JP7228487B2 - Organic wastewater treatment method and organic wastewater treatment apparatus - Google Patents

Organic wastewater treatment method and organic wastewater treatment apparatus Download PDF

Info

Publication number
JP7228487B2
JP7228487B2 JP2019131426A JP2019131426A JP7228487B2 JP 7228487 B2 JP7228487 B2 JP 7228487B2 JP 2019131426 A JP2019131426 A JP 2019131426A JP 2019131426 A JP2019131426 A JP 2019131426A JP 7228487 B2 JP7228487 B2 JP 7228487B2
Authority
JP
Japan
Prior art keywords
sludge
flow rate
tank
treatment tank
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019131426A
Other languages
Japanese (ja)
Other versions
JP2021013915A (en
Inventor
甬生 葛
勝子 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2019131426A priority Critical patent/JP7228487B2/en
Publication of JP2021013915A publication Critical patent/JP2021013915A/en
Application granted granted Critical
Publication of JP7228487B2 publication Critical patent/JP7228487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、有機性廃水の処理方法及び有機性廃水の処理装置に関する。 The present invention relates to an organic wastewater treatment method and an organic wastewater treatment apparatus.

近年、生物化学的酸素要求量(BOD)の高い有機性廃水処理としては一般的に活性汚泥処理が用いられる場合が多い。活性汚泥処理は維持管理が容易でありランニングコストが低い。活性汚泥処理は流入原水中のBODの安定除去が可能であり、常時良好な処理水質が得られる等の利点もある。そのため、活性汚泥処理は生活廃水、工場廃水等の種々の有機性廃水処理に多く用いられている。 In recent years, activated sludge treatment is generally used in many cases to treat organic wastewater with a high biochemical oxygen demand (BOD). Activated sludge treatment is easy to maintain and has low running costs. Activated sludge treatment enables stable removal of BOD in influent raw water, and has the advantage of always obtaining good treated water quality. Therefore, activated sludge treatment is widely used for treatment of various organic wastewaters such as domestic wastewater and industrial wastewater.

しかしながら、活性汚泥処理ではBOD除去に伴う余剰汚泥が発生することが知られている。特にBOD濃度の高い排水は余剰汚泥の発生量も多くなるため、余剰汚泥の処分に伴うコストの処理全体に占める比率が高くなってきており、余剰汚泥の削減が大きな課題となってきている。 However, it is known that activated sludge treatment generates excess sludge due to BOD removal. In particular, wastewater with a high BOD concentration generates a large amount of excess sludge, so the ratio of the cost associated with the disposal of excess sludge to the total treatment has increased, and the reduction of excess sludge has become a major issue.

余剰汚泥の削減方法としては、高負荷及び低負荷を組み合わせた多段処理を行う方法がある。例えば、前段の高負荷槽となる第1生物処理槽で分散菌を発生させ、後段の低負荷槽となる第2生物処理槽で原生動物や後生動物の分散菌の捕食を利用して汚泥減容を行う食物連鎖による汚泥減容化方法が開示されている(特開2010-69482号公報)。 As a method for reducing excess sludge, there is a method of multi-stage treatment that combines high load and low load. For example, dispersed bacteria are generated in the first high-load biological treatment tank, and the second low-load biological treatment tank uses predation of dispersed bacteria by protozoa and metazoans to reduce sludge. A method for reducing the volume of sludge by a food chain is disclosed (Japanese Unexamined Patent Application Publication No. 2010-69482).

特開2010-69482号公報JP 2010-69482 A

特許文献1に記載される生物処理方法には、処理効率向上と余剰汚泥の発生量の低減を図るために第1生物処理槽と第2生物処理槽のBOD負荷及びpHを所定の範囲内に制御する必要があることが記載されている。この点、原水の性状が比較的安定している場合には、各生物処理槽のBOD負荷及びpHを制御することは比較的容易である。 In the biological treatment method described in Patent Document 1, in order to improve treatment efficiency and reduce the amount of excess sludge generated, the BOD load and pH of the first biological treatment tank and the second biological treatment tank are controlled within a predetermined range. It states that it should be controlled. In this respect, when the properties of raw water are relatively stable, it is relatively easy to control the BOD load and pH of each biological treatment tank.

しかしながら、何らかの原因により原水に大きな濃度変動が生じると、生物処理槽のBOD負荷及びpHを制御することが難しくなり、第1の生物処理槽での分散菌の発生が不安定となる場合がある。その結果、分散菌捕食による食物連鎖の汚泥減容化の効果が十分に得られなくなる。また、原水の性状変動により、第1の生物処理槽で分散菌が発生しすぎて、第2の生物処理槽に分散菌が残留すると、処理水質の悪化を招くリスクがある。特許文献1には、第1、第2生物処理槽へ汚泥を返送することについても一応記載があるが、汚泥の返送比率及びいずれの生物処理槽に汚泥を返送するかについては適宜設定できるとの記載があるだけで具体的な提案はなく、原水の性状変動を考慮した設計もなされていない。 However, if a large concentration fluctuation occurs in the raw water for some reason, it becomes difficult to control the BOD load and pH of the biological treatment tank, and the generation of dispersed bacteria in the first biological treatment tank may become unstable. . As a result, the effect of reducing the volume of sludge in the food chain by feeding on dispersed bacteria cannot be obtained sufficiently. Moreover, if dispersed bacteria are generated excessively in the first biological treatment tank due to changes in the properties of the raw water, and dispersed bacteria remain in the second biological treatment tank, there is a risk of deteriorating the quality of the treated water. Patent Document 1 also describes returning sludge to the first and second biological treatment tanks. However, there is no specific proposal, nor is there any design that takes into account changes in the properties of raw water.

上記課題を鑑み、本発明は、原水の性状変動が生じても常時安定した処理水質を維持でき、余剰汚泥の発生量の低減が可能な有機性廃水の処理方法及び有機性廃水の処理装置を提供する。 In view of the above problems, the present invention provides an organic wastewater treatment method and an organic wastewater treatment apparatus that can always maintain stable treated water quality even when the properties of raw water change and can reduce the amount of excess sludge generated. offer.

上記課題を解決するために本発明者らが鋭意検討した結果、原水の性状変動に大きく影響を受けることなく常時安定した処理水質を維持しながら余剰汚泥の発生量を低減するためには、好気性処理槽内に流入する原水中の有機物を分解する細菌と、この細菌を捕食する微生物とをバランス良く共存させることが重要であり、そのためには、余剰汚泥を処理して好気性処理槽へと返送する汚泥培養槽の処理条件を、好気性処理槽の処理条件との関係において、一定の関係を有するように制御することが有効であることを見出した。 As a result of intensive studies by the present inventors in order to solve the above problems, in order to reduce the amount of excess sludge generated while maintaining stable treated water quality at all times without being greatly affected by changes in the properties of raw water, It is important to have bacteria that decompose organic matter in the raw water flowing into the aerobic treatment tank and microorganisms that prey on these bacteria coexist in a well-balanced manner. It has been found that it is effective to control the treatment conditions of the sludge culture tank to be returned to have a certain relationship in relation to the treatment conditions of the aerobic treatment tank.

以上の知見を基礎として完成した本発明の実施の形態に係る有機性廃水の処理方法は一側面において、有機物を含む原水を好気性処理槽内で好気的に処理して好気性処理液を得る好気性処理と、好気性処理液を固液分離して処理水と分離汚泥とを得る固液分離処理と、分離汚泥の一部を第1返送汚泥として引き抜いて好気性処理槽へ返送する第1返送処理と、第1返送汚泥を引き抜いた後の分離汚泥の少なくとも一部を第2返送汚泥とし、第2返送汚泥を分解可能な微小動物を含む汚泥培養槽内に、第1返送汚泥の汚泥流量の2~30流量%となる第2返送汚泥を供給し、汚泥培養槽内の水理学的滞留時間(HRT)が好気性処理槽のHRTに対して0.15~6倍となるように曝気処理した後に、曝気処理後の微小動物を含む汚泥培養液を好気性処理槽へ返送する第2返送処理とを含む。 In one aspect of the organic wastewater treatment method according to the embodiment of the present invention, which has been completed based on the above knowledge, raw water containing organic matter is aerobically treated in an aerobic treatment tank to produce an aerobic treated liquid. a solid-liquid separation process to obtain treated water and separated sludge by solid-liquid separation of the aerobic treated liquid, and a part of the separated sludge is withdrawn as first returned sludge and returned to the aerobic treatment tank. At least part of the separated sludge after the first return treatment and the extraction of the first returned sludge is used as the second returned sludge, and the first returned sludge is placed in a sludge culture tank containing micro-animals capable of decomposing the second returned sludge. The second return sludge is supplied with a flow rate of 2 to 30% of the sludge flow rate, and the hydraulic retention time (HRT) in the sludge culture tank is 0.15 to 6 times that of the aerobic treatment tank. and a second return process of returning the sludge culture solution containing microanimals after the aeration process to the aerobic treatment tank after the aeration process.

本発明の実施の形態に係る有機性廃水の処理方法は一実施態様において、好気性処理が、原水を高負荷処理槽内で処理して高負荷処理液を得る高負荷処理と、高負荷処理槽で得られる高負荷処理液を低負荷処理槽において高負荷処理槽の負荷条件よりも低い負荷条件で処理する低負荷処理とを少なくとも含み、第1返送処理が、第1返送汚泥を少なくとも低負荷処理槽へ返送することを含み、第2返送処理が、第2返送汚泥を低負荷処理槽へ返送するとともに、汚泥培養槽のHRTが低負荷処理槽のHRTに対して0.15~6倍となるように、溶存酸素濃度(DO)1mg/L以上、水温20℃以上で曝気処理することを含む。 In one embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the aerobic treatment includes high-load treatment to obtain a high-load treated liquid by treating raw water in a high-load treatment tank, and high-load treatment. low-load treatment in which the high-load treated liquid obtained in the tank is treated in the low-load treatment tank under load conditions lower than the load conditions of the high-load treatment tank, and the first return treatment reduces the first returned sludge to at least a low load. Including returning to the load treatment tank, the second return treatment returns the second return sludge to the low load treatment tank, and the HRT of the sludge culture tank is 0.15 to 6 with respect to the HRT of the low load treatment tank. It includes aeration treatment at a dissolved oxygen concentration (DO) of 1 mg/L or more and a water temperature of 20°C or more so as to double the amount.

