線が発生することを防ぐことができるものである。   According to the present invention, high heat dissipation can be maintained by the inorganic insulating film 2 having high thermal conductivity, and the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 by the intermediate film 4. Is mitigated, and it is possible to prevent the inorganic insulating film 2 from being cracked by a thermal shock and to prevent the circuit 3 from being short-circuited or disconnected.

また請求項2の発明は、請求項1において、中間膜4は、金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の間の線膨張係数を有する材料で形成されていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the intermediate film 4 is formed of a material having a linear expansion coefficient between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2. It is a feature.

この発明によれば、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果を高く得ることができ、無機絶縁膜2に熱衝撃でクラックが発生することを防止して、回路3に短絡や断線が発生することを防ぐことができるものである。   According to the present invention, it is possible to obtain a high effect of reducing the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4 and prevent the inorganic insulating film 2 from being cracked by thermal shock. Thus, it is possible to prevent a short circuit or disconnection from occurring in the circuit 3.

また請求項3の発明は、請求項1又は2において、無機絶縁膜2と回路3との間に、無機絶縁膜2の線膨張係数と回路3の線膨張係数の間の線膨張係数を有する材料で形成される第2中間膜5を設けて成ることを特徴とするものである。   The invention of claim 3 has a linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 between the linear insulating coefficient of the inorganic insulating film 2 and the linear expansion coefficient of the circuit 3 in claim 1 or 2. The second intermediate film 5 made of a material is provided.

この発明によれば、無機絶縁膜2と回路3の線膨張係数の差を第2中間膜5で緩和することができ、無機絶縁膜2に熱衝撃でクラックが発生することを防止して、回路3に断線等が生じることを防ぐことができるものである。   According to the present invention, the difference in the linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 can be relaxed by the second intermediate film 5, and the inorganic insulating film 2 is prevented from being cracked by thermal shock, It is possible to prevent the circuit 3 from being disconnected or the like.

また請求項4の発明は、請求項2において、金属基板1と中間膜4との間の、金属基板1の側で金属基板1を形成する材料の混合比率が高く、中間膜4の側で中間膜4を形成する材料の混合比率が高くなるように比率を変化させて、金属基板1を形成する材料と中間膜4を形成する材料を混合して形成される緩衝膜6aと、中間膜4と無機絶縁膜2との間の、中間膜4の側で中間膜4を形成する材料の混合比率が高く、無機絶縁膜2の側で無機絶縁膜2を形成する材料の混合比率が高くなるように比率を変化させて、中間膜4を形成する材料と無機絶縁膜2を形成する材料を混合して形成される緩衝膜6bのうち、少なくとも一方を具備して成ることを特徴とするものである。   According to a fourth aspect of the present invention, in the second aspect, the mixing ratio of the material forming the metal substrate 1 on the metal substrate 1 side between the metal substrate 1 and the intermediate film 4 is high, and on the intermediate film 4 side. A buffer film 6a formed by mixing the material forming the metal substrate 1 and the material forming the intermediate film 4 by changing the ratio so that the mixing ratio of the material forming the intermediate film 4 is increased; and the intermediate film 4 and the inorganic insulating film 2 have a high mixing ratio of the material forming the intermediate film 4 on the intermediate film 4 side, and the mixing ratio of the material forming the inorganic insulating film 2 on the inorganic insulating film 2 side is high. The ratio is changed so that at least one of the buffer film 6b formed by mixing the material forming the intermediate film 4 and the material forming the inorganic insulating film 2 is provided. Is.

この発明によれば、緩衝膜6a,6bを設けることによって、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果をより高く得ることができ、無機絶縁膜2に熱衝撃でクラックが発生することを防止する効果をより高く得ることができるものである。   According to the present invention, by providing the buffer films 6a and 6b, the effect of relaxing the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4 can be further increased, and the inorganic insulating film 2 can be obtained. It is possible to obtain a higher effect of preventing cracks from being generated due to thermal shock.

また請求項5の発明は、請求項3において、金属基板1と中間膜と4の間の、金属基板1の側で金属基板1を形成する材料の混合比率が高く、中間膜4の側で中間膜4を形成する材料の混合比率が高くなるように比率を変化させて、金属基板1を形成する材料と中間膜4を形成する材料を混合して形成される緩衝膜6aと、中間膜4と無機絶縁膜2との間の、中間膜4の側で中間膜4を形成する材料の混合比率が高く、無機絶縁膜2の側で無機絶縁膜2を形成する材料の混合比率が高くなるように比率を変化させて、中間膜4を形成する材料と無機絶縁膜2を形成する材料を混合して形成される緩衝膜6bと、無機絶縁膜2と第2中間膜5との間の、無機絶縁膜2の側で無機絶縁膜2を形成する材料の混合比率が高く、第2中間膜5の側で第2中間膜5を形成する材料の混合比率が高くなるように比率を変化させて、無機絶縁膜2を形成する材料と第2中間膜5を形成する材料を混合して形成される緩衝膜6cと、第2中間膜5と回路3との間の、第2中間膜5の側で第2中間膜5を形成する材料の混合比率が高く、回路3の側で回路3を形成する材料の混合比率が高くなるように比率を変化させて、第2中間膜5を形成する材料と回路3を形成する材料を混合して形成される緩衝膜6dのうち、少なくとも一つを具備して成ることを特徴とするものである。   According to a fifth aspect of the present invention, in the third aspect, the mixing ratio of the material forming the metal substrate 1 on the metal substrate 1 side between the metal substrate 1 and the intermediate film 4 is high, and on the intermediate film 4 side. A buffer film 6a formed by mixing the material forming the metal substrate 1 and the material forming the intermediate film 4 by changing the ratio so that the mixing ratio of the material forming the intermediate film 4 is increased; and the intermediate film 4 and the inorganic insulating film 2 have a high mixing ratio of the material forming the intermediate film 4 on the intermediate film 4 side, and the mixing ratio of the material forming the inorganic insulating film 2 on the inorganic insulating film 2 side is high. The ratio is changed so that the buffer film 6b formed by mixing the material forming the intermediate film 4 and the material forming the inorganic insulating film 2, and between the inorganic insulating film 2 and the second intermediate film 5 are mixed. The mixing ratio of the material forming the inorganic insulating film 2 is high on the inorganic insulating film 2 side, and the second intermediate film 5 side A buffer film 6c formed by mixing the material forming the inorganic insulating film 2 and the material forming the second intermediate film 5 by changing the ratio so that the mixing ratio of the material forming the intermediate film 5 is increased; The mixing ratio of the material forming the second intermediate film 5 on the second intermediate film 5 side between the second intermediate film 5 and the circuit 3 is high, and the mixing of the material forming the circuit 3 on the circuit 3 side is high. At least one of the buffer films 6d formed by mixing the material forming the second intermediate film 5 and the material forming the circuit 3 by changing the ratio so that the ratio becomes high is provided. It is characterized by.

