JP2010071265A - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
JP2010071265A
JP2010071265A JP2008243163A JP2008243163A JP2010071265A JP 2010071265 A JP2010071265 A JP 2010071265A JP 2008243163 A JP2008243163 A JP 2008243163A JP 2008243163 A JP2008243163 A JP 2008243163A JP 2010071265 A JP2010071265 A JP 2010071265A
Authority
JP
Japan
Prior art keywords
eccentric
cylinder
rotary compressor
rotating shaft
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008243163A
Other languages
Japanese (ja)
Other versions
JP5068719B2 (en
Inventor
Takuya Hirayama
卓也 平山
Shoichiro Kitaichi
昌一郎 北市
Wataru Ikeda
亘 池田
Takeshi Tominaga
健 富永
Akinori Ikeda
明貴範 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008243163A priority Critical patent/JP5068719B2/en
Priority to CN2009101782700A priority patent/CN101684792B/en
Publication of JP2010071265A publication Critical patent/JP2010071265A/en
Application granted granted Critical
Publication of JP5068719B2 publication Critical patent/JP5068719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a rotary compressor inhibiting sliding loss of an eccentric part of a rotary shaft and an eccentric roller, eliminating insufficient stiffness of a rotary shaft connection part, preventing flexible deformation, and improving compression performances; and a refrigeration cycle device provided with the rotary compressor and improving refrigeration cycle device. <P>SOLUTION: In this rotary compressor, expression (1) Rc<Rm+e and expression (2) Rc≥Rs+e are satisfied where eccentric part radius of the rotary shaft is represented by Rc, main shaft part radius by Rm, auxiliary shaft part radius by Rs, and, eccentric quantity of the eccentric part by e, expression (3) (2L-H)/(D+2e)≥0.5 is satisfied where axial length of a connection part is represented by L, shaft diameter of the connection part by (ϕ)D and axial length (thickness) of the eccentric roller by H, and expression (4) (ΔP×Dro×H×L<SP>3</SP>)/(E×M)≤0.02 (mm) is satisfied where differential pressure of delivery pressure and suction pressure is represented by ΔP, outer diameter of the eccentric roller by (ϕ)Dro, Young's modulus of the rotary shaft by E, second moment of area of the connection part by M, and cylinder inner diameter of the connection part by (ϕ)Di. Here, M=πX(D<SP>4</SP>-Di<SP>4</SP>)/64. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数のシリンダ室を備えた回転式型圧縮機と、この回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。   The present invention relates to a rotary type compressor provided with a plurality of cylinder chambers, and a refrigeration cycle apparatus comprising the rotary compressor and constituting a refrigeration cycle.

[特許文献1]に開示される回転式圧縮機は、圧縮機構部を1個備えた1シリンダ型の回転式圧縮機において、シリンダ室の内径をDcy、シリンダの高さ(軸方向長さ)をH、回転軸の偏心部の軸径をDcr、回転軸の偏心部と偏心ローラとの軸方向の摺動長さ(接触長さ)をLとしたとき、
H/Dcy ≦ 0.4
L/Dcr ≧ 0.6
となるようにしたことを特徴としている。
特開2008−14150号公報
The rotary compressor disclosed in [Patent Document 1] is a one-cylinder rotary compressor provided with one compression mechanism, and the inner diameter of the cylinder chamber is Dcy and the cylinder height (axial length). Is H, the shaft diameter of the eccentric portion of the rotating shaft is Dcr, and the axial sliding length (contact length) between the eccentric portion of the rotating shaft and the eccentric roller is L,
H / Dcy ≦ 0.4
L / Dcr ≧ 0.6
It is characterized by having become.
JP 2008-14150 A

この[特許文献1]には、1シリンダ型の回転式圧縮機において、回転軸の偏心部の軸径と、偏心部と偏心ローラの軸方向の摺動長さとの関係は記載されているが、近時は、複数(2個)のシリンダを備えたタイプの回転式圧縮機が多用されている。このような2シリンダタイプの回転式圧縮機においては、上述の関係式が必ずしも最適条件ではない。   This [Patent Document 1] describes the relationship between the shaft diameter of the eccentric portion of the rotating shaft and the sliding length in the axial direction of the eccentric portion and the eccentric roller in the one-cylinder rotary compressor. Recently, a rotary compressor of a type having a plurality (two) of cylinders is frequently used. In such a two-cylinder type rotary compressor, the above-mentioned relational expression is not necessarily the optimum condition.

2シリンダタイプの回転式圧縮機においては、それぞれのシリンダ室で回転する偏心ローラを備えていて、各偏心ローラは回転軸に一体形成される偏心部に嵌合されている。そして、各偏心部相互間に形成される連結部は、その軸径が、偏心部の軸径より小さく設定することで、回転軸の一端側から偏心ローラを偏心部に嵌め込むことができる。   In the two-cylinder type rotary compressor, an eccentric roller that rotates in each cylinder chamber is provided, and each eccentric roller is fitted to an eccentric portion that is formed integrally with a rotary shaft. And the connection part formed between each eccentric part can set the eccentric roller to the eccentric part from the one end side of a rotating shaft by setting the shaft diameter smaller than the shaft diameter of an eccentric part.

そこで、偏心ローラの外内径および軸方向長さと、回転軸偏心部の軸径および軸方向長さを設計するにあたり、実際に圧縮運転をなした際の、回転軸偏心部と、ここに嵌合される偏心ローラとの摺動損失の抑制化を考慮するとともに、偏心部相互間に形成される連結部の剛性不足によるたわみ変形の防止を考慮しないと、圧縮性能の低下の虞れがある。   Therefore, when designing the outer diameter and axial length of the eccentric roller and the shaft diameter and axial length of the rotating shaft eccentric part, it is fitted to the rotating shaft eccentric part when actually performing the compression operation. If the suppression of the sliding loss with the eccentric roller is taken into consideration and the prevention of the bending deformation due to the lack of rigidity of the connecting portion formed between the eccentric portions is taken into consideration, there is a risk that the compression performance will be lowered.

本発明は上記事情にもとづきなされたものであり、その目的とするところは、回転軸偏心部の軸径と、偏心部と偏心ローラの摺動長さとの関係および、偏心部相互間の連結部の撓みを考慮した部品構成として、回転軸の偏心部と偏心ローラとの摺動損失の抑制化を図り、偏心部相互間の連結部における剛性不足を解消してたわみ変形の防止と圧縮性能の向上化を得られる回転式圧縮機と、この回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供しようとするものである。   The present invention has been made on the basis of the above circumstances, and the object thereof is the relationship between the shaft diameter of the rotating shaft eccentric part, the sliding length of the eccentric part and the eccentric roller, and the connecting part between the eccentric parts. As a component configuration that takes into account the bending of the shaft, the sliding loss between the eccentric part of the rotating shaft and the eccentric roller is suppressed, the lack of rigidity at the connecting part between the eccentric parts is eliminated, and the deformation performance is prevented and the compression performance is reduced. An object of the present invention is to provide a rotary compressor that can be improved, and a refrigeration cycle apparatus that is provided with this rotary compressor and that can improve the efficiency of the refrigeration cycle.