本発明の実施の形態に係る有機性廃水の処理方法は別の一実施態様において、汚泥培養槽を2段以上直列に配置することを含む。 In another embodiment, the organic wastewater treatment method according to the embodiment of the present invention includes arranging two or more sludge culture tanks in series.

本発明の実施の形態に係る有機性廃水の処理方法は更に別の一実施態様において、第1返送汚泥に対する第2返送汚泥の流量比を測定することと、流量比が30流量%を超える場合に第2返送汚泥の流量を低減させ、流量比が2流量%を下回る場合に第2返送汚泥の流量を増加させるように調整することを含む。 In still another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, the flow ratio of the second returned sludge to the first returned sludge is measured, and when the flow ratio exceeds 30% and adjusting to increase the flow rate of the second returned sludge when the flow rate ratio is less than 2% flow rate.

本発明の実施の形態に係る有機性廃水の処理方法は更に別の一実施態様において、好気性処理槽内及び汚泥培養液の少なくともいずれかに担体を添加することを含む。 In still another embodiment of the organic wastewater treatment method according to the embodiment of the present invention, a carrier is added to at least one of the aerobic treatment tank and the sludge culture solution.

本発明の実施の形態に係る有機性廃水の処理装置は一側面において、有機物を含む原水を好気的に処理して好気性処理液を得る好気性処理槽と、好気性処理液を固液分離して処理水と分離汚泥とを得る固液分離槽と、分離汚泥の一部を第1返送汚泥として引き抜いて好気性処理槽へ返送する第1返送手段と、分離汚泥を分解可能な微小動物を含み、第1返送汚泥を引き抜いた後の分離汚泥の少なくとも一部を第2返送汚泥とし、第1返送汚泥の汚泥流量の2~30流量%となる第2返送汚泥を供給して汚泥培養槽内のHRTが好気性処理槽のHRTに対して0.15~6倍となるように曝気処理する汚泥培養槽と、曝気処理後の微小動物を含む汚泥培養液を汚泥培養槽から好気性処理槽へ返送する第2返送手段とを備える。 In one aspect, an organic wastewater treatment apparatus according to an embodiment of the present invention includes an aerobic treatment tank for aerobically treating raw water containing organic matter to obtain an aerobic treatment liquid, and a solid-liquid a solid-liquid separation tank for obtaining treated water and separated sludge by separation; At least part of the separated sludge containing animals and after extraction of the first returned sludge is used as the second returned sludge, and the second returned sludge having a flow rate of 2 to 30% of the sludge flow rate of the first returned sludge is supplied to the sludge. The sludge culture tank is aerated so that the HRT in the culture tank is 0.15 to 6 times the HRT in the aerobic treatment tank, and the sludge culture solution containing microanimals after the aeration treatment is preferably transferred from the sludge culture tank. and a second return means for returning to the gas treatment tank.

本発明の実施の形態に係る有機性廃水の処理装置は一実施態様において、原水の流量を測定する原水測定手段と、第1返送汚泥の流量を測定する第1返送汚泥測定手段と、第2返送汚泥の流量を測定する第2返送汚泥測定手段と、少なくとも原水の流量変動が生じた場合に、第1返送汚泥に対する第2返送汚泥の流量比を測定し、流量比が30流量%を超える場合に第2返送汚泥の流量を低減させ、流量比が2流量%を下回る場合に第2返送汚泥の流量を増加させるように制御する制御手段とを備える。 In one embodiment of the organic wastewater treatment apparatus according to the embodiment of the present invention, raw water measuring means for measuring the flow rate of raw water, first returned sludge measuring means for measuring the flow rate of first returned sludge, and second A second returned sludge measuring means for measuring the flow rate of the returned sludge, and measuring the flow rate ratio of the second returned sludge to the first returned sludge at least when the flow rate of the raw water fluctuates, and the flow rate ratio exceeds 30%. a control means for controlling the flow rate of the second returned sludge to be reduced when the flow rate ratio is less than 2%, and the flow rate of the second returned sludge to be increased when the flow rate ratio is less than 2%.

本発明によれば、原水の性状変動が生じても常時安定した処理水質を維持でき、余剰汚泥の発生量の低減が可能な有機性廃水の処理方法及び有機性廃水の処理装置が提供できる。 According to the present invention, it is possible to provide an organic wastewater treatment method and an organic wastewater treatment apparatus capable of always maintaining stable treated water quality and reducing the amount of excess sludge generated even when the properties of raw water change.

第1の実施の形態に係る有機性廃水の処理フローを表す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic showing the treatment flow of the organic wastewater which concerns on 1st Embodiment. 第2の実施の形態に係る有機性廃水の処理フローを表す概略図である。It is a schematic diagram showing a treatment flow of organic wastewater according to a second embodiment. 第3の実施の形態に係る有機性廃水の処理フローを表す概略図である。It is a schematic diagram showing a treatment flow of organic wastewater according to a third embodiment. 汚泥培養槽の処理条件を変更する際の処理フローを表すフローチャートである。4 is a flow chart showing a processing flow when changing processing conditions of a sludge culture tank. 従来の有機性廃水の処理フローを表す概略図である。1 is a schematic diagram showing a conventional organic wastewater treatment flow; FIG.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below are examples of devices and methods for embodying the technical idea of the present invention. not something to do.

(第1の実施の形態)
本発明の実施の形態に係る有機性廃水の処理装置は、図1に示すように、原水を好気的に処理して好気性処理液を得る好気性処理槽1と、好気性処理液を固液分離して処理水と分離汚泥とを得る固液分離槽2と、分離汚泥の一部を第1返送汚泥として引き抜いて好気性処理槽へ返送する第1返送手段3と、第1返送汚泥を引き抜いた後の分離汚泥の少なくとも一部を第2返送汚泥とし、第2返送汚泥を供給して曝気処理する汚泥培養槽4と、曝気処理後の微小動物を含む汚泥培養液を汚泥培養槽4から好気性処理槽1へ返送する第2返送手段5とを備える。
(First embodiment)
The organic wastewater treatment apparatus according to the embodiment of the present invention comprises, as shown in FIG. A solid-liquid separation tank 2 for solid-liquid separation to obtain treated water and separated sludge, a first return means 3 for withdrawing a part of the separated sludge as first returned sludge and returning it to the aerobic treatment tank, and a first return At least part of the separated sludge after the sludge is extracted is used as the second return sludge, and the second return sludge is supplied and aerated in a sludge culture tank 4, and the sludge culture solution containing the micro-animals after the aeration treatment is cultured as sludge. A second return means 5 for returning from the tank 4 to the aerobic treatment tank 1 is provided.

原水としては、生活廃水、下水、食品工場、化学工場、パルプ工場などの有機物を含有する種々の有機性廃水が用いられる。好気性処理槽1としては、好気性処理槽内に流入する原水中の有機物(BOD)を分解可能な細菌、細菌を捕食する微生物等を含む活性汚泥が内部に収容され、曝気により原水を好適に処理して好気性処理液を得る装置であれば特に限定されないが、例えば、曝気槽が利用できる。原水の処理効率を向上させるために複数の好気性処理槽1を直列又は並列にして多段処理を行ってもよい。 As the raw water, various organic wastewaters containing organic matters such as domestic wastewater, sewage, food factories, chemical factories, pulp factories, etc. are used. As the aerobic treatment tank 1, activated sludge containing bacteria that can decompose organic matter (BOD) in the raw water flowing into the aerobic treatment tank, microorganisms that prey on bacteria, etc. is accommodated inside, and the raw water is made suitable by aeration. Although it is not particularly limited as long as it is an apparatus for obtaining an aerobic treatment liquid by treating the water, for example, an aeration tank can be used. In order to improve the treatment efficiency of raw water, a plurality of aerobic treatment tanks 1 may be connected in series or in parallel for multistage treatment.

好気性処理槽1で処理された好気性処理液は、固液分離槽2へ供給され、固液分離槽2内において、処理水と分離汚泥とに分離される。分離汚泥の一部は、第一返送汚泥として、配管等で構成された第1返送手段3を介して好気性処理槽1へ返送される。第2返送手段5は、第1返送汚泥が引き抜かれた後の残りの余剰汚泥のうち、第1返送汚泥に対して予め設定された汚泥量を第2返送汚泥として汚泥培養槽へ供給する。分離汚泥の残部は余剰汚泥として系外へ排出される。 The aerobic treatment liquid treated in the aerobic treatment tank 1 is supplied to the solid-liquid separation tank 2 and separated into treated water and separated sludge in the solid-liquid separation tank 2 . A part of the separated sludge is returned to the aerobic treatment tank 1 as first returned sludge through the first returning means 3 composed of a pipe or the like. The second return means 5 supplies the sludge amount preset for the first returned sludge to the sludge culture tank as the second returned sludge out of the surplus sludge remaining after the first returned sludge is withdrawn. The remainder of the separated sludge is discharged out of the system as surplus sludge.

汚泥培養槽4は、固液分離槽2で分離された分離汚泥を分解可能なアブラミミズ等の微小動物を含み、第1返送汚泥の汚泥流量の2~30流量%となる第2返送汚泥を供給して汚泥培養槽4内のHRTが好気性処理槽1のHRTに対して0.15~6倍となるように曝気処理する処理槽である。汚泥培養槽4内に収容されたアブラミミズ等の微小動物が第2返送汚泥を捕食することにより、余剰汚泥の発生量が著しく減少する。 The sludge culture tank 4 contains minute animals such as aphids that can decompose the separated sludge separated in the solid-liquid separation tank 2, and supplies the second returned sludge having a flow rate of 2 to 30% of the sludge flow rate of the first returned sludge. Then, the HRT in the sludge culture tank 4 is 0.15 to 6 times the HRT in the aerobic treatment tank 1 for aeration treatment. Micro animals such as aphids stored in the sludge culture tank 4 prey on the second returned sludge, thereby significantly reducing the amount of excess sludge generated.

汚泥培養槽4では、アブラミミズ等の微小動物を増殖させるのに重要な水温、DO、HRTの諸条件を適切に維持することが極めて重要である。特に、原水の濃度、水温、流量等の変動を考慮した有機性廃水の処理を行うためには、汚泥培養処理液の返送先である好気性処理槽1との処理条件との関係において一定の条件を満たすように汚泥培養槽4の処理条件を調節することが重要である。 In the sludge culture tank 4, it is extremely important to appropriately maintain various conditions such as water temperature, DO, and HRT, which are important for growing minute animals such as aphids. In particular, in order to treat organic wastewater in consideration of fluctuations in raw water concentration, water temperature, flow rate, etc., certain It is important to adjust the processing conditions of the sludge culture tank 4 so as to satisfy the conditions.

汚泥培養槽4の役割としては、汚泥培養槽4で増殖させた微小動物によって汚泥培養槽4内の汚泥を捕食させて汚泥減容化を図ることにある。しかしながら、それ以上に、汚泥培養槽4で増殖させた微小動物を、有機物分解除去の主たる反応槽である好気性処理槽1に送り込んで、送り込んだ先の好気性処理槽1で汚泥を捕食させて余剰汚泥の増殖を抑制することもまた、常時安定した処理水質を維持でき、且つ余剰汚泥の発生量の低減可能とする点において特に重要である。 The role of the sludge culture tank 4 is to prey on the sludge in the sludge culture tank 4 by micro-animals grown in the sludge culture tank 4, thereby reducing the volume of the sludge. However, more than that, the micro-animals grown in the sludge culture tank 4 are sent to the aerobic treatment tank 1, which is the main reaction tank for decomposing and removing organic matter, and the sludge is eaten by the aerobic treatment tank 1 to which they are sent. It is also particularly important to suppress the growth of excess sludge by using the septic system in order to constantly maintain stable treated water quality and to reduce the amount of excess sludge generated.

その際、汚泥培養槽4のHRTが好気性処理槽1のHRTに対して過少となり、特にその比が0.15を下回る場合には、汚泥培養槽4内での処理が不足しすぎて、汚泥培養槽4において微小動物が十分増殖しない場合がある。また、たとえ汚泥培養槽4単独のHRTが十分であったとしても、好気性処理槽1のHRTが長すぎると、汚泥培養槽4から送り込んだ微小動物が、好気性処理槽1における他の微生物によって淘汰されてしまい、系全体として一定の微生物量を維持することが困難となる。 At that time, when the HRT of the sludge culture tank 4 is too small with respect to the HRT of the aerobic treatment tank 1, especially when the ratio is less than 0.15, the treatment in the sludge culture tank 4 is too insufficient, Micro-animals may not grow sufficiently in the sludge culture tank 4 . Moreover, even if the HRT of the sludge culture tank 4 alone is sufficient, if the HRT of the aerobic treatment tank 1 is too long, the micro-animals sent from the sludge culture tank 4 will be mixed with other microorganisms in the aerobic treatment tank 1. Therefore, it becomes difficult to maintain a constant amount of microorganisms in the system as a whole.

一方で、汚泥培養槽4のHRTが好気性処理槽1のHRTに対して過大となり、特にその比が6を超えると、汚泥培養槽4の容積が増大し、設備コストの増大につながる。更にこの場合、処理系内微生物量の比率が高くなり、処理水質の不安定化を招く要因となる。 On the other hand, if the HRT of the sludge culture tank 4 is too large relative to the HRT of the aerobic treatment tank 1, especially if the ratio exceeds 6, the volume of the sludge culture tank 4 will increase, leading to an increase in equipment costs. Furthermore, in this case, the ratio of the amount of microorganisms in the treatment system increases, which causes the quality of the treated water to become unstable.

汚泥培養槽4単独でみた場合の槽容量及びHRTが適正であったとしても、好気性処理槽1のHRTが短すぎると、汚泥培養槽4から送り込んだ微小動物が好気性処理槽1でも過剰に維持されてしまう。微小動物が多いと一見、汚泥減容が進んで良いように思われがちであるが、微小動物が多すぎると本来の水処理に必要な量の微生物まで捕食されてしまい、好気性処理槽1の微生物バランスが崩れて処理水質が悪化してしまう。即ち、汚泥培養槽4の処理条件を、好気性処理槽1の処理条件とのバランスにおいて適正に決定することが極めて重要であるといえる。 Even if the tank capacity and HRT of the sludge culture tank 4 alone are appropriate, if the HRT of the aerobic treatment tank 1 is too short, the micro-animals sent from the sludge culture tank 4 are excessive even in the aerobic treatment tank 1. is maintained at At first glance, it seems that sludge volume reduction is good if there are many micro-animals. The microbial balance of the water is lost, and the quality of the treated water deteriorates. That is, it is extremely important to appropriately determine the treatment conditions of the sludge culture tank 4 in balance with the treatment conditions of the aerobic treatment tank 1 .

このようなHRTのバランスを考慮した上で汚泥培養槽4に供給する第2返送汚泥の汚泥量(汚泥流量)と第1返送汚泥の汚泥量(汚泥流量)とのバランスを考慮することもまた重要である。第2返送汚泥の汚泥流量が第1返送汚泥に対して少なすぎて、特に、第1汚泥の汚泥流量の2流量%を下回ってしまうと、系全体の汚泥が汚泥培養槽4を通過する割合が低すぎて、余剰汚泥の低減効果が得られる十分な微小動物を汚泥培養槽4内に維持することができない場合がある。 It is also possible to consider the balance between the sludge amount (sludge flow rate) of the second returned sludge supplied to the sludge culture tank 4 and the sludge amount (sludge flow rate) of the first returned sludge after considering such a balance of HRT. is important. When the sludge flow rate of the second returned sludge is too small relative to the first returned sludge, especially when it falls below 2% of the sludge flow rate of the first sludge, the ratio of the sludge in the entire system passing through the sludge culture tank 4 is too low, it may not be possible to maintain sufficient micro-animals in the sludge culture tank 4 to obtain the effect of reducing excess sludge.

一方で、第2返送汚泥の汚泥流量が第1返送汚泥の汚泥流量に対して多すぎる、特に、30流量%を上回ってしまうと、系全体の微小動物の割合が多くなりすぎ、その結果、水処理に必要な細菌及び微生物が減ってしまい、処理水質を良好に維持できない場合がある。また、第2返送汚泥の汚泥流量が高すぎると、汚泥培養槽4のHRTを適切に維持するためには容積を大きくせざるを得ず、装置のコスト高につながってしまう。 On the other hand, if the sludge flow rate of the second returned sludge is too large relative to the sludge flow rate of the first returned sludge, especially if it exceeds 30%, the proportion of micro-animals in the entire system will be too high, resulting in Bacteria and microorganisms necessary for water treatment are reduced, and the treated water quality may not be maintained well. Moreover, if the sludge flow rate of the second returned sludge is too high, the volume of the sludge culture tank 4 must be increased in order to maintain the HRT appropriately, which leads to an increase in the cost of the apparatus.

本実施形態では、好気性処理槽1のHRTに対する汚泥培養槽4内のHRTの比(汚泥培養槽HRT/好気性処理槽HRT)は、0.3~6倍となるように調整することがより好ましく、更に好ましくは0.3~3倍である。第2返送汚泥は、汚泥培養槽HRT/好気性処理槽HRTが0.15~3倍の場合に、第1の返送汚泥の汚泥流量に対して3~30流量%程度、より好ましくは4~15流量%程度、汚泥培養槽4へ返送することが好ましい。汚泥培養槽HRT/好気性処理槽HRTが3倍を超えて6倍以下の場合には、第1の返送汚泥の汚泥流量に対して2~10流量%程度、汚泥培養槽4へ返送することが好ましい。このように汚泥培養槽4と好気性処理槽1の処理条件を調整することで、汚泥培養槽4内に収容されるアブラミミズ等の微小動物の安定増殖が可能となる。 In this embodiment, the ratio of the HRT in the sludge culture tank 4 to the HRT in the aerobic treatment tank 1 (sludge culture tank HRT/aerobic treatment tank HRT) can be adjusted to be 0.3 to 6 times. More preferably, it is still more preferably 0.3 to 3 times. When the sludge culture tank HRT/aerobic treatment tank HRT is 0.15 to 3 times, the second returned sludge has a flow rate of about 3 to 30%, more preferably 4 to It is preferable to return about 15 flow rate to the sludge culture tank 4 . When the sludge culture tank HRT/aerobic treatment tank HRT is more than 3 times and 6 times or less, the sludge flow rate of the first returned sludge should be returned to the sludge culture tank 4 at a flow rate of about 2 to 10%. is preferred. By adjusting the treatment conditions of the sludge culture tank 4 and the aerobic treatment tank 1 in this way, it is possible to stably grow micro-animals such as aphids contained in the sludge culture tank 4 .

汚泥培養槽4へ供給される第2返送汚泥は、浮遊物質(MLSS)濃度が高いほど、供給する汚泥容量を少なくでき、汚泥培養槽4の容量をコンパクト化しながら必要なHRTを確保することができ、高い汚泥減容効果が得られる。第2返送汚泥のMLSSは、6000mg/L以上であることが好ましく、更に好ましくは8000~15000mg/L以上である。 The higher the suspended solids (MLSS) concentration of the second returned sludge supplied to the sludge culture tank 4, the smaller the volume of sludge to be supplied, and the necessary HRT can be secured while making the capacity of the sludge culture tank 4 compact. It is possible to obtain a high sludge volume reduction effect. The MLSS of the second returned sludge is preferably 6000 mg/L or more, more preferably 8000 to 15000 mg/L or more.

汚泥培養槽4内でアブラミミズ等の微小動物を好気性処理槽1の返送に際してより安定的かつ確実に増殖させるためには、溶存酸素濃度(DO)を1mg/L以上とすることが好ましく、より好ましくは2~5mg/Lである。DOが高いほどアブラミミズ等の微小動物が増殖しやすく、活性汚泥を十分に捕食し、高い汚泥減容効果が得られる。 In order to more stably and reliably grow minute animals such as aphids in the sludge culture tank 4 when returning the aerobic treatment tank 1, it is preferable to set the dissolved oxygen concentration (DO) to 1 mg / L or more. Preferably it is 2-5 mg/L. The higher the DO, the easier it is for micro-animals such as aphids to proliferate, fully prey on activated sludge, and achieve a high sludge volume reduction effect.

DO値は、好気性処理槽1の運転条件として調整してもよいが、汚泥培養槽4では好気性処理槽1よりも更にDOを厳密に制御することで、より好ましい微小動物の増殖効果及び高い汚泥減容効果が得られる。そのため、好気性処理槽1でDO調整をするか否かにかかわらず、DO制御装置等を用いて汚泥培養槽4のDO調整をすることが好ましい。 The DO value may be adjusted as an operating condition of the aerobic treatment tank 1, but in the sludge culture tank 4, by controlling the DO more strictly than in the aerobic treatment tank 1, more preferable microanimal proliferation effect and A high sludge volume reduction effect can be obtained. Therefore, regardless of whether or not the DO is adjusted in the aerobic treatment tank 1, it is preferable to adjust the DO in the sludge culture tank 4 using a DO control device or the like.

汚泥培養槽4の水温は20℃以上とすることが好ましく、より好ましくは20~35℃である。汚泥培養槽4の水温が高いほどアブラミミズ等の微小動物が増殖しやすく、微小動物が活性汚泥を十分に捕食できるため汚泥減容効果も高くなる。処理水温域は、好気性処理槽1の運転条件として調整してもよいが、汚泥培養槽4の水温域を調整する方が、より高い微小動物の増殖効果及び汚泥減容効果が得られる。例えば、汚泥培養槽4に水温制御装置を配置して、水温を20℃以上となるように制御することが好ましい。 The water temperature of the sludge culture tank 4 is preferably 20°C or higher, more preferably 20 to 35°C. The higher the water temperature of the sludge culture tank 4, the easier it is for micro-animals such as aphids to proliferate, and the micro-animals can sufficiently consume the activated sludge, resulting in a higher sludge volume reduction effect. The treatment water temperature range may be adjusted as an operating condition of the aerobic treatment tank 1, but adjusting the water temperature range of the sludge culture tank 4 provides higher microanimal proliferation and sludge volume reduction effects. For example, it is preferable to install a water temperature control device in the sludge culture tank 4 and control the water temperature to 20° C. or higher.

汚泥培養槽4には少量の原水を流入させてもよいが、但し、原水中の未分解の有機物が汚泥培養槽4に残留すると微小動物の増殖に影響する場合があるため、原水を汚泥培養槽4中に流入させる場合には、流入原水量を厳密に制御する必要がある。汚泥培養槽4と好気性処理槽1のDO、水温、HRTが適切な範囲で制御されていたとしても、原水を流入させる汚泥培養槽4の方が、汚泥培養槽4には原水を流入させない場合に比べて微小動物の増殖効果と汚泥減容効果の両者のバランスをとることが難しくなるためである。 A small amount of raw water may be allowed to flow into the sludge culture tank 4. However, if undecomposed organic matter in the raw water remains in the sludge culture tank 4, it may affect the growth of micro-animals. When flowing into the tank 4, it is necessary to strictly control the amount of inflow raw water. Even if the DO, water temperature, and HRT of the sludge culture tank 4 and the aerobic treatment tank 1 are controlled within appropriate ranges, the sludge culture tank 4 into which raw water flows does not allow raw water to flow into the sludge culture tank 4. This is because it becomes difficult to balance both the microanimal proliferation effect and the sludge volume reduction effect compared to the case.

汚泥培養槽4は、2段以上直列に配置することが好ましい。汚泥培養槽4を2段以上直列に配置した場合、第2返送汚泥中に未分解の有機物が残留していても、前段の汚泥培養槽4で分解されることから、後段の汚泥培養槽4がアブラミミズ等の微小動物にとって好ましい増殖環境となる。これにより、微小動物をより安定して増殖でき、これにより余剰汚泥の系外への排出量を少なくしながらより効率の良い処理を行うことができる。 It is preferable to arrange the sludge culture tanks 4 in two or more stages in series. When the sludge culture tanks 4 are arranged in series in two or more stages, even if undecomposed organic matter remains in the second returned sludge, it is decomposed in the sludge culture tank 4 in the previous stage. is a favorable breeding environment for minute animals such as aphids. As a result, the micro-animals can grow more stably, and as a result, more efficient treatment can be performed while reducing the amount of excess sludge discharged out of the system.

汚泥培養槽4の汚泥はなるべく有機物が残存しない環境におく方が微小動物の増殖及び活性化に有利であるため、第2返送汚泥の返送の際には、好気性処理槽1のうち、比較的BODの残留が少ない下流側部分に流入させることが好ましい。即ち、汚泥培養槽4から好気性処理槽1へと供給される第2返送汚泥は、第1返送汚泥の返送位置よりも下流の位置となるように返送位置が定められることが好ましい。好気性処理槽1が一槽の場合は、第2返送汚泥は好気性処理槽1の処理後半部に流入させることが好ましい。好気性処理槽1が多段の場合は、汚泥培養槽4からの第2返送汚泥の少なくとも一部を2段目以降の好気性処理槽1に流入させることが好ましい。 It is advantageous for the growth and activation of micro-animals to place the sludge in the sludge culture tank 4 in an environment where organic matter does not remain as much as possible. It is preferable to flow into the downstream portion where less residual BOD is present. That is, the second return sludge supplied from the sludge culture tank 4 to the aerobic treatment tank 1 is preferably returned to a position downstream of the return position of the first return sludge. When the number of aerobic treatment tanks 1 is one, the second return sludge is preferably allowed to flow into the latter half of the treatment of the aerobic treatment tank 1 . When the aerobic treatment tank 1 has multiple stages, it is preferable to allow at least part of the second returned sludge from the sludge culture tank 4 to flow into the aerobic treatment tank 1 in the second and subsequent stages.

好気性処理槽1は活性汚泥方式を採用することが可能であるが、微生物担体を投入した流動担体方式としても同様な汚泥減容効果が得られる。 The aerobic treatment tank 1 can employ an activated sludge system, but a similar sludge volume reduction effect can be obtained by adopting a fluidized carrier system in which a microbial carrier is added.

微生物担体として、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリポロピレン等からなる流動担体が挙げられる。 Examples of microbial carriers include synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, and photocurable resins, gel carriers using polymers such as carrageenan and sodium alginate, polyethylene, polyurethane, and polypropylene. and a fluid carrier.

担体の形状としては球形、四角形、円筒形の何れも使用可能であり、その有効径は好気性処理槽1の出口に設けられるスクリーンより安定して分離できる3~10mmが好ましい。担体比重は曝気状態において均一に流動可能となる1.01~1.05であるものが好ましい。また、担体充填量は生物反応槽に対し、均一に混合流動可能となる、5~30V/V%、好ましくは10~20V/V%とすることが効果的である。 The shape of the carrier may be spherical, square or cylindrical, and its effective diameter is preferably 3 to 10 mm so that the particles can be stably separated from the screen provided at the outlet of the aerobic treatment tank 1 . The specific gravity of the carrier is preferably 1.01 to 1.05 so that it can flow uniformly in an aerated state. In addition, it is effective to set the carrier filling amount to 5 to 30 V/V %, preferably 10 to 20 V/V %, which enables uniform mixing and flow in the bioreactor.

(処理方法)
第1の実施の形態に係る有機性廃水の処理方法は、まず、原水を好気性処理槽1内へ供給し、好気性処理槽1において原水を好気的に処理する。好気性処理槽1では、以下に限定されないが、例えば、HRTが0.5~1.5日、DOが1.0~4.0mg/L、MLSS2500~5000として原水を好気的に処理して好気性処理液を得る。好気性処理液は、固液分離により処理水と分離汚泥とに分離する。
(Processing method)
In the method for treating organic wastewater according to the first embodiment, first, raw water is supplied into the aerobic treatment tank 1 and is aerobically treated in the aerobic treatment tank 1 . In the aerobic treatment tank 1, raw water is aerobically treated with, but not limited to, HRT of 0.5 to 1.5 days, DO of 1.0 to 4.0 mg/L, and MLSS of 2500 to 5000. to obtain an aerobic treatment liquid. The aerobic treated liquid is separated into treated water and separated sludge by solid-liquid separation.

余剰汚泥の一部は第1返送汚泥として好気性処理槽1へ返送する。汚泥培養槽4には、第1返送汚泥の汚泥流量に対して2~30流量%となる第2返送汚泥を供給する。汚泥培養槽4では典型的にはDOが1mg/L以上、HRTが好気性処理槽1のHRTに対して0.15~6倍となるように曝気処理が行われて、曝気処理後の微小動物を含む汚泥培養液が汚泥培養槽4から好気性処理槽1へと送られる。 Part of the surplus sludge is returned to the aerobic treatment tank 1 as first returned sludge. The sludge culture tank 4 is supplied with the second returned sludge having a flow rate of 2 to 30% of the sludge flow rate of the first returned sludge. The sludge culture tank 4 is typically aerated so that DO is 1 mg/L or more and HRT is 0.15 to 6 times the HRT of the aerobic treatment tank 1. A sludge culture solution containing animals is sent from the sludge culture tank 4 to the aerobic treatment tank 1 .

本発明の第1の実施の形態に係る有機性廃水の処理装置及び処理方法によれば、第2返送汚泥を分解可能な微小動物を含む汚泥培養槽4内に、第1返送汚泥の汚泥流量の2~30流量%となる第2返送汚泥を供給し、汚泥培養槽4内のHRTが好気性処理槽1のHRTに対して0.15~6倍となるように曝気処理した後に、曝気処理後の微小動物を含む汚泥培養液を好気性処理槽1へ返送する第2返送処理を行う。これにより、BODを除去する活性汚泥と活性汚泥を捕食する微小動物を一定量、かつ、それぞれが活性の高い状態で好気性処理槽1内に維持することができる。また、BODを除去する活性汚泥が常に一定量、高活性で好気性処理槽1内に維持されるため、原水の流量・濃度変動によってBOD負荷が変動しても安定した好気性処理が可能である。BODの除去量によって余剰汚泥の発生量も変動するが、本発明の第1の実施の形態に係る有機性廃水の処理装置及び処理方法によれば、活性汚泥を捕食する微小動物も一定量、高活性で維持されているため、原水の流量・濃度変動によって余剰汚泥の発生量が変動しても安定した汚泥減容が可能となる。その結果、原水の性状変動が生じても好気性処理槽1内における処理を安定化することができ、常時安定した処理水質を維持しながら余剰汚泥の発生量の低減が可能となる。 According to the organic wastewater treatment apparatus and treatment method according to the first embodiment of the present invention, the sludge flow rate of the first returned sludge is placed in the sludge culture tank 4 containing micro-animals capable of decomposing the second returned sludge. After supplying the second return sludge with a flow rate of 2 to 30% of the aerobic treatment tank 4, the HRT in the sludge culture tank 4 is aerated so that it is 0.15 to 6 times the HRT in the aerobic treatment tank 1. A second return process is performed to return the treated sludge culture medium containing micro-animals to the aerobic treatment tank 1 . As a result, the activated sludge that removes BOD and the micro-animals that prey on the activated sludge can be maintained in the aerobic treatment tank 1 in a constant amount and in a highly active state. In addition, since the activated sludge that removes BOD is always kept in the aerobic treatment tank 1 at a constant amount and highly active, stable aerobic treatment is possible even if the BOD load fluctuates due to fluctuations in the flow rate and concentration of raw water. be. The amount of excess sludge generated varies depending on the amount of BOD removed, but according to the organic wastewater treatment apparatus and treatment method according to the first embodiment of the present invention, a certain amount of micro-animals preying on activated sludge, Since the sludge is maintained at a high level of activity, stable sludge volume reduction is possible even if the amount of excess sludge generated fluctuates due to fluctuations in raw water flow rate and concentration. As a result, the treatment in the aerobic treatment tank 1 can be stabilized even if the properties of the raw water change, and the amount of excess sludge generated can be reduced while always maintaining stable treated water quality.

(第2の実施の形態)
本発明の第2の実施の形態に係る有機性廃水の処理装置は、図2に示すように、好気性処理を行う処理槽として原水を高負荷処理槽内で処理して高負荷処理液を得る高負荷処理槽1aと、高負荷処理槽1aで得られる高負荷処理液を高負荷処理槽1aの負荷条件よりも低い負荷条件で処理する低負荷処理槽1bとを含む。
(Second embodiment)
The organic wastewater treatment apparatus according to the second embodiment of the present invention, as shown in FIG. and a low load treatment tank 1b for treating the high load treatment liquid obtained in the high load treatment tank 1a under load conditions lower than those of the high load treatment tank 1a.

第1返送手段3は、第1の返送汚泥を少なくとも低負荷処理槽1bへ返送する。第1返送手段3は、第1の返送汚泥を必要に応じて更に高負荷処理槽1aへ返送してもよい。第2返送手段5は、第2返送汚泥を低負荷処理槽1bへ返送する。汚泥培養槽4内のHRTは、低負荷処理槽1bのHRTに対して0.15~6倍となるように調整され、汚泥培養槽4は、溶存酸素量(DO)1mg/L以上、水温20℃以上で曝気処理される。他は第1の実施の形態に係る有機性廃水の処理装置と同様であるので記載を省略する。 The first returning means 3 returns the first returned sludge to at least the low-load treatment tank 1b. The first returning means 3 may further return the first returned sludge to the high-load treatment tank 1a as necessary. The second returning means 5 returns the second returned sludge to the low load treatment tank 1b. The HRT in the sludge culture tank 4 is adjusted to be 0.15 to 6 times the HRT in the low-load treatment tank 1b. It is aerated above 20°C. Others are the same as those of the organic wastewater treatment apparatus according to the first embodiment, so the description is omitted.

高負荷処理槽1aでは、原水中のBOD(有機成分)の約50%以上を酸化分解するための処理が行われ、高負荷処理液が得られる。例えば、高負荷処理槽1aのBOD負荷条件を、1~10kg-BOD/m3/dとし、より具体的には3.0~8.0kg-BOD/m3/d、更に具体的には3.0~5.0kg-BOD/m3/dとする。高負荷処理槽1aでは、活性汚泥の共存下で、DO1.0mg/L以上で曝気処理することにより、原水中のBODが酸化除去される。高負荷処理槽1a内に第1の実施の形態で説明した微生物担体を収容してもよい。 In the high-load treatment tank 1a, treatment is performed to oxidatively decompose about 50% or more of the BOD (organic components) in the raw water, and a high-load treated liquid is obtained. For example, the BOD load condition of the high load treatment tank 1a is 1 to 10 kg-BOD/m 3 /d, more specifically 3.0 to 8.0 kg-BOD/m 3 /d, more specifically 3.0 to 5.0 kg-BOD/m 3 /d. In the high-load treatment tank 1a, BOD in raw water is oxidized and removed by aeration treatment with a DO of 1.0 mg/L or more in the coexistence of activated sludge. The microorganism carrier described in the first embodiment may be accommodated in the high-load treatment tank 1a.

低負荷処理槽1b内には高負荷処理槽1aで処理された高負荷処理液が供給され、アブラミミズ等の微小動物の捕食により高負荷処理液中の汚泥を減容化処理するとともに高負荷処理液中のT-N(全窒素)を除去することを目的とした処理が行われる。例えば、低負荷処理槽1bのBOD負荷条件を、0.05~1.5kg-BOD/m3/dとし、より具体的には0.1~1.2kg-BOD/m3/d、更に具体的には0.1~1.0kg-BOD/m3/dとする。低負荷処理槽1b内においても第1の実施の形態で説明した微生物担体を収容してもよい。 The high-load treatment liquid treated in the high-load treatment tank 1a is supplied to the low-load treatment tank 1b, and the sludge in the high-load treatment liquid is reduced in volume by predation by minute animals such as aphids, and the high-load treatment is performed. A treatment aimed at removing TN (total nitrogen) in the liquid is performed. For example, the BOD load condition of the low load treatment tank 1b is 0.05 to 1.5 kg-BOD/m 3 /d, more specifically 0.1 to 1.2 kg-BOD/m 3 /d, Specifically, it is 0.1 to 1.0 kg-BOD/m 3 /d. The microbial carrier described in the first embodiment may also be accommodated in the low-load treatment tank 1b.

(処理方法)
第2の実施の形態に係る有機性廃水の処理方法は、まず、原水を高負荷処理槽1aへ供給し、高負荷処理槽1a内において例えばBOD負荷条件2~20kg-BOD/m3/d、HRT0.1~1.0日、MLSS500~2000mg/Lで処理を行って、高負荷処理液を得る。この高負荷処理液を、低負荷処理槽1b内で例えばBOD負荷条件1~5kg-BOD/m3/d、HRT0.2~2.0日、MLSS2000~10000mg/Lで処理を行って低負荷処理液を得る。低負荷処理液は固液分離槽2内で固液分離されて処理水と分離汚泥が得られる。
(Processing method)
In the organic wastewater treatment method according to the second embodiment, first, raw water is supplied to the high-load treatment tank 1a, and in the high-load treatment tank 1a, for example, BOD load conditions are 2 to 20 kg-BOD/m 3 /d , HRT 0.1-1.0 days, MLSS 500-2000 mg/L to obtain a high-load treatment solution. This high-load treatment solution is treated in the low-load treatment tank 1b under conditions such as a BOD load of 1 to 5 kg-BOD/m 3 /d, an HRT of 0.2 to 2.0 days, and an MLSS of 2000 to 10000 mg/L. Obtain a processing solution. The low-load treated liquid is solid-liquid separated in the solid-liquid separation tank 2 to obtain treated water and separated sludge.

分離汚泥の一部は第1返送汚泥として低負荷処理槽1b及び/又は高負荷処理槽1aへ供給される。汚泥培養槽4内には、第1返送汚泥の汚泥流量に対して2~30流量%となる第2返送汚泥が供給される。汚泥培養槽4では、典型的にはDOが1mg/L以上、HRTが低負荷処理槽1bのHRTに対して0.15~6倍となるように曝気処理が行われて、汚泥培養液が得られる。汚泥培養液は低負荷処理槽1bへ返送される。 A part of the separated sludge is supplied to the low load treatment tank 1b and/or the high load treatment tank 1a as first return sludge. The sludge culture tank 4 is supplied with the second returned sludge having a flow rate of 2 to 30% of the sludge flow rate of the first returned sludge. In the sludge culture tank 4, the DO is typically 1 mg/L or more, and the aeration treatment is performed so that the HRT is 0.15 to 6 times that of the low-load treatment tank 1b. can get. The sludge culture solution is returned to the low load treatment tank 1b.

第2の実施の形態に係る有機性廃水の処理装置によれば、好気性処理を高負荷処理槽1aと低負荷処理槽1bとで多段に処理することによって、有機性廃水の処理をより安定的に行うことができる。 According to the organic wastewater treatment apparatus according to the second embodiment, organic wastewater can be treated more stably by multi-stage aerobic treatment in the high-load treatment tank 1a and the low-load treatment tank 1b. can be done systematically.

(第3の実施の形態)
本発明の第3の実施の形態に係る有機性廃水の処理装置は、図3に示すように、原水の流量及び濃度の少なくともいずれか測定する原水測定手段51と、第1返送汚泥の流量を測定する第1返送汚泥測定手段53と、第2返送汚泥の流量を測定する第2返送汚泥測定手段54と、制御手段6とを備える点が、図2に示す処理装置と異なる。他は第2の実施の形態に係る有機性廃水の処理装置と同様であるので記載を省略する。
(Third Embodiment)
The organic wastewater treatment apparatus according to the third embodiment of the present invention, as shown in FIG. 2 in that it comprises a first returned sludge measuring means 53 for measuring, a second returned sludge measuring means 54 for measuring the flow rate of the second returned sludge, and a control means 6 . Others are the same as those of the organic wastewater treatment apparatus according to the second embodiment, so the description is omitted.

原水測定手段51としては、一般的に利用可能な流量計、MLSS計等が利用可能である。原水測定手段51により、原水の流量及び原水中の有機物の濃度の変動を測定することが可能である。原水測定手段51は制御手段6に電気的に接続されており、測定結果が制御手段6へ送られるようになっている。 As the raw water measuring means 51, a generally available flowmeter, MLSS meter, or the like can be used. The raw water measuring means 51 can measure the flow rate of the raw water and the fluctuations in the concentration of organic matter in the raw water. The raw water measuring means 51 is electrically connected to the control means 6 so that measurement results are sent to the control means 6 .

第1返送汚泥測定手段53及び第2返送汚泥測定手段54としては汚泥流量を測定するための流量計等が利用可能である。第1返送汚泥測定手段53及び第2返送汚泥測定手段54は制御手段6に電気的に接続されており、測定結果が制御手段6へ送られるようになっている。低負荷処理槽1bには、槽内のMLSS濃度等を測定するためのMLSS計などの測定手段52が配置されていてもよい。測定手段52で測定された低負荷処理槽1b内のMLSS濃度に基づいて、第1返送汚泥の汚泥流量が最適化されてもよい。 As the first returned sludge measuring means 53 and the second returned sludge measuring means 54, a flowmeter or the like for measuring the sludge flow rate can be used. The first returned sludge measuring means 53 and the second returned sludge measuring means 54 are electrically connected to the control means 6 so that measurement results are sent to the control means 6 . A measuring means 52 such as an MLSS meter for measuring the MLSS concentration in the tank may be arranged in the low-load treatment tank 1b. Based on the MLSS concentration in the low-load treatment tank 1b measured by the measuring means 52, the sludge flow rate of the first returned sludge may be optimized.

制御手段6は、原水測定手段51の測定結果に基づいて、少なくとも原水の流量の変動が生じた場合に、第1返送汚泥に対する第2返送汚泥の流量比を測定し、第1返送汚泥に対する第2返送汚泥の流量比が2~30流量%の範囲となるように第2返送汚泥の汚泥流量を制御するように構成されている。 Based on the measurement result of the raw water measuring means 51, the control means 6 measures the flow rate ratio of the second returned sludge to the first returned sludge at least when the raw water flow rate fluctuates, and measures the second returned sludge to the first returned sludge. The sludge flow rate of the second returned sludge is controlled so that the flow rate ratio of the second returned sludge is in the range of 2 to 30 flow rate %.

例えば、原水の流量の測定結果が予め設定された閾値を超える場合に、制御手段6が、原水の流量「変動」が生じたと判断し、第1返送汚泥に対する第2返送汚泥の流量比を測定するようにしてもよい。その結果、流量比が30流量%を超える場合に、制御手段6は第2返送汚泥の流量を低減させ、流量比が2流量%を下回る場合に制御手段6は第2返送汚泥の流量を増加させるように、第2返送汚泥の汚泥流量を制御することが好ましい。これにより、原水の性状変動が生じても常時安定した処理水質を維持でき、余剰汚泥の発生量の減容化も図れる。 For example, when the measurement result of the raw water flow rate exceeds a preset threshold value, the control means 6 determines that the raw water flow rate "fluctuation" has occurred, and measures the flow rate ratio of the second returned sludge to the first returned sludge. You may make it As a result, when the flow rate ratio exceeds 30%, the control means 6 reduces the flow rate of the second return sludge, and when the flow rate ratio is below 2%, the control means 6 increases the flow rate of the second return sludge. It is preferable to control the sludge flow rate of the second return sludge so as to As a result, stable treated water quality can be maintained at all times even if the properties of raw water fluctuate, and the volume of surplus sludge generated can be reduced.

本発明の第3の実施の形態に係る有機性廃水の処理方法における処理フローを図4のフローチャートを用いて説明する。原水が図3の高負荷処理槽1a、低負荷処理槽1b、固液分離槽2へと供給されて処理水と分離汚泥が生成される間、ステップS1において、制御手段6は、原水測定手段51により測定された測定結果と、第1返送汚泥測定手段53により測定された第1返送汚泥の汚泥流量を測定する。 A processing flow in a method for treating organic wastewater according to the third embodiment of the present invention will be described with reference to the flow chart of FIG. While the raw water is supplied to the high-load treatment tank 1a, the low-load treatment tank 1b, and the solid-liquid separation tank 2 in FIG. The measurement result measured by 51 and the sludge flow rate of the first returned sludge measured by the first returned sludge measuring means 53 are measured.

ステップS2において、制御手段6が、好気性処理槽1(図3の場合では低負荷処理槽1b)のHRTを算出する。ステップS3において、制御手段6が、汚泥培養槽4へ供給する第1返送汚泥に対する第2返送汚泥の汚泥流量を算出する。なお第1返送汚泥の流量はここでは一定とすることができる。ステップS4において、制御手段6が、第2返送汚泥流量/第1返送汚泥流量で表される流量比R1を算出する。ステップS5において、制御手段6は、流量比R1が2~30流量%の範囲に収まるか否かを判断する。ステップS6において、流量比R1が2~30流量%の範囲外である場合は、ステップS3に戻り、第2返送汚泥の汚泥流量を再設定を行った後、ステップS4~S6を繰り返す。ステップS6において、流量比R1が2~30%の範囲内である場合は、設定が完了する。 In step S2, the control means 6 calculates the HRT of the aerobic treatment tank 1 (the low-load treatment tank 1b in the case of FIG. 3). In step S<b>3 , the control means 6 calculates the sludge flow rate of the second returned sludge with respect to the first returned sludge supplied to the sludge culture tank 4 . The flow rate of the first returned sludge can be made constant here. In step S4, the control means 6 calculates the flow rate ratio R1 represented by the second return sludge flow rate/first return sludge flow rate. In step S5, the control means 6 determines whether or not the flow ratio R1 falls within the range of 2 to 30%. In step S6, if the flow rate ratio R1 is outside the range of 2 to 30%, the process returns to step S3, resets the sludge flow rate of the second returned sludge, and repeats steps S4 to S6. In step S6, if the flow rate ratio R1 is within the range of 2 to 30%, the setting is completed.

ステップS3において、第2返送汚泥の汚泥流量が設定された後は、更にステップS8へも進み、制御手段6が、汚泥培養槽HRT/好気性処理槽HRT(図3の場合は汚泥培養槽HRT/低負荷処理槽HRT)で表される比率R2を算出する。ステップS9において、比率R2が0.15~6.0倍の範囲内となるか否かを判断する。ステップS9においてR2が0.15~6.0倍の範囲内に無い場合は、ステップS3に戻り、第2返送汚泥の汚泥流量を再設定する。ステップS9において、比率R2が0.15~6.0倍の範囲内にある場合には、ステップS10へ進み、設定が完了する。 After the sludge flow rate of the second returned sludge is set in step S3, the process also proceeds to step S8, where the control means 6 controls the sludge culture tank HRT/aerobic treatment tank HRT (in the case of FIG. 3, the sludge culture tank HRT /low load treatment tank HRT) is calculated. In step S9, it is determined whether or not the ratio R2 is within the range of 0.15 to 6.0 times. If R2 is not within the range of 0.15 to 6.0 times in step S9, the process returns to step S3 to reset the sludge flow rate of the second returned sludge. In step S9, if the ratio R2 is within the range of 0.15 to 6.0 times, the process proceeds to step S10 and the setting is completed.

第3の実施の形態に係る有機性廃水の処理装置及び処理方法によれば、制御手段6が、原水の性状変動に応じてより好適な処理条件を調整することができるため、原水の性状変動が比較的大きな場合であっても、原水の性状に応じた最適な処理条件に早期に追従させることが可能となる。 According to the organic wastewater treatment apparatus and treatment method according to the third embodiment, the control means 6 can adjust more suitable treatment conditions according to the property fluctuations of the raw water. is relatively large, it is possible to quickly follow the optimal treatment conditions according to the properties of the raw water.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are presented below along with comparative examples, which are provided for a better understanding of the invention and its advantages and are not intended to be limiting of the invention.

有機物(BOD)濃度が500mg/Lの有機性廃水を原水とし、図1に示す有機性廃水の処理装置を使用して、表1に示す基本処理条件で廃水処理を行った。即ち、実施例1では、原水の供給流量を50L/dとし、好気性処理槽においてはBOD-SS負荷を0.30kg/kg/d、MLSS濃度4000mg/L、DO3.0mg/Lとなる条件で好気的に処理を行った後、固液分離槽にて固液分離を行い、得られた分離汚泥の一部を第1返送汚泥として50L/dで好気性処理槽へ返送した。実施例1では、表1に示すように、汚泥培養槽のHRT比が好気性処理槽に対して0.15倍となるように、且つ第2返送汚泥の第1返送汚泥に対する流量比(第2返送汚泥流量/第1返送汚泥流量)が10流量%となるように、第2返送汚泥の汚泥流量を調整して汚泥培養槽へ第2返送汚泥を供給し、処理後の汚泥培養液を好気性処理槽1へ返送した。第1返送汚泥及び第2返送汚泥のMLSSは8000mg/Lであった。 Organic wastewater having an organic substance (BOD) concentration of 500 mg/L was used as raw water, and the wastewater was treated under the basic treatment conditions shown in Table 1 using the organic wastewater treatment apparatus shown in FIG. That is, in Example 1, the raw water supply flow rate is 50 L / d, the BOD-SS load in the aerobic treatment tank is 0.30 kg / kg / d, the MLSS concentration is 4000 mg / L, and the DO is 3.0 mg / L. After aerobic treatment, solid-liquid separation was performed in a solid-liquid separation tank, and part of the obtained separated sludge was returned to the aerobic treatment tank at 50 L/d as first returned sludge. In Example 1, as shown in Table 1, the HRT ratio of the sludge culture tank was 0.15 times that of the aerobic treatment tank, and the flow ratio of the second returned sludge to the first returned sludge (the second 2 return sludge flow rate / first return sludge flow rate) is 10%, the sludge flow rate of the second returned sludge is adjusted, the second returned sludge is supplied to the sludge culture tank, and the sludge culture solution after treatment is It was returned to the aerobic treatment tank 1. The MLSS of the first returned sludge and the second returned sludge was 8000 mg/L.

