JP2010069482A - Biological treatment method for organic waste water - Google Patents

Biological treatment method for organic waste water Download PDF

Info

Publication number
JP2010069482A
JP2010069482A JP2009268609A JP2009268609A JP2010069482A JP 2010069482 A JP2010069482 A JP 2010069482A JP 2009268609 A JP2009268609 A JP 2009268609A JP 2009268609 A JP2009268609 A JP 2009268609A JP 2010069482 A JP2010069482 A JP 2010069482A
Authority
JP
Japan
Prior art keywords
biological treatment
sludge
tank
biological
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268609A
Other languages
Japanese (ja)
Other versions
JP5170069B2 (en
Inventor
Shigeki Fujishima
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009268609A priority Critical patent/JP5170069B2/en
Publication of JP2010069482A publication Critical patent/JP2010069482A/en
Application granted granted Critical
Publication of JP5170069B2 publication Critical patent/JP5170069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain further an improvement in treatment efficiency and the reduction of excessive sludge production amount while keeping the stable quality of treated water in a multistage activated sludge method utilizing the predation of microorganisms. <P>SOLUTION: This biological treatment method for organic waste water includes a first biological treatment process of transforming BOD (biological oxygen demand) in organic waste water to dispersed fungus bodies through high load treatment and a second biological treatment process of flocculating the transformed dispersed fungus bodies and allowing the microorganisms to coexist. The second biological treatment process is performed under conditions of pH 5 to 6. Otherwise, such an excessive sludge treatment process that sludge of the second biological treatment process and/or at least a part of the sludge obtained by solid-liquid separation of the sludge of the second biological treatment process is decomposed under aerobic conditions and the treated sludge is returned to the first biological treatment process and/or the second biological treatment process is performed under conditions of pH 5 to 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる有機性排水の生物処理方法に関するものであり、特に、処理水質を悪化させることなく、処理効率を向上させ、かつ、余剰汚泥発生量の低減が可能な有機性排水の生物処理方法に関する。   The present invention relates to a biological treatment method for organic wastewater that can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories. The present invention relates to a biological treatment method for organic wastewater that can improve the treatment efficiency and reduce the amount of excess sludge generation without deteriorating.

有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は0.5〜0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。 The activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volumetric load in the activated sludge method is about 0.5 to 0.8 kg / m 3 / d, a large site area is required. Moreover, since 20% of the decomposed BOD is converted into microbial cells, that is, sludge, a large amount of excess sludge treatment also becomes a problem.

有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30%程度で、通常の活性汚泥法より高くなることが欠点となっている。 For high load treatment of organic waste water, a fluidized bed method with a carrier added is known. When this method is used, it is possible to operate with a BOD volume load of 3 kg / m 3 / d or more. However, this method has a disadvantage that the amount of generated sludge is about 30% of the decomposed BOD, which is higher than the normal activated sludge method.

特公昭56−48235号公報では、有機性排水をまず第一処理槽で細菌処理して、排水に含まれる有機物を酸化分解し、非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることにより、余剰汚泥の減量化が可能になるとしている。また、特公昭62−54073号公報においても同様の2段生物処理が記載されている。これらの方法では、高負荷運転も可能となり、活性汚泥処理効率も向上する。   In Japanese Examined Patent Publication No. 56-48235, organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, followed by second treatment. It is said that the amount of excess sludge can be reduced by precipitating and removing the sticking protozoa in the tank. Japanese Patent Publication No. 62-54073 also describes a similar two-stage biological treatment. In these methods, high-load operation is possible and the activated sludge treatment efficiency is improved.

特許第3360076号公報には、このような2段生物処理法において、原生動物を含む活性汚泥を生物処理槽から引き抜いて、反応処理槽で殺菌及び可溶化処理して生物処理層へ戻すことにより、余剰汚泥発生量を更に低減する方法が記載されている。   In Japanese Patent No. 3360076, in such a two-stage biological treatment method, activated sludge containing protozoa is extracted from the biological treatment tank, sterilized and solubilized in the reaction treatment tank, and returned to the biological treatment layer. A method for further reducing the amount of excess sludge generation is described.

また、特許第3410699号公報には、前段の生物処理を担体流動床式とし、後段の生物処理を多段活性汚泥処理とすることにより、余剰汚泥発生量を更に低減する方法が記載されている。この方法では後段の活性汚泥処理をBOD汚泥負荷0.1kg−BOD/kg−MLSS/dの低負荷で運転することにより、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。   Japanese Patent No. 3410699 discloses a method of further reducing the amount of surplus sludge generated by using a carrier fluidized bed as the first biological treatment and a multistage activated sludge treatment as the second biological treatment. In this method, the activated sludge treatment at the latter stage is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge is self-oxidized and the amount of sludge extraction can be greatly reduced.

特公昭56−48235号公報Japanese Patent Publication No. 56-48235 特公昭62−54073号公報Japanese Examined Patent Publication No. 62-54073 特許第3360076号公報Japanese Patent No. 3360076 特許第3410699号公報Japanese Patent No. 3410699

上述のような微小生物の捕食作用を利用した多段活性汚泥法は、有機性排水処理に既に実用化されており、対象とする排水によっては処理効率の向上、発生汚泥量の減量化は可能である。   The multi-stage activated sludge method using the predation action of micro-organisms as described above has already been put to practical use in organic wastewater treatment. Depending on the target wastewater, it is possible to improve treatment efficiency and reduce the amount of generated sludge. is there.