上記目的を満足するため本発明の回転式圧縮機は、密閉容器内に電動機部と圧縮機構部を収容し、上記圧縮機構部は、中間仕切り板を介在して設けられそれぞれが内径部を有する複数のシリンダと、一方のシリンダに取付けられ中間仕切り板とともにシリンダの内径部を覆ってシリンダ室を形成する主軸受と、他方のシリンダに取付けられ中間仕切り板とともにシリンダの内径部を覆ってシリンダ室を形成する副軸受と、各シリンダ室それぞれに収容される偏心部、主軸受に軸支される主軸部、副軸受に軸支される副軸部を有し電動機部に連結する回転軸と、回転軸の偏心部それぞれに嵌合し各シリンダ室内で回転駆動する偏心ローラとを具備し、回転軸の偏心部半径をRc、回転軸の主軸部半径をRm、回転軸の副軸部半径をRs、偏心部の偏心量をeとしたとき、
Rc<Rm+e ……(1)、 Rc≧Rs+e ……(2)
(1)式および(2)式が成り立ち、かつ隣接する偏心部相互間の連結部を円柱状もしくは円筒状とし、偏心部間の連結部の軸方向長さをL、連結部の軸径をφD、偏心ローラの軸方向長さ(厚み)をHとしたとき、
(2L−H)/(D+2e)≧0.5 ……(3)
(3)式が成り立ち、圧縮運転時の吐出圧力と吸込み圧力の差圧をΔP、偏心ローラの外径をφDro、回転軸のヤング率をE、連結部の断面2次モーメントをM、偏心部相互間の連結部の円筒内径をφDiとしたとき、
(ΔP・Dro・H・L)/(E・M)≦0.02[mm] ……(4)
ただし、M=π・(D−Di)/64 (4)式が成り立つ。
上記目的を満足するため本発明の冷凍サイクル装置は、上記回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて冷凍サイクルを構成する。
In order to satisfy the above object, the rotary compressor of the present invention accommodates an electric motor part and a compression mechanism part in a hermetically sealed container, and the compression mechanism part is provided with an intermediate partition plate, and each has an inner diameter part. A plurality of cylinders, a main bearing which is attached to one cylinder and covers the inner diameter part of the cylinder together with the intermediate partition plate and forms a cylinder chamber, and a cylinder chamber which is attached to the other cylinder and covers the inner diameter part of the cylinder together with the intermediate partition plate A sub-bearing that forms a shaft, an eccentric portion that is housed in each cylinder chamber, a main shaft portion that is pivotally supported by the main bearing, a rotary shaft that has a sub-shaft portion that is pivotally supported by the sub-bearing, and is connected to the motor portion, And an eccentric roller that is fitted in each eccentric part of the rotating shaft and is driven to rotate in each cylinder chamber. The eccentric part radius of the rotating shaft is Rc, the main shaft radius of the rotating shaft is Rm, and the auxiliary shaft radius of the rotating shaft is Rs, eccentric part When the eccentricity was e,
Rc <Rm + e (1), Rc ≧ Rs + e (2)
Equations (1) and (2) are satisfied, and the connecting portion between the adjacent eccentric portions is formed in a columnar shape or a cylindrical shape, the axial length of the connecting portion between the eccentric portions is L, and the axial diameter of the connecting portion is When φD and the axial length (thickness) of the eccentric roller are H,
(2L−H) / (D + 2e) ≧ 0.5 (3)
Equation (3) holds, the differential pressure between the discharge pressure and suction pressure during compression operation is ΔP, the outer diameter of the eccentric roller is φDro, the Young's modulus of the rotating shaft is E, the cross-sectional secondary moment of the joint is M, and the eccentric portion When the inner diameter of the connecting portion is φDi,
(ΔP · Dro · H · L 3 ) / (E · M) ≦ 0.02 [mm] (4)
However, M = π · (D 4 −Di 4 ) / 64 (4) holds.
In order to satisfy the above object, a refrigeration cycle apparatus of the present invention comprises the rotary compressor, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.

本発明によれば、回転軸の偏心部と偏心ローラとの摺動損失の抑制化を図り、偏心部相互間の連結部における剛性不足を解消してたわみ変形の防止と圧縮性能の向上化を得られる回転式圧縮機と、この回転式圧縮機を備えて冷凍サイクル効率の向上化を得られる冷凍サイクル装置を提供できる。   According to the present invention, the sliding loss between the eccentric part of the rotating shaft and the eccentric roller is suppressed, the lack of rigidity at the connecting part between the eccentric parts is eliminated, and the bending deformation is prevented and the compression performance is improved. It is possible to provide an obtained rotary compressor and a refrigeration cycle apparatus provided with the rotary compressor and capable of improving the refrigeration cycle efficiency.

以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、回転式圧縮機Rの一部を省略した縦断面図と冷凍サイクル装置の冷凍サイクル構成図。図2は回転式圧縮機の要部を拡大した縦断面図である。(なお、図面上の煩雑さを避けるために、説明しても符号を付していない部品があり、図示しても説明しない部品もある。以下同)
はじめに回転式圧縮機Rから説明すると、1は密閉容器であって、この密閉容器1内の下部には圧縮機構部3が設けられ、上部には電動機部4が設けられる。これら圧縮機構部3と電動機部4は、回転軸5によって連結される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view in which a part of the rotary compressor R is omitted and a refrigeration cycle configuration diagram of a refrigeration cycle apparatus. FIG. 2 is an enlarged longitudinal sectional view of a main part of the rotary compressor. (In order to avoid complications in the drawings, there are parts that are not denoted by reference numerals even if they are explained, and there are parts that are not explained even if they are shown. The same applies hereinafter).
First, the rotary compressor R will be described. 1 is a sealed container, and a compression mechanism section 3 is provided in the lower part of the sealed container 1 and an electric motor section 4 is provided in the upper part. The compression mechanism unit 3 and the motor unit 4 are connected by a rotating shaft 5.

上記圧縮機構部3は、中間仕切り板2を介して、この中間仕切り板2の上面部に第1のシリンダ6Aを備え、下面部に第2のシリンダ6Bを備えている。さらに、第1のシリンダ6Aの上面には主軸受7が取付け固定され、第2のシリンダ6Bの下面には副軸受8が取付け固定される。   The compression mechanism section 3 includes a first cylinder 6A on the upper surface portion of the intermediate partition plate 2 via the intermediate partition plate 2 and a second cylinder 6B on the lower surface portion. Further, the main bearing 7 is attached and fixed to the upper surface of the first cylinder 6A, and the auxiliary bearing 8 is attached and fixed to the lower surface of the second cylinder 6B.

上記主軸受7は回転軸5の主軸部5aを軸支し、副軸受8は回転軸5の副軸部5bを軸支する。上記回転軸5は、第1、第2のシリンダ6A、6B内部を貫通するとともに、略180°の位相差をもって形成される第1の偏心部aと第2の偏心部bを一体に備えている。   The main bearing 7 supports the main shaft portion 5 a of the rotating shaft 5, and the auxiliary bearing 8 supports the auxiliary shaft portion 5 b of the rotating shaft 5. The rotating shaft 5 penetrates through the first and second cylinders 6A and 6B, and integrally includes a first eccentric part a and a second eccentric part b formed with a phase difference of about 180 °. Yes.

