JP6676417B2 - Organic wastewater biological treatment apparatus and biological treatment method - Google Patents

Organic wastewater biological treatment apparatus and biological treatment method Download PDF

Info

Publication number
JP6676417B2
JP6676417B2 JP2016046174A JP2016046174A JP6676417B2 JP 6676417 B2 JP6676417 B2 JP 6676417B2 JP 2016046174 A JP2016046174 A JP 2016046174A JP 2016046174 A JP2016046174 A JP 2016046174A JP 6676417 B2 JP6676417 B2 JP 6676417B2
Authority
JP
Japan
Prior art keywords
biological treatment
treatment tank
organic wastewater
tank
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016046174A
Other languages
Japanese (ja)
Other versions
JP2017159243A (en
Inventor
智子 世間瀬
智子 世間瀬
ますよ 猪爪
ますよ 猪爪
清美 樺澤
清美 樺澤
田中 俊博
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2016046174A priority Critical patent/JP6676417B2/en
Publication of JP2017159243A publication Critical patent/JP2017159243A/en
Application granted granted Critical
Publication of JP6676417B2 publication Critical patent/JP6676417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、有機性排水の生物処理装置及び生物処理方法に関するものであり、微生物菌によって処理効率を向上させ、かつ微生物菌の捕食を利用した余剰汚泥発生量の削減が可能な有機性排水の生物処理装置及び生物処理方法に関する。   The present invention relates to a biological treatment apparatus and a biological treatment method for organic wastewater, which improves the treatment efficiency of microorganisms and reduces the amount of excess sludge generated by using predation of microorganisms. The present invention relates to a biological treatment apparatus and a biological treatment method.

有機性排水の生物処理では、活性汚泥法が広く行われている。活性汚泥法は処理水水質に優れ、メンテナンスが容易であることから下水処理や産業排水処理設備で広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は0.3〜0.8kg−BOD/m/day程度であり、広い敷地面積が必要となる。また分解した有機物の40〜50%を菌体合成に使用するため、余剰汚泥の発生量が多く問題となる。 In biological treatment of organic wastewater, the activated sludge method is widely used. The activated sludge method is widely used in sewage treatment and industrial wastewater treatment equipment because of its excellent quality of treated water and easy maintenance. However, the BOD volume load in the activated sludge method is about 0.3 to 0.8 kg-BOD / m 3 / day, and a large site area is required. In addition, since 40 to 50% of the decomposed organic matter is used for cell synthesis, the amount of excess sludge generated is a problem.

この他に有機性排水の生物処理では、処理槽内の微生物濃度を高く保持するために担体を用いた流動床法がある。この方法は、一般的な活性汚泥法と比べて処理槽容積あたりの有機物負荷を高くとることができ、処理効率に優れているため、処理槽容積を小さくすることが可能である。   In addition, in biological treatment of organic wastewater, there is a fluidized bed method using a carrier in order to maintain a high concentration of microorganisms in a treatment tank. This method can increase the organic substance load per processing tank volume as compared with a general activated sludge method, and is excellent in processing efficiency. Therefore, the processing tank volume can be reduced.

特許文献1には、有機性排水を第一処理槽で細菌処理して、排水中に含まれる有機物を酸化分解し、分散した細菌を含む非凝集細菌に変換される。その後第二処理槽で固着性原生動物によって捕食除去され余剰汚泥の生成量を極めて少なくすることが開示されている。しかし、第二処理槽では固液分離可能なフロックを生成させる必要があり、増殖速度の小さい原生動物を増殖されるためには、第二処理槽の汚泥滞留時間を長くとるために処理槽を大きくする必要がある。   In Patent Literature 1, organic wastewater is treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregated bacteria including dispersed bacteria. It is disclosed that the amount of surplus sludge is reduced by predation and removal by sticky protozoa in the second treatment tank. However, in the second treatment tank, it is necessary to generate flocs capable of solid-liquid separation, and in order to proliferate protozoa with a low growth rate, the treatment tank must be provided in order to increase the sludge residence time in the second treatment tank. Need to be bigger.

また、処理槽に担体を添加した高負荷処理が知られている。例えば特許文献2では、第一処理槽に担体が占める体積が5〜30%の担体を投入し、BOD容積負荷2〜100kg/m/dayで処理することにより微生物が増殖し、担体に保持されることによって高負荷処理が可能となる。さらにこの処理水を20〜90%の担体を投入した第二処理槽に送り、BOD容積負荷0.1〜2kg/m/dayでBODの分解を行うとともに活性汚泥をフロック化し、後段の固液分離槽で固液分離を行う。 Further, a high-load treatment in which a carrier is added to a treatment tank is known. For example, in Patent Document 2, a carrier having a volume occupied by a carrier of 5 to 30% is charged into a first treatment tank, and treated at a BOD volume load of 2 to 100 kg / m 3 / day, whereby microorganisms grow and are retained on the carrier. Thus, high-load processing can be performed. Further, the treated water is sent to a second treatment tank charged with a carrier of 20 to 90%, and the BOD is decomposed at a BOD volume load of 0.1 to 2 kg / m 3 / day, and the activated sludge is flocculated. Solid-liquid separation is performed in a liquid separation tank.

この方法は第一処理槽の担体充填率を低くし、第二処理槽の担体充填率を高くすることで、BOD容積負荷を高くし、反応槽容積を小さいながら安定したBOD除去が行えるとともに、固液分離性の良い汚泥を形成する。しかし、投入する担体は粒状で流動可能なものが好ましく、各槽に担体を充填する場合は担体を分離して混合液を取り出せるようにするスクリーン等の担体分離手段を設ける必要がある。また粒状担体を流動させるための動力も必要となり、コストがかかる。   This method lowers the carrier filling rate of the first treatment tank and raises the carrier filling rate of the second treatment tank, thereby increasing the BOD volume load and performing stable BOD removal while reducing the reaction vessel volume. Form sludge with good solid-liquid separation properties. However, the carrier to be charged is preferably a granular and flowable one. When each vessel is filled with the carrier, it is necessary to provide a carrier separation means such as a screen for separating the carrier and taking out the mixed liquid. In addition, power for flowing the granular carrier is required, which increases the cost.

また、特許文献3では第一処理槽のBOD汚泥負荷を2〜40kg−BOD/kg−VSS/dayの高負荷処理により糸状性細菌の優先化を抑え、溶解性BODを50%以上除去し、溶解性BOD濃度50〜10000mg/Lの処理水とする。さらにこの処理水を20〜90%の担体を投入した第二処理槽に送り、BOD汚泥負荷0.01〜0.5kg−BOD/kg−VSS/dayで処理することによって、BODの分解を行うとともに活性汚泥をフロック化し、有機物濃度およびSS濃度の低い良好な処理水を得ることができる。   Further, in Patent Document 3, the priority of filamentous bacteria is suppressed by high load treatment of the BOD sludge load of the first treatment tank of 2 to 40 kg-BOD / kg-VSS / day, and soluble BOD is removed by 50% or more. It is treated water having a soluble BOD concentration of 50 to 10000 mg / L. Further, this treated water is sent to a second treatment tank charged with a carrier of 20 to 90%, and treated with a BOD sludge load of 0.01 to 0.5 kg-BOD / kg-VSS / day to decompose the BOD. At the same time, the activated sludge is flocculated, and good treated water having a low organic matter concentration and a low SS concentration can be obtained.

この方法は、第一処理槽を高負荷にすることで糸状性細菌の優先化によるバルキングを防止し、担体を投入した第二処理槽で第一処理槽から送られる分散性の汚泥をフロック化し、固液分離性の良い汚泥を形成することができる。しかし本方式は活性汚泥および担体を投入した活性汚泥を有するため、高負荷で処理を行うためには必要となる空気量が増加する。また第二反応槽は担体が投入されており、担体を流動させるための空気や動力も必要である。   This method prevents bulking due to the priority of filamentous bacteria by increasing the load on the first treatment tank, and flocculates the dispersible sludge sent from the first treatment tank in the second treatment tank containing the carrier. Thus, sludge having good solid-liquid separation properties can be formed. However, since this method has activated sludge and activated sludge into which a carrier has been added, the amount of air required for performing treatment under a high load increases. The second reaction tank is charged with a carrier, and requires air and power for flowing the carrier.

特開昭55−20649号公報JP-A-55-20649 特開2000−42584号公報JP-A-2000-42584 特開2001−314885号公報JP 2001-314885 A 特開2013−208560号公報JP 2013-208560 A 特開2013−141640号公報JP 2013-141640 A

宗宮功著,「やさしい水処理」,(発行人)宗宮功,(印刷所)株式会社田中プリント,平成20年12月25日発行Written by Isao Soumiya, "Easy Water Treatment", (Issue) Isao Soumiya, (Printing) Tanaka Print Co., Ltd.