しかしながら、汚泥減量効果は処理条件や排水の水質によっては異なるものの、単槽式活性汚泥法で発生する汚泥量を半減させる程度である。これは、細菌主体の汚泥を捕食するための後段の微小生物槽において、汚泥の多くが捕食されず残存したり、捕食に関与する微小生物を高濃度で維持できないことが原因である。   However, although the sludge reduction effect varies depending on the treatment conditions and the water quality of the wastewater, it is about a half of the amount of sludge generated by the single tank activated sludge method. This is due to the fact that most of the sludge remains without being predated and the microbes involved in the predation cannot be maintained at a high concentration in the subsequent microbiological tank for preying the bacteria-based sludge.

従って、本発明は、微小生物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図る有機性排水の生物処理方法を提供することを目的とする。   Therefore, the present invention is a multi-stage activated sludge process that uses the predation action of micro-organisms, and maintains organic wastewater quality and further improves the treatment efficiency and reduces the amount of excess sludge generated. An object is to provide a processing method.

発明の有機性排水の生物処理方法は、有機性排水中のBODを高負荷処理して分散菌体に変換する第1の生物処理工程と、変換された分散菌体をフロック化すると共に微小生物を共存させる第2の生物処理工程とを有する有機性排水の生物処理方法において、該第2の生物処理工程の汚泥及び/又は該第2の生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を好気条件で分解する余剰汚泥処理工程を有し、該余剰汚泥処理工程の処理汚泥を前記第1の生物処理工程及び/又は第2の生物処理工程に返送する有機性排水の生物処理方法であって、該余剰汚泥処理工程をpH5〜6の条件下に行うことを特徴とする。 Organic biological treatment how waste water of the present invention includes a first biological treatment step of converting the BOD in the organic waste water by high-load processing in a distributed cells, the converted dispersed bacteria as well as flocculation In the organic wastewater biological treatment method having a second biological treatment step in which micro-organisms coexist, the sludge of the second biological treatment step and / or the sludge of the second biological treatment step is separated into solid and liquid. A surplus sludge treatment step of decomposing at least a part of the obtained sludge under aerobic conditions, and returning the treated sludge of the surplus sludge treatment step to the first biological treatment step and / or the second biological treatment step The organic wastewater biological treatment method is characterized in that the excess sludge treatment step is performed under conditions of pH 5-6.

有機性排水の好気性処理を、従来の単槽式活性汚泥法により、pH6以下の酸性域で行うと菌類が多量に発生し、バルキングの原因となる。しかしながら、本発明の方法のように、BODを分散菌体に変換する第1の生物処理工程をpH6〜8の中性域で行い、汚泥減量のための余剰汚泥処理工程をpH5〜6の酸性域で行うことにより、発生汚泥量の大幅な減量が可能になる。これは、微小生物が共存する余剰汚泥処理工程をpH5〜6とすることで、BOD処理を行う第1の生物処理工程からの非凝集汚泥の効率的な捕食が可能となり、一方で、捕食に関与する大部分の微小生物の増殖はpH5〜8の範囲であればpHによる影響を受けないため、余剰汚泥処理工程において、VSSに占める微小生物の割合を20%以上の高濃度に高めることができることによる。 When aerobic treatment of organic wastewater is carried out in an acidic region of pH 6 or less by the conventional single tank activated sludge method, a large amount of fungi are generated, which causes bulking. However, as in the method of the present invention performs a first biological treatment step of converting the BOD to dispersed bacteria in the neutral region of pH 6-8, the surplus sludge treatment process for sludge reduction in pH5~6 By performing in the acidic region, it is possible to greatly reduce the amount of generated sludge. This allows the surplus sludge treatment process micro organisms that coexist With pH 5-6, enables efficient predatory unaggregated sludge from the first biological treatment step of performing BOD treatment, while the for growth of most micro-organisms involved in predation unaffected by pH be in the range of pH 5-8, in surplus sludge treatment process, the ratio of the minute organisms occupying the VSS to the high concentration of 20% or more By being able to increase.

このように、本発明によれば、BOD処理のための第1の生物処理工程と汚泥減量のための余剰汚泥処理工程とで各々の機能に応じて環境条件を適応化させることにより、両者の機能を最大限に発揮させ、これにより、処理効率の向上と余剰汚泥発生量の低減を図ることができる Thus, according to the present invention, by adapting the environmental conditions in accordance with the respective functions in the surplus sludge treatment process for the first biological treatment process and sludge reduction for BOD treatment, both Thus, the processing efficiency can be improved and the amount of excess sludge generated can be reduced .

本発明において、余剰汚泥処理工程は、生物処理槽の後段に固液分離手段を設け、固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程であっても良く、生物処理槽内に担体を添加した流動床式生物処理工程であっても良い。 In the present invention , the surplus sludge treatment step may be a sludge return-type biological treatment step in which solid-liquid separation means is provided at the subsequent stage of the biological treatment tank and the sludge separated from the solid and liquid is returned to the biological treatment tank. It may be a fluidized bed biological treatment process in which a carrier is added to the treatment tank.

また、第2の生物処理工程は、生物処理槽の後段に固液分離手段を設け、固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程、生物処理槽内に担体を添加した流動床式生物処理工程、膜分離式生物処理工程のいずれであっても良く、また、第1の生物処理工程を、生物処理槽内に担体を添加した流動床式生物処理、又は2段以上の多段処理により行っても良い。 In addition , the second biological treatment step includes a solid-liquid separation means at the subsequent stage of the biological treatment tank, and a sludge return-type biological treatment step for returning the solid-liquid separated sludge to the biological treatment tank, a carrier in the biological treatment tank. Either a fluidized bed biological treatment process or a membrane separation biological treatment process to which is added, and the first biological treatment process is a fluidized bed biological treatment in which a carrier is added to a biological treatment tank, or You may carry out by the multistage process of 2 steps or more.