第1、第2の偏心部a、bは互いに同一直径をなし、第1、第2のシリンダ6A、6Bの内径部に位置するように組立てられる。第1の偏心部aの周面には、第1の偏心ローラ9aが嵌合され、第2の偏心部bの周面には、第2の偏心ローラ9bが嵌合される。   The first and second eccentric parts a and b have the same diameter as each other and are assembled so as to be positioned at the inner diameter parts of the first and second cylinders 6A and 6B. A first eccentric roller 9a is fitted to the peripheral surface of the first eccentric part a, and a second eccentric roller 9b is fitted to the peripheral surface of the second eccentric part b.

上記第1のシリンダ6Aの内径部は、主軸受7と中間仕切り板2によって囲まれていて、第1のシリンダ室Saが形成される。第2のシリンダ6Bの内径部は、副軸受8と中間仕切り板2によって囲まれていて、第2のシリンダ室Sbが形成される。   An inner diameter portion of the first cylinder 6A is surrounded by the main bearing 7 and the intermediate partition plate 2, and a first cylinder chamber Sa is formed. The inner diameter portion of the second cylinder 6B is surrounded by the auxiliary bearing 8 and the intermediate partition plate 2, and a second cylinder chamber Sb is formed.

各シリンダ室Sa、Sbは互いに同一直径および高さ寸法に形成され、上記偏心ローラ9a、9bの周壁一部が各シリンダ室Sa、Sbの周壁一部に線接触しながら偏心回転自在に収容される。   The cylinder chambers Sa and Sb are formed to have the same diameter and height, and a part of the peripheral wall of the eccentric rollers 9a and 9b is accommodated so as to be eccentrically rotatable while being in line contact with a part of the peripheral wall of the cylinder chambers Sa and Sb. The

特に図示していないが、第1のシリンダ6Aには、第1のシリンダ室Saと連通するベーン室が設けられ、ベーンが移動自在に収容される。第2のシリンダ6Bには、第2のシリンダ室Sbと連通するベーン室が設けられ、ベーンが移動自在に収容される。   Although not particularly illustrated, the first cylinder 6A is provided with a vane chamber communicating with the first cylinder chamber Sa, and the vane is movably accommodated therein. The second cylinder 6B is provided with a vane chamber communicating with the second cylinder chamber Sb, and the vane is movably accommodated therein.

それぞれのベーンの先端部は平面視で半円状に形成されており、対向するシリンダ室Sa、Sbに突出して平面視で円形状の上記第1、第2の偏心ローラ9a、9b周壁に、この回転角度にかかわらず線接触できる。   The tip of each vane is formed in a semicircular shape in a plan view, protrudes into the opposing cylinder chambers Sa and Sb, and has a circular shape in the plan view in the first and second eccentric rollers 9a and 9b. Line contact is possible regardless of this rotation angle.

第1のシリンダ6Aのベーン室と、このシリンダ6Aの外周面とを連通する横孔が設けられ、圧縮ばねであるばね部材が収容される。このばね部材はベーンの後端側端面と密閉容器1内周壁との間に介在され、上記ベーンに弾性力(背圧)を付与する。   A lateral hole that communicates the vane chamber of the first cylinder 6A and the outer peripheral surface of the cylinder 6A is provided, and a spring member that is a compression spring is accommodated. This spring member is interposed between the rear end side end face of the vane and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the vane.

第2のシリンダ6Bのベーン室と、このシリンダ6Bの外周面とを連通する横孔が設けられ、圧縮ばねであるばね部材が収容される。このばね部材はベーンの後端側端面と密閉容器1内周壁との間に介在され、上記ベーンに弾性力(背圧)を付与する。   A horizontal hole that communicates the vane chamber of the second cylinder 6B and the outer peripheral surface of the cylinder 6B is provided, and a spring member that is a compression spring is accommodated. This spring member is interposed between the rear end side end face of the vane and the inner peripheral wall of the sealed container 1, and applies an elastic force (back pressure) to the vane.

一方、上記密閉ケース1の上端部には冷媒管Pが接続されていて、この冷媒管Pは、凝縮器15と、膨張装置16と、蒸発器17を介して図示しないアキュームレータに接続される。   On the other hand, a refrigerant pipe P is connected to the upper end portion of the sealed case 1, and this refrigerant pipe P is connected to an accumulator (not shown) via a condenser 15, an expansion device 16, and an evaporator 17.

さらに、上記アキュームレータから、回転式圧縮機Rの密閉ケース1と第1のシリンダ6A側部を貫通して第1のシリンダ室Sa内に直接連通する第1の吸込み冷媒管Paと、密閉ケース1と第2のシリンダ6B側部を貫通して第2のシリンダ室Sb内に直接連通する第2の吸込み冷媒管Pbが接続される。
このようにして、冷凍サイクル装置の冷凍サイクルが構成される。
Furthermore, from the accumulator, a first suction refrigerant pipe Pa that passes through the sealed case 1 of the rotary compressor R and the side of the first cylinder 6A and directly communicates with the first cylinder chamber Sa, and the sealed case 1 And a second suction refrigerant pipe Pb that passes through the side of the second cylinder 6B and communicates directly with the second cylinder chamber Sb.
In this way, the refrigeration cycle of the refrigeration cycle apparatus is configured.

つぎに、上述の回転式圧縮機Rを備えた冷凍サイクル装置の作用について説明する。
運転開始の指示が入ると制御部は、インバータを介して電動機部4に運転信号を送る。回転軸5が回転駆動され、第1、第2の偏心ローラ9a,9bは同時に第1、第2のシリンダ室Sa,Sb内で偏心回転を行う。
Next, the operation of the refrigeration cycle apparatus including the rotary compressor R described above will be described.
When an instruction to start operation is input, the control unit sends an operation signal to the motor unit 4 via the inverter. The rotary shaft 5 is rotationally driven, and the first and second eccentric rollers 9a and 9b simultaneously perform eccentric rotation in the first and second cylinder chambers Sa and Sb.

第1のシリンダ6Aにおいては、ベーンがばね部材によって常に弾性的に押圧付勢されるところから、ベーンの先端縁が第1の偏心ローラ9a周壁に摺接して、第1のシリンダ室Sa内を吸込み室と圧縮室に二分する。   In the first cylinder 6A, since the vane is always elastically pressed and urged by the spring member, the tip edge of the vane is slidably contacted with the peripheral wall of the first eccentric roller 9a so as to move inside the first cylinder chamber Sa. Divide into suction chamber and compression chamber.