この発明によれば、緩衝膜6a,6b,6c,6dを設けることによって、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果や、第2中間膜5による無機絶縁膜2と回路3の線膨張係数の差を緩和する効果をより高く得ることができ、無機絶縁膜2に熱衝撃でクラックが発生したり、回路3に断線等が発生したりすることを防止する効果をより高く得ることができるものである。   According to the present invention, by providing the buffer films 6 a, 6 b, 6 c, 6 d, the effect of relaxing the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4, and the second intermediate film 5 The effect of alleviating the difference between the linear expansion coefficients of the inorganic insulating film 2 and the circuit 3 can be increased, and the inorganic insulating film 2 can be cracked by thermal shock, or the circuit 3 can be disconnected. It is possible to obtain a higher effect of preventing the above.

また請求項6の発明は、請求項1において、中間膜4は、金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料で形成されていることを特徴とするものである。   The invention of claim 6 is characterized in that, in claim 1, the intermediate film 4 is formed of a mixed material of a material forming the metal substrate 1 and a material forming the inorganic insulating film 2. .

この発明によれば、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果を高く得ることができ、無機絶縁膜2に熱衝撃でクラックが発生することを防止して、回路3に短絡や断線が発生することを防ぐことができるものである。しかも中間膜4は無機絶縁膜2よりも熱伝導率が高いものであり、金属基板1による放熱特性をより高く維持することができるものである。   According to the present invention, it is possible to obtain a high effect of reducing the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4 and prevent the inorganic insulating film 2 from being cracked by thermal shock. Thus, it is possible to prevent a short circuit or disconnection from occurring in the circuit 3. Moreover, the intermediate film 4 has a higher thermal conductivity than the inorganic insulating film 2, and can maintain higher heat dissipation characteristics by the metal substrate 1.

また請求項7の発明は、請求項6において、中間膜4を金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料で形成するにあたって、金属基板1の側では金属基板1を形成する材料の混合比率が高く、無機絶縁膜2の側では無機絶縁膜2を形成する材料の比率が高くなるように、混合比率を変化させたことを特徴とするものである。   According to a seventh aspect of the present invention, when the intermediate film 4 is formed of a mixed material of a material forming the metal substrate 1 and a material forming the inorganic insulating film 2 in the sixth aspect, the metal substrate 1 is disposed on the metal substrate 1 side. The mixing ratio is changed so that the mixing ratio of the material forming the material is high and the ratio of the material forming the inorganic insulating film 2 is increased on the inorganic insulating film 2 side.

この発明によれば、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差の緩和を、中間膜4の厚み方向でより効果的に行なうことができ、無機絶縁膜2に熱衝撃でクラックが発生することを防止する効果をより高く得ることができるものである。   According to the present invention, the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4 can be more effectively reduced in the thickness direction of the intermediate film 4, and the inorganic insulating film 2 is heated. It is possible to obtain a higher effect of preventing the occurrence of cracks due to impact.

本発明によれば、高い熱伝導率を有する無機絶縁膜2によって、高い放熱性を維持することができると共に、また中間膜4によって金属基板1と無機絶縁膜2の線膨張係数の差が緩和され、無機絶縁膜2に熱衝撃でクラックが発生することを防止することができるものであり、放熱性を高く維持しつつ、回路3に短絡や断線が発生することを防ぐことができる。   According to the present invention, high heat dissipation can be maintained by the inorganic insulating film 2 having high thermal conductivity, and the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 can be reduced by the intermediate film 4. Thus, it is possible to prevent the inorganic insulating film 2 from being cracked by thermal shock, and it is possible to prevent the circuit 3 from being short-circuited or disconnected while maintaining high heat dissipation.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

基板1は銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)などの金属材料で形成されるものであり、図2(a)に示すように、表面が三次元立体形状に形成されたものを用いることができる。このような三次元構造を有する金属基板1は、鍛造、鋳造、切削、メタルインジェクションモールド(MIM)、プレス等の工法で作製することができる。尚、図2(a)の実施の形態では三次元構造を有する金属基板1を用いるようにしたが、回路3を形成する表面がフラットな均一な厚みの板で形成される金属基板1を用いるようにしてもよい。   The substrate 1 is formed of a metal material such as copper (Cu), aluminum (Al), gold (Au), silver (Ag), and the surface has a three-dimensional shape as shown in FIG. What was formed in can be used. The metal substrate 1 having such a three-dimensional structure can be produced by a method such as forging, casting, cutting, metal injection mold (MIM), or pressing. In the embodiment of FIG. 2A, the metal substrate 1 having a three-dimensional structure is used. However, the metal substrate 1 having a flat and uniform thickness on the surface on which the circuit 3 is formed is used. You may do it.

そして、金属基板1の上に無機絶縁膜2を形成するが、本発明ではこの無機絶縁膜2に先立って、金属基板1の表面に中間膜4を設けるようにしてある。すなわち、まず図2(b)のように金属基板1の表面に中間膜4を設け、次に、中間膜4の表面において金属基板1の上に無機絶縁膜2を設ける。無機絶縁膜2は金属基板1の回路3を形成する面の全面に設ければよいものであって、回路3が形成されない裏面にまで無機絶縁膜2を設ける必要はない。また中間膜4は無機絶縁膜2と金属基板1の間に介在していればよいものであって、無機絶縁膜2を設ける面においてのみ金属基板1に中間膜4を設けるようにすればよい。   Then, the inorganic insulating film 2 is formed on the metal substrate 1. In the present invention, the intermediate film 4 is provided on the surface of the metal substrate 1 prior to the inorganic insulating film 2. That is, first, as shown in FIG. 2B, the intermediate film 4 is provided on the surface of the metal substrate 1, and then the inorganic insulating film 2 is provided on the metal substrate 1 on the surface of the intermediate film 4. The inorganic insulating film 2 may be provided on the entire surface of the metal substrate 1 on which the circuit 3 is formed, and it is not necessary to provide the inorganic insulating film 2 up to the back surface where the circuit 3 is not formed. The intermediate film 4 only needs to be interposed between the inorganic insulating film 2 and the metal substrate 1, and the intermediate film 4 may be provided on the metal substrate 1 only on the surface on which the inorganic insulating film 2 is provided. .