本発明の有機性排水の生物処理方法によれば、微小生物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図ることができる。   According to the organic wastewater biological treatment method of the present invention, in the multi-stage activated sludge method utilizing the predation action of micro-organisms, the treatment efficiency can be further improved and the amount of excess sludge generated while maintaining stable treated water quality. Reduction can be achieved.

参考例に係る有機性排水の生物処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of the organic waste_water | drain which concerns on a reference example . 本発明の有機性排水の生物処理方法の他の実施の形態を示す系統図である。Another embodiment of the biological treatment process of organic waste water of the present invention is a system diagram showing. 余剰汚泥処理工程の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of a surplus sludge process. 図4(a)は参考例1で用いた実験装置を示す系統図であり、図4(b)は実施例で用いた実験装置を示す系統図である。4A is a system diagram showing the experimental apparatus used in Reference Example 1, and FIG. 4B is a system diagram showing the experimental apparatus used in Example 1. FIG. 参考例1、実施例1及び比較例1,2における投入BOD量と余剰汚泥発生量との関係を示すグラフである。 Reference Example 1 is a graph showing the relationship between the charged BOD volume and excess sludge generation amount in Example 1及 beauty Comparative Examples 1 and 2.

以下に図面を参照して本発明の有機性排水の生物処理方法の実施の形態を詳細に説明する。   Embodiments of a biological treatment method for organic wastewater according to the present invention will be described below in detail with reference to the drawings.

図1は参考例に係る有機性排水の生物処理方法の実施の形態を示す系統図であり、図2は本発明の有機性排水の生物処理方法の実施の形態を示す系統図である。 Figure 1 is a system diagram showing an embodiment of the biological treatment process of organic waste water according to a reference example, FIG. 2 is a system diagram showing an embodiment of the biological treatment process of organic waste water of the present invention.

図1の方法では、原水(有機性排水)は、まず第一生物処理槽(分散菌槽)1に導入され、非凝集性細菌により、BOD(有機成分)の70%以上、望ましくは80%以上、更に望ましくは90%以上が酸化分解される。この第一生物処理槽1のpHは6以上、望ましくはpH6〜8とする。また、第一生物処理槽1へのBOD容積負荷は1kg/m/d以上、例えば1〜20kg/m/d、HRT(原水滞留時間)は24h以下、例えば0.5〜24hとすることで、非凝集性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができ、好ましい。また、担体を添加することにより、高負荷、滞留時間の短縮が可能になる。 In the method of FIG. 1, raw water (organic wastewater) is first introduced into a first biological treatment tank (dispersed bacteria tank) 1 and is 70% or more, preferably 80% of BOD (organic component) due to non-aggregating bacteria. More preferably, 90% or more is oxidatively decomposed. The pH of the first biological treatment tank 1 is 6 or more, preferably pH 6-8. Moreover, the BOD volumetric load to the 1st biological treatment tank 1 shall be 1 kg / m < 3 > / d or more, for example, 1-20 kg / m < 3 > / d, HRT (raw water residence time) shall be 24 h or less, for example, 0.5-24 h. Thus, it is possible to obtain treated water in which non-aggregating bacteria predominate, and by shortening the HRT, wastewater having a low BOD concentration can be treated with a high load, which is preferable. Further, by adding a carrier, it becomes possible to reduce a high load and a residence time.

第一生物処理槽1の処理水は、pH5〜6、望ましくはpH5〜5.5の範囲に制御された第二生物処理槽(微小生物槽)2に導入され、ここで、残存している有機成分の酸化分解、非凝集性細菌の自己分解及び微小生物による捕食による汚泥の減量化が行われる。   The treated water in the first biological treatment tank 1 is introduced into a second biological treatment tank (micro biological tank) 2 controlled to a pH of 5 to 6, preferably pH 5 to 5.5, and remains there. The sludge is reduced by oxidative degradation of organic components, self-degradation of non-aggregating bacteria, and predation by micro-organisms.

図1の方法において、第二生物処理槽2を多段化し、2槽以上の生物処理槽を直列に設け、前段側の生物処理槽でpH5〜6、望ましくはpH5〜5.5の条件で処理を行い、後段側の生物処理槽でpH6以上、好ましくはpH6〜8の条件で処理を行うようにしても良く、このような多段処理により、前段側の生物処理槽で汚泥の捕食を効果的に行い、後段側の生物処理槽で汚泥の固液分離性の向上、処理水水質の向上を図ることができる。   In the method of FIG. 1, the second biological treatment tank 2 is multistaged, and two or more biological treatment tanks are provided in series, and the treatment is performed at a pH of 5 to 6, preferably pH 5 to 5.5, in the preceding biological treatment tank. In this case, the treatment may be performed at a pH of 6 or more, preferably at a pH of 6 to 8 in the biological treatment tank on the rear stage side. By such multistage treatment, predation of sludge is effectively performed in the biological treatment tank on the front stage side. It is possible to improve the solid-liquid separation property of sludge and the quality of treated water in the biological treatment tank on the rear stage side.

第二生物処理槽2の処理水は沈殿槽3で固液分離され、分離水は処理水として系外へ排出される。また、分離汚泥の一部は余剰汚泥として系外へ排出され、残部は第一生物処理槽1及び第二生物処理槽2に返送される。なお、この汚泥返送は、各生物処理槽における汚泥量の維持のために行われるものであり、例えば、第一生物処理槽1及び/又は第二生物処理槽2を、後述のような担体を添加した流動床式とした場合、汚泥返送は不要である場合もある。また、第一生物処理槽1のBOD容積負荷が低い場合は、汚泥返送は第二生物処理槽2のみとしてもよい。   The treated water in the second biological treatment tank 2 is solid-liquid separated in the precipitation tank 3, and the separated water is discharged out of the system as treated water. A part of the separated sludge is discharged out of the system as surplus sludge, and the remaining part is returned to the first biological treatment tank 1 and the second biological treatment tank 2. In addition, this sludge return is performed in order to maintain the amount of sludge in each biological treatment tank. For example, the first biological treatment tank 1 and / or the second biological treatment tank 2 is loaded with a carrier as described below. In the case of an added fluidized bed type, sludge return may not be necessary. Moreover, when the BOD volumetric load of the 1st biological treatment tank 1 is low, sludge return is good also as the 2nd biological treatment tank 2 only.