第1の偏心ローラ9a周面での第1のシリンダ室Sa内周面転接位置と、ベーン先端位置とが一致し、ベーンが最も後退した状態で、第1のシリンダ室Saの空間容量が最大となる。冷媒ガスはアキュームレータから冷媒管Paを介して第1のシリンダ室Saに吸込まれ充満する。   The first cylinder chamber Sa inner surface rolling contact position on the circumferential surface of the first eccentric roller 9a coincides with the vane tip position, and the space capacity of the first cylinder chamber Sa is in a state where the vane is most retracted. Maximum. The refrigerant gas is sucked into the first cylinder chamber Sa from the accumulator through the refrigerant pipe Pa to be filled.

第1の偏心ローラ9aの偏心回転にともなって、第1の偏心ローラ9a周面における第1のシリンダ室Sa内周面との転接位置が移動し、第1のシリンダ室Saの区画された圧縮室の容積が減少する。すなわち、先に第1のシリンダ室Saに導かれたガスが徐々に圧縮される。   With the eccentric rotation of the first eccentric roller 9a, the rolling contact position of the first eccentric roller 9a with the inner peripheral surface of the first cylinder chamber Sa moves, and the first cylinder chamber Sa is partitioned. The volume of the compression chamber is reduced. That is, the gas previously introduced into the first cylinder chamber Sa is gradually compressed.

回転軸5が継続して回転され、第1のシリンダ室Saに区画された圧縮室の容量がさらに減少してガスが圧縮され、所定圧まで上昇したところで吐出弁が開放する。高圧ガスはバルブカバーを介して密閉ケース1内に吐出され充満する。そして、密閉ケース1上部に接続される冷媒管Pから吐出される。   The rotary shaft 5 is continuously rotated, the capacity of the compression chamber partitioned into the first cylinder chamber Sa is further reduced, the gas is compressed, and the discharge valve is opened when the pressure rises to a predetermined pressure. The high-pressure gas is discharged into the sealed case 1 through the valve cover and fills up. And it discharges from the refrigerant | coolant pipe | tube P connected to the airtight case 1 upper part.

一方、第1の偏心部9aに対して第2の偏心部9bが、180°位相がずれた位置に設けられるところから、第1の偏心部9aの偏心回転にともなう第1のシリンダ室Saでの圧縮作用と、第2の偏心部9bの偏心回転にともない第2のシリンダ室Sbで圧縮作用が、180°の位相差をもって行われる。   On the other hand, since the second eccentric portion 9b is provided at a position that is 180 ° out of phase with respect to the first eccentric portion 9a, in the first cylinder chamber Sa accompanying the eccentric rotation of the first eccentric portion 9a. The compression action is performed with a phase difference of 180 ° in the second cylinder chamber Sb in accordance with the eccentric action of the second eccentric part 9b and the eccentric rotation of the second eccentric part 9b.

いずれのシリンダ室Sa,Sbにおいても、圧縮された高圧ガスはバルブカバーを介して密閉ケース1内に吐出され、混合して充満する。高圧ガスは回転式圧縮機Rから冷媒管Pに吐出されて凝縮器15に導かれ、外気もしくは水と熱交換して凝縮液化する。この液冷媒は、膨張装置16に導かれて断熱膨張し、蒸発器17に導かれて熱交換空気から蒸発潜熱を奪って冷凍作用をなす。   In any of the cylinder chambers Sa and Sb, the compressed high-pressure gas is discharged into the sealed case 1 through the valve cover, and is mixed and filled. The high-pressure gas is discharged from the rotary compressor R to the refrigerant pipe P and guided to the condenser 15, where it is condensed and liquefied by exchanging heat with the outside air or water. This liquid refrigerant is led to the expansion device 16 and adiabatically expands, and is led to the evaporator 17 to take away the latent heat of evaporation from the heat exchange air and perform a refrigeration action.

蒸発器17で蒸発したあとの冷媒はアキュームレータに導かれて気液分離され、蒸発冷媒のみ各吸込み冷媒管Pa,Pbから回転式圧縮機Rにおける第1のシリンダ室Saと第2のシリンダ室Sbに吸込まれる。そして、再び上述の作用がなされ、上述の経路を循環する。   The refrigerant evaporated in the evaporator 17 is led to an accumulator and separated into gas and liquid, and only the evaporated refrigerant passes through the suction refrigerant pipes Pa and Pb and the first cylinder chamber Sa and the second cylinder chamber Sb in the rotary compressor R. Sucked into. Then, the above action is performed again, and the above path is circulated.

このような冷凍サイクル装置に備えられる回転式圧縮機Rにおいて、回転軸5の偏心部a,b半径をRc、回転軸5の主軸部5a半径をRm、回転軸5の副軸部5b半径をRs、偏心部a,bの偏心量をeとしたとき、
Rc < Rm+e ……(1)
Rc ≧ Rs+e ……(2)
(1)式および(2)式が成り立つように設計されている。
In the rotary compressor R provided in such a refrigeration cycle apparatus, the radii of eccentric parts a and b of the rotating shaft 5 are Rc, the radius of the main shaft part 5a of the rotating shaft 5 is Rm, and the radius of the auxiliary shaft part 5b of the rotating shaft 5 is Rm. When the eccentric amount of Rs and eccentric parts a and b is e,
Rc <Rm + e (1)
Rc ≧ Rs + e (2)
It is designed so that the expressions (1) and (2) are established.

隣接する第1の偏心部aと、第2の偏心部b相互間に形成される連結部10は、円柱状もしくは円筒状に形成される。上記連結部10の軸方向長さをL、連結部10の軸径をφD、偏心ローラ9a,9bの軸方向長さ(厚み)をHとすると、
(2L−H)/(D+2e) ≧ 0.5 ……(3)
(3)式が成り立つように設計されている。
The connecting portion 10 formed between the adjacent first eccentric portion a and the second eccentric portion b is formed in a columnar shape or a cylindrical shape. When the axial length of the connecting portion 10 is L, the axial diameter of the connecting portion 10 is φD, and the axial lengths (thicknesses) of the eccentric rollers 9a and 9b are H,
(2L−H) / (D + 2e) ≧ 0.5 (3)
(3) It is designed so that Formula may be formed.

図4は、偏心部a,bと偏心ローラ9a,9bそれぞれの摺動長さLcr/偏心部a,bの直径φDcrと、偏心部a,bの摺動損失との特性図であり、いわゆるマッキーの実験式等の関係がある。   FIG. 4 is a characteristic diagram of the sliding length Lcr of each of the eccentric parts a and b and the eccentric rollers 9a and 9b / the diameter φDcr of the eccentric parts a and b and the sliding loss of the eccentric parts a and b. There is a relationship such as McKee's empirical formula.

なお説明すると、図4は、回転軸5の偏心部a,bの直径をφDcr、偏心部a,bと偏心ローラ9a,9bとの摺動長さをLcrとし、Lcr/φDcrを横軸にとり、偏心部a,bの摺動損失を縦軸にとっている。   4 illustrates that the diameter of the eccentric parts a and b of the rotary shaft 5 is φDcr, the sliding length between the eccentric parts a and b and the eccentric rollers 9a and 9b is Lcr, and Lcr / φDcr is the horizontal axis. The vertical axis represents the sliding loss of the eccentric parts a and b.