実施例2では、図1の処理装置において、汚泥培養槽のHRT比が6.0倍となるように、且つ第2返送汚泥の第1返送汚泥に対する流量比(第2返送汚泥流量/第1返送汚泥流量)が2流量%となるようにし、実施例3では、図1の処理装置において汚泥培養槽のHRT比が0.4となるように、且つ第2返送汚泥の第1返送汚泥に対する流量比(第2返送汚泥流量/第1返送汚泥流量)が30%となるように、第2返送汚泥の汚泥流量を調整して汚泥培養槽へ第2返送汚泥を供給し、処理後の汚泥培養液を好気性処理槽1へ返送した以外は、それぞれ実施例1と同様の処理とした。 In Example 2, in the treatment apparatus of FIG. In Example 3, the HRT ratio of the sludge culture tank in the treatment apparatus of FIG. The sludge flow rate of the second returned sludge is adjusted so that the flow rate ratio (second returned sludge flow rate/first returned sludge flow rate) is 30%, and the second returned sludge is supplied to the sludge culture tank, and the sludge after treatment The treatment was the same as in Example 1, except that the culture solution was returned to the aerobic treatment tank 1.

実施例4では、図2の処理装置を用いて、容量が5Lの高負荷処理槽と容量が16Lの低負荷処理槽を使用し、高負荷処理槽のBOD-SS負荷を5.0kg/kg/dとし、全体のBOD-SS負荷が0.30kg/kg/dとなるように低負荷処理槽のBOD-SS負荷を調整して処理を行い、汚泥培養槽のHRT比及び第2返送汚泥の流量比を表2に示す条件とするとともに、更に高負荷処理槽に5L/dの返送汚泥を返送した。 In Example 4, using the treatment apparatus of FIG. 2, a high-load treatment tank with a capacity of 5 L and a low-load treatment tank with a capacity of 16 L were used, and the BOD-SS load in the high-load treatment tank was 5.0 kg/kg. / d, and the BOD-SS load of the low load treatment tank is adjusted so that the overall BOD-SS load is 0.30 kg / kg / d, and the HRT ratio of the sludge culture tank and the second return sludge The flow rate ratio was set to the conditions shown in Table 2, and 5 L/d of returned sludge was returned to the high-load treatment tank.

比較例1は汚泥培養槽を設置しない図5の従来の処理フローに基づいて処理を行った。比較例2~5は図1に示す処理装置を用いて、表1及び表2に示す条件で廃水処理を行ったものである。 Comparative Example 1 was processed based on the conventional processing flow of FIG. 5 without installing a sludge culture tank. In Comparative Examples 2 to 5, wastewater was treated under the conditions shown in Tables 1 and 2 using the treatment apparatus shown in FIG.

表2中の「微小動物出現頻度」は、好気性処理槽又は低負荷処理槽の入口側から供給される汚泥を一定量サンプリングして顕微鏡で観察した結果、微小動物が適正な場合を◎、〇、×で段階付けした結果を表す。処理水質についてはBOD及びCODMnを測定した結果最も良好なものから順に◎、〇、×で差異をつけた結果を表す。汚泥削減効果は系外へ排出される汚泥流量(L/d)及び汚泥濃度より算出した汚泥量(g/d)を評価した結果、余剰汚泥の発生量が最も少ないものから順に◎、〇、×をつけた結果を示す。総合評価は、微小動物出現頻度、処理水質、汚泥減容効果の各効果を総合的に勘案した評価結果である。 "Frequency of appearance of micro-animals" in Table 2 is obtained by sampling a certain amount of sludge supplied from the inlet side of the aerobic treatment tank or low-load treatment tank and observing it under a microscope. O and x indicate the results graded. Regarding treated water quality, BOD and COD Mn are measured, and the results are shown in descending order from the best with ⊙, ◯, and ×. As a result of evaluating the sludge flow rate (L/d) discharged outside the system and the sludge amount (g/d) calculated from the sludge concentration, the sludge reduction effect was evaluated in order from the lowest amount of excess sludge generated ◎, 〇, The results marked with x are shown. Comprehensive evaluation is the result of comprehensively taking into account the appearance frequency of minute animals, treated water quality, and sludge volume reduction effect.

Figure 0007228487000001
Figure 0007228487000001

Figure 0007228487000002
Figure 0007228487000002

比較例1は汚泥培養槽を有しない従来の活性汚泥処理方式であったため、余剰汚泥削減に寄与する微小動物が殆ど見られず、汚泥削減効果がほぼ無かった。比較例2~4は汚泥培養槽を有するものの、第2返送汚泥の第1返送汚泥に対する汚泥流量の流量比が2~30%、且つ、汚泥培養槽の好気性処理槽に対するHRT比が0.15~6倍を外れた結果、活性汚泥系内にとってバランスの良い微小動物の維持が出来ず、良好な汚泥減容化効果、もしくは安定した処理水質を得ることが出来なかった。 Since Comparative Example 1 was a conventional activated sludge treatment system without a sludge culture tank, almost no micro-animals contributing to the reduction of excess sludge were observed, and the sludge reduction effect was almost non-existent. Although Comparative Examples 2 to 4 have a sludge culture tank, the ratio of the sludge flow rate of the second returned sludge to the first returned sludge is 2 to 30%, and the HRT ratio of the sludge culture tank to the aerobic treatment tank is 0.5%. As a result of deviating from 15 to 6 times, it was not possible to maintain well-balanced micro-animals in the activated sludge system, and it was not possible to obtain a good sludge volume reduction effect or stable treated water quality.

実施例1~4は第2返送汚泥の第1返送汚泥に対する汚泥流量の流量比が2~30%、汚泥培養槽の好気性処理槽に対するHRT比が0.15~6倍の好適な範囲に調整された結果を示す。実施例1~4では、系内の微小動物、とくに低負荷処理槽内において適切な量が維持されたことから、汚泥減容効果を良好な処理水質が安定して得られた。特に実施例4では、高負荷処理槽へ第1返送汚泥の一部(5L/d)を更に返送することで、高負荷処理槽のBOD-SS負荷が低下し、低負荷処理槽へ流入する溶解性BOD(S-BOD)が大きく低下し、より良好な処理水質が得られることが分かった。 In Examples 1 to 4, the flow rate ratio of the second returned sludge to the first returned sludge is 2 to 30%, and the HRT ratio of the sludge culture tank to the aerobic treatment tank is within a suitable range of 0.15 to 6 times. Adjusted results are shown. In Examples 1 to 4, since an appropriate amount was maintained in micro-animals in the system, especially in the low-load treatment tank, treated water quality with good sludge volume reduction effect was stably obtained. Especially in Example 4, by further returning part of the first return sludge (5 L / d) to the high load treatment tank, the BOD-SS load of the high load treatment tank is reduced, and it flows into the low load treatment tank. It was found that the soluble BOD (S-BOD) was greatly reduced and better treated water quality was obtained.

このように、本発明の実施の形態に係る有機性廃水の処理装置及び処理方法によれば、有機性廃水を好気的に処理する好気性処理槽、または高負荷処理槽と低負荷槽処理より構成する2槽式生物反応槽において、好気性処理槽または低負荷処理槽から固液分離した汚泥を第1返送汚泥の汚泥流量の2~30流量%となる流量で別個の汚泥培養槽に供給し、水温20~35℃、DO1mg/L以上、HRT比0.15~6.0倍の条件で曝気処理を行うと、汚泥培養槽においてアブラミミズ等の微小動物が安定して増殖する。このアブラミミズ等の微小動物を低負荷処理槽に供給すれば、低負荷処理槽において、活性汚泥を捕食し、余剰汚泥の発生を抑制することが可能となる。 Thus, according to the organic wastewater treatment apparatus and treatment method according to the embodiment of the present invention, the aerobic treatment tank for aerobically treating the organic wastewater, or the high-load treatment tank and the low-load tank treatment In a two-tank bioreactor consisting of When the water temperature is 20 to 35° C., the DO is 1 mg/L or more, and the HRT ratio is 0.15 to 6.0 times, minute animals such as aphids grow stably in the sludge culture tank. By supplying micro-animals such as aphid worms to the low-load treatment tank, it is possible to prey on the activated sludge in the low-load treatment tank and suppress the generation of excess sludge.

更に、汚泥培養槽HRTを好気性処理槽(低負荷処理槽)HRTの0.15~6倍とすることで汚泥培養槽でのアブラミミズ等の微小動物増殖量、曝気槽でのアブラミミズ等の微小動物による余剰汚泥捕食量及び曝気槽での活性汚泥保持量がバランスよく維持されることから、系内全体において、安定した余剰汚泥量の抑制と良好な処理水質が同時に得られることが可能となる。 Furthermore, by making the HRT of the sludge culture tank 0.15 to 6 times that of the aerobic treatment tank (low-load treatment tank), Since the amount of excess sludge consumed by animals and the amount of activated sludge retained in the aeration tank are maintained in a well-balanced manner, it is possible to stably control the amount of excess sludge and obtain good treated water quality at the same time throughout the system. .

1…好気性処理槽
1a…高負荷処理槽
1b…低負荷処理槽
2…固液分離槽
3…第1返送手段
4…汚泥培養槽
5…第2返送手段
6…制御手段
51…原水測定手段
52…測定手段
53…第1返送汚泥測定手段
54…第2返送汚泥測定手段
DESCRIPTION OF SYMBOLS 1... Aerobic treatment tank 1a... High-load treatment tank 1b... Low-load treatment tank 2... Solid-liquid separation tank 3... First return means 4... Sludge culture tank 5... Second return means 6... Control means 51... Raw water measurement means 52... Measuring means 53... First returned sludge measuring means 54... Second returned sludge measuring means

Claims (7)

有機物を含む原水を好気性処理槽内で好気的に処理して好気性処理液を得る好気性処理と、
前記好気性処理液を固液分離して処理水と分離汚泥とを得る固液分離処理と、
前記分離汚泥の一部を第1返送汚泥として引き抜いて前記好気性処理槽へ返送する第1返送処理と、
前記第1返送汚泥を引き抜いた後の前記分離汚泥の少なくとも一部を第2返送汚泥とし、前記第2返送汚泥を分解可能な微小動物を含む汚泥培養槽内に、前記第1返送汚泥の汚泥流量の2~30流量%となるように供給し、前記汚泥培養槽内のHRTが前記好気性処理槽のHRTに対して0.15~6倍となるように溶存酸素濃度1mg/L以上で曝気処理した後に、前記曝気処理後の前記微小動物を含む汚泥培養液を前記好気性処理槽へ返送する第2返送処理と
を含む有機性廃水の処理方法。
aerobic treatment in which raw water containing organic matter is aerobically treated in an aerobic treatment tank to obtain an aerobic treated liquid;
Solid-liquid separation treatment to obtain treated water and separated sludge by solid-liquid separation of the aerobic treated liquid;
A first return process of withdrawing a part of the separated sludge as a first return sludge and returning it to the aerobic treatment tank;
At least part of the separated sludge after the extraction of the first returned sludge is used as second returned sludge, and sludge of the first returned sludge is placed in a sludge culture tank containing micro-animals capable of decomposing the second returned sludge. The dissolved oxygen concentration is 1 mg/L or more so that the HRT in the sludge culture tank is 0.15 to 6 times the HRT in the aerobic treatment tank. A method for treating organic wastewater, comprising, after aeration treatment, a second return treatment of returning the aerated sludge culture solution containing the microanimals to the aerobic treatment tank.
前記好気性処理が、
前記原水を高負荷処理槽内で処理して高負荷処理液を得る高負荷処理と、
前記高負荷処理槽で得られる高負荷処理液を低負荷処理槽において前記高負荷処理槽の負荷条件よりも低い負荷条件で処理する低負荷処理と
を少なくとも含み、
前記第1返送処理が、
前記第1返送汚泥を少なくとも前記低負荷処理槽へ返送することを含み、
前記第2返送処理が、
前記第2返送汚泥を前記低負荷処理槽へ返送するとともに、前記汚泥培養槽のHRTが前記低負荷処理槽のHRTに対して0.15~6倍となるように、溶存酸素濃度(DO)1mg/L以上、水温20℃以上で曝気処理することを含む請求項1に記載の有機性廃水の処理方法。
The aerobic treatment is
a high-load treatment for obtaining a high-load treated liquid by treating the raw water in a high-load treatment tank;
a low load treatment in which the high load treatment liquid obtained in the high load treatment tank is treated in the low load treatment tank under load conditions lower than those of the high load treatment tank,
The first return processing is
Returning the first return sludge to at least the low-load treatment tank;
The second return processing is
The second return sludge is returned to the low-load treatment tank, and the dissolved oxygen concentration (DO) is adjusted so that the HRT of the sludge culture tank is 0.15 to 6 times the HRT of the low-load treatment tank. 2. The method for treating organic wastewater according to claim 1, comprising aeration treatment at a temperature of 1 mg/L or higher and a water temperature of 20° C. or higher.
前記汚泥培養槽を2段以上直列に配置することを含む請求項1または2に記載の有機性廃水の処理方法。 3. The method for treating organic wastewater according to claim 1 or 2, comprising arranging said sludge culture tanks in two or more stages in series. 前記第1返送汚泥に対する前記第2返送汚泥の流量比を測定することと、
前記流量比が30流量%を超える場合に前記第2返送汚泥の流量を低減させ、前記流量比が2流量%を下回る場合に前記第2返送汚泥の流量を増加させるように調整することを含む請求項1~3のいずれか1項に記載の有機性廃水の処理方法。
measuring the flow ratio of the second return sludge to the first return sludge;
Adjusting to reduce the flow rate of the second return sludge when the flow rate ratio exceeds 30 flow rate % and to increase the flow rate of the second return sludge when the flow rate ratio is less than 2 flow rate % The method for treating organic wastewater according to any one of claims 1 to 3.
前記好気性処理槽内及び前記汚泥培養液の少なくともいずれかに担体を添加することを含む請求項1~4のいずれか1項に記載の有機性廃水の処理方法。 The method for treating organic wastewater according to any one of claims 1 to 4, comprising adding a carrier to at least one of the aerobic treatment tank and the sludge culture solution. 有機物を含む原水を好気的に処理して好気性処理液を得る好気性処理槽と、
前記好気性処理液を固液分離して処理水と分離汚泥とを得る固液分離槽と、
前記分離汚泥の一部を第1返送汚泥として引き抜いて前記好気性処理槽へ返送する第1返送手段と、
前記分離汚泥を分解可能な微小動物を含み、第1返送汚泥を引き抜いた後の前記分離汚泥の少なくとも一部を第2返送汚泥とし、前記第1返送汚泥の汚泥流量の2~30流量%となるように供給して汚泥培養槽内のHRTが前記好気性処理槽のHRTに対して0.15~6倍となるように溶存酸素濃度1mg/L以上で曝気処理する汚泥培養槽と、
前記曝気処理後の前記微小動物を含む汚泥培養液を前記汚泥培養槽から前記好気性処理槽へ返送する第2返送手段と
を備える有機性廃水の処理装置。
an aerobic treatment tank for aerobically treating raw water containing organic matter to obtain an aerobic treatment liquid;
a solid-liquid separation tank for solid-liquid separation of the aerobic treated liquid to obtain treated water and separated sludge;
a first returning means for withdrawing part of the separated sludge as first returned sludge and returning it to the aerobic treatment tank;
At least part of the separated sludge after extracting the first returned sludge containing micro-animals capable of decomposing the separated sludge is used as the second returned sludge, and 2 to 30% of the sludge flow rate of the first returned sludge a sludge culture tank in which the HRT in the sludge culture tank is aerated at a dissolved oxygen concentration of 1 mg/L or more so that the HRT in the sludge culture tank is 0.15 to 6 times the HRT in the aerobic treatment tank;
and second returning means for returning the sludge culture solution containing the microanimals after the aeration treatment from the sludge culture tank to the aerobic treatment tank.
前記原水の流量を測定する原水測定手段と、
前記第1返送汚泥の流量を測定する第1返送汚泥測定手段と、
前記第2返送汚泥の流量を測定する第2返送汚泥測定手段と、
少なくとも前記原水の流量変動が生じた場合に、前記第1返送汚泥に対する前記第2返送汚泥の流量比を測定し、前記流量比が30流量%を超える場合に前記第2返送汚泥の流量を低減させ、前記流量比が2流量%を下回る場合に前記第2返送汚泥の流量を増加させるように制御する制御手段と
を備える請求項6に記載の有機性廃水の処理装置。
Raw water measuring means for measuring the flow rate of the raw water;
a first return sludge measuring means for measuring the flow rate of the first return sludge;
a second return sludge measuring means for measuring the flow rate of the second return sludge;
At least when the flow rate of the raw water fluctuates, the flow rate ratio of the second return sludge to the first return sludge is measured, and when the flow rate ratio exceeds 30 flow rate%, the flow rate of the second return sludge is reduced. and control means for increasing the flow rate of the second return sludge when the flow rate ratio is below 2 flow rate %.
JP2019131426A 2019-07-16 2019-07-16 Organic wastewater treatment method and organic wastewater treatment apparatus Active JP7228487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131426A JP7228487B2 (en) 2019-07-16 2019-07-16 Organic wastewater treatment method and organic wastewater treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131426A JP7228487B2 (en) 2019-07-16 2019-07-16 Organic wastewater treatment method and organic wastewater treatment apparatus

Publications (2)

Publication Number Publication Date
JP2021013915A JP2021013915A (en) 2021-02-12
JP7228487B2 true JP7228487B2 (en) 2023-02-24

Family

ID=74531205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131426A Active JP7228487B2 (en) 2019-07-16 2019-07-16 Organic wastewater treatment method and organic wastewater treatment apparatus

Country Status (1)

Country Link
JP (1) JP7228487B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141802A (en) 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Equipment and method for sludge treatment
JP2010069482A (en) 2009-11-26 2010-04-02 Kurita Water Ind Ltd Biological treatment method for organic waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141802A (en) 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Equipment and method for sludge treatment
JP2010069482A (en) 2009-11-26 2010-04-02 Kurita Water Ind Ltd Biological treatment method for organic waste water

Also Published As

Publication number Publication date
JP2021013915A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
Ghyoot et al. Reduced sludge production in a two-stage membrane-assisted bioreactor
US7445715B2 (en) System for treating wastewater and a controlled reaction-volume module usable therein
EP3403996B1 (en) Granule-forming method and waste water treatment method
WO2007088860A1 (en) Method of biologically treating organic waste water
US20070102354A1 (en) System for treating wastewater and a media usable therein
CN104321285A (en) Wastewater treatment system and treatment method therefor
JP5772337B2 (en) Biological treatment method and apparatus for organic wastewater
JP5307066B2 (en) Waste water treatment method and waste water treatment system
JP2015093258A (en) Denitrification method and apparatus
JP2009131773A (en) Waste water treatment method
JP7228487B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
Yerushalmi et al. Performance evaluation of the BioCAST technology: a new multi-zone wastewater treatment system
JP2005211788A (en) Organic wastewater treatment apparatus
JP2005313152A (en) Anaerobic ammonia oxidation method an method and apparatus for treating waste water
US6153099A (en) Biological waste treatment process and apparatus
RU2751356C1 (en) Method for removing nitrogen-containing compounds from wastewater
JP6414394B2 (en) Method for treating ammonia nitrogen-containing water
JP6461408B1 (en) Water treatment method and water treatment apparatus
JP6676417B2 (en) Organic wastewater biological treatment apparatus and biological treatment method
KR100399702B1 (en) The method and asparatus of purificating sewage through process of foaming membrane and etc poceses
JPWO2020004662A1 (en) Water treatment method
JP7181250B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP7181251B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
Al-Hashimi et al. Aerobic granular sludge: An advanced technology to treat oil refinery and dairy wastewaters
Jadhao et al. Feasibility Study of Hollow Fiber Submerged Membrane Bioreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150