図2の方法では、原水(有機性排水)は、共にpH6以下、望ましくはpH6〜8に制御された第一生物処理槽1及び第二生物処理槽2に順次導入され、図1の方法と同様に第一生物処理槽1で非凝集性細菌により、有機成分の70%以上、望ましくは80%以上、更に望ましくは90%以上が酸化分解され、次いで第二生物処理槽2で残存している有機成分の酸化分解、非凝集性細菌の自己分解及び微小生物による捕食により汚泥の減量化が行われる。第二生物処理槽2の処理水は沈殿槽3で固液分離され、分離水が処理水として系外へ排出される。この第二生物処理槽2から生成される発生汚泥の少なくとも一部(図2では、第二生物処理槽2の処理水が導入される沈殿槽3の分離汚泥の一部)がpH5〜6、好ましくはpH5〜5.5の範囲に制御された余剰汚泥処理槽4に送給され、ここで好気性消化により分解される。この余剰汚泥処理槽4の処理汚泥は、第一生物処理槽1及び/又は第二生物処理槽2に返送される。また、図2では、沈殿槽3の分離汚泥の残部のうち、一部は余剰汚泥として系外へ排出され、残部が第二生物処理槽2に返送される。   In the method of FIG. 2, raw water (organic waste water) is sequentially introduced into the first biological treatment tank 1 and the second biological treatment tank 2 which are both controlled to pH 6 or less, preferably pH 6 to 8, and the method of FIG. Similarly, 70% or more, desirably 80% or more, more desirably 90% or more of the organic components are oxidatively decomposed by non-aggregating bacteria in the first biological treatment tank 1 and then remain in the second biological treatment tank 2. The sludge is reduced by oxidative degradation of organic components, self-degradation of non-aggregating bacteria and predation by micro-organisms. The treated water in the second biological treatment tank 2 is solid-liquid separated in the precipitation tank 3, and the separated water is discharged out of the system as treated water. At least a part of the generated sludge generated from the second biological treatment tank 2 (in FIG. 2, a part of the separated sludge of the sedimentation tank 3 into which treated water of the second biological treatment tank 2 is introduced) has a pH of 5-6. Preferably, it is fed to an excess sludge treatment tank 4 controlled in the range of pH 5 to 5.5, where it is decomposed by aerobic digestion. The treated sludge in the excess sludge treatment tank 4 is returned to the first biological treatment tank 1 and / or the second biological treatment tank 2. In FIG. 2, a part of the remaining sludge in the sedimentation tank 3 is discharged out of the system as surplus sludge, and the remaining part is returned to the second biological treatment tank 2.

沈殿槽3の分離汚泥のうち、余剰汚泥処理槽4へ送給する汚泥量と第二生物処理槽2へ返送する汚泥量との比率は、後述の好適な余剰汚泥処理槽滞留時間が維持できるように、発生汚泥量に応じて適宜設定される。また、余剰汚泥処理槽4の処理汚泥のうち第一,第二生物処理槽1,2へ返送する汚泥量の比率或いは、いずれの生物処理槽に返送するかは、各生物処理槽の汚泥保持量が維持できるように適宜設定される。   Of the separated sludge in the sedimentation tank 3, the ratio of the sludge amount to be fed to the surplus sludge treatment tank 4 and the sludge quantity to be returned to the second biological treatment tank 2 can maintain a suitable surplus sludge treatment tank residence time described later. Thus, it sets suitably according to the amount of generated sludge. The ratio of the amount of sludge to be returned to the first and second biological treatment tanks 1 and 2 among the treated sludge in the surplus sludge treatment tank 4 or which biological treatment tank to return depends on the sludge retention of each biological treatment tank It is set as appropriate so that the amount can be maintained.

この余剰汚泥処理槽4には、装置運転の立ち上げ時や発生汚泥量が高い場合には、発生汚泥の全量から半量を投入するようにしても良い。この余剰汚泥処理槽4は汚泥減量効果だけではなく、第二生物処理槽2に微小生物を供給する効果も有する。余剰汚泥処理槽4の汚泥滞留時間は6h以上、望ましくは12h以上、例えば12〜240hであるが、例えば、図3に示す如く、沈殿槽4Bを設けて余剰汚泥処理槽4Aに汚泥返送を行う好気処理法、或いは担体を添加した流動床、又は膜分離式好気処理法とすることで汚泥滞留時間を更に高めることが可能となる。余剰汚泥処理槽4の担体としては、第一生物処理槽の担体として後述するものを用いることができる。   The surplus sludge treatment tank 4 may be charged with half of the total amount of generated sludge when the apparatus is started up or when the amount of generated sludge is high. This excess sludge treatment tank 4 has not only a sludge reduction effect but also an effect of supplying micro-organisms to the second biological treatment tank 2. The sludge retention time of the excess sludge treatment tank 4 is 6 hours or longer, preferably 12 hours or longer, for example, 12 to 240 hours. For example, as shown in FIG. By using an aerobic treatment method, a fluidized bed to which a carrier is added, or a membrane separation type aerobic treatment method, the sludge residence time can be further increased. As the carrier for the excess sludge treatment tank 4, those described later as the carrier for the first biological treatment tank can be used.