結果として、Lcr/φDcrが0.5よりも大きければ、回転軸5の摺動部a,bにおける摺動損失が小さくてすむが、Lcr/φDcrが0.5よりも小さい範囲で回転軸5の摺動部a,bにおける摺動損失が大きく増加することが分る。   As a result, if Lcr / φDcr is larger than 0.5, the sliding loss at the sliding portions a and b of the rotating shaft 5 can be reduced, but the rotating shaft 5 can be reduced within a range where Lcr / φDcr is smaller than 0.5. It can be seen that the sliding loss at the sliding portions a and b greatly increases.

また、上述するように複数のシリンダ6A,6Bを備え、それぞれのシリンダ室Sa,Sbに回転軸5の偏心部a,bが収容される回転式圧縮機Rの構成では、偏心部a,bに対して偏心ローラ9a,9bを嵌合する作業を円滑に行うために、最適の設計をなす必要がある。   Further, as described above, in the configuration of the rotary compressor R that includes the plurality of cylinders 6A and 6B and the eccentric portions a and b of the rotating shaft 5 are accommodated in the cylinder chambers Sa and Sb, the eccentric portions a and b are provided. On the other hand, in order to smoothly perform the operation of fitting the eccentric rollers 9a and 9b, it is necessary to make an optimum design.

図3(A)〜(D)は、回転軸5の主軸部5a側に設けられる第1の偏心部aに、第1の偏心ローラ9aを嵌合する工程を順に示す図である。
図3(A)に示すように、たとえば回転軸5の中心軸CLに対して第1の偏心部aが図の左側へ突出し、第2の偏心部bが図の右側へ突出して保持する。この図以前の状態として、第1の偏心ローラ9aを回転軸5の副軸部5b側端部から挿入し、副軸部5bを通過させたあと、図のように第1の偏心ローラ9aを第2の偏心部bに嵌め込む。
FIGS. 3A to 3D are diagrams sequentially illustrating a process of fitting the first eccentric roller 9a to the first eccentric portion a provided on the main shaft portion 5a side of the rotating shaft 5. FIG.
As shown in FIG. 3A, for example, the first eccentric portion a protrudes to the left side of the drawing relative to the central axis CL of the rotating shaft 5, and the second eccentric portion b protrudes to the right side of the drawing and holds it. As a state before this figure, after inserting the first eccentric roller 9a from the end of the rotary shaft 5 on the side of the auxiliary shaft portion 5b and passing through the auxiliary shaft portion 5b, the first eccentric roller 9a is moved as shown in the drawing. Fit into the second eccentric part b.

なお、第2の偏心部bは、回転軸5の中心軸CLとは偏心量eだけ偏心している。第2の偏心部b半径をRcとすると、ここに嵌め込まれる第1の偏心ローラ9a内径部の直径は2Rcとなる。   The second eccentric portion b is eccentric from the central axis CL of the rotating shaft 5 by an eccentric amount e. When the radius of the second eccentric portion b is Rc, the diameter of the inner diameter portion of the first eccentric roller 9a fitted therein is 2Rc.

また、第2の偏心部bにおける反偏心側の周面位置と、連結部10の周面一部とが一致するよう形成され、第1の偏心部aにおける反偏心側の周面位置と、連結部10の周面一部とが一致するよう形成されている。   Further, the anti-eccentric side circumferential surface position in the second eccentric part b and the circumferential surface part of the connecting part 10 are formed to coincide with each other, and the anti-eccentric side circumferential surface position in the first eccentric part a; It forms so that a part of peripheral surface of the connection part 10 may correspond.

図3(A)から図3(B)に示すように、第1の偏心ローラ9aを第2の偏心部bから抜き出して、一旦、第1の偏心部aと第2の偏心部b相互間に形成される連結部10に位置するよう、第1の偏心ローラ9aを移動する。   As shown in FIGS. 3A to 3B, the first eccentric roller 9a is extracted from the second eccentric portion b, and once between the first eccentric portion a and the second eccentric portion b. The first eccentric roller 9a is moved so that the first eccentric roller 9a is positioned at the connecting portion 10 formed in the above.

この状態で、 第1の偏心ローラ9aの軸方向長さ(厚み)H>連結部10の軸方向長さL となるように構成されている。そこで、第1の偏心ローラ9aの内径部で、軸方向の両端部に面取り部qを設けないと、それ以上は第1の偏心ローラaを移動することができない。   In this state, the axial length (thickness) H of the first eccentric roller 9a> the axial length L of the connecting portion 10 is configured. Therefore, if the chamfered portions q are not provided at both end portions in the axial direction at the inner diameter portion of the first eccentric roller 9a, the first eccentric roller a cannot be moved any further.

このようにして設けられる上記面取り部qは、それぞれの軸方向長さが (H−L) 以上に設定しなければならない。したがって、第1の偏心ローラ9aにおける軸方向長さHから、2つの面取り部qの合計長さ2(H−L)を差し引いた長さが、第1の偏心ローラ9aの摺動長さとして確保される。   The chamfered portion q provided in this way must be set to have an axial length of (HL) or more. Therefore, the length obtained by subtracting the total length 2 (HL) of the two chamfered portions q from the axial length H of the first eccentric roller 9a is the sliding length of the first eccentric roller 9a. Secured.

具体的に、第1の偏心ローラ9aの摺動長さは、 H−2(H−L) となり、これを展開すると、 2L−H 以下となる。この第1の偏心ローラ9aが嵌め込まれ、互いに摺動する第1の偏心部aの軸方向長さ、すなわち第1の偏心ローラ9aに対する摺動長さも、当然ながら 2L−H となる。   Specifically, the sliding length of the first eccentric roller 9a is H-2 (HL), and when this is developed, it becomes 2L-H or less. Naturally, the axial length of the first eccentric portion a in which the first eccentric roller 9a is fitted and slides relative to each other, that is, the sliding length with respect to the first eccentric roller 9a is also 2L-H.

図3(B)の状態から、第1の偏心ローラ9aを図に矢印で示すように反時計回り方向に傾ける。そのままの姿勢で第1の偏心ローラ9aを図の左方向に移動すると、第1の偏心ローラ9aの内径部に設けた面取り部qが第2の偏心部bの上端角部を乗り越える。   From the state of FIG. 3B, the first eccentric roller 9a is tilted counterclockwise as indicated by an arrow in the figure. When the first eccentric roller 9a is moved in the left direction in the figure as it is, the chamfered portion q provided on the inner diameter portion of the first eccentric roller 9a gets over the upper end corner of the second eccentric portion b.

さらに、第1の偏心ローラ9aを図の左方向に移動することで、第1の偏心ローラ9aの下端面が第2の偏心部bの上端面に接しながら滑り、第1の偏心ローラ9bの上端面が第1の偏心部aの下端面に接しながら滑る。
ついには、図3(C)に示すように、第1の偏心ローラ9aが第2の偏心部bの上端面上に載り、この内径部が連結部10の周面と第1の偏心部aの偏心側周面に対向する。
Further, by moving the first eccentric roller 9a in the left direction in the figure, the lower end surface of the first eccentric roller 9a slides in contact with the upper end surface of the second eccentric portion b, and the first eccentric roller 9b The upper end surface slides in contact with the lower end surface of the first eccentric part a.
Finally, as shown in FIG. 3C, the first eccentric roller 9a is placed on the upper end surface of the second eccentric portion b, and the inner diameter portion of the first eccentric roller 9a and the first eccentric portion a. Opposite to the eccentric circumferential surface.