本発明が解決しようとする課題は、上述した諸問題に鑑み、好気性生物処理の空気量を削減し、かつ汚泥の発生量を大幅に少なくしながら高負荷で効率よく有機物除去を行うことが可能な有機性排水の生物処理装置及び生物処理方法を提供することである。   The problem to be solved by the present invention, in view of the above-mentioned problems, is to reduce the amount of air for aerobic biological treatment, and to efficiently remove organic matter with a high load while significantly reducing the amount of generated sludge. It is an object of the present invention to provide a possible organic wastewater biological treatment device and biological treatment method.

上記課題を解決するため、本発明の有機性排水の生物処理装置及び生物処理方法は、以下の特徴を有する。
(1) 複数の生物処理槽を多段に配置し、各段の生物処理槽内には、有機性排水又は前段の生物処理槽で処理された処理水を流入する流入部と、当該生物処理槽内で処理した処理水を排出する排出部とが設けられ、最終段の生物処理槽の後段に沈殿池を設け、前記最終段の生物処理槽で処理された処理水を流入し、沈殿処理された処理水を排出する有機性排水の生物処理装置において、全ての該生物処理槽内に、固定型接触担体を配置し、該固定型接触担体の配置位置よりも下側に、散気手段を備え、該固定型接触担体の配置位置よりも上側に該流入部を配置し、該固定型接触担体の配置位置よりも下側に該排出部を配置し、該生物処理槽は、有機性排水が流入する第一生物処理槽と、有機性排水が流入せず、前段からの処理水が流入する第二生物処理槽とに分けられ、該第一生物処理槽で処理した処理水を該第二生物処理槽に通水し、さらに、該第一生物処理槽に流入する有機性排水の有機物濃度と流量を測定する有機物負荷測定器を備え、該第一生物処理槽を構成する各生物処理槽に流入する有機性排水の流入量を、該有機物負荷測定器の測定値に基づき調整する流入量調整手段を備え、該流入量調整手段は、該有機物負荷測定器の測定結果に基づき、該第一生物処理槽を構成する各生物処理槽に流入する有機物流入負荷がCOD Cr で3〜12kg/m /dayとなるように該流入量を調整することを特徴とする。
MEANS TO SOLVE THE PROBLEM In order to solve the said subject, the biological treatment apparatus and the biological treatment method of the organic wastewater of this invention have the following characteristics.
(1) A plurality of biological treatment tanks are arranged in multiple stages, and in each of the biological treatment tanks, an inflow section into which organic wastewater or treated water treated in the preceding biological treatment tank flows, and the biological treatment tank And a discharge section for discharging the treated water treated therein is provided.A sedimentation basin is provided at a subsequent stage of the biological treatment tank at the final stage, and the treated water treated at the biological treatment tank at the final stage flows thereinto to be settled. In a biological treatment apparatus for organic wastewater that discharges treated water, a fixed contact carrier is disposed in all of the biological treatment tanks, and a diffuser is provided below the position where the fixed contact carrier is disposed. The inflow portion is disposed above the position where the fixed contact carrier is disposed, and the discharge portion is disposed below the position where the fixed contact carrier is disposed. The first biological treatment tank into which wastewater flows, and the second biological treatment tank into which treated water from the preceding Divided into two biological treatment tanks, the treated water treated in the first biological treatment tank is passed through the second biological treatment tank , furthermore, the organic matter concentration of the organic wastewater flowing into the first biological treatment tank An inflow rate adjustment apparatus comprising an organic substance load measuring device for measuring a flow rate, and adjusting an inflow amount of organic wastewater flowing into each biological treatment tank constituting the first biological treatment tank based on a measurement value of the organic substance load measurement apparatus. comprising means, flow Iriryou adjusting means based on the measurement result of the organic load measuring instrument, 3~12kg / m organics inflow load flowing into the biological treatment tank which constitutes the said first biological treatment tank with COD Cr The flow rate is adjusted so as to be 3 / day .

) 上記()に記載の有機性排水の生物処理装置において、該流入量調整手段は、該有機物負荷測定器の測定結果に基づき、全ての該生物処理槽に対する有機物負荷がCODCrで0.75〜3kg/m/dayとなるように該流入量を調整することを特徴とする。 (2) In the biological treatment apparatus of an organic waste water according to the above (1), the flow Iriryou adjusting means based on the measurement result of the organic load measuring device, organic loading for all organism processing tank with COD Cr and adjusting the flow Iriryou so that 0.75~3kg / m 3 / da y.

) 複数の生物処理槽を多段に配置した生物処理装置を用いて有機性排水を処理する有機性排水の生物処理方法において、全ての該生物処理槽内では、固定型接触担体を備え、有機性排水又は前段の生物処理槽で処理された処理水を該固定型接触担体の配置位置の上側から導入し、生物処理槽内では空気を供給しながら処理が行なわれ、該固定型接触担体の配置位置の下側から処理された処理水を排出する生物処理工程を有し、該生物処理工程は、有機性排水を導入して処理する第一生物処理工程と、有機性排水を導入せず、前段からの処理水を導入し処理する第二生物処理工程に分けられ、該第一生物処理工程で処理された処理水を該第二生物処理工程で処理し、該第二生物処理工程で処理された処理水を沈殿処理する沈殿処理工程を備え、該第一生物処理工程では、該生物処理槽に流入する有機性排水の有機物濃度と流量を測定し、該有機性排水の流入量を調整する共に、該有機性排水の流入量の調整は、該第一生物処理工程を構成する各生物処理槽に流入する有機物流入負荷がCOD Cr で3〜12kg/m /dayとなるように行なうことを特徴とする。 ( 3 ) In a biological treatment method for organic wastewater, in which organic wastewater is treated using a biological treatment apparatus in which a plurality of biological treatment tanks are arranged in multiple stages, all of the biological treatment tanks include a fixed contact carrier; Organic wastewater or treated water treated in the biological treatment tank in the preceding stage is introduced from above the position of the fixed contact carrier, and the treatment is performed while supplying air in the biological treatment tank. A biological treatment step of discharging treated water from the lower side of the disposition position, wherein the biological treatment step is a first biological treatment step of introducing and treating organic wastewater, and the organic wastewater is introduced. The second biological treatment step is divided into a second biological treatment step of introducing and treating the treated water from the previous stage, and treating the treated water treated in the first biological treatment step in the second biological treatment step. Settling process to settle the treated water treated in For example, in said first biological treatment process, organic matter concentration and the flow rate of organic wastewater entering the organism processing tank was measured, both for adjusting the flow rate of the organic waste water, adjusting the flow rate of organic wastewater Is characterized in that the organic matter inflow into each biological treatment tank constituting the first biological treatment step is performed so that COD Cr is 3 to 12 kg / m 3 / day in COD Cr .

) 上記()に記載の有機性排水の生物処理方法において、該有機性排水の流入量の調整は、全ての該生物処理槽に対する有機物負荷がCODCrで0.75〜3kg/m/dayとなるように行なうことを特徴とする。 ( 4 ) In the biological treatment method for organic wastewater according to the above ( 3 ), the flow rate of the organic wastewater is adjusted by adjusting the organic substance load to all the biological treatment tanks to 0.75 to 3 kg / m in COD Cr. and performing such a 3 / da y.

本発明の有機性排水の生物処理装置及び生物処理方法では、全ての生物処理槽内に固定型接触担体を設けることで、好気性生物処理の空気量を削減することが可能となる。しかも、有機性排水の流入部に有機物負荷測定器を設け、有機性排水の流入量の調整を行なうことにより、第一生物処理槽を構成する各生物処理槽の許容有機物負荷に応じた適正な有機物濃度に生物処理槽内を維持することができる。その結果、処理槽の容積を小さくできるとともに、効率よく有機物の除去が行うことができ、さらに、発生汚泥量の削減が可能となる。   In the biological treatment apparatus and the biological treatment method for organic wastewater of the present invention, by providing a fixed contact carrier in all biological treatment tanks, it is possible to reduce the amount of air for aerobic biological treatment. In addition, an organic matter load measuring device is provided at the inflow portion of the organic wastewater, and by adjusting the inflow amount of the organic wastewater, an appropriate organic matter load corresponding to the allowable organic matter load of each biological treatment tank constituting the first biological treatment tank is provided. The organic matter concentration can be maintained in the biological treatment tank. As a result, the capacity of the treatment tank can be reduced, the organic matter can be efficiently removed, and the amount of generated sludge can be reduced.