なお、図1,2のいずれの方法においても、第二生物処理槽2に導入される第一生物処理槽1の処理水中に有機物が多量に残存した場合、その酸化分解は第二生物処理槽2で行われることになる。微小生物が多量に存在する第二生物処理槽2で細菌による有機物の酸化分解が起こると、微小生物の捕食から逃れるための対策として、捕食されにくい形態で増殖することが知られており、このように増殖した細菌群は微小生物により捕食されず、これらの分解は自己消化のみに頼ることとなり、汚泥発生量低減の効果が下がってしまう。また、本発明の方法では、余剰汚泥処理槽4を酸性域に設定しており、有機物が多量に残存した場合、その有機物を利用して菌類などが増殖してしまいバルキングの原因にもなる。そこで先にも述べたように第一生物処理槽1では、有機物の大部分、即ち、原水BODの70%以上、望ましくは80%以上、より望ましくは90%以上を分解し、菌体へと変換しておく必要がある。よって、第二生物処理槽2への溶解性BODによる汚泥負荷で表すと0.5kg−BOD/kg−MLSS/d以下、例えば0.01〜0.1kg−BOD/kg−MLSS/dで運転することが好ましい。 1 and 2, when a large amount of organic matter remains in the treated water of the first biological treatment tank 1 introduced into the second biological treatment tank 2, the oxidative decomposition is performed in the second biological treatment tank 1. 2 will be done. It is known that when oxidative degradation of organic matter by bacteria occurs in the second biological treatment tank 2 in which a large amount of micro organisms are present, it proliferates in a form that is difficult to prey, as a countermeasure to escape from predation of micro organisms. The bacterial group thus grown is not preyed on by the micro-organisms, and their decomposition depends only on self-digestion, and the effect of reducing the amount of sludge generated decreases. In the method of the present invention, which sets the surplus sludge treatment tank 4 to the acidic range, if the organic material has a large amount of residual becomes also cause bulking such ends up proliferate fungi utilizing the organics . Therefore, as described above, in the first biological treatment tank 1, most of the organic matter, that is, 70% or more of the raw water BOD, desirably 80% or more, more desirably 90% or more, is decomposed into cells. It needs to be converted. Therefore, when expressed by the sludge load due to the soluble BOD in the second biological treatment tank 2, it is operated at 0.5 kg-BOD / kg-MLSS / d or less, for example, 0.01 to 0.1 kg-BOD / kg-MLSS / d. It is preferable to do.

図2の方法は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。 The method of FIG. 2 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist.

例えば、第一生物処理槽は、高負荷処理のために、後段の沈殿槽の分離汚泥の一部を返送する他、担体を添加した流動床方式としたり、2槽以上の生物処理槽を直列に設けて多段処理を行っても良い。特に、担体の添加により、BOD容積負荷5kg/m/d以上の高負荷処理も可能となり、好ましい。この場合、添加する担体の形状は球状、ペレット状、中空筒状、糸状等任意であり、大きさも0.1〜10mm程度の径で良い。また、担体の材料は天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。また、第二生物処理槽2では、細菌に比べ増殖速度の遅い微小生物の働きと細菌の自己分解を利用するため、微小生物と細菌が系内に留まるような運転条件及び処理装置を採用することが重要であり、このために、第二生物処理槽は、図2に示すように、汚泥の返送を行う汚泥返送式生物処理を行う他、後述の実施例におけるように、槽内に分離膜を浸漬して膜分離式活性汚泥処理を行うことも望ましい。更に望ましくは、曝気槽内に担体を添加することで微小生物の槽内保持量を高めることができる。この場合の担体としては、第一生物処理槽に添加する担体として前述したものと同様のものを用いることができる。 For example, the first biological treatment tank is a fluidized bed system with a carrier added in addition to returning a part of the separated sludge from the subsequent sedimentation tank for high load treatment, or two or more biological treatment tanks in series. It is also possible to perform multi-stage processing by providing them. In particular, the addition of a carrier is preferable because a high load treatment with a BOD volume load of 5 kg / m 3 / d or more is possible. In this case, the shape of the carrier to be added is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, and a thread shape, and the size may be about 0.1 to 10 mm. The material of the carrier is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used. Further, in the second biological treatment tank 2, in order to utilize the action of micro-organisms whose growth rate is slower than that of bacteria and the self-degradation of bacteria, operating conditions and processing devices are adopted so that the micro-organisms and bacteria stay in the system. For this reason, as shown in FIG. 2 , the second biological treatment tank is separated into the tank as shown in FIG. 2 in addition to performing sludge return biological treatment for returning sludge. It is also desirable to perform membrane separation activated sludge treatment by immersing the membrane. More desirably, the amount of micro-organisms retained in the tank can be increased by adding a carrier to the aeration tank. As the carrier in this case, the same carrier as described above as the carrier added to the first biological treatment tank can be used.

以下に参考例、実施例及び比較例を挙げて本発明をより具体的に説明する。 The present invention will be described more specifically with reference to the following reference examples, examples and comparative examples.

参考例1
図4(a)に示す如く、第一生物処理槽11として容量が3.6Lの活性汚泥槽(汚泥返送なし)と、第二生物処理槽12として容量が15Lの浸漬膜式活性汚泥槽を連結させた実験装置を用いて、本発明による有機性排水(BOD630mg/L)の処理を行った。第一生物処理槽11のpHは6.8、第二生物処理槽12のpHは5.0にそれぞれ調整した。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図5に示す。
Reference example 1
As shown in FIG. 4 (a), an activated sludge tank with a capacity of 3.6L (no sludge return) is used as the first biological treatment tank 11, and an immersion membrane activated sludge tank with a capacity of 15L is used as the second biological treatment tank 12. The organic waste water (BOD630mg / L) treatment by this invention was performed using the connected experimental apparatus. The pH of the first biological treatment tank 11 was adjusted to 6.8, and the pH of the second biological treatment tank 12 was adjusted to 5.0. Table 1 shows the results 4 months after the start of the experiment. Moreover, the excess sludge generation amount (sludge conversion rate) with respect to the input BOD is shown in FIG.