つぎに、図3(D)に示すように、第1の偏心ローラ9aを上方へずらすことによって、第1の偏心ローラ9aは第1の偏心部aに嵌め込まれる。
このとき、第1の偏心部aの軸径は、 D+2e 以上でなければ第1の偏心ローラ9aを第1の偏心部aに組み付けられないので、先に図4から説明した第1の偏心部aの摺動長さLcr/軸径φDcrの関係は、 (2L−H)/(D+2e) 以下となる。
Next, as shown in FIG. 3D, the first eccentric roller 9a is fitted into the first eccentric portion a by shifting the first eccentric roller 9a upward.
At this time, since the first eccentric roller 9a cannot be assembled to the first eccentric portion a unless the shaft diameter of the first eccentric portion a is equal to or greater than D + 2e, the first eccentric portion described above with reference to FIG. The relationship of the sliding length Lcr / shaft diameter φDcr of a is (2L−H) / (D + 2e) or less.

さらに、図4から、 Lcr/φDcr≧0.5 が導かれるので、
(2L−H)/(D+2e) ≧ 0.5 ……(3)
上述した(3)式の関係が成立する構成となすことにより、第1、第2の偏心部a,bと第1、第2の偏心ローラ9a,9bとの摺動損失の大幅増加を抑制して性能の高い回転式圧縮機Rを提供できる。
Furthermore, since Lcr / φDcr ≧ 0.5 is derived from FIG.
(2L−H) / (D + 2e) ≧ 0.5 (3)
By adopting a configuration in which the relationship of the above-described expression (3) is established, a significant increase in sliding loss between the first and second eccentric portions a and b and the first and second eccentric rollers 9a and 9b is suppressed. Thus, a rotary compressor R having high performance can be provided.

さらにそのうえ、圧縮運転時の回転式圧縮機Rにおける吐出圧力と吸込み圧力との差圧をΔP、第1、第2の偏心ローラ9a、9bの外径をφDro、回転軸5のヤング率をE、偏心部a,b相互間の連結部10の断面2次モーメントをMとすると、
(ΔP・Dro・H・L)/(E・M) ≦ 0.02[mm] ……(4)
(4)式が成り立つように構成することにより、偏心部a,b相互間の連結部10の撓み変形を防止して、圧縮性能の向上を得られる。
ただし、 M=π・(D4−Di)/64 であり、Diは偏心部a,b相互間の円筒状連結部10の内径である。
Furthermore, the differential pressure between the discharge pressure and the suction pressure in the rotary compressor R during the compression operation is ΔP, the outer diameters of the first and second eccentric rollers 9a and 9b are φDro, and the Young's modulus of the rotating shaft 5 is E , Where M is the moment of inertia of the cross section of the connecting part 10 between the eccentric parts a and b,
(ΔP · Dro · H · L 3 ) / (E · M) ≦ 0.02 [mm] (4)
(4) By comprising so that Formula may be satisfied, the bending deformation of the connection part 10 between the eccentric parts a and b is prevented, and the improvement of compression performance can be obtained.
However, M = π · (D4−Di 4 ) / 64, and Di is the inner diameter of the cylindrical connecting portion 10 between the eccentric portions a and b.

なお説明すると、長さL、ヤング率E、断面2次モーメントMで、断面積が一定の片持ち梁において、先端に荷重Fが作用する場合、この片持ち梁先端の撓みσは、
σ = (F・L)/(3・E・M) ……(5)
(5)式が成り立つことが知られている。
上記連結部10においても、一方のシリンダ室SaもしくはSbにおけるガス負荷による撓み量は、 (ΔP・Dro・H・L)/(E・M) に比例すると考えられる。
To explain, when a load F acts on the tip of a cantilever having a length L, a Young's modulus E, a secondary moment M and a constant cross-sectional area, the deflection σ of the tip of the cantilever is
σ = (F · L 3 ) / (3 · E · M) (5)
It is known that equation (5) holds.
Also in the connecting portion 10, the amount of deflection due to the gas load in one of the cylinder chambers Sa or Sb is considered to be proportional to (ΔP · Dro · H · L 3 ) / (E · M).

図5は、特定条件における (ΔP・Dro・H・L)/(E・M) とCPOの関係図である。
図5から、 (ΔP・Dro・H・L)/(E・M) が大きくなると、回転軸5の各偏心部a,b相互間に形成される連結部10の撓み変形によるクリアランスの拡大等が生じ、圧縮性能が悪化することが分る。
FIG. 5 is a relationship diagram between (ΔP · Dro · H · L 3 ) / (E · M) and CPO under specific conditions.
From FIG. 5, when (ΔP · Dro · H · L 3 ) / (E · M) increases, the clearance increases due to the bending deformation of the connecting portion 10 formed between the eccentric portions a and b of the rotating shaft 5. It can be seen that the compression performance deteriorates.

特に、 (ΔP・Dro・H・L)/(E・M)>2[mm] になると、連結部10での撓み変形発生による圧縮性能の低下がある。
そこで、先に説明した(4)式である、
(ΔP・Dro・H・L)/(E・M) ≦ 0.02[mm] ……(4)
ただし、 M=π・(D4−Di)/64 であり、Diは円筒状連結部10の内径である。
(4)式を満足する構成を採用することで、連結部10における剛性不足による撓み変形で圧縮性能が低下するのを防止し、圧縮性能の向上を得られる。
In particular, when (ΔP · Dro · H · L 3 ) / (E · M)> 2 [mm], there is a decrease in compression performance due to the occurrence of bending deformation at the connecting portion 10.
Therefore, the equation (4) described above is obtained.
(ΔP · Dro · H · L 3 ) / (E · M) ≦ 0.02 [mm] (4)
However, M = π · (D4−Di 4 ) / 64 and Di is the inner diameter of the cylindrical connecting portion 10.
By adopting the configuration that satisfies the formula (4), it is possible to prevent the compression performance from being lowered due to the bending deformation due to insufficient rigidity in the connecting portion 10 and to improve the compression performance.

以下の[表1]は、(4)式を満足する具体的な設計例である。

Figure 2010071265
[Table 1] below is a specific design example that satisfies the equation (4).
Figure 2010071265

図5の縦軸に示すCOPoは、上記[表1]の (ΔP・Dro・H・L)/(E・M)=0.0137 におけるCOP値である。 The COPo shown on the vertical axis in FIG. 5 is the COP value at (ΔP · Dro · H · L 3 ) / (E · M) = 0.0137 in [Table 1].