無機絶縁膜2は熱伝導率が高い無機材料で形成されるものであり(少なくとも中間膜4よりも熱伝導率が高い)、熱伝導率が5〜300W/mKの範囲のものが好ましい。このような熱伝導率が高い無機材料としては、Al、AlN、SiO、SiC、SiN、Yなどを挙げることができる。これらの無機材料はこのように熱伝導率が高いが、金属基板1の材料と比べて線膨張係数は小さい。例えば、金属基板1を形成する材料であるCuの線膨張係数は17×10−6/℃、Auは14×10−6/℃、Agは18×10−6/℃、23×10−6/℃であるのに対して、無機絶縁膜2を形成する無機材料であるAlの線膨張係数は7〜8×10−6/℃、AlNは2〜4×10−6/℃、SiOは2〜4×10−6/℃、SiCは3〜5×10−6/℃である。 The inorganic insulating film 2 is formed of an inorganic material having high thermal conductivity (at least higher in thermal conductivity than the intermediate film 4), and preferably has a thermal conductivity in the range of 5 to 300 W / mK. Examples of such an inorganic material having a high thermal conductivity include Al 2 O 3 , AlN, SiO 2 , SiC, SiN, and Y 2 O 3 . Although these inorganic materials have such high thermal conductivity, the linear expansion coefficient is small as compared with the material of the metal substrate 1. For example, Cu, which is a material forming the metal substrate 1, has a linear expansion coefficient of 17 × 10 −6 / ° C., Au of 14 × 10 −6 / ° C., Ag of 18 × 10 −6 / ° C., and 23 × 10 −6. The linear expansion coefficient of Al 2 O 3 that is an inorganic material forming the inorganic insulating film 2 is 7 to 8 × 10 −6 / ° C., whereas AlN is 2 to 4 × 10 −6 / ° C. , SiO 2 is 2 to 4 × 10 −6 / ° C., and SiC is 3 to 5 × 10 −6 / ° C.

そして本発明では、金属基板1と無機絶縁膜2のこの大きな線膨張係数の差を緩和するための層として、中間膜4を金属基板1と無機絶縁膜2の間に設けるようにしたものである。例えば、中間膜4の線膨張係数が、金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の間になるように形成することによって、金属基板1と無機絶縁膜2が直接接する場合よりも、線膨張係数の差を緩和することができるものである。   In the present invention, an intermediate film 4 is provided between the metal substrate 1 and the inorganic insulating film 2 as a layer for reducing the difference in the large linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2. is there. For example, when the metal substrate 1 and the inorganic insulating film 2 are in direct contact with each other by forming the intermediate film 4 so that the linear expansion coefficient is between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2. Rather than the linear expansion coefficient difference.

具体的には、金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の間の線膨張係数を有する材料で、中間膜4を形成することができる。金属基板1を形成する材料や無機絶縁膜2を形成する材料として上記のものを用いる場合、例えば、線膨張係数が10〜12×10−6/℃のZrOや、線膨張係数が9〜12×10−6/℃のTiOなど、電気絶縁性を有する無機材料を用いて、中間膜4を形成することができる。 Specifically, the intermediate film 4 can be formed of a material having a linear expansion coefficient between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2. When the above-described materials are used as the material for forming the metal substrate 1 or the material for forming the inorganic insulating film 2, for example, ZrO 2 having a linear expansion coefficient of 10 to 12 × 10 −6 / ° C. or a linear expansion coefficient of 9 to The intermediate film 4 can be formed using an electrically insulating inorganic material such as 12 × 10 −6 / ° C. TiO 2 .

無機絶縁膜2や中間膜4を形成する方法は特に限定されるものではないが、無機材料でこれらの膜を形成する場合、CVD法やPVD法を採用するのが好ましい。CVD(化学蒸着法)としては、熱CVDやプラズマCVD、光CVDなどがあり、PVD(物理蒸着法)としては、真空蒸着、スパッタリング、イオンプレーティングなどがある。このようにCVDやPVDで無機材料を蒸着して成膜することによって、溶射法や、液状材料のコーティング、ゾルゲル法などで成膜する場合に比べて、機械的強度に優れ、且つ緻密な膜として、無機絶縁膜2や中間膜4を形成することができるものである。またエアロゾルデポジション法(AD法)で行なうこともできる。エアロゾルデポジション法は周知のように、アルミナやシリカなど無機材料の超微粒子をガスと混合してエアロゾル化し、これをノズルを通して噴射して被膜を形成する方法であり、加熱処理する必要なく常温で成膜が可能である。しかも液状材料のコーティングやゾルゲル法などで成膜する場合に比べて、機械的強度に優れ、且つ緻密で高硬度な膜を得ることができるものであり、さらにCVDやPVDに比べて高い速度で成膜することができるものである。   The method of forming the inorganic insulating film 2 and the intermediate film 4 is not particularly limited, but when these films are formed of an inorganic material, it is preferable to employ a CVD method or a PVD method. Examples of CVD (chemical vapor deposition) include thermal CVD, plasma CVD, and photo CVD, and examples of PVD (physical vapor deposition) include vacuum deposition, sputtering, and ion plating. By depositing an inorganic material by CVD or PVD in this way and forming a film, the film is superior in mechanical strength and denser than a film formed by thermal spraying, liquid material coating or sol-gel method. As described above, the inorganic insulating film 2 and the intermediate film 4 can be formed. Moreover, it can also carry out by the aerosol deposition method (AD method). As is well known, the aerosol deposition method is a method in which ultrafine particles of inorganic materials such as alumina and silica are mixed with gas to form an aerosol, and this is sprayed through a nozzle to form a film. Film formation is possible. In addition, it is possible to obtain a film having excellent mechanical strength and a dense and high hardness compared with the case where the film is formed by coating of a liquid material or sol-gel method, and at a higher speed than CVD and PVD. A film can be formed.

ここで、特に限定されるものではないが、無機絶縁膜2の膜厚は5〜100μmの範囲が好ましい。また中間膜4の膜厚は3〜30μmの範囲が好ましく、無機絶縁膜2の膜厚より薄く形成するものである。このように中間膜4の膜厚を薄く、無機絶縁膜2の膜厚を厚く形成することによって、金属基板1からの放熱性を高く得ることができるものである。   Here, although not particularly limited, the film thickness of the inorganic insulating film 2 is preferably in the range of 5 to 100 μm. The film thickness of the intermediate film 4 is preferably in the range of 3 to 30 μm and is formed thinner than the film thickness of the inorganic insulating film 2. Thus, by forming the intermediate film 4 thin and the inorganic insulating film 2 thick, heat dissipation from the metal substrate 1 can be enhanced.

上記のようにして金属基板1の表面に中間膜4と無機絶縁膜2を設けた後、無機絶縁膜2の上に回路3を形成する。回路3の形成にあたっては、まず図2(d)のように絶縁膜2の表面の全面に導電膜10を形成する。導電膜10の形成は任意の方法で行なうことができるが、例えば銅をスパッタリングすることによって、銅からなる導電膜10を形成することができる。導電膜10は通電することができる厚みであればよく、例えば0.1〜1μm程度の膜厚に形成することができる。   After providing the intermediate film 4 and the inorganic insulating film 2 on the surface of the metal substrate 1 as described above, the circuit 3 is formed on the inorganic insulating film 2. In forming the circuit 3, first, the conductive film 10 is formed on the entire surface of the insulating film 2 as shown in FIG. The conductive film 10 can be formed by an arbitrary method. For example, the conductive film 10 made of copper can be formed by sputtering copper. The conductive film 10 only needs to have a thickness that allows current to flow. For example, the conductive film 10 can be formed to a thickness of about 0.1 to 1 μm.

次に、基板1に回路3を形成する回路形成部12と、回路3を形成しない回路非形成部13との境界において、回路形成部12の輪郭に沿ってレーザ等の電磁波Lを照射し、図2(e)のように電磁波Lを照射した部分の導電膜10を除去する。このように回路形成部12の輪郭の導電膜10を除去することによって、回路形成部12の導電膜10と回路非形成部13の導電膜10は完全に分離される。   Next, at the boundary between the circuit forming unit 12 that forms the circuit 3 on the substrate 1 and the circuit non-forming unit 13 that does not form the circuit 3, the electromagnetic wave L such as a laser is irradiated along the contour of the circuit forming unit 12, As shown in FIG. 2E, the portion of the conductive film 10 irradiated with the electromagnetic wave L is removed. In this way, by removing the conductive film 10 at the contour of the circuit forming portion 12, the conductive film 10 of the circuit forming portion 12 and the conductive film 10 of the circuit non-forming portion 13 are completely separated.

次に、回路形成部12の導電膜10に通電しながら電解めっきを行なうことによって、回路形成部12の導電膜10の表面に銅などの金属を析出させてめっきを施す。回路非形成部13の導電膜10には通電されないので、この導電膜10の表面には金属は析出されない。このように回路形成部12の導電膜10にめっきを施して金属の厚付けをすることによって、図2(f)のように回路3を形成することができる。そして軽いエッチング処理を行なって、回路非形成部13の導電膜10を除去した後、回路3に必要に応じてNiめっきや金めっきを施すことによって、図1(a)(b)に示すような、金属基板1の表面に中間膜4及び絶縁膜2を介して回路3を設けた回路基板Aを得ることができるものである。   Next, by performing electroplating while energizing the conductive film 10 of the circuit forming portion 12, a metal such as copper is deposited on the surface of the conductive film 10 of the circuit forming portion 12 to perform plating. Since no electric current is applied to the conductive film 10 of the circuit non-forming portion 13, no metal is deposited on the surface of the conductive film 10. Thus, by plating the conductive film 10 of the circuit forming portion 12 and thickening the metal, the circuit 3 can be formed as shown in FIG. And after performing the light etching process and removing the electrically conductive film 10 of the circuit non-formation part 13, as shown to Fig.1 (a) (b) by giving Ni plating and gold plating to the circuit 3 as needed. In addition, the circuit board A in which the circuit 3 is provided on the surface of the metal substrate 1 through the intermediate film 4 and the insulating film 2 can be obtained.

上記のように形成される回路基板Aにあって、金属基板1の表面の全面に設けられる無機絶縁膜2は熱伝導率が高い無機材料で形成されているので、金属基板1の表面に実装される発熱素子などから無機絶縁膜2を通して金属基板1へ熱を良好に放熱することができるものであり、金属基板1による高い放熱性を保持することができるものである。そして金属基板1と無機絶縁膜2の間に、無機絶縁膜2の線膨張係数と金属基板1の線膨張係数の間の線膨張係数に形成される中間膜4を介在させてあるので、金属基板1と無機絶縁膜2の線膨張係数の大きな差が中間膜4によって緩和され、線膨張係数の差が直接作用し合うことがなくなる。このため、熱衝撃で無機絶縁膜2にクラックが発生することを防ぐことができるものであり、無機絶縁膜2のこのクラックによって回路3が短絡したり断線したりすることを防ぐことができるものである。   In the circuit board A formed as described above, since the inorganic insulating film 2 provided on the entire surface of the metal substrate 1 is formed of an inorganic material having high thermal conductivity, it is mounted on the surface of the metal substrate 1. The heat can be radiated from the heat generating element or the like to the metal substrate 1 through the inorganic insulating film 2 and the high heat dissipation by the metal substrate 1 can be maintained. Since an intermediate film 4 formed at a linear expansion coefficient between the linear expansion coefficient of the inorganic insulating film 2 and the linear expansion coefficient of the metal substrate 1 is interposed between the metal substrate 1 and the inorganic insulating film 2, the metal A large difference in the linear expansion coefficient between the substrate 1 and the inorganic insulating film 2 is alleviated by the intermediate film 4 so that the difference in the linear expansion coefficient does not directly act. For this reason, it is possible to prevent the inorganic insulating film 2 from being cracked by thermal shock, and it is possible to prevent the circuit 3 from being short-circuited or disconnected due to the crack of the inorganic insulating film 2. It is.

ここで、上記のように金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の間の線膨張係数を有する材料で中間膜4を形成する場合、中間膜4を形成する材料の線膨張係数は、金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の中間に近いほど望ましいものであり、中間膜4を形成する材料と金属基板1の線膨張係数の差や、中間膜4を形成する材料と無機絶縁膜2の線膨張係数の差が、いずれも10×10−6/℃以下であることが好ましい。線膨張係数の差がこれより大きいと、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果が不十分になるおそれがある。 Here, when the intermediate film 4 is formed of a material having a linear expansion coefficient between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2 as described above, the line of the material forming the intermediate film 4 The expansion coefficient is preferably as close as possible between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2, and the difference between the linear expansion coefficient of the material forming the intermediate film 4 and the metal substrate 1 or the intermediate The difference in linear expansion coefficient between the material forming the film 4 and the inorganic insulating film 2 is preferably 10 × 10 −6 / ° C. or less. If the difference in linear expansion coefficient is larger than this, the effect of relaxing the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 by the intermediate film 4 may be insufficient.

また上記の実施の形態では、中間膜4を、金属基板1の線膨張係数と無機絶縁膜2の線膨張係数の間の線膨張係数を有する材料で形成するようにしたが、金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料で中間膜4を形成するようにしてもよい。金属基板1を形成する材料や無機絶縁膜2を形成する材料としては、上記したものを用いることができる。   In the above embodiment, the intermediate film 4 is formed of a material having a linear expansion coefficient between the linear expansion coefficient of the metal substrate 1 and the linear expansion coefficient of the inorganic insulating film 2. The intermediate film 4 may be formed of a mixed material of the material to be formed and the material for forming the inorganic insulating film 2. As the material for forming the metal substrate 1 and the material for forming the inorganic insulating film 2, those described above can be used.

このように金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料で形成した中間膜4を金属基板1と無機絶縁膜2の間に設けることによって、金属基板1と無機絶縁膜2が直接接することによる線膨張係数の差を、中間層4で緩和することができるものである。このため、熱衝撃で無機絶縁膜2にクラックが発生することを防ぐことができるものであり、無機絶縁膜2のこのクラックによって回路3が短絡したり断線したりすることを防ぐことができるものである。また、金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料からなる中間膜4は、無機絶縁膜2よりも熱伝導率が高いので、金属基板1による放熱特性をより高く維持することができるものである。   Thus, by providing the intermediate film 4 formed of the mixed material of the material forming the metal substrate 1 and the material forming the inorganic insulating film 2 between the metal substrate 1 and the inorganic insulating film 2, the metal substrate 1 and the inorganic insulating film 2 are provided. The difference in linear expansion coefficient due to the direct contact of the film 2 can be reduced by the intermediate layer 4. For this reason, it is possible to prevent the inorganic insulating film 2 from being cracked by thermal shock, and it is possible to prevent the circuit 3 from being short-circuited or disconnected due to the crack of the inorganic insulating film 2. It is. Moreover, since the intermediate film 4 made of a mixed material of the material forming the metal substrate 1 and the material forming the inorganic insulating film 2 has higher thermal conductivity than the inorganic insulating film 2, the heat dissipation characteristics of the metal substrate 1 are higher. It can be maintained.

ここで、金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合比率は、前者対後者の質量比率で、1:4〜4:1の範囲が好ましい。この範囲から外れると、金属基板1を形成する材料と無機絶縁膜2を形成する材料のうち一方が過多になり、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果が不十分になるおそれがある。   Here, the mixing ratio of the material forming the metal substrate 1 and the material forming the inorganic insulating film 2 is preferably in the range of 1: 4 to 4: 1 in terms of the mass ratio of the former to the latter. Outside this range, one of the material forming the metal substrate 1 and the material forming the inorganic insulating film 2 becomes excessive, and the difference in linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the intermediate film 4 is alleviated. There is a risk that the effect to do is insufficient.

図3は本発明の他の実施の形態を示すものであり、上記のように中間膜4を金属基板1を形成する材料と無機絶縁膜2を形成する材料の混合材料で形成するにあたって、中間膜4の厚み方向において、金属基板1の側では金属基板1を形成する材料の混合比率が高く、無機絶縁膜2の側では無機絶縁膜2を形成する材料の比率が高くなるように、混合比率を金属基板1の側から無機絶縁膜2の側へと連続して傾斜的に変化させて中間膜4を形成するようにしたものである。混合比率を変化させる態様は任意であるが、例えば、中間膜4の金属基板1に接する部分では金属基板1を形成する材料が100%となり、金属基板1から離れるに従って徐々に金属基板1を形成する材料の比率が下がると共に無機絶縁膜2を形成する材料の比率が上がり、中間膜4の無機絶縁膜2に接する部分では無機絶縁膜2を形成する材料が100%となるようにすることができる。   FIG. 3 shows another embodiment of the present invention. When the intermediate film 4 is formed of a mixed material of the material forming the metal substrate 1 and the material forming the inorganic insulating film 2 as described above, In the thickness direction of the film 4, mixing is performed so that the mixing ratio of the material forming the metal substrate 1 is high on the metal substrate 1 side and the ratio of the material forming the inorganic insulating film 2 is high on the inorganic insulating film 2 side. The intermediate film 4 is formed by continuously changing the ratio from the metal substrate 1 side to the inorganic insulating film 2 side in an inclined manner. The mode of changing the mixing ratio is arbitrary, but, for example, the material for forming the metal substrate 1 is 100% in the portion of the intermediate film 4 that is in contact with the metal substrate 1, and the metal substrate 1 is gradually formed as the distance from the metal substrate 1 increases. The ratio of the material to be formed decreases and the ratio of the material for forming the inorganic insulating film 2 increases, so that the material for forming the inorganic insulating film 2 is 100% in the portion of the intermediate film 4 in contact with the inorganic insulating film 2. it can.

このように、金属基板1の側では金属基板1を形成する材料の混合比率が高く、無機絶縁膜2の側では無機絶縁膜2を形成する材料の比率が高くなるように、混合比率を変化させて中間膜4を形成することによって、金属基板1と無機絶縁膜2の線膨張係数の差が傾斜的に中間膜4で緩和されるものであり、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果を高く得ることができるものである。このため、熱衝撃で無機絶縁膜2にクラックが発生することをより効果的に防ぐことができるものであり、無機絶縁膜2のこのクラックによって回路3が短絡したり断線したりすることを防ぐことができるものである。   Thus, the mixing ratio is changed so that the mixing ratio of the material forming the metal substrate 1 is high on the metal substrate 1 side and the ratio of the material forming the inorganic insulating film 2 is high on the inorganic insulating film 2 side. By forming the intermediate film 4 in this manner, the difference in the linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 is moderated by the intermediate film 4 in an inclined manner. The effect of relaxing the difference in the linear expansion coefficient of the film 2 can be obtained. For this reason, it can prevent more effectively that a crack is generated in the inorganic insulating film 2 due to thermal shock, and the circuit 3 is prevented from being short-circuited or disconnected due to the crack of the inorganic insulating film 2. Is something that can be done.

図4は本発明の他の実施の形態を示すものであり、上記のように、金属基板1と無機絶縁膜2の間に、金属基板1と無機絶縁膜2の間の線膨張係数を有する材料で形成した中間膜4を設けるにあたって、無機絶縁膜2と回路3の間にも、無機絶縁膜2の線膨張係数と回路3の線膨張係数の間の線膨張係数を有する材料で形成した第2中間膜5を設けるようにしたものである。回路3は一般にCu,Au,Ni,Ag,Al,Cr,Tiなどで形成されるので、第2中間膜5を形成する材料としては、既述のZrOやTiOなどを用いることができる。第2中間膜5の膜厚は、特に限定されるものではないが、0.5〜10μmの範囲が好ましい。 FIG. 4 shows another embodiment of the present invention, and has a linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 between the metal substrate 1 and the inorganic insulating film 2 as described above. In providing the intermediate film 4 made of a material, it is also formed between the inorganic insulating film 2 and the circuit 3 with a material having a linear expansion coefficient between the linear expansion coefficient of the inorganic insulating film 2 and the linear expansion coefficient of the circuit 3. The second intermediate film 5 is provided. Since the circuit 3 is generally formed of Cu, Au, Ni, Ag, Al, Cr, Ti or the like, the above-described ZrO 2 or TiO 2 can be used as a material for forming the second intermediate film 5. . Although the film thickness of the 2nd intermediate film 5 is not specifically limited, The range of 0.5-10 micrometers is preferable.

このように無機絶縁膜2と回路3との間に、無機絶縁膜2と回路3の間の線膨張係数を有する材料で形成される第2中間膜5を設けることによって、無機絶縁膜2と回路3の線膨張係数の差を第2中間膜5で緩和することができるものであり、無機絶縁膜2に熱衝撃でクラックが発生することをこの点においても防止することができ、回路3に断線等が生じることを防ぐことができるものである。   Thus, by providing the second intermediate film 5 formed of a material having a linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 between the inorganic insulating film 2 and the circuit 3, The difference in the linear expansion coefficient of the circuit 3 can be relaxed by the second intermediate film 5, and it is possible to prevent the inorganic insulating film 2 from being cracked due to thermal shock. It is possible to prevent disconnection or the like from occurring.

図5は本発明の他の実施の形態を示すものであり、上記のように、金属基板1と無機絶縁膜2の間に、金属基板1と無機絶縁膜2の間の線膨張係数を有する材料で形成した中間膜4を設けるにあたって、金属基板1と中間膜4の間に、金属基板1を形成する材料と中間膜4を形成する材料を混合して形成される緩衝膜6aが設けてあり、また中間膜4と無機絶縁膜2との間に、中間膜4を形成する材料と無機絶縁膜2を形成する材料を混合して形成される緩衝膜6bが設けてある。そして金属基板1と中間膜4との間の緩衝膜6aは、金属基板1の側で金属基板1を形成する材料の混合比率が高く、中間膜4の側で中間膜4を形成する材料の混合比率が高くなるように、混合比率を金属基板1の側から中間膜4の側へと厚み方向で連続して傾斜的に変化させて形成するようにしてある。また中間膜4と無機絶縁膜2との間の緩衝膜6bは、中間膜4の側で中間膜4を形成する材料の混合比率が高く、無機絶縁膜2の側で無機絶縁膜2を形成する材料の混合比率が高くなるように、混合比率を中間膜4の側から無機絶縁膜2の側へと厚み方向で連続して傾斜的に変化させて形成するようにしてある。   FIG. 5 shows another embodiment of the present invention, and has a linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 between the metal substrate 1 and the inorganic insulating film 2 as described above. In providing the intermediate film 4 made of a material, a buffer film 6 a formed by mixing the material forming the metal substrate 1 and the material forming the intermediate film 4 is provided between the metal substrate 1 and the intermediate film 4. In addition, a buffer film 6b formed by mixing the material forming the intermediate film 4 and the material forming the inorganic insulating film 2 is provided between the intermediate film 4 and the inorganic insulating film 2. The buffer film 6a between the metal substrate 1 and the intermediate film 4 has a high mixing ratio of the material that forms the metal substrate 1 on the metal substrate 1 side, and is made of the material that forms the intermediate film 4 on the intermediate film 4 side. In order to increase the mixing ratio, the mixing ratio is continuously changed in the thickness direction from the metal substrate 1 side to the intermediate film 4 side in an inclined manner. Further, the buffer film 6b between the intermediate film 4 and the inorganic insulating film 2 has a high mixing ratio of the material forming the intermediate film 4 on the intermediate film 4 side, and the inorganic insulating film 2 is formed on the inorganic insulating film 2 side. The mixing ratio is continuously changed in the thickness direction from the intermediate film 4 side to the inorganic insulating film 2 side so as to increase the mixing ratio of the materials to be formed.

金属基板1と中間膜4の間や、中間膜4と無機絶縁膜2の間に、このような緩衝膜6a,6bを設けることによって、金属基板1と中間膜4の間の線膨張率の差を緩衝膜6aで緩衝して緩和することができると共に、中間膜4と無機絶縁膜2の間の線膨張率の差を緩衝膜6bで緩衝して緩和することができるものであり、中間膜4による金属基板1と無機絶縁膜2の線膨張係数の差を緩和する効果をより高く得ることができるものであって、無機絶縁膜2に熱衝撃でクラックが発生することを防止する効果をより高く得ることができるものである。尚、緩衝膜6a,6bは両方を備えるほか、緩衝膜6a,6bのうちいずれ一方のみを備えるようにしてもよい。   By providing such buffer films 6 a and 6 b between the metal substrate 1 and the intermediate film 4 or between the intermediate film 4 and the inorganic insulating film 2, the linear expansion coefficient between the metal substrate 1 and the intermediate film 4 can be reduced. The difference can be relaxed by buffering with the buffer film 6a, and the difference in the linear expansion coefficient between the intermediate film 4 and the inorganic insulating film 2 can be buffered with the buffer film 6b to be relaxed. The effect of relieving the difference in the linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 due to the film 4 can be increased, and the effect of preventing the inorganic insulating film 2 from being cracked by thermal shock. Can be obtained higher. The buffer films 6a and 6b may include both, or may include only one of the buffer films 6a and 6b.

図6は本発明の他の実施の形態を示すものであり、図4のように、金属基板1と無機絶縁膜2の間に、金属基板1と無機絶縁膜2の間の線膨張係数を有する材料で形成した中間膜4を設けると共に、無機絶縁膜2と回路3の間に、無機絶縁膜2の線膨張係数と回路3の線膨張係数の間の線膨張係数を有する材料で形成した第2中間膜5を設けるにあたって、金属基板1と中間膜4の間や、中間膜4と無機絶縁膜2との間に、上記のような緩衝膜6a,6bを設ける他に、無機絶縁膜2と第2中間膜5との間に、無機絶縁膜2を形成する材料と第2中間膜5を形成する材料を混合して形成される緩衝膜6cが設けてあり、また第2中間膜5と回路3との間に、第2中間膜5を形成する材料と回路3を形成する材料を混合して形成される緩衝膜6dが設けてある。無機絶縁膜2と第2中間膜5との間の緩衝膜6cは、無機絶縁膜2の側で無機絶縁膜2を形成する材料の混合比率が高く、第2中間膜5の側で第2中間膜5を形成する材料の混合比率が高くなるように、混合比率を無機絶縁膜2の側から第2中間膜5の側へと厚み方向で連続して傾斜的に変化させて形成するようにしてある。また第2中間膜5と回路3との間の緩衝膜6dは、第2中間膜5の側で第2中間膜5を形成する材料の混合比率が高く、回路3の側で回路3を形成する材料の混合比率が高くなるように、混合比率を第2中間膜5の側から回路3の側へと厚み方向で連続して傾斜的に変化させて形成するようにしてある。   FIG. 6 shows another embodiment of the present invention. As shown in FIG. 4, the linear expansion coefficient between the metal substrate 1 and the inorganic insulating film 2 is set between the metal substrate 1 and the inorganic insulating film 2. An intermediate film 4 made of a material having a linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 and a linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 is formed between the inorganic insulating film 2 and the circuit 3. In providing the second intermediate film 5, in addition to providing the buffer films 6a and 6b as described above between the metal substrate 1 and the intermediate film 4 or between the intermediate film 4 and the inorganic insulating film 2, the inorganic insulating film 2 and the second intermediate film 5 are provided with a buffer film 6c formed by mixing the material forming the inorganic insulating film 2 and the material forming the second intermediate film 5, and the second intermediate film Buffer film 6 formed by mixing the material forming second intermediate film 5 and the material forming circuit 3 between 5 and circuit 3 It is provided. The buffer film 6c between the inorganic insulating film 2 and the second intermediate film 5 has a high mixing ratio of the material forming the inorganic insulating film 2 on the inorganic insulating film 2 side, and the second intermediate film 5 side has the second ratio. The mixing ratio is continuously changed in the thickness direction from the inorganic insulating film 2 side to the second intermediate film 5 side so that the mixing ratio of the material forming the intermediate film 5 is increased. It is. Further, the buffer film 6d between the second intermediate film 5 and the circuit 3 has a high mixing ratio of the material forming the second intermediate film 5 on the second intermediate film 5 side, and forms the circuit 3 on the circuit 3 side. In order to increase the mixing ratio of the materials to be formed, the mixing ratio is continuously changed in the thickness direction from the second intermediate film 5 side to the circuit 3 side in an inclined manner.

無機絶縁膜2と第2中間膜5の間や、第2中間膜5と回路3の間に、このような緩衝膜6c,6dを設けることによって、無機絶縁膜2と第2中間膜5の間の線膨張率の差を緩衝膜6cで緩衝して緩和することができると共に、第2中間膜5と回路3の間の線膨張率の差を緩衝膜6dで緩衝して緩和することができるものであり、第2中間膜5による無機絶縁膜2と回路3の線膨張係数の差を緩和する効果をより高く得ることができるものであって、無機絶縁膜2に熱衝撃でクラックが発生することを防止する効果をより高く得ることができるものである。尚、緩衝膜6a,6b,6c,6dは総てを備えるほか、緩衝膜6a,6b,6c,6dのうち、任意の一つ以上を備えるようにしてもよい。   By providing such buffer films 6 c and 6 d between the inorganic insulating film 2 and the second intermediate film 5 or between the second intermediate film 5 and the circuit 3, the inorganic insulating film 2 and the second intermediate film 5 The difference in linear expansion coefficient between the second intermediate film 5 and the circuit 3 can be relaxed by buffering with the buffer film 6d. It is possible to obtain a higher effect of reducing the difference in linear expansion coefficient between the inorganic insulating film 2 and the circuit 3 by the second intermediate film 5, and the inorganic insulating film 2 is cracked by thermal shock. It is possible to obtain a higher effect of preventing the occurrence. The buffer films 6a, 6b, 6c, and 6d may be provided with all of the buffer films 6a, 6b, 6c, and 6d, or any one or more of the buffer films 6a, 6b, 6c, and 6d.

本発明の実施の形態の一例を示すものであり、(a)は斜視図、(b)は一部の拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS An example of embodiment of this invention is shown, (a) is a perspective view, (b) is a partial expanded sectional view. 回路基板の製造の一例を示すものであり、(a)乃至(f)は各工程での斜視図である。An example of manufacture of a circuit board is shown, (a) thru | or (f) is a perspective view in each process. 本発明の実施の形態の他の一例を示す一部の拡大した断面図である。It is a partially expanded sectional view which shows another example of embodiment of this invention. 本発明の実施の形態のさらに他の一例を示す一部の拡大した断面図である。It is a partially expanded sectional view which shows another example of embodiment of this invention. 本発明の実施の形態のさらに他の一例を示す一部の拡大した断面図である。It is a partially expanded sectional view which shows another example of embodiment of this invention. 本発明の実施の形態のさらに他の一例を示す一部の拡大した断面図である。It is a partially expanded sectional view which shows another example of embodiment of this invention. 従来例を示すものであり、(a)乃至(f)は各工程での斜視図である。A prior art example is shown, (a) thru | or (f) is a perspective view in each process.

符号の説明Explanation of symbols

1 金属基板
2 無機絶縁膜
3 回路
4 中間膜
5 第2中間膜
6a、6b、6c、6d 緩衝膜
DESCRIPTION OF SYMBOLS 1 Metal substrate 2 Inorganic insulating film 3 Circuit 4 Intermediate film 5 2nd intermediate film 6a, 6b, 6c, 6d Buffer film

Claims (7)

金属材料で形成された金属基板の上に無機材料で形成された無機絶縁膜を設けると共に無機絶縁膜の上に回路を設けて形成される回路基板であって、金属基板と無機絶縁膜との間に、金属基板と無機絶縁膜の線膨張係数の差を緩和するための中間膜を設けて成ることを特徴とする回路基板。   A circuit board formed by providing an inorganic insulating film formed of an inorganic material on a metal substrate formed of a metal material and providing a circuit on the inorganic insulating film, comprising: a metal substrate and an inorganic insulating film; A circuit board comprising an intermediate film for relaxing a difference in linear expansion coefficient between a metal substrate and an inorganic insulating film. 中間膜は、金属基板の線膨張係数と無機絶縁膜の線膨張係数の間の線膨張係数を有する材料で形成されていることを特徴とする請求項1に記載の回路基板。   The circuit board according to claim 1, wherein the intermediate film is formed of a material having a linear expansion coefficient between the linear expansion coefficient of the metal substrate and the linear expansion coefficient of the inorganic insulating film. 無機絶縁膜と回路との間に、無機絶縁膜の線膨張係数と回路の線膨張係数の間の線膨張係数を有する材料で形成される第2中間膜を設けて成ることを特徴とする請求項1又は2に記載の回路基板。   A second intermediate film formed of a material having a linear expansion coefficient between the inorganic insulating film and the circuit linear expansion coefficient is provided between the inorganic insulating film and the circuit. Item 3. The circuit board according to Item 1 or 2. 金属基板と中間膜との間の、金属基板の側で金属基板を形成する材料の混合比率が高く、中間膜の側で中間膜を形成する材料の混合比率が高くなるように比率を変化させて、金属基板を形成する材料と中間膜を形成する材料を混合して形成される緩衝膜と、中間膜と無機絶縁膜との間の、中間膜の側で中間膜を形成する材料の混合比率が高く、無機絶縁膜の側で無機絶縁膜を形成する材料の混合比率が高くなるように比率を変化させて、中間膜を形成する材料と無機絶縁膜を形成する材料を混合して形成される緩衝膜のうち、少なくとも一方の緩衝膜を具備して成ることを特徴とする請求項2に記載の回路基板。   Change the ratio between the metal substrate and the intermediate film so that the mixing ratio of the material forming the metal substrate is high on the metal substrate side and the mixing ratio of the material forming the intermediate film is high on the intermediate film side. The buffer film formed by mixing the material for forming the metal substrate and the material for forming the intermediate film, and the mixture of the material for forming the intermediate film on the intermediate film side between the intermediate film and the inorganic insulating film The ratio is changed so that the mixing ratio of the material that forms the inorganic insulating film is higher on the inorganic insulating film side, and the material that forms the intermediate film and the material that forms the inorganic insulating film are mixed and formed. The circuit board according to claim 2, comprising at least one of the buffer films to be formed. 金属基板と中間膜との間の、金属基板の側で金属基板を形成する材料の混合比率が高く、中間膜の側で中間膜を形成する材料の混合比率が高くなるように比率を変化させて、金属基板を形成する材料と中間膜を形成する材料を混合して形成される緩衝膜と、中間膜と無機絶縁膜との間の、中間膜の側で中間膜を形成する材料の混合比率が高く、無機絶縁膜の側で無機絶縁膜を形成する材料の混合比率が高くなるように比率を変化させて、中間膜を形成する材料と無機絶縁膜を形成する材料を混合して形成される緩衝膜と、無機絶縁膜と第2中間膜との間の、無機絶縁膜の側で無機絶縁膜を形成する材料の混合比率が高く、第2中間膜の側で第2中間膜を形成する材料の混合比率が高くなるように比率を変化させて、無機絶縁膜を形成する材料と第2中間膜を形成する材料を混合して形成される緩衝膜と、第2中間膜と回路との間の、第2中間膜の側で第2中間膜を形成する材料の混合比率が高く、回路の側で回路を形成する材料の混合比率が高くなるように比率を変化させて、第2中間膜を形成する材料と回路を形成する材料を混合して形成される緩衝膜のうち、少なくとも一つの緩衝膜を具備して成ることを特徴とする請求項3に記載の回路基板。   Change the ratio between the metal substrate and the intermediate film so that the mixing ratio of the material forming the metal substrate is high on the metal substrate side and the mixing ratio of the material forming the intermediate film is high on the intermediate film side. The buffer film formed by mixing the material for forming the metal substrate and the material for forming the intermediate film, and the mixture of the material for forming the intermediate film on the intermediate film side between the intermediate film and the inorganic insulating film The ratio is changed so that the mixing ratio of the material that forms the inorganic insulating film is higher on the inorganic insulating film side, and the material that forms the intermediate film and the material that forms the inorganic insulating film are mixed and formed. The mixing ratio of the material forming the inorganic insulating film on the inorganic insulating film side between the buffer film, the inorganic insulating film and the second intermediate film is high, and the second intermediate film is formed on the second intermediate film side. The material that forms the inorganic insulating film by changing the ratio so that the mixing ratio of the material to be formed becomes high The mixing ratio of the material forming the second intermediate film on the side of the second intermediate film between the buffer film formed by mixing the materials forming the second intermediate film and the second intermediate film and the circuit is high. The buffer film formed by mixing the material forming the second intermediate film and the material forming the circuit by changing the ratio so that the mixing ratio of the material forming the circuit on the circuit side becomes high, The circuit board according to claim 3, comprising at least one buffer film. 中間膜は、金属基板を形成する材料と無機絶縁膜を形成する材料の混合材料で形成されていることを特徴とする請求項1に記載の回路基板。   The circuit board according to claim 1, wherein the intermediate film is formed of a mixed material of a material forming the metal substrate and a material forming the inorganic insulating film. 中間膜を金属基板を形成する材料と無機絶縁膜を形成する材料の混合材料で形成するにあたって、金属基板の側では金属基板を形成する材料の混合比率が高く、無機絶縁膜の側では無機絶縁膜を形成する材料の比率が高くなるように、混合比率を変化させたことを特徴とする請求項6に記載の回路基板。   When the intermediate film is formed of a mixed material of the material forming the metal substrate and the material forming the inorganic insulating film, the mixing ratio of the material forming the metal substrate is high on the metal substrate side, and the inorganic insulating film side is inorganic insulating. The circuit board according to claim 6, wherein the mixing ratio is changed so that the ratio of the material forming the film is increased.
JP2008236796A 2008-09-16 2008-09-16 Circuit board Withdrawn JP2010073742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236796A JP2010073742A (en) 2008-09-16 2008-09-16 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236796A JP2010073742A (en) 2008-09-16 2008-09-16 Circuit board

Publications (1)

Publication Number Publication Date
JP2010073742A true JP2010073742A (en) 2010-04-02

Family

ID=42205291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236796A Withdrawn JP2010073742A (en) 2008-09-16 2008-09-16 Circuit board

Country Status (1)

Country Link
JP (1) JP2010073742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195568A (en) * 2011-02-28 2012-10-11 Koa Corp Metal base circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195568A (en) * 2011-02-28 2012-10-11 Koa Corp Metal base circuit board

Similar Documents

Publication Publication Date Title
TWI458639B (en) A method for selective metallization on a ceramic substrate
JP2007096032A (en) Insulating board, method of manufacturing the same and semiconductor device
TW201121371A (en) Electronic substrate having low current leakage and high thermal conductivity and associated methods
CN102740604A (en) Method for manufacturing insulating metal base plate of electronic circuit
KR20200049763A (en) Compressed interlayer with limited crack-proof edge extensions
US20240121895A1 (en) Device for thermal conduction and electrical isolation
JP2010073742A (en) Circuit board
JP5430121B2 (en) Wiring board and probe card using the same
TWI387417B (en) Circuit board structure and manufacturing method thereof
JP2007103796A (en) Insulating substrate, semiconductor device, and method of manufacturing insulating substrate
JP2002203930A (en) Semiconductor element heat dissipating part and semiconductor device
JP7440944B2 (en) Composite materials and heat dissipation components
JP2009272530A (en) Semiconductor device and method for manufacturing same
WO2021065601A1 (en) Wiring substrate
WO2020045436A1 (en) Wiring board and electronic device
JP2010021503A (en) Circuit board
JP6622940B1 (en) Double-sided mounting substrate, method for manufacturing double-sided mounting substrate, and semiconductor laser
JP2008028255A (en) Method for manufacturing three-dimensional circuit substrate
US20110232950A1 (en) Substrate and method for manufacturing the same
US11201123B2 (en) Substrate structure and manufacturing method thereof
JP2018148086A (en) Manufacturing method for through electrode substrate and through electrode substrate
JP4497135B2 (en) Manufacturing method of three-dimensional circuit board and three-dimensional circuit board
JP2008053465A (en) Three-dimensional circuit board and method of manufacturing same
US20100052154A1 (en) Surface smoothened ultrahigh conductivity composite lid for improved marking permanency of semiconductor packaged devices
JP2002198456A (en) Ceramics circuit board and power module

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206