参考例では、第一生物処理槽11に対する溶解性BOD容積負荷は3.5kg−BOD/m/d、HRTは4h、第二生物処理槽12の溶解性BOD汚泥負荷は0.022kg−BOD/kg−MLSS/d、HRTは17h、全体でのBOD容積負荷0.75kg−BOD/m/d、HRTは21hの条件で運転したところ、汚泥転換率は0.1kg−MLSS/kg−BODとなったが、処理水BODは検出限界以下であった。 In this reference example, the soluble BOD volumetric load on the first biological treatment tank 11 is 3.5 kg-BOD / m 3 / d, HRT is 4 h, and the soluble BOD sludge load on the second biological treatment tank 12 is 0.022 kg- BOD / kg-MLSS / d, HRT was 17h, BOD volumetric load was 0.75kg-BOD / m 3 / d, HRT was operated under the conditions of 21h. Sludge conversion rate was 0.1kg-MLSS / kg Although it became -BOD, the treated water BOD was below the detection limit.

実施例
図4(b)に示す如く、第一生物処理槽11として容量が3.6Lの活性汚泥槽(汚泥返送なし)と、第二生物処理槽12として容量が15Lの浸漬膜式活性汚泥槽と、容量が1Lの余剰汚泥処理槽13を連結させた実験装置を用いて、本発明による有機性排水(BOD630mg/L)の処理を行った。第一生物処理槽11、及び第二生物処理槽12のpHはいずれも6.8に調整し、余剰汚泥処理槽13のpHは5.0に調整した。第二生物処理槽12からは槽内汚泥を0.5L/dの割合で引き抜いて余剰汚泥処理槽13に導入し、この余剰汚泥処理槽13からは槽内汚泥を0.5L/dで引き抜き、これを第二生物処理槽12に返送した。余剰汚泥処理槽13の滞留時間はSRT=HRT=1日とした。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図5に示す。
Example 1
As shown in FIG. 4 (b), an activated sludge tank with a capacity of 3.6L (no sludge return) as the first biological treatment tank 11, and a submerged membrane activated sludge tank with a capacity of 15L as the second biological treatment tank 12. The organic waste water (BOD 630 mg / L) according to the present invention was treated using an experimental apparatus in which an excess sludge treatment tank 13 having a capacity of 1 L was connected. The pH of both the first biological treatment tank 11 and the second biological treatment tank 12 was adjusted to 6.8, and the pH of the excess sludge treatment tank 13 was adjusted to 5.0. The sludge in the tank is drawn out from the second biological treatment tank 12 at a rate of 0.5 L / d and introduced into the surplus sludge treatment tank 13, and the sludge in the tank is drawn out from the surplus sludge treatment tank 13 at 0.5 L / d. This was returned to the second biological treatment tank 12. The residence time of the excess sludge treatment tank 13 was SRT = HRT = 1 day. Table 1 shows the results 4 months after the start of the experiment. Moreover, the excess sludge generation amount (sludge conversion rate) with respect to the input BOD is shown in FIG.

本実施例では、第一生物処理槽11に対する溶解性BOD容積負荷は3.85kg−BOD/m/d、HRTは4h、第二生物処理槽12の溶解性BOD汚泥負荷は0.022kg−BOD/kg−MLSS/d、HRTは17h、全体でのBOD容積負荷0.75kg−BOD/m/d、HRTは21hの条件で運転したところ、汚泥転換率は0.11kg−MLSS/kg−BODとなり、処理水BODは検出限界以下であった。 In this example, the soluble BOD volumetric load on the first biological treatment tank 11 is 3.85 kg-BOD / m 3 / d, HRT is 4 h, and the soluble BOD sludge load on the second biological treatment tank 12 is 0.022 kg- BOD / kg-MLSS / d, HRT was 17h, BOD volumetric load was 0.75kg-BOD / m 3 / d, HRT was operated under the conditions of 21h. Sludge conversion rate was 0.11kg-MLSS / kg −BOD, and the treated water BOD was below the detection limit.

比較例1
参考例1において、第一生物処理槽を省略し、第二生物処理槽の容量15Lの浸漬膜式活性汚泥槽のみからなる実験装置を用いて有機性排水(BOD630mg/L)の処理を行った。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図5に示す。
Comparative Example 1
In Reference Example 1, the first biological treatment tank was omitted, and the organic wastewater (BOD 630 mg / L) was treated using an experimental apparatus consisting only of a submerged membrane activated sludge tank with a capacity of 15 L of the second biological treatment tank. . Table 1 shows the results 4 months after the start of the experiment. Moreover, the excess sludge generation amount (sludge conversion rate) with respect to the input BOD is shown in FIG.

本比較例では、溶解性BOD容積負荷0.76kg−BOD/m/d、HRTは20hの条件で運転したところ、表1にあるように処理水水質は良好であったものの、汚泥転換率は0.40kg−MLSS/kg−BODとなった。 In this comparative example, when the soluble BOD volumetric load was 0.76 kg-BOD / m 3 / d and the HRT was operated under the conditions of 20 h, the treated water quality was good as shown in Table 1, but the sludge conversion rate Was 0.40 kg-MLSS / kg-BOD.

比較例2
参考例1において、第一生物処理槽も第二生物処理槽もいずれもpH6.8に調整したこと以外は、同様にして有機性排水(BOD630mg/L)の処理を行った。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図5に示す。
Comparative Example 2
In Reference Example 1, treatment of organic waste water (BOD 630 mg / L) was performed in the same manner except that both the first biological treatment tank and the second biological treatment tank were adjusted to pH 6.8. Table 1 shows the results 4 months after the start of the experiment. Moreover, the excess sludge generation amount (sludge conversion rate) with respect to the input BOD is shown in FIG.