また、 (ΔP・Dro・H・L)/(E・M) が0.02[mm]以下であれば、図5に示すように連結部10の撓み変形による圧縮性能の低下を防止できるが、上記 (ΔP・Dro・H・L)/(E・M) の値が小さくなるにしたがって、 (2L−H)/(D+2e) の値が小さくなる。 Further, if (ΔP · Dro · H · L 3 ) / (E · M) is 0.02 [mm] or less, it is possible to prevent the compression performance from being lowered due to the bending deformation of the connecting portion 10 as shown in FIG. However, as the value of (ΔP · Dro · H · L 3 ) / (E · M) decreases, the value of (2L−H) / (D + 2e) decreases.

しかしながら、 (ΔP・Dro・H・L)/(E・M) が0.01[mm]以上であれば、多くの条件において (2L−H)(D+2e)≧0.5 の条件を満たすことが可能である。 However, when (ΔP · Dro · H · L 3 ) / (E · M) is 0.01 [mm] or more, the condition (2L−H) (D + 2e) ≧ 0.5 is satisfied in many conditions. It is possible.

結論として、より好ましくは、
(ΔP・Dro・H・L)/(E・M)≧0.01[mm] ……(5)
(5)式が成り立つように構成すればよい。
In conclusion, more preferably,
(ΔP · Dro · H · L 3 ) / (E · M) ≧ 0.01 [mm] (5)
(5) What is necessary is just to comprise so that Formula may be formed.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明における一実施の形態に係る、回転式圧縮機の概略縦断面図および冷凍サイクル装置の冷凍サイクル構成図。The schematic longitudinal cross-sectional view of the rotary compressor based on one embodiment in this invention, and the refrigerating cycle block diagram of a refrigerating cycle apparatus. 同実施の形態に係る、2気筒回転式圧縮機要部の拡大した縦断面図。The expanded longitudinal cross-sectional view of the 2-cylinder rotary compressor principal part which concerns on the same embodiment. 同実施の形態に係る、回転軸の第1の偏心部へ第1の偏心ローラを組込む工程を順に示す図。The figure which shows in order the process of incorporating a 1st eccentric roller in the 1st eccentric part of the rotating shaft based on the embodiment. 同実施の形態に係る、偏心部摺動長さ/偏心部軸径に対する偏心部摺動損失の特性図。The characteristic figure of the eccentric part sliding loss with respect to the eccentric part sliding length / eccentric part axial diameter based on the embodiment. 同実施の形態に係る、 (ΔP・Dro・H・L)/(E・M) に対するCOPの特性図。According to the embodiment, the characteristic diagram of COP for (ΔP · Dro · H · L 3) / (E · M).

符号の説明Explanation of symbols

1…密閉容器に、4…電動機部、3…圧縮機構部、2…中間仕切り板、6A…第1のシリンダ、6B…第2のシリンダ、Sa…第1のシリンダ室、Sb…第2のシリンダ室、7…主軸受、8…副軸受、a…第1の偏心部、b…第2の偏心部、5a…主軸部、5b…副軸部、5…回転軸、9a…第1の偏心ローラ、9b…第2の偏心ローラ、R…回転式圧縮機、10…連結部、15…凝縮器、16…膨張装置、17…蒸発器。   DESCRIPTION OF SYMBOLS 1 ... Airtight container, 4 ... Electric motor part, 3 ... Compression mechanism part, 2 ... Intermediate partition plate, 6A ... 1st cylinder, 6B ... 2nd cylinder, Sa ... 1st cylinder chamber, Sb ... 2nd Cylinder chamber, 7 ... main bearing, 8 ... sub bearing, a ... first eccentric portion, b ... second eccentric portion, 5a ... main shaft portion, 5b ... sub shaft portion, 5 ... rotating shaft, 9a ... first Eccentric roller, 9b ... second eccentric roller, R ... rotary compressor, 10 ... connecting portion, 15 ... condenser, 16 ... expansion device, 17 ... evaporator.

Claims (3)

密閉容器内に、電動機部と圧縮機構部とを収容し、
上記圧縮機構部は、
中間仕切り板を介在して設けられ、それぞれが内径部を有する複数のシリンダと、
上記一方のシリンダに取付けられ、上記中間仕切り板とともに一方のシリンダの内径部を覆って第1のシリンダ室を形成する主軸受と、
上記他方のシリンダに取付けられ、上記中間仕切り板とともに他方のシリンダの内径部を覆って第2のシリンダ室を形成する副軸受と、
上記第1のシリンダ室と第2のシリンダ室それぞれに収容される偏心部、上記主軸受に軸支される主軸部および、上記副軸受に軸支される副軸部を有し、上記電動機部に連結される回転軸と、
この回転軸の上記偏心部それぞれに嵌合され、第1のシリンダ室と第2のシリンダ室内で回転駆動される偏心ローラと、
を具備する回転式圧縮機において、
上記回転軸の偏心部半径をRc、回転軸の主軸部半径をRm、回転軸の副軸部半径をRs、偏心部の偏心量をeとしたとき、
Rc < Rm+e ……(1)
Rc ≧ Rs+e ……(2)
(1)式および(2)式が成り立ち、かつ隣接する偏心部相互間の連結部は、円柱状もしくは円筒状に形成され、
上記連結部の軸方向長さをL、連結部の軸径をφD、上記偏心ローラの軸方向長さ(厚み)をHとしたとき、
(2L−H)/(D+2e) ≧ 0.5 ……(3)
(3)式が成り立ち、
かつ、圧縮運転時の吐出圧力と吸込み圧力の差圧をΔP、偏心ローラの外径をφDro、回転軸のヤング率をE、連結部の断面2次モーメントをMとしたとき、
(ΔP・Dro・H・L)/(E・M) ≦ 0.02[mm] ……(4)
(4)式が成り立つことを特徴とする回転式圧縮機。
ただし、 M = π・(D−Di)/64
Di:円筒状連結部の内径
The motor part and the compression mechanism part are accommodated in the sealed container,
The compression mechanism is
A plurality of cylinders provided with intermediate partition plates, each having an inner diameter portion;
A main bearing attached to the one cylinder and covering the inner diameter part of the one cylinder together with the intermediate partition plate to form a first cylinder chamber;
A secondary bearing mounted on the other cylinder and covering the inner diameter of the other cylinder together with the intermediate partition plate to form a second cylinder chamber;
An electric motor portion having an eccentric portion accommodated in each of the first cylinder chamber and the second cylinder chamber, a main shaft portion pivotally supported by the main bearing, and a subshaft portion pivotally supported by the auxiliary bearing; A rotating shaft coupled to
An eccentric roller fitted into each of the eccentric portions of the rotating shaft and driven to rotate in the first cylinder chamber and the second cylinder chamber;
In the rotary compressor comprising:
When the eccentric portion radius of the rotating shaft is Rc, the main shaft radius of the rotating shaft is Rm, the auxiliary shaft radius of the rotating shaft is Rs, and the eccentric amount of the eccentric portion is e,
Rc <Rm + e (1)
Rc ≧ Rs + e (2)
(1) Formula and (2) Formula hold | maintained, and the connection part between adjacent eccentric parts is formed in column shape or cylindrical shape,
When the axial length of the connecting portion is L, the shaft diameter of the connecting portion is φD, and the axial length (thickness) of the eccentric roller is H,
(2L−H) / (D + 2e) ≧ 0.5 (3)
Equation (3) holds,
When the differential pressure between the discharge pressure and the suction pressure during the compression operation is ΔP, the outer diameter of the eccentric roller is φDro, the Young's modulus of the rotating shaft is E, and the secondary moment of the section of the connecting portion is M,
(ΔP · Dro · H · L 3 ) / (E · M) ≦ 0.02 [mm] (4)
(4) A rotary compressor characterized in that the formula is satisfied.
However, M = π · (D 4 −Di 4 ) / 64
Di: Inner diameter of cylindrical connecting part
より好ましくは、
(ΔP・Dro・H・L)/(E・M) ≧ 0.01[mm] ……(5)
(5)式が成り立つことを特徴とする請求項1記載の回転式圧縮機。
More preferably,
(ΔP · Dro · H · L 3 ) / (E · M) ≧ 0.01 [mm] (5)
The rotary compressor according to claim 1, wherein the formula (5) is established.
上記請求項1および請求項2のいずれかに記載の回転式圧縮機と、凝縮器と、膨張装置と、蒸発器とを備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising the rotary compressor according to any one of claims 1 and 2, a condenser, an expansion device, and an evaporator to constitute a refrigeration cycle.
JP2008243163A 2008-09-22 2008-09-22 Rotary compressor and refrigeration cycle equipment Active JP5068719B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008243163A JP5068719B2 (en) 2008-09-22 2008-09-22 Rotary compressor and refrigeration cycle equipment
CN2009101782700A CN101684792B (en) 2008-09-22 2009-09-21 Rotary compressor and freezing cycle device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243163A JP5068719B2 (en) 2008-09-22 2008-09-22 Rotary compressor and refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010071265A true JP2010071265A (en) 2010-04-02
JP5068719B2 JP5068719B2 (en) 2012-11-07