本発明の生物処理装置の概略を示す図である。It is a figure showing the outline of the biological treatment device of the present invention. 本発明の生物処理装置の概略を示す図であり、第一生物処理槽を2槽で構成する例を示す図である。It is a figure which shows the outline of the biological treatment apparatus of this invention, Comprising: It is a figure which shows the example which comprises a 1st biological treatment tank with two tanks. 本発明に係る実施例1の実験装置概要を示す図である。FIG. 1 is a diagram illustrating an outline of an experimental apparatus according to a first embodiment of the present invention. 本発明に係る比較例1−1の実験装置概要を示す図である。It is a figure which shows the experimental device outline | summary of the comparative example 1-1 which concerns on this invention. 本発明に係る比較例1−2の実験装置概要を示す図である。It is a figure showing the experimental device outline of comparative example 1-2 concerning the present invention. 本発明に係る比較例1−3の実験装置概要を示す図である。It is a figure showing the outline of the experimental device of comparative example 1-3 concerning the present invention. 本発明に係る実施例2の実験装置概要を示す図である。It is a figure showing the outline of the experimental device of Example 2 concerning the present invention. 本発明に係る実施例5の実験装置概要を示す図である。It is a figure showing the outline of the experimental device of Example 5 concerning the present invention.

本発明の有機性排水の生物処理装置及び生物処理方法について、以下に詳細に説明する。
本発明で用いられる第一生物処理槽とは有機性排水が流入する処理槽とし、第二生物処理槽とは第一生物処理槽の処理水を流入して沈殿槽まで通水させる処理槽である。
BEST MODE FOR CARRYING OUT THE INVENTION The organic wastewater treatment apparatus and treatment method of the present invention will be described in detail below.
The first biological treatment tank used in the present invention is a treatment tank into which organic wastewater flows, and the second biological treatment tank is a treatment tank that flows treated water from the first biological treatment tank and passes it to the sedimentation tank. is there.

図1は、本発明の生物処理装置の一例を示すものであり、ここで図示した実施の形態に限定されるものではない。有機性排水が流入する第一生物処理槽と第一生物処理槽の処理水が流入する第二生物処理槽からなり、生物処理槽の下部に空気の散気装置が設けられている。また生物処理槽の下側(下流側)に処理水を排水するための排出管の入り口があり、生物処理槽内には固定型接触担体が設置されている。
なお、本発明の固定型接触担体とは、生物処理槽内に固定配置されるものだけでなく、互いの接触担体が密集し接触担体が容易に流動しないよう構成されているものを含む。
FIG. 1 shows an example of the biological treatment apparatus of the present invention, and the present invention is not limited to the embodiment shown here. It comprises a first biological treatment tank into which organic wastewater flows and a second biological treatment tank into which treated water from the first biological treatment tank flows, and an air diffuser is provided below the biological treatment tank. Further, below the biological treatment tank (downstream side), there is an inlet of a discharge pipe for draining treated water, and a fixed contact carrier is installed in the biological treatment tank.
In addition, the fixed contact carrier of the present invention includes not only those fixedly disposed in the biological treatment tank but also those configured such that the contact carriers are dense and the contact carriers do not easily flow.

第一生物処理槽および第二生物処理槽に設置する固定型接触担体の形状は非特許文献に示されるように、一般的に使用できる波板、ハニカムチューブ、瓶状、筒状、網状、ボール状やウニ状などの形状をした担体が好ましい。第一生物処理槽および第二生物処理槽に接触担体を設けることで、微生物が接触担体上に付着し、各槽の負荷に応じた微生物が繁殖し、効率良く槽内の有機物を処理することが可能となる。   The shape of the fixed contact carrier to be installed in the first biological treatment tank and the second biological treatment tank is, as shown in Non-Patent Literature, a generally usable corrugated plate, honeycomb tube, bottle, tube, net, ball A carrier having a shape such as a shape or a sea urchin is preferable. By providing a contact carrier in the first biological treatment tank and the second biological treatment tank, microorganisms adhere to the contact carrier, and microorganisms corresponding to the load of each tank grow, thereby efficiently treating the organic matter in the tank. Becomes possible.

第一生物処理槽は有機性排水が流入する処理槽であり、CODCr容積負荷3〜12kg/m/day好ましくは6〜10kg/m/dayで有機性排水を流入することが好ましい。また、全槽あたりのCODCr容積負荷0.75〜3kg/m/day、好ましくは1.1〜2.5kg/m/dayで有機性排水を流入することが好ましい。 The first biological treatment tank is a treatment tank into which the organic wastewater flows, and it is preferable that the organic wastewater flows at a COD Cr volume load of 3 to 12 kg / m 3 / day, preferably 6 to 10 kg / m 3 / day. In addition, it is preferable that the organic wastewater is introduced at a COD Cr volume load of 0.75 to 3 kg / m 3 / day, preferably 1.1 to 2.5 kg / m 3 / day per tank.

第一生物処理槽出口の有機物除去率は60〜95%、好ましくは70〜85%となるようにすることが好ましい。
また、第一生物処理槽の空気量は担体付着微生物に十分に酸素が行き渡るのが好ましく、0.05〜0.2m/m/minとしても良い。
It is preferable that the organic matter removal rate at the outlet of the first biological treatment tank is 60 to 95%, preferably 70 to 85%.
Further, the amount of air in the first biological treatment tank is preferably such that oxygen is sufficiently distributed to the microorganisms attached to the carrier, and may be 0.05 to 0.2 m 3 / m 2 / min.

前述の条件にて第一生物処理槽に有機性排水を流入させることによって、分散菌が増殖し、分散菌が優占化した処理水を得ることができる。   By causing the organic wastewater to flow into the first biological treatment tank under the above-described conditions, the disperse bacteria multiply and the treated water in which the disperse bacteria predominate can be obtained.

第二生物処理槽は、第一生物処理槽からの処理水を流入する処理槽であり、1段以上とすることが好ましい。第二生物処理槽a出口の有機物除去率は60%以上となるようにすることが好ましく、後段につれて有機物除去率が高くなることが好ましい。第二生物処理槽の空気量は後段にかけて少なくすることが好ましく、第二生物処理槽aの空気量は第一生物処理槽と同じとしても良い。第一生物処理槽で増殖した分散菌は第二生物処理槽にて原生動物や後生動物に段階的に捕食されるため、第二生物処理槽の処理水のSS量が削減される。   The second biological treatment tank is a treatment tank into which treated water from the first biological treatment tank flows, and is preferably one or more stages. The organic matter removal rate at the outlet of the second biological treatment tank a is preferably set to be 60% or more, and it is preferable that the organic matter removal rate increases toward the later stage. It is preferable that the amount of air in the second biological treatment tank is reduced in a later stage, and the amount of air in the second biological treatment tank a may be the same as that of the first biological treatment tank. Since the dispersed bacteria grown in the first biological treatment tank are predatory by the protozoa and metazoa in the second biological treatment tank in stages, the SS amount of the treated water in the second biological treatment tank is reduced.

図2は有機性排水を流入する第一生物処理槽を構成する生物処理槽を2段以上有し、第一生物処理槽の処理水が流入する第二生物処理槽は、生物処理槽を2段以上有する。生物処理槽の下部に散気装置が設けられ、生物処理槽の下流側に処理水排出管があり、生物処理槽内には固定型接触担体が設置されている。有機性排水は有機物測定器により有機物濃度を測定し、有機物濃度に応じて第一生物処理槽を構成する生物処理槽の1槽あたりのCODCr容積負荷が3〜12kg/m/day、好ましくは6〜10kg/m/dayになるように流入させる。 FIG. 2 has two or more biological treatment tanks constituting a first biological treatment tank into which organic wastewater flows, and a second biological treatment tank into which treated water from the first biological treatment tank flows has two biological treatment tanks. Have more than one step. An aeration device is provided below the biological treatment tank, a treated water discharge pipe is provided downstream of the biological treatment tank, and a fixed contact carrier is provided in the biological treatment tank. For the organic wastewater, the organic matter concentration is measured by an organic matter measuring device, and the COD Cr volume load per biological treatment tank constituting the first biological treatment tank is 3 to 12 kg / m 3 / day, preferably according to the organic matter concentration. Is introduced so as to be 6 to 10 kg / m 3 / day.

図2では、第一生物処理槽を構成する2つの生物処理槽を直列に配置しているが、並列に配置しても良い。また、第一生物処理槽で処理した処理水を、第二生物処理槽を構成する最初の段の一つの生物処理槽に供給するだけでなく、最初の段の生物処理槽を複数で構成することも可能である。   In FIG. 2, the two biological treatment tanks constituting the first biological treatment tank are arranged in series, but they may be arranged in parallel. In addition, not only the treated water treated in the first biological treatment tank is supplied to one of the first biological treatment tanks constituting the second biological treatment tank, but also the first biological treatment tank is composed of a plurality of biological treatment tanks. It is also possible.

有機物負荷測定器Mは、有機物排水の有機物濃度を測定できる装置および測定手段を示し、好ましくはCODCr濃度の測定を行う。有機物濃度の代表的なBODは測定に5日間を要し、迅速な有機物濃度を判断するには不向きである。そのため、迅速に有機物濃度を判断できるCODCr濃度を用いる。CODCrはBODの1.5倍として換算を行った。 The organic matter load measuring device M indicates a device and a measuring means capable of measuring the organic matter concentration of the organic matter wastewater, and preferably measures the COD Cr concentration. A typical BOD of an organic substance concentration requires 5 days for measurement, and is not suitable for quickly determining an organic substance concentration. Therefore, the COD Cr concentration that can quickly determine the organic substance concentration is used. COD Cr was converted as 1.5 times BOD.

第一生物処理槽の出口の有機物除去率は30〜95%、好ましくは45〜85%となるようにすることが好ましい。前述の条件にて第一生物処理槽に有機物排水を流入させることによって、分散菌が増殖し、従来のフロックではない分散菌が優占化した処理水を得ることができる。   It is preferable that the organic matter removal rate at the outlet of the first biological treatment tank is 30 to 95%, preferably 45 to 85%. By causing the organic wastewater to flow into the first biological treatment tank under the above-described conditions, the dispersed bacteria proliferate, and it is possible to obtain treated water in which the dispersed bacteria that are not the conventional flocs are dominant.

第二生物処理槽は第一生物処理槽からの処理水を流入する処理槽であり、第二生物処理槽a出口の有機物除去は60%以上となることが好ましく、後段につれて有機物除去率が高くなることが好ましい。第一生物処理槽で増殖した分散菌は第二生物処理槽にて原生動物や後生動物に段階的に捕食されるため、第二生物処理槽の処理水のSS量が削減される。   The second biological treatment tank is a treatment tank into which the treated water from the first biological treatment tank flows, and the organic matter removal at the outlet of the second biological treatment tank a is preferably 60% or more. Preferably, Since the dispersed bacteria grown in the first biological treatment tank are predatory by the protozoa and metazoa in the second biological treatment tank in stages, the SS amount of the treated water in the second biological treatment tank is reduced.

第二生物処理槽へ第一生物処理槽で増殖した分散菌を含む処理水が流入して、第一生物処理槽で増殖した分散菌を捕食することによって汚泥の削減が行われる。
汚泥発生量の評価には汚泥転換率を用い、次の通り定義する。
The treated water containing the dispersed bacteria grown in the first biological treatment tank flows into the second biological treatment tank, and sludge is reduced by feeding the dispersed bacteria grown in the first biological treatment tank.
Sludge conversion rate is used to evaluate sludge generation and is defined as follows.

Figure 0006676417
Figure 0006676417

生物処理槽4槽を直列に並べ、第一生物処理槽に食品工場の有機性排水を流入させて、処理槽下部に散気管を設置し処理を行った。図3に示すように、全ての生物処理槽に固定型接触担体を設けて処理をした実験を実施例1とした。   Four biological treatment tanks were arranged in series, organic wastewater from a food factory was allowed to flow into the first biological treatment tank, and an air diffuser was installed at the bottom of the treatment tank to perform the treatment. As shown in FIG. 3, Example 1 was an experiment in which an immobilized contact carrier was provided in all biological treatment tanks for treatment.

実施例1の比較例として、第一生物処理槽に固定型接触担体を設けて、第二生物処理槽a〜cには接触担体を設置しないで処理した実験を比較例1−1とした。図4に装置図を示す。
第一生物処理槽に接触担体を設けずに、第二生物処理槽a〜cに固定型接触担体を設けて処理をした実験を比較例1−2とした。図5に装置図を示す。
実施例1の比較例として、活性汚泥法による処理をした実験を比較例1−3とした。図6に装置図を示す。
As a comparative example of Example 1, an experiment in which a fixed contact carrier was provided in the first biological treatment tank and treatment was performed without providing the contact carriers in the second biological treatment tanks a to c was set as Comparative Example 1-1. FIG. 4 shows an apparatus diagram.
An experiment in which fixed contact carriers were provided in the second biological treatment tanks a to c without the contact carriers in the first biological treatment tank and the treatment was performed was set as Comparative Example 1-2. FIG. 5 shows an apparatus diagram.
As a comparative example of Example 1, an experiment in which treatment was performed by the activated sludge method was taken as Comparative Example 1-3. FIG. 6 shows an apparatus diagram.

実験装置の概要および実験条件を表1および表2に示す。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/L、流入量は8.3m/day、第一生物処理槽のCODCr容積負荷は6kg/m/dayに調整した。また各実験の全槽あたりの空気量は実施例1では0.3m/min、比較例1−1では0.45m/min、比較例1−2では0.50m/min、比較例1−3では0.65m/minとした。 Tables 1 and 2 show the outline of the experimental apparatus and the experimental conditions. The tank capacity was 10 m 3 , the COD Cr concentration of the organic wastewater was adjusted to 1800 mg / L, the inflow was adjusted to 8.3 m 3 / day, and the COD Cr volume load of the first biological treatment tank was adjusted to 6 kg / m 3 / day. The amount of air in Example 1, 0.3 m 3 / min per total bath each experiment, 0.45 m 3 / min in Comparative Example 1-1, Comparative Example 1-2 0.50 m 3 / min, Comparative Example In 1-3, it was set to 0.65 m 3 / min.

Figure 0006676417
Figure 0006676417

Figure 0006676417
Figure 0006676417

本実施例の実験結果を表3に示す。実施例1の条件で処理したときの4槽目出口のSSは73mg/L、処理水のSSとCODCrは28mg/Lと150mg/Lとなり、良好に処理された。また汚泥転換率は0.04kg−SS/kg−CODCrとなった。槽内のDOは6〜8mg/Lとなった。 Table 3 shows the experimental results of this example. When treated under the conditions of Example 1, the SS at the fourth tank outlet was 73 mg / L, and the SS and COD Cr of the treated water were 28 mg / L and 150 mg / L, and the treatment was satisfactory. The sludge conversion rate was 0.04 kg-SS / kg-COD Cr . The DO in the tank was 6 to 8 mg / L.

Figure 0006676417
Figure 0006676417

比較例1−1の条件で処理した時の4槽目出口のSSは200mg/L、処理水のSSとCODCrは42mg/Lと330mg/Lとなった。また汚泥転換率は0.10kg−SS/kg−CODCrとなった。第一生物処理槽で分散菌となった処理水が接触担体の設置されていない第二生物処理槽に流入して汚泥のフロックが形成した。形成されたフロックはそのまま後段へ流出したため、4槽目出口のSSが高くなった。また処理水のCODCrが高く、処理が十分にされていなかった。 When treated under the conditions of Comparative Example 1-1, the SS at the fourth tank outlet was 200 mg / L, and the SS and COD Cr of the treated water were 42 mg / L and 330 mg / L. The sludge conversion rate was 0.10 kg-SS / kg-COD Cr . The treated water that became the dispersed bacteria in the first biological treatment tank flowed into the second biological treatment tank where no contact carrier was installed, and flocs of sludge were formed. Since the formed floc flowed to the subsequent stage as it was, the SS at the outlet of the fourth tank increased. Further, the COD Cr of the treated water was high, and the treatment was not sufficiently performed.

比較例1−2の条件で処理した時の4槽目出口のSSは170mg/L、処理水のSSとCODCrは46mg/Lと190mg/Lとなった。また汚泥転換率は0.08kg−SS/kg−CODCrとなった。接触担体の設置されていない第一生物処理槽で汚泥のフロックが形成し、それらのフロックが接触担体の設置された第二生物処理槽に流入した。第一生物処理槽で形成されたフロックの中には接触担体に補足されないフロックもあり、それらが流出したため処理水のSSが高くなった。比較例1−2では後段に接触担体があるため、比較例1−1よりも4槽目出口のSS濃度は低くまた処理水の水質も低くなった。 When treated under the conditions of Comparative Example 1-2, the SS at the fourth tank outlet was 170 mg / L, and the SS and COD Cr of the treated water were 46 mg / L and 190 mg / L. The sludge conversion rate was 0.08 kg-SS / kg-COD Cr . Flocs of sludge were formed in the first biological treatment tank where the contact carrier was not installed, and the flocs flowed into the second biological treatment tank where the contact carrier was installed. Among the flocs formed in the first biological treatment tank, some flocs were not captured by the contact carrier, and the SS flowed out due to those flocs flowing out. In Comparative Example 1-2, since there was a contact carrier at the subsequent stage, the SS concentration at the fourth tank outlet was lower and the quality of the treated water was lower than in Comparative Example 1-1.

比較例1−3の条件で処理した時の処理水のSSとCODCrは76mg/Lと110mg/Lとなった。また汚泥転換率は0.33 kg−SS/kg−CODCrとなった。処理水のCODCrは実施例1より低くなったが、SSおよび汚泥転換率は実施例1、比較例1−1および1−2よりも高くなった。また、槽内のDOは2〜6mg/Lとなった。実施例1の全槽あたりの空気量は0.3m/minに対し、比較例1−3の空気量は0.65m/minとなり、空気量が多く必要であった。 The SS and COD Cr of the treated water when treated under the conditions of Comparative Example 1-3 were 76 mg / L and 110 mg / L. The sludge conversion rate was 0.33 kg-SS / kg-COD Cr . The COD Cr of the treated water was lower than in Example 1, but the SS and the sludge conversion rate were higher than those in Example 1, Comparative Examples 1-1 and 1-2. The DO in the tank was 2 to 6 mg / L. The amount of air per tank in Example 1 was 0.3 m 3 / min, whereas the amount of air in Comparative Example 1-3 was 0.65 m 3 / min, requiring a large amount of air.

負荷を低くした場合の実験を比較例2に示し、実施例1の条件および結果を下記に併記する。
実施例1は図3に示す生物学的処理装置を用いて、すべての生物処理槽に固定型接触担体と設けて試験を行った。実験装置の概要および実験条件を表4に示す。
An experiment when the load was reduced is shown in Comparative Example 2, and the conditions and results of Example 1 are also described below.
In Example 1, a test was conducted using the biological treatment apparatus shown in FIG. 3 with all biological treatment tanks provided with fixed contact carriers. Table 4 shows the outline of the experimental apparatus and the experimental conditions.

Figure 0006676417
Figure 0006676417

槽容量は10mとし、実施例1は有機性排水のCODCr濃度は1800mg/L、流入量は8.3m/day、第一生物処理槽のCODCr容積負荷は6kg/m/dayに調整した。また各実験の全槽あたりの空気量は0.3m/minとした。実施例1の比較例として第一生物処理槽のCODCr容積負荷を2.8kg/m/dayとした実験を行った。有機性排水のCODCr濃度は1800mg/L、流入量は3.9m/dayに調整して比較例2とした。 The tank capacity was 10 m 3, and in Example 1, the COD Cr concentration of the organic wastewater was 1800 mg / L, the inflow was 8.3 m 3 / day, and the COD Cr volume load of the first biological treatment tank was 6 kg / m 3 / day. Was adjusted. In addition, the amount of air per tank in each experiment was 0.3 m 3 / min. As a comparative example of Example 1, an experiment was performed in which the COD Cr volume load of the first biological treatment tank was 2.8 kg / m 3 / day. Comparative Example 2 was prepared by adjusting the COD Cr concentration of the organic wastewater to 1800 mg / L and adjusting the inflow amount to 3.9 m 3 / day.

本実施例の実験結果を表5に示す。実施例1の条件で処理したときの4槽目出口のSSは73mg/L、処理水のSSとCODCrは28mg/Lと150mg/Lとなり、良好に処理された。また汚泥転換率は0.04kg−SS/kg−CODCrとなった。 Table 5 shows the experimental results of this example. When treated under the conditions of Example 1, the SS at the fourth tank outlet was 73 mg / L, and the SS and COD Cr of the treated water were 28 mg / L and 150 mg / L, and the treatment was satisfactory. The sludge conversion rate was 0.04 kg-SS / kg-COD Cr .

Figure 0006676417
Figure 0006676417

比較例2の条件で処理したときの4槽目出口のSSは140mg/L、処理水のSSとCODCrは72mg/Lと380mg/Lとなった。また汚泥転換率は0.11kg−SS/kg−CODCrとなった。接触担体からの汚泥の剥離および汚泥の解体が起きたため、4槽目出口のSSが高く、また処理水が悪化した。 When treated under the conditions of Comparative Example 2, the SS at the fourth tank outlet was 140 mg / L, and the SS and COD Cr of the treated water were 72 mg / L and 380 mg / L. The sludge conversion rate was 0.11 kg-SS / kg-COD Cr . Since the sludge was separated from the contact carrier and the sludge was disintegrated, the SS at the outlet of the fourth tank was high, and the treated water deteriorated.

実施例2では生物処理槽4槽を直列に並べ、第一生物処理槽a、bの2槽に有機性排水を流入させて、処理槽の下部に散気管を設置して処理を行った。図7に示すように、すべての生物処理槽に固定型接触担体と設けて試験を行った。有機性排水の流入ラインには有機物測定器を設置してCODCr濃度を測定し、第一生物処理槽aのCODCr容積負荷が6.5kg/m/dayとなるように流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/Lとした。流入量は第一生物処理槽aが9.0m/day、第一生物処理槽bが8.3m/dayとし、CODCr容積負荷は第一生物処理槽aが6.5kg/m/day、第一生物処理槽bが6.0kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。実験装置の概要および実験条件を表6に示す。 In Example 2, four biological treatment tanks were arranged in series, and organic wastewater was flowed into two tanks of the first biological treatment tanks a and b, and a treatment was performed by installing an air diffuser at the lower part of the treatment tank. As shown in FIG. 7, a test was conducted by providing a fixed contact carrier in all biological treatment tanks. An organic substance measuring device was installed in the inflow line of the organic waste water to measure the COD Cr concentration, and the COD Cr was introduced so that the volume load of COD Cr in the first biological treatment tank a was 6.5 kg / m 3 / day. The tank capacity was 10 m 3, and the COD Cr concentration of the organic wastewater was 1800 mg / L. Inflow first biological treatment tank a is 9.0 m 3 / day, the first biological treatment tank b are as 8.3m 3 / day, COD Cr volumetric loading has first biological treatment tank a 6.5 kg / m 3 / Day and the first biological treatment tank b were adjusted to 6.0 kg / m 3 / day. The amount of air per tank was 0.3 m 3 / min. Table 6 shows the outline of the experimental apparatus and the experimental conditions.

Figure 0006676417
Figure 0006676417

比較例3では第一生物処理槽aのみに有機性排水を流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/L、流入量17.4m/day、第一生物処理槽のCODCr容積負荷は12.5kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。 In Comparative Example 3, the organic wastewater was allowed to flow only into the first biological treatment tank a. The tank capacity was 10 m 3 , the COD Cr concentration of the organic wastewater was adjusted to 1800 mg / L, the inflow was 17.4 m 3 / day, and the COD Cr volume load of the first biological treatment tank was adjusted to 12.5 kg / m 3 / day. . The amount of air per tank was 0.3 m 3 / min.

実験結果を表7に示す。比較例3の条件で処理したときの4槽目出口のSSは420mg/L、処理水のSSとCODCrは72mg/Lと480mg/Lとなった。また汚泥転換率は0.20kg−SS/kg−CODCrとなった。第一生物処理槽aおよび第二生物処理槽aでは接触担体に多量の汚泥が付着し、槽内の閉塞が見られた。また第一生物処理槽内で分散菌が多く発生し、第二生物処理槽aで捕食されなかった分散菌が後段まで流出した。そのため、4槽目出口のSSが高くなり、汚泥転換率も高くなった。 Table 7 shows the experimental results. When treated under the conditions of Comparative Example 3, the SS at the fourth tank outlet was 420 mg / L, and the SS and COD Cr of the treated water were 72 mg / L and 480 mg / L. The sludge conversion rate was 0.20 kg-SS / kg-COD Cr . In the first biological treatment tank a and the second biological treatment tank a, a large amount of sludge adhered to the contact carrier, and clogging in the tank was observed. Further, a large amount of dispersed bacteria was generated in the first biological treatment tank, and the dispersed bacteria that were not preyed in the second biological treatment tank a flowed out to the subsequent stage. Therefore, the SS at the outlet of the fourth tank increased, and the sludge conversion rate also increased.

Figure 0006676417
Figure 0006676417

実施例2では図7に示すように、有機性排水を第一生物処理槽aおよびbの2槽へ分流して流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/L、第一生物処理槽aおよびbの流入量は9.0m/dayおよび8.3m/dayとし、第一生物処理槽aおよびbのCODCr容積負荷は6.5kg/m/dayおよび6.0kg/m/dayに調整した。 In Example 2, as shown in FIG. 7, the organic wastewater was split into two first biological treatment tanks a and b and flowed. The tank capacity was 10 m 3 , the COD Cr concentration of the organic wastewater was 1800 mg / L, the inflows of the first biological treatment tanks a and b were 9.0 m 3 / day and 8.3 m 3 / day, and the first biological treatment was performed. The COD Cr volume loading of the tanks a and b was adjusted to 6.5 kg / m 3 / day and 6.0 kg / m 3 / day.

実施例2の条件で処理したときの4槽目出口のSSは270mg/L、処理水のSSとCODCrは44mg/Lと360mg/Lとなった。また汚泥転換率は0.14kg−SS/kg−CODCrとなった。第一生物処理槽で分散菌の発生し、第二生物処理槽では分散菌の捕食が行われた。実施例2と同様の流入量で第一生物槽aのみに有機性排水を流入させた比較例3と比べ、担体への過剰な汚泥の付着はなく、良好に処理された。 When treated under the conditions of Example 2, the SS at the outlet of the fourth tank was 270 mg / L, and the SS and COD Cr of the treated water were 44 mg / L and 360 mg / L. The sludge conversion rate was 0.14 kg-SS / kg-COD Cr . Dispersed bacteria were generated in the first biological treatment tank, and predation of the dispersed bacteria was performed in the second biological treatment tank. As compared with Comparative Example 3 in which the organic wastewater was flown only into the first biological tank a at the same inflow amount as in Example 2, there was no excessive sludge attached to the carrier, and the treatment was satisfactorily performed.

有機性排水の濃度が一定で、流入量に変動がある場合の実験を示す。
実施例3では実施例2と同様の生物処理装置を用いて、第一生物処理槽a、bの2槽に有機性排水を流入させて、処理槽の下部に散気管を設置して処理を行った。有機性排水の流入ラインには有機物測定器を設置してCODCr濃度を測定し、第一生物処理槽aのCODCr容積負荷が6.5kg/m/dayとなるようにして、残りの排水を生物処理槽bに流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/Lとした。
An experiment in the case where the concentration of organic wastewater is constant and the amount of inflow varies.
In the third embodiment, using the same biological treatment apparatus as in the second embodiment, organic wastewater is introduced into two tanks of the first biological treatment tanks a and b, and an air diffuser is provided at a lower portion of the treatment tank to perform treatment. went. An organic matter measuring device is installed in the inflow line of the organic wastewater to measure the COD Cr concentration, and the COD Cr volume load of the first biological treatment tank a is adjusted to 6.5 kg / m 3 / day, and the remaining is set. The waste water was allowed to flow into the biological treatment tank b. The tank capacity was 10 m 3, and the COD Cr concentration of the organic wastewater was 1800 mg / L.

流入量は第一生物処理槽aで9.0m/day、第一生物処理槽bで0〜8.3m/dayとし、CODCr容積負荷は第一生物処理槽aで6.5kg/m/day、第一生物処理槽bで0〜6.0kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。実験装置の概要および実験条件を表8に示す。
Inflow is 9.0 m 3 / day in the first biological treatment tank a, and 0~8.3m 3 / day in the first biological treatment tank b, COD Cr volumetric loading 6.5kg the first biological treatment tank a / m 3 / day was adjusted to 0 to 6.0 kg / m 3 / day in the first biological treatment tank b. The amount of air per tank was 0.3 m 3 / min. Table 8 shows an outline of the experimental apparatus and experimental conditions.

Figure 0006676417
Figure 0006676417

比較例4では実施例1と同様の生物学的処理装置を用いて、第一生物処理槽aのみに有機性排水を流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1800mg/L、流入量9.0〜17.4m/day、第一生物処理槽のCODCr容積負荷は6.5〜12.5kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。 In Comparative Example 4, the same biological treatment apparatus as in Example 1 was used, and the organic wastewater was allowed to flow only into the first biological treatment tank a. The tank capacity is 10 m 3 , the COD Cr concentration of the organic wastewater is 1800 mg / L, the inflow amount is 9.0 to 17.4 m 3 / day, and the COD Cr volume load of the first biological treatment tank is 6.5 to 12.5 kg. / M 3 / day. The amount of air per tank was 0.3 m 3 / min.

実験結果を表9に示す。比較例4の条件で処理したときの4槽目出口のSSは280mg/L、処理水のSSとCODCrは70mg/Lと430mg/Lとなった。また汚泥転換率は0.16kg−SS/kg−CODCrとなった。第一生物処理槽aおよび第二生物処理槽aでは接触担体に多量の汚泥が付着し、槽内の閉塞が見られた。また第一生物処理槽内で分散菌が多く発生し、第二生物処理槽aで捕食されなかった分散菌が後段まで流出した。そのため、4槽目出口のSSが高くなり、汚泥転換率も高くなった。 Table 9 shows the experimental results. When treated under the conditions of Comparative Example 4, the SS at the outlet of the fourth tank was 280 mg / L, and the SS and COD Cr of the treated water were 70 mg / L and 430 mg / L. The sludge conversion rate was 0.16 kg-SS / kg-COD Cr . In the first biological treatment tank a and the second biological treatment tank a, a large amount of sludge adhered to the contact carrier, and clogging in the tank was observed. Further, a large amount of dispersed bacteria was generated in the first biological treatment tank, and the dispersed bacteria that were not preyed in the second biological treatment tank a flowed out to the subsequent stage. Therefore, the SS at the outlet of the fourth tank increased, and the sludge conversion rate also increased.

Figure 0006676417
Figure 0006676417

実施例3の条件で処理したときの4槽目出口のSSは170mg/L、処理水のSSとCODCrは36mg/Lと250mg/Lとなった。また汚泥転換率は0.09kg−SS/kg−CODCrとなった。第一生物処理槽で分散菌の発生し、第二生物処理槽では分散菌の捕食が行われた。実施例3と同様の容積負荷で第一生物槽aのみに有機性排水を流入させた比較例4と比べ、担体への過剰な汚泥の付着はなく、良好に処理された。 When treated under the conditions of Example 3, the SS at the fourth tank outlet was 170 mg / L, and the SS and COD Cr of the treated water were 36 mg / L and 250 mg / L. The sludge conversion rate was 0.09 kg-SS / kg-COD Cr . Dispersed bacteria were generated in the first biological treatment tank, and predation of the dispersed bacteria was performed in the second biological treatment tank. Compared with Comparative Example 4 in which the organic wastewater was flown only into the first biological tank a with the same volume load as in Example 3, there was no excessive sludge attached to the carrier, and the treatment was satisfactorily performed.

有機性排水の流入量が一定で、濃度に変動がある場合の実験を示す。
実施例4では実施例2と同様の生物処理装置を用いて、第一生物処理槽a、bの2槽に有機性排水を流入させて、処理槽の下部に散気管を設置して処理を行った。有機性排水の流入ラインには有機物測定器を設置してCODCr濃度を測定し、第一生物処理槽aのCODCr容積負荷が6.5kg/m/dayとなるようにして、残りの排水を第一生物処理槽bに流入させた。
The experiment when the inflow of organic wastewater is constant and the concentration fluctuates is shown.
In the fourth embodiment, using the same biological treatment apparatus as in the second embodiment, organic wastewater is introduced into two tanks of the first biological treatment tanks a and b, and an air diffuser is provided at a lower portion of the treatment tank to perform treatment. went. An organic matter measuring device is installed in the inflow line of the organic wastewater to measure the COD Cr concentration, and the COD Cr volume load of the first biological treatment tank a is adjusted to 6.5 kg / m 3 / day, and the remaining is set. The wastewater flowed into the first biological treatment tank b.

槽容量は10mとし、有機性排水のCODCr濃度は1200〜1800mg/Lとした。流入量は第一生物処理槽aで9.0〜13.5m/day、第一生物処理槽bで3.9〜8.4m/dayとし、CODCr容積負荷は第一生物処理槽aで6.5kg/m/day、第一生物処理槽bで1.9〜6.0kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。実験装置の概要および実験条件を表10に示す。 Tank volume and 10 m 3, COD Cr concentration of the organic waste water was 1200~1800mg / L. Inflow is 9.0~13.5m 3 / day in the first biological treatment tank a, and 3.9~8.4m 3 / day in the first biological treatment tank b, COD Cr volumetric loading the first biological treatment tank a in 6.5kg / m 3 / day, adjusted to 1.9~6.0kg / m 3 / day in the first biological treatment tank b. The amount of air per tank was 0.3 m 3 / min. Table 10 shows an outline of the experimental apparatus and experimental conditions.

Figure 0006676417
Figure 0006676417

比較例5では実施例1と同様の生物処理装置を用いて、第一生物処理槽aのみに有機性排水を流入させた。槽容量は10mとし、有機性排水のCODCr濃度は1200〜1800mg/L、流入量17.4m/day、第一生物処理槽のCODCr容積負荷は8.4〜12.5kg/m/dayに調整した。また全槽あたりの空気量は0.3m/minとした。 In Comparative Example 5, using the same biological treatment apparatus as in Example 1, the organic wastewater was allowed to flow only into the first biological treatment tank a. The tank capacity was 10 m 3 , the COD Cr concentration of the organic wastewater was 1200 to 1800 mg / L, the inflow was 17.4 m 3 / day, and the COD Cr volume load of the first biological treatment tank was 8.4 to 12.5 kg / m. It was adjusted to 3 / day. The amount of air per tank was 0.3 m 3 / min.

実験結果を表11に示す。比較例5の条件で処理したときの4槽目出口のSSは350mg/L、処理水のSSとCODCrは70mg/Lと460mg/Lとなった。また汚泥転換率は0.18kg−SS/kg−CODCrとなった。第一生物処理槽aおよび第二生物処理槽aでは接触担体に多量の汚泥が付着し、槽内の閉塞が見られた。また第一生物処理槽内で分散菌が多く発生し、第二生物処理槽aで捕食されなかった分散菌が後段まで流出した。そのため、4槽目出口のSSが高くなり、汚泥転換率も高くなった。 Table 11 shows the experimental results. When treated under the conditions of Comparative Example 5, the SS at the fourth tank outlet was 350 mg / L, and the SS and COD Cr of the treated water were 70 mg / L and 460 mg / L. The sludge conversion rate was 0.18 kg-SS / kg-COD Cr . In the first biological treatment tank a and the second biological treatment tank a, a large amount of sludge adhered to the contact carrier, and clogging in the tank was observed. Further, a large amount of dispersed bacteria was generated in the first biological treatment tank, and the dispersed bacteria that were not preyed in the second biological treatment tank a flowed out to the subsequent stage. Therefore, the SS at the outlet of the fourth tank increased, and the sludge conversion rate also increased.

Figure 0006676417
Figure 0006676417

実施例4の条件で処理したときの4槽目出口のSSは180mg/L、処理水のSSとCODCrは40mg/Lと280mg/Lとなった。また汚泥転換率は0.10kg−SS/kg−CODCrとなった。第一生物処理槽で分散菌の発生し、第二生物処理槽では分散菌の捕食が行われた。実施例4と同様の流入量で第一生物槽aのみに有機性排水を流入させた比較例5と比べ、担体への過剰な汚泥の付着はなく、良好に処理された。 When treated under the conditions of Example 4, the SS at the outlet of the fourth tank was 180 mg / L, and the SS and COD Cr of the treated water were 40 mg / L and 280 mg / L. The sludge conversion rate was 0.10 kg-SS / kg-COD Cr . Dispersed bacteria were generated in the first biological treatment tank, and predation of the dispersed bacteria was performed in the second biological treatment tank. Compared with Comparative Example 5 in which the organic wastewater was flowed only into the first biological tank a at the same inflow amount as in Example 4, there was no excessive sludge attached to the carrier, and the treatment was satisfactorily performed.

実施例5では図8に示すように、実施例2と同様の生物処理装置を用いて、すべての生物処理槽に固定型接触担体を設けて実験を行った。生物処理槽6槽を直列に並べ、有機性排水を第一生物処理槽aおよびbの2槽へ分流して流入させ、全槽あたりの空気量は0.4m/minとした。実験装置の概要および実験条件を表12に示す。 In Example 5, as shown in FIG. 8, an experiment was performed using the same biological treatment apparatus as in Example 2 and providing fixed contact carriers in all biological treatment tanks. Six biological treatment tanks were arranged in series, and the organic wastewater was divided and flowed into two first biological treatment tanks a and b, and the air amount per tank was 0.4 m 3 / min. Table 12 shows the outline of the experimental apparatus and the experimental conditions.

Figure 0006676417
Figure 0006676417

6槽合計の槽容量は15mとし、有機性排水のCODCr濃度は1800mg/L、第一生物処理槽aおよびbの流入量は9.0m/dayおよび8.3m/dayとし、第一生物処理槽aおよびbのCODCr容積負荷は6.5kg/m/dayおよび6.0kg/m/dayに調整した。 The total tank capacity of the six tanks is 15 m 3 , the COD Cr concentration of the organic wastewater is 1800 mg / L, the inflows of the first biological treatment tanks a and b are 9.0 m 3 / day and 8.3 m 3 / day, The COD Cr volume load of the first biological treatment tanks a and b was adjusted to 6.5 kg / m 3 / day and 6.0 kg / m 3 / day.

実験結果を表13に示す。実施例5の条件で処理したときの6槽目出口のSSは100mg/L、処理水のSSとCODCrは27mg/Lと160mg/Lとなった。また汚泥転換率は0.05kg−SS/kg−CODCrとなった。第一生物処理槽で分散菌の発生し、第二生物処理槽では分散菌の捕食が行われた。第二生物処理槽が4槽あるため、微生物の捕食が十分に行われ、実施例2と比べて汚泥転換率が低くなり、良好に処理された。 Table 13 shows the experimental results. When treated under the conditions of Example 5, the SS at the outlet of the sixth tank was 100 mg / L, and the SS and COD Cr of the treated water were 27 mg / L and 160 mg / L. The sludge conversion rate was 0.05 kg-SS / kg-COD Cr . Dispersed bacteria were generated in the first biological treatment tank, and predation of the dispersed bacteria was performed in the second biological treatment tank. Since there were four second biological treatment tanks, predation of microorganisms was sufficiently performed, and the sludge conversion rate was lower than that in Example 2, and the treatment was performed well.

Figure 0006676417
Figure 0006676417

以上説明したように、本発明によれば、好気性生物処理の空気量を削減し、かつ汚泥の発生量を大幅に少なくしながら高負荷で効率よく有機物除去を行うことが可能な有機性排水の生物処理装置及び生物処理方法を提供することが可能となる。   As described above, according to the present invention, an organic wastewater capable of efficiently removing organic matter with a high load while reducing the amount of air for aerobic biological treatment and significantly reducing the amount of generated sludge. Biological treatment apparatus and biological treatment method can be provided.

M 有機物負荷測定器
FC 流入量調整弁
M Organic matter load meter FC Inflow control valve

Claims (4)

複数の生物処理槽を多段に配置し、
各段の生物処理槽内には、有機性排水又は前段の生物処理槽で処理された処理水を流入する流入部と、当該生物処理槽内で処理した処理水を排出する排出部とが設けられ、
最終段の生物処理槽の後段に沈殿池を設け、前記最終段の生物処理槽で処理された処理水を流入し、沈殿処理された処理水を排出する有機性排水の生物処理装置において、
全ての該生物処理槽内に、固定型接触担体を配置し、
該固定型接触担体の配置位置よりも下側に、散気手段を備え、
該固定型接触担体の配置位置よりも上側に該流入部を配置し、
該固定型接触担体の配置位置よりも下側に該排出部を配置し、
該生物処理槽は、有機性排水が流入する第一生物処理槽と、有機性排水が流入せず、前段からの処理水が流入する第二生物処理槽とに分けられ、
該第一生物処理槽で処理した処理水を該第二生物処理槽に通水し、
さらに、該第一生物処理槽に流入する有機性排水の有機物濃度と流量を測定する有機物負荷測定器を備え、
該第一生物処理槽を構成する各生物処理槽に流入する有機性排水の流入量を、該有機物負荷測定器の測定値に基づき調整する流入量調整手段を備え、
該流入量調整手段は、該有機物負荷測定器の測定結果に基づき、該第一生物処理槽を構成する各生物処理槽に流入する有機物流入負荷がCOD Cr で3〜12kg/m /dayとなるように該流入量を調整することを特徴とする有機性排水の生物処理装置。
Arrange multiple biological treatment tanks in multiple stages,
In the biological treatment tank of each stage, there is provided an inflow portion for inflowing organic wastewater or treated water treated in the biological treatment tank of the preceding stage, and a discharge portion for discharging treated water treated in the biological treatment tank. And
A sedimentation basin is provided at the latter stage of the biological treatment tank in the final stage, and the treated water treated in the biological treatment tank in the final stage flows in, and the biological treatment device for organic wastewater discharging the treated water subjected to sedimentation treatment,
In all the biological treatment tanks, a fixed contact carrier is arranged,
On the lower side than the position where the fixed contact carrier is arranged, an air diffuser is provided,
Arranging the inflow portion above the arrangement position of the fixed contact carrier,
Disposing the discharge portion below the position of the fixed contact carrier,
The biological treatment tank is divided into a first biological treatment tank into which the organic wastewater flows, and a second biological treatment tank into which the organic wastewater does not flow and the treated water from the preceding stage flows,
The treated water treated in the first biological treatment tank is passed through the second biological treatment tank ,
Further, an organic matter load measuring device for measuring the organic matter concentration and flow rate of the organic wastewater flowing into the first biological treatment tank,
An inflow rate adjusting unit that adjusts an inflow amount of the organic wastewater flowing into each of the biological treatment tanks configuring the first biological treatment tank based on a measurement value of the organic substance load measuring device,
The inflow amount adjusting means is configured such that, based on the measurement result of the organic matter load measuring device, the organic matter inflow load flowing into each biological treatment tank constituting the first biological treatment tank is 3 to 12 kg / m 3 / day of COD Cr. A biological treatment apparatus for organic wastewater , wherein the inflow amount is adjusted so as to be as small as possible.
請求項に記載の有機性排水の生物処理装置において、
該流入量調整手段は、該有機物負荷測定器の測定結果に基づき、全ての該生物処理槽に対する有機物負荷がCODCrで0.75〜3kg/m/dayとなるように該流入量を調整することを特徴とする有機性排水の生物処理装置。
The biological treatment device for organic wastewater according to claim 1 ,
The inflow amount adjusting means adjusts the inflow amount based on the measurement result of the organic matter load measuring device such that the organic matter load on all the biological treatment tanks becomes 0.75 to 3 kg / m 3 / day in COD Cr. A biological treatment apparatus for organic wastewater, comprising:
複数の生物処理槽を多段に配置した生物処理装置を用いて有機性排水を処理する有機性排水の生物処理方法において、
全ての該生物処理槽内では、固定型接触担体を備え、有機性排水又は前段の生物処理槽で処理された処理水を該固定型接触担体の配置位置の上側から導入し、生物処理槽内では空気を供給しながら処理が行なわれ、該固定型接触担体の配置位置の下側から処理された処理水を排出する生物処理工程を有し、
該生物処理工程は、有機性排水を導入して処理する第一生物処理工程と、有機性排水を導入せず、前段からの処理水を導入し処理する第二生物処理工程に分けられ、
該第一生物処理工程で処理された処理水を該第二生物処理工程で処理し、
該第二生物処理工程で処理された処理水を沈殿処理する沈殿処理工程を備え
該第一生物処理工程では、該生物処理槽に流入する有機性排水の有機物濃度と流量を測定し、該有機性排水の流入量を調整する共に、該有機性排水の流入量の調整は、該第一生物処理工程を構成する各生物処理槽に流入する有機物流入負荷がCOD Cr で3〜12kg/m /dayとなるように行なうことを特徴とする有機性排水の生物処理方法。
In a biological treatment method for organic wastewater that treats organic wastewater using a biological treatment device in which a plurality of biological treatment tanks are arranged in multiple stages,
In all of the biological treatment tanks, a fixed contact carrier is provided, and organic wastewater or treated water treated in the preceding biological treatment tank is introduced from above the position where the fixed contact carriers are disposed, and the inside of the biological treatment tank is introduced. In the process is performed while supplying air, having a biological treatment step of discharging the treated water treated from below the position of the fixed contact carrier,
The biological treatment step is divided into a first biological treatment step of introducing and treating organic wastewater and a second biological treatment step of introducing and treating treated water from the preceding stage without introducing organic wastewater,
Treating the treated water treated in the first biological treatment step in the second biological treatment step,
A sedimentation treatment step of sedimentation treatment water treated in the second biological treatment step ,
In the first biological treatment step, the concentration of organic matter and the flow rate of the organic wastewater flowing into the biological treatment tank are measured, and the amount of the organic wastewater is adjusted, and the amount of the organic wastewater is adjusted, A biological treatment method for organic wastewater, wherein the organic matter inflow load into each biological treatment tank constituting the first biological treatment step is performed so that COD Cr becomes 3 to 12 kg / m 3 / day .
請求項に記載の有機性排水の生物処理方法において、
該有機性排水の流入量の調整は、全ての該生物処理槽に対する有機物負荷がCODCrで0.75〜3kg/m/dayとなるように行なうことを特徴とする有機性排水の生物処理方法。
The biological treatment method for organic wastewater according to claim 3 ,
The biological treatment of the organic wastewater is characterized in that the inflow of the organic wastewater is adjusted so that the organic matter load on all the biological treatment tanks becomes 0.75 to 3 kg / m 3 / day in COD Cr. Method.
JP2016046174A 2016-03-09 2016-03-09 Organic wastewater biological treatment apparatus and biological treatment method Active JP6676417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016046174A JP6676417B2 (en) 2016-03-09 2016-03-09 Organic wastewater biological treatment apparatus and biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016046174A JP6676417B2 (en) 2016-03-09 2016-03-09 Organic wastewater biological treatment apparatus and biological treatment method

Publications (2)

Publication Number Publication Date
JP2017159243A JP2017159243A (en) 2017-09-14
JP6676417B2 true JP6676417B2 (en) 2020-04-08

Family

ID=59853356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016046174A Active JP6676417B2 (en) 2016-03-09 2016-03-09 Organic wastewater biological treatment apparatus and biological treatment method

Country Status (1)

Country Link
JP (1) JP6676417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118026395A (en) 2018-10-17 2024-05-14 荏原实业株式会社 Biological treatment device and biological treatment method for organic wastewater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925637B2 (en) * 1975-11-21 1984-06-19 明治乳業株式会社 Non-suratsuji no koteiyu kashiki senka katsueio deiniyoru osuishi yori houhou oyobi shiyori souchi
JPS5633677Y2 (en) * 1977-05-07 1981-08-10
JPS59145096A (en) * 1984-02-06 1984-08-20 Iwao Ueda Filthy water disposal by bed of activated sludge
JP2003080281A (en) * 2001-09-14 2003-03-18 Sumitomo Heavy Ind Ltd Method and program for estimating microorganism activity, biological treatment method using the same, and computer readable recording medium
JP2007313446A (en) * 2006-05-26 2007-12-06 Hitachi Chemical Maintenance Co Ltd Waste water treatment method
JP2009039709A (en) * 2007-07-17 2009-02-26 Asahi Kasei Chemicals Corp Treating apparatus and treating method for oil and fat-containing wastewater
JP6442856B2 (en) * 2014-04-10 2018-12-26 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater

Also Published As

Publication number Publication date
JP2017159243A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
EP3403996B1 (en) Granule-forming method and waste water treatment method
BR112014024671B1 (en) hybrid wastewater treatment
CN107531527B (en) Water treatment system and water treatment method
JP2012152674A (en) Liquid waste treatment device and liquid waste treatment method
JP5048708B2 (en) Septic tank
JP2005144449A (en) Method for treating wastewater on ship and apparatus therefor
JP6676417B2 (en) Organic wastewater biological treatment apparatus and biological treatment method
CN210620521U (en) Sewage autotrophic treatment system based on MBBR and magnetic separation
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
KR20120064836A (en) A none piping membrane bioreactor with circulation-agitater
JP5743448B2 (en) Sewage treatment equipment
JP6369203B2 (en) Activated sludge treatment system
KR100444099B1 (en) Apparatus and method for high-treating waste water with organic matter, nitrogen and phosphorus by using the non-power inside and outside-cycle system
JP2009072767A (en) Activated sludge apparatus and treatment method
Das et al. Activated sludge process with MBBR technology at ETP
JP7228487B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP7337088B2 (en) Organic wastewater biological treatment apparatus and biological treatment method
CN215799023U (en) Combined domestic sewage treatment equipment
CN212076762U (en) Integrated sewage treatment device
JPH08215694A (en) Highly functional biological treatment apparatus
Pirsaheb et al. Application of downflow anaerobic upflow oxic submerged bio-film reactor (DAUOSBR) in removing phosphorus, nitrogen, organic matter, turbidity and total suspended solids from hospital wastewater.
JP2012050955A (en) Transfer pipe and device for treating waste water
CN209721885U (en) A kind of culturing wastewater processing system
WO2019198803A1 (en) Wastewater treatment method
KR100473710B1 (en) Apparatus and method for disposing sewage with high accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250