本比較例では、第一生物処理槽11に対する溶解性BOD容積負荷3.85kg−BOD/m/d、HRTは4h、第二生物処理槽12の溶解性BOD汚泥負荷0.022kg−BOD/kg−MLSS/d、HRTは17h、全体でのBOD容積負荷0.75kg−BOD/m/d、HRTは21hの条件で運転したところ、表1にあるように処理水水質は良好であったが、汚泥転換率は0.2kg−MLSS/kg−BODとなった。 In this comparative example, the soluble BOD volumetric load 3.85 kg-BOD / m 3 / d for the first biological treatment tank 11, the HRT is 4 h, the soluble BOD sludge load of the second biological treatment tank 12 is 0.022 kg-BOD / kg-MLSS / d, HRT was 17h, overall BOD volumetric load was 0.75kg-BOD / m 3 / d, and HRT was operated for 21h. As shown in Table 1, the quality of the treated water was good. However, the sludge conversion rate was 0.2 kg-MLSS / kg-BOD.

Figure 2010069482
Figure 2010069482

参考例1、実施例1及び比較例1,2の結果から次のことが分かる。 Reference Example 1, the following can be seen from the results of Example 1及 beauty Comparative Examples 1 and 2.

比較例1は従来の活性汚泥法、比較例2は酸性域での生物処理工程を入れていない多段生物処理法による処理を実施したものである。従来の活性汚泥法(比較例1)では汚泥転換率は0.40kg−MLSS/kg−BODとなっていたが、比較例2のように多段生物処理を導入することで汚泥転換率は0.20kg−MLSS/kg−BODとなり、汚泥発生量を1/2に低減することができた。この汚泥減量効果はこれまでに報告されている多段生物処理法と同程度のものである。   Comparative Example 1 is a conventional activated sludge method, and Comparative Example 2 is a multi-stage biological treatment method that does not include a biological treatment step in an acidic region. In the conventional activated sludge method (Comparative Example 1), the sludge conversion rate was 0.40 kg-MLSS / kg-BOD, but by introducing multistage biological treatment as in Comparative Example 2, the sludge conversion rate was 0. It became 20 kg-MLSS / kg-BOD, and the sludge generation amount could be reduced to ½. This sludge reduction effect is similar to the multistage biological treatment methods reported so far.

一方、本発明のように酸性域での生物処理工程を導入した実施例1では、汚泥転換率が0.11kg−MLSS/kg−BODとなっており、従来法に比べ、発生汚泥量を1/4に、また、従来の多段生物処理法に比べて1/2に低減することができた。 On the other hand, in Example 1 were introduced biological treatment process in an acidic region as in the present invention, the sludge conversion rate 0. It was 11 kg-MLSS / kg-BOD, and the amount of generated sludge was reduced to ¼ compared to the conventional method, and to ½ compared to the conventional multistage biological treatment method.

本発明の有機性排水の生物処理方法は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる。   The biological treatment method for organic wastewater of the present invention can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories.

1,11 第一生物処理槽
2,12 第二生物処理槽
3 沈殿槽
4,13 余剰汚泥処理槽
1,11 First biological treatment tank 2,12 Second biological treatment tank 3 Precipitation tank 4,13 Excess sludge treatment tank

Claims (6)