Family

ID=42048107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243163A Active JP5068719B2 (en) 2008-09-22 2008-09-22 Rotary compressor and refrigeration cycle equipment

Country Status (2)

Country Link
JP (1) JP5068719B2 (en)
CN (1) CN101684792B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454535A (en) * 2014-12-08 2015-03-25 广东美芝制冷设备有限公司 Rotary type compressor and refrigeration system
WO2015198539A1 (en) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 Rotary compressor having two cylinders
CN109356851A (en) * 2018-10-15 2019-02-19 珠海格力节能环保制冷技术研究中心有限公司 Positive displacement compressor and refrigeration equipment
WO2019186695A1 (en) * 2018-03-27 2019-10-03 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022247B2 (en) * 2011-09-29 2016-11-09 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN102889209B (en) * 2012-09-27 2015-05-20 广东美芝精密制造有限公司 Compression pump body, rotary compressor and refrigerating circulating device
CN104100525A (en) * 2014-07-02 2014-10-15 广东美芝制冷设备有限公司 Refrigerating circulating device and rotating type compressor thereof
CN106050662B (en) * 2016-07-08 2019-04-26 珠海格力电器股份有限公司 Pump assembly and compressor with it
JP6703921B2 (en) * 2016-09-14 2020-06-03 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
WO2018142564A1 (en) * 2017-02-03 2018-08-09 三菱電機株式会社 Compressor
CN111287973B (en) * 2018-12-06 2022-01-18 安徽美芝精密制造有限公司 Three-cylinder compressor and refrigerating device with same
CN111287974B (en) * 2018-12-06 2022-01-18 安徽美芝精密制造有限公司 Four-cylinder compressor and refrigerating device with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195689U (en) * 1986-06-03 1987-12-12
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof
JP2008014150A (en) * 2006-07-03 2008-01-24 Toshiba Kyaria Kk Rotary compressor and refrigeration cycle device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195689U (en) * 1986-06-03 1987-12-12
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof
JP2008014150A (en) * 2006-07-03 2008-01-24 Toshiba Kyaria Kk Rotary compressor and refrigeration cycle device using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198539A1 (en) * 2014-06-24 2015-12-30 パナソニックIpマネジメント株式会社 Rotary compressor having two cylinders
CN106030113A (en) * 2014-06-24 2016-10-12 松下知识产权经营株式会社 Rotary compressor having two cylinders
JPWO2015198539A1 (en) * 2014-06-24 2017-04-20 パナソニックIpマネジメント株式会社 Rotary compressor with two cylinders
CN106030113B (en) * 2014-06-24 2018-11-13 松下知识产权经营株式会社 There are two the rotary compressors of cylinder for tool
CN104454535A (en) * 2014-12-08 2015-03-25 广东美芝制冷设备有限公司 Rotary type compressor and refrigeration system
CN104454535B (en) * 2014-12-08 2016-07-06 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system
WO2019186695A1 (en) * 2018-03-27 2019-10-03 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
KR20200130730A (en) * 2018-03-27 2020-11-19 도시바 캐리어 가부시키가이샤 Rotary compressor and refrigeration cycle device (ROTARY COMPRESSOR AND REFRIGERATION CYCLE DEVICE)
JPWO2019186695A1 (en) * 2018-03-27 2021-02-12 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment
KR102340873B1 (en) 2018-03-27 2021-12-17 도시바 캐리어 가부시키가이샤 ROTARY COMPRESSOR AND REFRIGERATION CYCLE DEVICE
US11466687B2 (en) 2018-03-27 2022-10-11 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle apparatus
CN109356851A (en) * 2018-10-15 2019-02-19 珠海格力节能环保制冷技术研究中心有限公司 Positive displacement compressor and refrigeration equipment

Also Published As

Publication number Publication date
CN101684792B (en) 2012-02-15
CN101684792A (en) 2010-03-31
JP5068719B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5068719B2 (en) Rotary compressor and refrigeration cycle equipment
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
US9745980B2 (en) Hermetic-type compressor and refrigeration cycle apparatus
JP5786030B2 (en) Hermetic rotary compressor and refrigeration cycle equipment
JP5810221B2 (en) Rotary compressor and refrigeration cycle equipment
KR100299590B1 (en) Rotary type hermetic compressor and refrigerating cycle apparatus
KR20100112486A (en) 2-stage rotary compressor
JP2014034940A (en) Rotary compressor and refrigeration cycle device
JP5564617B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP2009062931A (en) Rotary compressor and refrigerating cycle device
JP6548915B2 (en) Compressor
WO2017009917A1 (en) Compressor
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
JP6324091B2 (en) Hermetic compressor
JP6419186B2 (en) Rotary compressor and refrigeration cycle apparatus
JP4065654B2 (en) Multi-cylinder rotary compressor
JP2008157109A (en) Scroll compressor and refrigeration cycle
JP6078393B2 (en) Rotary compressor, refrigeration cycle equipment
JP2009062929A (en) Rotary compressor and refrigerating cycle device
JP2008157101A (en) Rotary compressor and refrigerating cycle device
JP5469612B2 (en) Rotary fluid machinery
JP7170547B2 (en) Rotary compressor and refrigeration cycle equipment
JP5797477B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP2017082842A (en) Bearing structure and scroll compressor
WO2020235076A1 (en) Compressor and air conditioner provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5068719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250