有機性排水中のBODを高負荷処理して分散菌体に変換する第1の生物処理工程と、
変換された分散菌体をフロック化すると共に微小生物を共存させる第2の生物処理工程とを有する有機性排水の生物処理方法において、
該第2の生物処理工程をpH5〜6の条件下に行うことを特徴とする有機性排水の生物処理方法。
A first biological treatment process for converting BOD in organic wastewater into a dispersed cell by high-load treatment;
In a biological treatment method for organic wastewater, which has a second biological treatment step for flocking the converted dispersed cells and coexisting with micro-organisms,
A method for biological treatment of organic wastewater, characterized in that the second biological treatment step is carried out under conditions of pH 5-6.
請求項1において、前記第2の生物処理工程を2段以上の多段処理とし、該第2の生物処理工程において、pH5〜6の生物処理後にpH6以上の生物処理を行うことを特徴とする有機性排水の生物処理方法。   The organic treatment according to claim 1, wherein the second biological treatment step is a multistage treatment of two or more stages, and in the second biological treatment step, the biological treatment of pH 6 or more is performed after the biological treatment of pH 5-6. Biological treatment method for effluent. 有機性排水中のBODを高負荷処理して分散菌体に変換する第1の生物処理工程と、
変換された分散菌体をフロック化すると共に微小生物を共存させる第2の生物処理工程とを有する有機性排水の生物処理方法において、
該第2の生物処理工程の汚泥及び/又は該第2の生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を好気条件で分解する余剰汚泥処理工程を有し、該余剰汚泥処理工程の処理汚泥を前記第1の生物処理工程及び/又は第2の生物処理工程に返送する有機性排水の生物処理方法であって、
該余剰汚泥処理工程をpH5〜6の条件下に行うことを特徴とする有機性排水の生物処理方法。
A first biological treatment process for converting BOD in organic wastewater into a dispersed cell by high-load treatment;
In a biological treatment method for organic wastewater, which has a second biological treatment step for flocking the converted dispersed cells and coexisting with micro-organisms,
A surplus sludge treatment step of decomposing at least a part of the sludge obtained by solid-liquid separation of the sludge of the second biological treatment step and / or the sludge of the second biological treatment step under aerobic conditions; A biological treatment method for organic wastewater that returns the treated sludge of the excess sludge treatment step to the first biological treatment step and / or the second biological treatment step,
A biological treatment method for organic waste water, wherein the excess sludge treatment step is performed under conditions of pH 5-6.
請求項3において、該余剰汚泥処理工程が、生物処理槽の後段に固液分離手段を設けて固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程、又は、生物処理槽内に担体を添加した流動床式生物処理工程であることを特徴とする有機性排水の生物処理方法。   In Claim 3, the surplus sludge treatment process is a sludge return-type biological treatment process in which solid-liquid separation means is provided at the subsequent stage of the biological treatment tank and the sludge separated into solid and liquid is returned to the biological treatment tank, or biological treatment A biological treatment method for organic wastewater, which is a fluidized bed biological treatment process in which a carrier is added to a tank. 請求項1ないし4のいずれか1項において、前記第2の生物処理工程が、生物処理槽の後段に固液分離手段を設け、固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程、生物処理槽内に担体を添加した流動床式生物処理工程、又は膜分離式生物処理工程であることを特徴とする有機性排水の生物処理方法。   5. The sludge return according to claim 1, wherein the second biological treatment step is provided with solid-liquid separation means at a subsequent stage of the biological treatment tank, and the sludge separated by solid-liquid is returned to the biological treatment tank. A biological treatment method for organic waste water, which is a biological treatment process, a fluidized bed biological treatment process in which a carrier is added to a biological treatment tank, or a membrane separation biological treatment process. 請求項1ないし5のいずれか1項において、前記第1の生物処理工程を、生物処理槽内に担体を添加した流動床式生物処理、又は2段以上の多段処理により行うことを特徴とする有機性排水の生物処理方法。   The first biological treatment step according to any one of claims 1 to 5, wherein the first biological treatment step is performed by a fluidized bed biological treatment in which a carrier is added to a biological treatment tank or a multistage treatment of two or more stages. Biological treatment method for organic wastewater.
JP2009268609A 2009-11-26 2009-11-26 Biological treatment method for organic wastewater Expired - Fee Related JP5170069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268609A JP5170069B2 (en) 2009-11-26 2009-11-26 Biological treatment method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268609A JP5170069B2 (en) 2009-11-26 2009-11-26 Biological treatment method for organic wastewater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004025702A Division JP4474930B2 (en) 2004-02-02 2004-02-02 Biological treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JP2010069482A true JP2010069482A (en) 2010-04-02
JP5170069B2 JP5170069B2 (en) 2013-03-27

Family

ID=42201753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268609A Expired - Fee Related JP5170069B2 (en) 2009-11-26 2009-11-26 Biological treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JP5170069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013915A (en) * 2019-07-16 2021-02-12 水ing株式会社 Treatment method of organic wastewater, and treatment device of organic wastewater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731749B (en) * 2016-03-16 2018-10-30 福州大学 A kind of method of bioleaching removal Heavy Metals in Sludge Cd
CN105859081B (en) * 2016-05-31 2019-05-03 河南工程学院 A kind of nutrient special and its production method for sludge organism processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555729A (en) * 1978-06-28 1980-01-16 Ebara Infilco Co Ltd Treating method for organic waste liquor
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2000061497A (en) * 1998-08-25 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and equipment therefor
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2002186988A (en) * 2000-12-19 2002-07-02 Mitsubishi Kakoki Kaisha Ltd Wastewater treatment device and method for treating wastewater
JP2002320992A (en) * 2001-04-25 2002-11-05 Ebara Corp Method for treating organic waste water and equipment therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555729A (en) * 1978-06-28 1980-01-16 Ebara Infilco Co Ltd Treating method for organic waste liquor
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2000061497A (en) * 1998-08-25 2000-02-29 Kankyo Eng Co Ltd Treatment of organic wastewater and equipment therefor
JP2002177979A (en) * 2000-12-11 2002-06-25 Mitsubishi Kakoki Kaisha Ltd Waste water treatment equipment
JP2002186988A (en) * 2000-12-19 2002-07-02 Mitsubishi Kakoki Kaisha Ltd Wastewater treatment device and method for treating wastewater
JP2002320992A (en) * 2001-04-25 2002-11-05 Ebara Corp Method for treating organic waste water and equipment therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021013915A (en) * 2019-07-16 2021-02-12 水ing株式会社 Treatment method of organic wastewater, and treatment device of organic wastewater
JP7228487B2 (en) 2019-07-16 2023-02-24 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus

Also Published As

Publication number Publication date
JP5170069B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP4474930B2 (en) Biological treatment method for organic wastewater
KR101215912B1 (en) Process for biological treatment of organic waste water and apparatus therefor
KR20060136451A (en) Process for biological treatment of organic waste water and apparatus therefor
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
JP2009202115A (en) Method and apparatus for biologically treating organic wastewater
JP5862597B2 (en) Biological treatment method and apparatus for organic wastewater
JP4501496B2 (en) Biological treatment method for organic wastewater
JP4572587B2 (en) Biological treatment method for organic wastewater
JP5170069B2 (en) Biological treatment method for organic wastewater
JP2006247494A (en) Biological treatment method and apparatus of organic wastewater
JP4967225B2 (en) Biological treatment method for organic wastewater
JP2005161233A (en) Sludge weight reduction method by using humus and system therefor
JP5948651B2 (en) Surplus sludge generation suppression method and organic wastewater treatment method
US20090095674A1 (en) Method and eqipment for biological treatment of organic wastewater
WO2015045094A1 (en) Organic wastewater biological treatment method
JP2006051415A (en) Process for biological treatment of organic waste water
JP7181251B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3836718B2 (en) Organic wastewater treatment method and treatment apparatus
JP2021181062A (en) Method for treating organic waste water and device for treating organic waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5170069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees