JP2010063400A - Covered seed - Google Patents

Covered seed Download PDF

Info

Publication number
JP2010063400A
JP2010063400A JP2008232207A JP2008232207A JP2010063400A JP 2010063400 A JP2010063400 A JP 2010063400A JP 2008232207 A JP2008232207 A JP 2008232207A JP 2008232207 A JP2008232207 A JP 2008232207A JP 2010063400 A JP2010063400 A JP 2010063400A
Authority
JP
Japan
Prior art keywords
seeds
soil
coated
coating
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008232207A
Other languages
Japanese (ja)
Inventor
Yasuo Mukaihata
恭男 向畑
Geishun Ryu
迎春 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ECOLONOMIX KK
Original Assignee
NIPPON ECOLONOMIX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ECOLONOMIX KK filed Critical NIPPON ECOLONOMIX KK
Priority to JP2008232207A priority Critical patent/JP2010063400A/en
Publication of JP2010063400A publication Critical patent/JP2010063400A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain covered seeds having a high germinating/root-taking property by synthetically considering water retention effect, nutritious elements and soil microorganisms and selecting a covering substance in covering plant seeds. <P>SOLUTION: The seeds of a plant are covered with the covering substance containing a polysaccharide or biodegradable polymer having the water retention effect, a bio-originated substance decomposable by microorganisms, and the spores of microorganisms moderately decomposing/digesting the polysaccharide or biodegradable polymer and bio-originated substance. As the bio-originated substance, any of the dried powder of single cell algae or sea weeds, fine wood powder or dried powder of animals and plants are desirable and the dried powder of Haptophyta is the optimal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、草木を栄養分や水分に乏しい土壌で育成するために用いる、草木種子を被覆物質で被覆した被覆種子に関する。   The present invention relates to a coated seed obtained by coating a plant seed with a coating substance, which is used for growing the plant in soil lacking in nutrients and moisture.

これまで草木が繁殖していなかった荒れ地や新規開拓農地の生態系は貧しく、草木種子を直接播種しても育成定着させることは容易ではない。   The ecosystems of wasteland and newly cultivated farmland, where vegetation has not been bred until now, are poor, and it is not easy to cultivate them even by direct sowing of vegetation seeds.

また、寡雨、乾燥、低温などの厳しい自然環境にさらされる高原草地の生態系は本来貧しい。最近、家畜の過放牧や、樹木の過伐採、火災などの人為的搾取のためその生態系は一段と貧しくなり、草原の消失と砂漠化が地球規模での問題となっている。失われた草原の回復に水は必須の要素であるが、砂の多い土壌は水分の保持が困難であり、草木種子の発芽着生機会は小さい。草を失った土壌表層からは、雨水により栄養表土と土壌微生物が逸失し、草原の回復を一層困難にしている。
また、土壌が必ずしも貧栄養でなくても、生態系を支えるべき土壌微生物相が貧困であると栄養のリサイクルが不完全となり、草原の回復は容易ではなくなる。すなわち、草木と土壌栄養と土壌微生物とは草原を支える鼎である。沙漠化した裸土に水分と土壌微生物を誘導し、草本を定着させることができれば、草原の回復、ひいては森林の再生につながる。
In addition, the ecosystem of plateau grasslands exposed to harsh natural environments such as rain, dryness, and low temperatures is inherently poor. Recently, due to overgrazing of livestock, overcutting of trees, and artificial exploitation of fires, etc., the ecosystem has become increasingly poor, and the disappearance of grasslands and desertification has become a global problem. Water is an essential element for the restoration of lost grasslands, but sandy soils are difficult to retain moisture, and there are few opportunities for germination of plant seeds. From the soil surface where the grass has been lost, the nutrient surface soil and soil microorganisms are lost due to rainwater, making it more difficult to recover the grassland.
Moreover, even if the soil is not necessarily poorly nourished, if the soil microflora that should support the ecosystem is poor, nutrient recycling will be incomplete and it will not be easy to recover the grassland. In other words, vegetation, soil nutrition, and soil microorganisms are vines that support the grasslands. If water and soil microorganisms can be induced in deserted bare soil and herbaceous plants can be established, it will lead to the restoration of grasslands and eventually the regeneration of forests.

これまで、水分や土壌微生物の重要性に留意して、草木の種子を保水材や微生物で被覆した被覆種子が提案されてきた。例えば、保水性物質(水性ゲル)で被覆した被覆種子(特許文献1)や、保水性物質の他肥料成分をも併せて被覆した被覆種子(特許文献2)が提案されている。さらには、微生物により被覆物質中の窒素化合物を分解させあるいは空中窒素固定の機能を持たせて種子の発芽生育を促進させる被覆種子(特許文献3)や、被覆物質を構成するゲルを分解させて軟化崩壊させる被覆種子(特許文献4)が提案されている。   So far, coated seeds in which the seeds of plants are coated with water-retaining materials and microorganisms have been proposed in consideration of the importance of moisture and soil microorganisms. For example, a coated seed (Patent Document 1) coated with a water retention substance (aqueous gel) and a coated seed (Patent Document 2) coated with a fertilizer component in addition to the water retention substance have been proposed. Furthermore, by decomposing the nitrogen compound in the coating material by microorganisms or having the function of fixing nitrogen in the air to promote germination growth of the seed (Patent Document 3), the gel constituting the coating material is decomposed. A coated seed to be softened and disintegrated (Patent Document 4) has been proposed.

特開昭55-3796号公報JP 55-3796 A 特開平11-155308号公報Japanese Patent Laid-Open No. 11-155308 特開昭59-187706号公報JP 59-187706 特開2006-180791号公報JP 2006-180791 A

種子に被覆させるべき被覆物質は、その草木の生長に好結果をもたらすものでなければならない。本発明が解決しようとする課題は、草木種子の被覆に際し、保水性、栄養素、土壌微生物を総合的に考えて被覆物質を選択し、発芽定着性の高い被覆種子を得ることである。   The coating material to be applied to the seed must have a positive effect on the growth of the plant. The problem to be solved by the present invention is to obtain a coated seed having a high germination and fixing ability by selecting a coating substance in consideration of water retention, nutrients and soil microorganisms when coating a plant seed.

上記課題を解決するために成された本発明に係る被覆種子は、草木の種子を、保水効果がある多糖類又は生分解性高分子と、微生物で分解されて栄養源となる生体起源物質と、上記多糖類又は生分解性高分子及び上記生体起源物質を分解しうる微生物の胞子とを含有する被覆物質で被覆したものである。   The coated seed according to the present invention, which has been made to solve the above-mentioned problems, comprises a plant seed, a polysaccharide or biodegradable polymer having a water-retaining effect, and a biogenic substance that is decomposed by microorganisms and becomes a nutrient source. , Coated with a coating material containing the polysaccharide or biodegradable polymer and a spore of a microorganism capable of degrading the biogenic material.

具体的に述べると、本発明に係る被覆種子は、保水性、栄養素、土壌微生物を総合的に考え選択された以下の3種類の物質を主成分とする被覆物質で被覆されることを特徴とする。
(A)保水性を有し、かつ微生物で分解されて目的草木植物栄養源となる多糖類又は生分解性高分子。被覆種子製造上、接着性のあるものが有利である。具体的には、キサンタンガム、カラギーナン、カルボキシメチルセルロース(CMC)若しくはコンニャクマンナン等が挙げられる。
(B)微生物で分解されて目的草木植物の栄養源となる生体起源物質。具体的には、単細胞藻や海草の乾燥粉末、微細木材粉や動植物の乾燥粉末等が挙げられる。
(C)上記(A)及び(B)の物質を分解して目的草木植物の栄養源としうる微生物(糸状菌、放線菌、真菌や土壌細菌など)、又はその胞子、菌糸など。
More specifically, the coated seed according to the present invention is characterized in that it is coated with a coating material mainly composed of the following three types of substances selected in consideration of water retention, nutrients, and soil microorganisms. To do.
(A) A polysaccharide or biodegradable polymer that has water retention and is decomposed by microorganisms to become a target plant or plant nutrient source. Adhesives are advantageous for the production of coated seeds. Specific examples include xanthan gum, carrageenan, carboxymethyl cellulose (CMC), and konjac mannan.
(B) A biogenic substance that is decomposed by microorganisms and becomes a nutrient source for the target plant or plant. Specific examples include dry powders of unicellular algae and seaweed, fine wood powders, and dry powders of animals and plants.
(C) Microorganisms (filamentous fungi, actinomycetes, fungi, soil bacteria, etc.) that can decompose the substances (A) and (B) above and serve as nutrients for the target plant or plant, spores, mycelia, etc.

上記被覆物質の接着性が不足する場合には、被覆種子を安定に製造するため接着性のある成分を別に加えることが望ましい。     When the adhesiveness of the coating material is insufficient, it is desirable to add an adhesive component separately in order to stably produce the coated seed.

草木種子の栄養源となる物質として生体起源物質を含め、特に藻や海草を選択するのは、これらのものは草木が必要とするミネラル等の微量成分を草木が必要とする割合で含むからである。化学肥料は一見栄養として効率がよいがミネラル等を含有しておらず、草木種子の発芽育成に最適とは言えない。草木の育成に必要な微量成分を化学的に推算して化学肥料に配合することは可能であるかもしれないが容易ではなく、植物起源の栄養源を用いればこの点は自然に満たされる。
さらに、海産の単細胞藻は、乾燥粉末にするのが容易である、地表や淡水環境では生存できないので陸上生態系を乱さない、海水中に豊富なN, P, K等の栄養成分を土壌に還流できる、植物の肥料として栄養バランスがよい、といった工業製品では得難い特徴を有している。
Biological substances are selected as the nutrients for plant seeds, especially algae and seaweeds because they contain trace components such as minerals that plants need in proportions that plants need. is there. Although chemical fertilizers are efficient at first glance as nutrients, they do not contain minerals and are not optimal for germination and growth of plant seeds. Although it may be possible to chemically estimate the trace components necessary for the growth of plants and add them to chemical fertilizers, it is not easy, and this point is naturally satisfied by using nutrient sources of plant origin.
In addition, marine unicellular algae are easy to dry powder, can not survive in the surface or freshwater environment, so do not disturb the terrestrial ecosystem, nutrients such as N, P, K, etc. abundant in seawater into the soil It has characteristics that are difficult to obtain with industrial products such as being able to recirculate and having a good nutritional balance as a fertilizer for plants.

微生物としては、上記多糖類又は生分解性高分子及び上記生体起源物質を分解して栄養源としうるものであればあえて特定する必要はなく、自然環境にあるものを取り出し培養して用いることとした。具体的には実施例で行った方法により微生物を採取することが考えられる。効率の高い特定種の微生物を選択することも考えられるが、かえって自然の微生物バランスを崩すこととなりかねず、自然保護の原則にもとると考えられる。さらに、種子のためには栄養源は種子の発芽及び生長の全期間にわたって徐々に供給されることが望ましく、栄養源物質の分解効率の高い微生物が必ずしも最適とは断定できない。   There is no need to specify microorganisms as long as they can decompose the polysaccharides or biodegradable polymers and the biogenic substances and use them as nutrients. did. Specifically, it is conceivable to collect microorganisms by the method performed in the examples. It is conceivable to select a specific type of microorganism with high efficiency, but it may break the balance of natural microorganisms, and it is considered to be based on the principle of nature conservation. Furthermore, it is desirable for the seeds to be supplied with nutrients gradually over the entire period of germination and growth of the seeds, and microorganisms having high decomposition efficiency of nutrient substances cannot always be determined to be optimal.

低温寡雨、貧困土壌を想定した栽培条件で被覆種子と無被覆種子を同時に播種すると、被覆種子は無被覆種子より早期に発芽し、発芽・生長率も高く、最終的な生育個体数も多い。発芽生長率は、被覆に用いた物質(混合割合)によって差異があり、その物質(水と混ぜたゲル)の水分保持能と相関が見られた。
適当な被覆物質で種子を被覆することにより、その種子すなわちその植物をその土地での優勢種とすることができる。
When seeds with coated and uncoated seeds are sown at the same time under the cultivation conditions assuming low temperature rain and poor soil, the coated seeds germinate earlier than the uncoated seeds, and the germination / growth rate is high and the final number of growing individuals is large. The germination growth rate was different depending on the substance (mixing ratio) used for coating, and a correlation was observed with the water retention ability of the substance (gel mixed with water).
By coating the seed with a suitable coating material, the seed, or the plant, can be made the dominant species on the land.

上記(A)、(B)、(C)の3種を含有する被覆物質により被覆された種子から生長した植物の乾燥重量(光合成生産量)は、上記3種から(B)、(C)のいずれかあるいは双方を除いた被覆物質で被覆された種子の場合に比べて格段に大きくなる。葉、茎、分枝などの地上部分にも、根(地下部分;荳科の場合は根粒の数も)にも顕著な差が見られる。貧困土壌で、常温常雨量の条件下でも、同様な関係が得られる。すなわち、上記3種の被覆物質を組み合わせることが優れた被覆の要件である。   The dry weight (photosynthesis production amount) of the plant grown from the seed coated with the coating substance containing the above three types (A), (B), and (C) is calculated from the above three types (B) and (C). Compared with the case of seeds coated with a coating substance excluding either or both of the above, it is much larger. There are significant differences in the above-ground parts such as leaves, stems, and branches, as well as the roots (underground part; the number of nodules in the case of urchinaceae). The same relationship can be obtained even under conditions of normal temperature and rainfall in poor soils. In other words, a combination of the above three kinds of coating materials is a requirement for excellent coating.

第1次の栽培で生長した植物を収穫した後の土壌の呼吸能は、収穫した草木の乾燥重量とほぼ比例していた。ここに土壌の呼吸能とは、与えた一定量のブドウ糖溶液による炭酸ガス発生量をいい、土壌中の好気性微生物量とほぼ比例していると推定できる。被覆物質中の微生物胞子が発芽し生長して、被覆構成物を徐々に分解して、発芽した草木の種子に栄養分を供給するとともに、周囲の土壌に土壌微生物界を誘引したと推定される。すなわち、本発明の被覆種子の栽培により、単にその種子の発芽・生長を助けるのみではなく、その周辺の土壌の環境を改良することができる。   The respiration ability of the soil after harvesting the plant grown in the first cultivation was almost proportional to the dry weight of the harvested vegetation. Here, the respiration capacity of soil refers to the amount of carbon dioxide generated by a given amount of glucose solution, and can be estimated to be approximately proportional to the amount of aerobic microorganisms in the soil. It is presumed that microbial spores in the covering material germinate and grow, gradually decompose the covering composition, supply nutrients to the seeds of the germinated vegetation, and attract the soil microbial community to the surrounding soil. That is, the cultivation of the coated seed of the present invention not only helps the germination and growth of the seed, but also improves the surrounding soil environment.

第1次栽培植物の収穫後の土壌に、同じ植物の無被覆種子を播種して育てると、第2次栽培植物の乾燥重量も第1次栽培植物の乾燥重量とほぼ比例し、第1次栽培植物の被覆種子の被覆条件に応じた大小関係を示した。第2次栽培植物を収穫後の土壌の呼吸能は 第1次栽培植物収穫後(第2次作物播種前)の呼吸能を維持するか、ないし増大していた。
第1次栽培で誘引された土壌微生物が残存し、第2次に播種した無被覆種子の生長に貢献したと推定される。本発明の被覆種子を使用すれば、貧困土壌の永続的な改善が可能であると考えられ、結果的に草木の定着、草原の復活につながることとなる。
When uncovered seeds of the same plant are sown and grown on the soil after harvesting the primary cultivated plant, the dry weight of the secondary cultivated plant is also almost proportional to the dry weight of the primary cultivated plant. The magnitude relationship according to the coating condition of the coated seed of the cultivated plant was shown. The respiration ability of the soil after harvesting the second cultivated plant maintained or increased the respiration ability after harvesting the first cultivated plant (before sowing the second crop).
It is presumed that the soil microorganisms attracted in the primary cultivation remained and contributed to the growth of the uncoated seeds sown second. If the coated seeds of the present invention are used, it is considered that permanent improvement of poor soil is possible, resulting in establishment of vegetation and restoration of grasslands.

草木種子を、本願発明において指摘するような保水物質、栄養源及び微生物から構成される被覆物質で被覆することにより、荒れ地や草原において従来法より効率よく発芽育成することができ、その土壌を改善し、草木を永続的に定着させることができる。これにより荒れ地や草原の緑化の効率化に寄与することができる。   By covering vegetation seeds with a coating material composed of water-retaining substances, nutrient sources, and microorganisms as pointed out in the present invention, germination and growth can be more efficiently performed in wasteland and grassland than conventional methods, and the soil is improved. The plant can be permanently established. This can contribute to the efficiency of greening of wasteland and grasslands.

以下、本発明の実施例を図面を参照して説明する。
被覆物質の最適配合割合は育成したい草木の種類やその土地の状況により微妙に異なっており、選択肢が多く、個別具体的に検討しなければならない。その意味において、以下の実施例はあくまで与えられた条件下でのものであり、本発明の趣旨の範囲において、他の被覆物質配合割合を否定するものではない。
Embodiments of the present invention will be described below with reference to the drawings.
The optimum blending ratio of the coating substance varies slightly depending on the type of plant to be cultivated and the conditions of the land, so there are many options and must be examined individually and specifically. In that sense, the following examples are only given under the given conditions, and other coating substance blending ratios are not denied within the scope of the present invention.

(被覆種子の製造と栽培条件)
草木種子として、市販の単子葉植物イタリアンライグラス(学名Lolium multiflorum、以降IRGと略す、高知前川種苗社)と双子葉植物ゲンゲ(学名Astragalus sinicus、以降CMVと略す、高知前川種苗社)を用いた。いずれも高地草原で通常見られる草木であり、前者は雑草の混生を嫌う冬作飼料作物でもある。水飽和の環境での、温度25℃明期16時間での発芽率は、それぞれ 86%と88%であった。
(Manufacture of coated seeds and cultivation conditions)
As plant seeds, commercially available monocotyledonous Italian ryegrass (scientific name: Lolium multiflorum, hereinafter abbreviated as IRG, Kochi Maekawa Seed Seed Company) and dicotyledon genge (scientific name: Astragalus sinicus, hereinafter referred to as CMV, known as Kochi Maekawa Seed Seed Company) were used. Both are vegetation normally found in highland grasslands, and the former is a winter forage crop that dislikes mixed weeds. The germination rates in a water-saturated environment at a temperature of 25 ° C and a light period of 16 hours were 86% and 88%, respectively.

保水力の低い貧栄養の土壌を用いて種子を栽培した。市販の赤玉土、鹿沼土及び砂を約1:2:7の割合で混合して貧栄養の試験土壌としたが、混合割合が多少変化しても結果には大きな影響は見られなかった。分析の結果、この土壌はUSDA土壌粒径区分で壌質砂土あるいは砂壌土と呼ばれる領域にあった。   Seeds were cultivated using poorly eutrophic soil with low water retention. Commercially available Akadama soil, Kanuma soil, and sand were mixed at a ratio of about 1: 2: 7 to obtain an oligotrophic test soil, but even if the mixing ratio changed slightly, the results were not significantly affected. As a result of the analysis, this soil was in a region called the loamy sand or sandy loam in the USDA soil particle size classification.

発芽・生育の実験には、人工気象器(日本医科器械 LH220)を用いて明期(2400lux)を16時間、暗期を8時間に設定した。また、屋外での自然日照・温度条件での測定の際は、面積300cm2深さ20cmのポットに播種し、透明ポリカーボネート波板の屋根の下に置き潅水を制御した。 For the germination / growth experiments, the light period (2400 lux) was set to 16 hours and the dark period was set to 8 hours using an artificial meteorological instrument (Japan Medical Instruments LH220). Also, during measurements in natural daylight and temperature conditions in the outdoors, seeded in a pot of area 300 cm 2 depth 20 cm, it was controlled irrigation placed under the roof of transparent polycarbonate wave plate.

回転ボウルと噴霧乾燥筒を用いて種子の被覆を行い、被覆種子を乾燥させた。噴霧乾燥筒とは、下部からの温風で種子を飛翔させ、飛翔させた種子へ被膜物質を含む液体/粉体を噴霧して付着させ、乾燥させて被覆種子を製造する器具で、自作したものを用いた。   The seeds were coated using a rotating bowl and a spray drying cylinder, and the coated seeds were dried. A spray-drying cylinder is a self-made device that produces seeds by flying seeds with warm air from the bottom, spraying and adhering a liquid / powder containing a coating substance to the seeds, and drying them. A thing was used.

海藻としては、分厚い多糖外被(藻の乾燥重量の50%弱)に包まれた単細胞海藻ハプト藻ファエオキスティス属(Phaeocystis sp.)necolon-1を用い、エプレイ(Eppley)氏液で強化した人工海水で栽培した。栽培した海藻を集藻し、乾燥し粉末にして乾燥海藻粉末を得た。該乾燥海藻の成分は、有機質(多糖、蛋白質、脂質ほか)約60% 無機質(Ca, Na, Mg, K塩化物・炭酸塩・リン酸塩など)約37%であった。   As seaweed, we used unicellular seaweed haptophyceae Phaeocystis sp. Necolon-1 wrapped in thick polysaccharide envelope (less than 50% of dry weight of algae) and strengthened with Eppley solution Grown in artificial seawater. The cultivated seaweed was collected and dried to obtain a dry seaweed powder. The components of the dried seaweed were about 60% organic (polysaccharides, proteins, lipids, etc.) and about 37% inorganic (Ca, Na, Mg, K chloride, carbonate, phosphate, etc.).

本発明に用いた4種類の被覆物質とそれらの構成材料及び組成比を図1に示す。これらの被覆物質(#a, #b, #c, #d)を用い、無被覆の場合と比較した。中でも、乾燥海藻粉末(20%)、キサンタンガム(20%)、CMC(40%)、カラギーナン(20%)からなる被覆#bを標準とした。以下の実験において被覆物質組成について特記ない場合の被覆は#bである。海藻粉末を含む被覆と含まない被覆を比較する実験においては、海藻粉末をカラギーナンで置き換えてカラギーナンを20%増とした。
ここにカラギーナンには原料の違いによりカッパ、イオタ、ラムダの3種があることが知られているが、本研究ではカッパ型カラギーナン(日本バイオコンC80)を用いた。
The four types of coating substances used in the present invention, their constituent materials and composition ratios are shown in FIG. These coating materials (#a, #b, #c, #d) were used and compared with the case without coating. Among them, coating #b composed of dry seaweed powder (20%), xanthan gum (20%), CMC (40%), and carrageenan (20%) was used as a standard. In the following experiments, the coating unless otherwise specified for the coating material composition is #b. In experiments comparing the coating with and without seaweed powder, the carrageenan was increased by 20% by replacing the seaweed powder with carrageenan.
Here, it is known that there are three types of carrageenan, kappa, iota and lambda, depending on the raw materials. In this study, kappa type carrageenan (Nippon Biocon C80) was used.

ゲル脱水速度とは、被覆物質0.5gと水1gを混合してゲルとし、40℃で風乾したときの残存水重量(W)の時間(t)変化を求め、その値をW = a exp(-bt)として解析したときのbの値をいう。
IRG種子およびCMV種子1個の平均重量はそれぞれ3.2mgと3.6mgであった。図1に示すように、被覆により重量は種子1個あたり4−6mg増加した。
The gel dehydration rate is obtained by mixing 0.5 g of the coating substance and 1 g of water to form a gel, and determining the time (t) change in the residual water weight (W) when air-dried at 40 ° C., and calculating the value as W = a exp ( The value of b when analyzed as -bt).
The average weight of one IRG seed and one CMV seed was 3.2 mg and 3.6 mg, respectively. As shown in FIG. 1, the coating increased the weight by 4-6 mg per seed.

被覆物質を分解する微生物は、該被覆種子を播種する予定地において、該海藻粉末と廃セルロースで作った紙状プレートを屋外に開放放置するか、あるいは該予定地の土壌で被覆して放置して採取し、採取したものを生育させた。このようにして集めた微生物を選別し、分生胞子を形成するものを単離した。本願で使用した微生物は主にアスペルギラス(Aspelgillus)属とストレプトマイセス(Streptomyces)属であったが、本発明はこれらに限定されない。このように該被覆種子を播種したい地域で採取した通常の微生物を用いれば、その被覆種子を播種してもその地域の微生物生態系を乱すことがない。本願のような発明を実施するに際しては、常に、その地域の生態系を乱さないことを重視しなければならない。いったん乱された生態系を元に戻すことは極めて困難だからである。   Microorganisms that degrade the coating substance can be left open on the paper plate made of the seaweed powder and waste cellulose at the site where the coated seed is to be sown, or it can be left covered with the soil at the site. The collected ones were grown. The microorganisms collected in this way were selected and those that formed conidia were isolated. The microorganisms used in the present application were mainly the genus Aspelgillus and the genus Streptomyces, but the present invention is not limited to these. If normal microorganisms collected in an area where the coated seed is desired to be sown in this way, the microbial ecosystem in the area is not disturbed even if the coated seed is sown. In carrying out the invention as in the present application, it is always important to not disturb the local ecosystem. It is extremely difficult to restore a once disturbed ecosystem.

これらの微生物をPDA培地上で培養して胞子を作らせた後、0.01%トリトン(Triton)X-100を含む0.85%食塩水で培地表面を洗い、洗液を遠心分離してこれらの胞子を集めた。集めた胞子は0.85%食塩水に懸濁し、使用時まで-20℃で保存した。本発明に於いて被覆物質に加えられるのは、微生物自身ではなく、その胞子である。これは微生物自身を被覆物質に含めると、僅かな湿気等で活動して被覆物質を分解し被覆種子の劣化を招くからである。この点、胞子はより保存性がよい。   After culturing these microorganisms on PDA medium to make spores, wash the medium surface with 0.85% saline containing 0.01% Triton X-100, and centrifuge the washings to remove these spores. collected. The collected spores were suspended in 0.85% saline and stored at −20 ° C. until use. In the present invention, it is not the microorganism itself but the spores that are added to the coating material. This is because when the microorganisms themselves are included in the coating material, the coating material is decomposed by the action of slight moisture and the coated seeds are deteriorated. In this regard, spores are better preserved.

上記2種の微生物の胞子をほぼ等量混合して作成した胞子懸濁液の胞子濃度は約1.7x106胞子/mlで、解凍してPDA培地で培養した時の2種の胞子の出芽率は約89-96%であった。播種前の被覆種子を1mlの胞子懸濁液(x1と表記)あるいはその10倍希釈液(x0.1と表記)にくぐらせ、被覆種子の被覆に胞子を含有させた。被覆に微生物胞子を含有しない被覆種子(x0と表記)は、被覆種子を単に純水中をくぐらせて作成し、比較のため用いた。 The spore concentration of the spore suspension prepared by mixing almost equal amounts of the above two types of microorganism spores is about 1.7x10 6 spores / ml, and the germination rate of the two types of spores when thawed and cultured in PDA medium Was about 89-96%. The coated seed before sowing was passed through 1 ml of a spore suspension (denoted as x1) or a 10-fold dilution thereof (denoted as x0.1), and the coated seed coating contained spores. Coated seeds containing no microbial spores in the coating (denoted x0) were prepared by simply passing the coated seeds through pure water and used for comparison.

土壌微生物の量やその生物活性の目安として、土壌の見かけの呼吸能を測定した。1つのガラス製ジャーの中に土壌試料5gと4N KOH液とをそれぞれ別個の容器に入れて置き、これを2組用意した。この2組のジャーを、微差圧トランスデューサー(KYOWA PDV-10GA)を介して細いプラスチックチューブでつないだ。微差圧トランスデューサーの電圧出力をレコーダーに接続した。
一方のジャー中の土壌試料にはブドウ糖溶液(700mg/ml)を、他方のジャー中の土壌試料には等容積(5ml)の水をかけた。土壌試料中の微生物はブドウ糖溶液を消化し、酸素を消費し、等容の二酸化炭素を発生させる。発生した二酸化炭素はKOH溶液に吸収されるため、そのジャー中の圧力が変化する。生じる微差圧変化を記録し、反応開始2分後の減圧速度を土壌の相対的な呼吸活性(ml/min)とした。体積はシリンジによる空気の増減で定量した。畑地の土壌とそれを高圧滅菌処理した土壌との混合比を変えて呼吸活性を測定し相対的な検量線を得た。
As a measure of the amount of soil microorganisms and their biological activity, the apparent respiration capacity of the soil was measured. In one glass jar, 5 g of soil sample and 4N KOH solution were placed in separate containers, and two sets were prepared. The two sets of jars were connected with a thin plastic tube via a micro differential pressure transducer (KYOWA PDV-10GA). The voltage output of the differential pressure transducer was connected to the recorder.
Glucose solution (700 mg / ml) was applied to the soil sample in one jar and an equal volume (5 ml) of water was applied to the soil sample in the other jar. Microorganisms in the soil sample digest the glucose solution, consume oxygen, and generate an equal volume of carbon dioxide. As the generated carbon dioxide is absorbed by the KOH solution, the pressure in the jar changes. The resulting slight differential pressure change was recorded, and the rate of decompression 2 minutes after the start of the reaction was defined as the relative respiratory activity (ml / min) of the soil. The volume was quantified by increasing or decreasing air with a syringe. Respiratory activity was measured by changing the mixing ratio between the upland soil and the soil sterilized by high pressure sterilization, and a relative calibration curve was obtained.

(種子の発芽に対する被覆の効果)
被覆#d(図1:海藻粉末20%,CMC30%,カラギーナン20%, 小麦粉30%)で被覆したIRG種子50粒と無被覆IRG種子50粒を各1組とし、各3組をそれぞれ試験土壌を敷いた別々の50cm2トレイに播いた。人工気象器の中で、明期(2400lux)16時間、暗期8時間として温度と潅水量を変えて45日間育成し発芽・生長率を測定した。ここに発芽率とは、無被覆種子について播いた種子数に対する発芽した種子数の比(%)と定義した。また、生長率とは、被覆種子について播いた被覆種子数に対する被覆を破って芽が出た種子数の比(%)と定義した。被覆種子の場合、時間的には発芽は生長の前段階と考えられるが、被覆内での現象のため目視観察できない。
各50粒の種子を45日間計測した3組の実験の平均値を求めて図2に示す。ここに潅水量は、播種時に40ml/50cm2の水を1回潅水し、以降表のように追加潅水した。また、照光条件は、明期(2400lux)16時間、暗期8時間とし、全ての実験で同じとした。
(Effect of coating on seed germination)
50 sets of IRG seeds and 50 sets of uncoated IRG seeds coated with coating #d (Fig. 1: Seaweed powder 20%, CMC 30%, carrageenan 20%, wheat flour 30%), one set each, and three sets each for test soil Seeded in separate 50cm 2 trays. In an artificial meteorological device, the plants were grown for 45 days with a temperature and irrigation amount of 16 hours in the light period (2400 lux) and 8 hours in the dark period, and germination and growth rate were measured. Here, the germination rate was defined as the ratio (%) of the number of germinated seeds to the number of seeds sown for uncoated seeds. The growth rate was defined as the ratio (%) of the number of seeds that broke the cover and sprouted to the number of coated seeds sown for the coated seeds. In the case of coated seeds, germination is considered to be a preliminary stage of growth in terms of time, but cannot be visually observed due to a phenomenon in the coating.
The average value of three sets of experiments in which 50 seeds were measured for 45 days was determined and shown in FIG. The irrigation amount here was 40 ml / 50 cm 2 of water at the time of sowing, and then additional irrigation as shown in the table. The illumination conditions were the light period (2400 lux) 16 hours and the dark period 8 hours, which were the same in all experiments.

25℃で十分に潅水した条件(飽和潅水:種子の表面が常時濡れている状態)では被覆種子,無被覆種子とも90%近い発芽・生長率であった。播種時以降の潅水を毎朝1回5mlに制限した時(1日1mm程度の降水量に相当)は、被覆種子の生長(被覆を破って出た芽)率は60%に減少したが、無被覆種子の発芽率は38%に減少した。潅水を5ml/隔日にすると無被覆種子はほとんど発芽しなかったが、被覆種子では36%が生長した。この実験では発芽・生長した種子は発芽・生長確認後トレイから除去したため、発芽・生長後生長を継続できたかどうかを判別できないが、少なくとも水が発芽の限定因子である状況では、被覆は種子に必要な水分を保存して発芽・生長を助けたと考えられる。   Under the condition of sufficient irrigation at 25 ° C (saturated irrigation: the surface of the seed was always wet), the germination / growth rate was 90% for both coated and uncoated seeds. When irrigation after sowing was limited to 5 ml once every morning (equivalent to about 1 mm of precipitation per day), the growth rate of coated seeds (buds that broke through the coating) decreased to 60%. The germination rate of coated seeds decreased to 38%. When the irrigation was 5 ml / every other day, the uncoated seeds hardly germinated, but the coated seeds grew 36%. In this experiment, germinated and grown seeds were removed from the tray after germination and growth confirmation, so it was not possible to determine whether or not germination and post-growth growth could be continued, but at least in the situation where water was the limiting factor for germination, the coating was applied to the seeds. It is thought that necessary moisture was preserved to help germination and growth.

異なる被覆物質(#a, #b, #c, #d)で被覆した種子各50粒を、それぞれ試験土壌を敷いた別々の50cm2トレイに播き、明期(2400lux)16時間15℃ 暗期8時間5℃、播種時の潅水40ml/50cm2、以降の潅水は毎朝1回5mlに制限(高地の春を想定)して発芽・生長数を調べた。3組の測定値の平均値を図3に示す。この制限条件での無被覆種子の発芽率はそれぞれ38%と24%で、25℃無乾燥の環境での86%と88%(図1)に比して極めて低い。一方、被覆種子での発芽率は、#a被覆では80%、82%に達し、潅水制限条件下でも飽和環境の値に近かった。 50 seeds each coated with different coating materials (#a, #b, #c, #d) are sown in separate 50cm 2 trays each covered with test soil, light period (2400lux) 16 hours 15 ° C dark period The germination / growth number was examined for 8 hours at 5 ° C., with 40 ml / 50 cm 2 of irrigation at the time of sowing and the subsequent irrigation limited to 5 ml once every morning (assuming highland spring). The average value of the three sets of measured values is shown in FIG. The germination rates of uncoated seeds under this restriction condition are 38% and 24%, respectively, which is very low compared to 86% and 88% (Fig. 1) in a 25 ° C undried environment. On the other hand, the germination rate of the coated seeds reached 80% and 82% with #a coating, which was close to the value of the saturated environment even under irrigation restricted conditions.

各被覆物質で被覆した種子及び無被覆種子の発芽数の時間経過(発芽・成長曲線)を、IRGについて図4に、CMVについて図5に示す。発芽・成長曲線の中点での勾配、すなわち最大発芽・生長数の半数に達したときの1日当たりの発芽・生長数を発芽・成長速度と定義し、その値を図3に記載した。被覆種子は、発芽・生長最大到達数(発芽・生長率)、発芽・生長速度のいずれもが無被覆種子に比して大きな値を示し、また最初の発芽観察までの日数が短い。この傾向は被覆種子の全てに共通であるが、その程度は被覆の成分によって異なり、図1に示したゲルからの脱水速度(保水力の逆数)と相関があった。
この結果は、比較的低温で降雨量の少ない土地では種子を保水性のある物質で被覆すると種子の発芽・生長率が向上することを示しており、その結果としてその植物がその土地での優勢種となる可能性を示唆している。
The time course (germination / growth curve) of the germination number of seeds coated with each coating substance and uncoated seeds is shown in FIG. 4 for IRG and FIG. 5 for CMV. The slope at the midpoint of the germination / growth curve, that is, the number of germination / growth per day when the half of the maximum germination / growth number was reached was defined as the germination / growth rate, and the value is shown in FIG. Coated seeds have a larger value for germination / growth maximum arrival (germination / growth rate) and germination / growth rate than uncoated seeds, and the number of days until the first germination observation is short. This tendency is common to all of the coated seeds, but the degree varies depending on the components of the coating and correlates with the rate of dehydration from the gel shown in FIG. 1 (the reciprocal of the water retention capacity).
This result shows that seeds covered with water-retaining substances improve the germination and growth rate of seeds at relatively low temperatures and low rainfall, and as a result, the plants are dominant in the land. It suggests the possibility of becoming a seed.

(植物の発芽・生長に対する種子被覆中の海藻粉末と胞子の効果)
被覆#b中の海藻粉末の有無と、被覆#bを資化できる微生物胞子の添加の有無が、種子の発芽・生長に与える効果を、潅水条件を強い限定因子にならない程度(300ml/300cm2・隔日)として調べ、図6に示した。この図は各50粒の実験を3回行った平均値を示している。ここにテスト試料として被覆#aを選ばず#bを選んだ主な理由は、被覆#bに含まれるキサンタンガムが被覆形成・維持に有利な高粘性を持っていたためである。また、この実験においては屋外自然日照条件を採用し、栽培期間は夏から秋の80日間、気温は9−31℃、日照は平均6.8時間/日、潅水は300ml/300cm2隔日であった。
(Effects of seaweed powder and spores in seed coating on germination and growth of plants)
The effect of the presence or absence of seaweed powder in coating #b and the addition or absence of microbial spores that can assimilate coating #b on seed germination / growth to the extent that irrigation conditions are not a strong limiting factor (300 ml / 300 cm 2 -Every other day) and shown in FIG. This figure shows the average of three experiments with 50 grains each. The main reason for selecting #b instead of coating #a as the test sample is that xanthan gum contained in coating #b had a high viscosity advantageous for coating formation and maintenance. In this experiment, outdoor natural sunshine conditions were adopted, the cultivation period was 80 days from summer to autumn, the temperature was 9-31 ° C., the average sunshine was 6.8 hours / day, and the irrigation was 300 ml / 300 cm 2 every other day.

図6に示した乾燥重量を葉の部分(地上部分:茎を含む)と根の部分(地下部分)に分けて示したのが、IRGについて図7であり、CMVについて図8である。播植した種子30粒の分布として示している。   The dry weight shown in FIG. 6 is divided into a leaf part (aboveground part: including stem) and a root part (underground part), and FIG. 7 shows the IRG and FIG. 8 shows the CMV. Shown as the distribution of 30 seeds seeded.

与えた潅水条件では、被覆IRG種子の発芽・生長率には海藻の有無や胞子の量による相違は見られなかったが、いずれも無被覆種子よりは優れていて、種子被覆の有利さは明白である。一方、各被覆種子から生長したIRGの光合成生産(乾燥重量)には判然とした差があり、海藻粉末と胞子とを共存させた被覆種子が最も良く生長したことが結論できる。この結果を図6のほか図9にも示した。図9において、+は被覆に海藻を含むもの、−は被覆に海藻を含まないもの(海藻をカラ−ギナンで置き換えたもの)である。また、乾燥重量の誤差範囲は、3回の実験の平均値の標準偏差から求めた。   Under the given irrigation conditions, the germination / growth rate of coated IRG seeds did not differ depending on the presence or absence of seaweed or the amount of spores, but both were superior to uncoated seeds and the advantages of seed coating were obvious. It is. On the other hand, there is a clear difference in the photosynthetic production (dry weight) of IRG grown from each coated seed, and it can be concluded that the coated seed coexisting with seaweed powder and spores grew best. The results are shown in FIG. 9 in addition to FIG. In FIG. 9, + indicates that the cover contains seaweed, and − indicates that the cover does not include seaweed (the seaweed is replaced with carrageenan). Moreover, the error range of the dry weight was determined from the standard deviation of the average value of three experiments.

CMV種子の発芽・生長も、図6及び図10に示すように、IRG種子と全く同じ傾向を示した。CMVの場合には根粒数の結果をも示した。根粒数から見ても、被覆に海藻粉末と胞子の双方を含めることが極めて有意義であると結論できる。
乾燥重量から見ると、与えた実験条件では、胞子の着生が多い程(x1被覆1.7x106/ml>x0.1被覆0.17x106/ml)好結果になったと結論できる。
Germination / growth of CMV seeds showed exactly the same tendency as IRG seeds as shown in FIGS. In the case of CMV, the result of the number of nodules was also shown. From the viewpoint of the number of nodules, it can be concluded that it is very meaningful to include both seaweed powder and spores in the coating.
From the viewpoint of dry weight, it can be concluded that under the given experimental conditions, the more spore formation (x1 coating 1.7 × 10 6 /ml>x0.1 coating 0.17 × 10 6 / ml), the better.

これらの結果から、種子の発芽生長にとっては、海藻粉末のような微生物によって緩徐に消化分解されて栄養を供給できる物質と、海藻粉末等の被覆物質中の栄養源を発芽から生育の全期間にわたって緩やかに消化分解できる微生物の胞子とを、種子の被覆物質に共存させることが有効である、と結論できる。   From these results, for seed germination growth, a substance that can be slowly digested and decomposed by microorganisms such as seaweed powder to supply nutrients and a nutrient source in a coating substance such as seaweed powder over the entire period from germination to growth. It can be concluded that it is effective to coexist microbial spores that can be slowly digested and decomposed with the seed coating material.

第1次栽培物を収穫しその終了後、各栽培ポットの土壌の見かけの呼吸能を測定した。
土壌の見かけの呼吸能は、その土壌で栽培されていた植物の種子の被覆によって異なり、その大小関係は、図11に示すように、その土壌で栽培された植物の乾燥重量の大小関係にほぼ比例していた。この図において、平均乾燥重量は図6より転記したものである。図11は、植物の生長(乾燥重量)が好気性微生物を増殖/活性化したか、あるいは増殖/活性化した好気性微生物が植物の生長を促進したか、という因果関係にあって、その関係が植物の種類には関わらず、被覆の種類、とくに海藻粉末と胞子の在不在によって大きく影響される、ということを示唆している。
After the primary cultivation was harvested and finished, the apparent respiration capacity of the soil in each cultivation pot was measured.
The apparent respiration ability of the soil varies depending on the coating of the seeds of the plant cultivated in the soil, and the magnitude relationship is almost the magnitude relationship of the dry weight of the plant cultivated in the soil, as shown in FIG. It was proportional. In this figure, the average dry weight is a transcription from FIG. FIG. 11 shows the causal relationship whether the growth (dry weight) of the plant has grown / activated the aerobic microorganism or the growth / activated aerobic microorganism has promoted the growth of the plant. Suggests that, regardless of the type of plant, it is greatly influenced by the type of coating, especially the absence of seaweed powder and spores.

(栽培土壌に対する被覆の後効果)
第1次栽培として各種の被覆条件でIRGを栽培し収穫した後の各ポットに、第2次栽培として無被覆IRG種子30粒ずつを播き、十分に潅水して栽培し、第1次栽培の効果がどの程度残存しているかを調べた。胞子濃度を変化させた3種の被覆IRG種子と無被覆種子を第1次栽培物としてそれぞれのポットに栽培した後の各ポットの土壌と、未使用の同じ土壌(対照用)を比較した。第2次栽培した無被覆IRG種子の発芽・生長率と乾燥重量を求め、図12に示した。同様な測定をCMV種子についても行い、結果を図12に合わせて示した。
(Post-effect on the cultivated soil)
In each pot after IRG is cultivated and harvested under various covering conditions as primary cultivation, 30 seeds of uncoated IRG seeds are seeded as secondary cultivation, cultivated with sufficient irrigation, We investigated how much the effect remained. The soil of each pot after cultivating three kinds of coated IRG seeds and uncoated seeds with different spore concentrations as primary cultures in each pot was compared with the same unused soil (for control). The germination / growth rate and dry weight of uncoated IRG seeds cultivated secondarily were determined and shown in FIG. Similar measurements were performed on CMV seeds and the results are shown in FIG.

5種のポットを比較して、無被覆種子の発芽・生長率には第1次栽培の違いに基づく有意の差は見られなかった。しかし、各ポットで生長し収穫された第2次(無被覆)栽培植物の乾燥重量には極めて大きい差が見られた。乾燥重量の序列は第1次(被覆/無被覆)栽培植物における結果(図6)と同じであった。なお、栽培時期・期間の相違があるため、第1次と第2次生産の乾燥重量の直接比較は不適切である。しかし、その相対値の大小関係の比較は可能と考えられる。CMVについての結果も、IRGの場合と同じであった。   Comparing the five types of pots, no significant difference was found in the germination / growth rate of uncoated seeds based on differences in primary cultivation. However, there was a very large difference in the dry weight of secondary (uncoated) cultivated plants grown and harvested in each pot. The order of dry weight was the same as the result for primary (coated / uncoated) cultivated plants (FIG. 6). In addition, since there is a difference in cultivation time and period, a direct comparison of the dry weight between the primary and secondary production is inappropriate. However, it is considered possible to compare the relative values of the relative values. The results for CMV were the same as for IRG.

これらの事実は、第1次栽培の種子が発芽・生育し収穫された後の土壌に、種子被覆物質の効果が、被覆物質の量あるいは在不在に応じて残存していることを示唆している。海藻粉末と添加胞子/微生物によって増進された植物栄養素の生産か、あるいはこの2者によって結果的に誘引され活性化された土壌微生物の繁茂か、あるいはその両者によりこのような効果が見られたものと推定される。   These facts suggest that the effect of the seed coating substance remains in the soil after the seeds of primary cultivation germinate, grow and are harvested, depending on the amount or absence of the coating substance. Yes. Production of phytonutrients enhanced by seaweed powder and added spores / microorganisms, and / or the growth of soil microorganisms that are eventually attracted and activated by the two, or both. It is estimated to be.

第2次栽培植物の収穫後の土壌の見かけの呼吸能と、第2次栽培前(=第1次栽培植物の収穫後)の土壌の呼吸能とを比較し図13に示した。
第2次栽培後の呼吸能は、第2次栽培物が無被覆種子であるにもかかわらず、第1次栽培後の呼吸能に比して増加しているか維持されていると見られる。これは第1次植物の栽培とともに増えた好気性土壌微生物が、第2次植物の栽培後においても同等以上の量/活性を維持していたことを示唆する。CMVでの栽培後効果がIRGほどには顕著でなく相対的に大きいのは第1次栽培時の根粒の影響があったのではと考えられる。
The apparent respiration ability of the soil after the harvest of the second cultivated plant and the respiration ability of the soil before the second cultivation (= after the harvest of the first cultivated plant) are compared and shown in FIG.
It is considered that the respiration ability after the second cultivation is increased or maintained as compared with the respiration ability after the first cultivation, even though the second cultivation is an uncoated seed. This suggests that the aerobic soil microorganisms increased with the cultivation of the primary plant maintained the same amount / activity after the cultivation of the secondary plant. The post-cultivation effect in CMV is not as remarkable as IRG and is relatively large, probably because of the influence of nodules during the primary cultivation.

本発明において提案した被覆種子は、荒れ地、未農地、高原地、草原地に草木種子を育てる上できわめて有用である。さらに、被覆種子の使用により劣悪土壌の永続的な改善に寄与することができる。これにより劣悪土壌の草原化が期待できることが明らかとなった。   The coated seed proposed in the present invention is extremely useful for growing plant seeds in wasteland, unfarm land, plateau, and grassland. Furthermore, the use of coated seeds can contribute to permanent improvement of poor soil. As a result, it became clear that poor soil can be expected to become grassland.

被覆種子とその構成比を示す表Table showing coated seeds and their composition ratio IRG種子の発芽・生長率を示す表Table showing germination and growth rate of IRG seeds 被覆種子の発芽・生長に対する被覆物質の効果を示す表Table showing the effect of coating substances on germination and growth of coated seeds 被覆IRG種子の発芽・生長曲線Germination and growth curves of coated IRG seeds 被覆CMV種子の発芽・生長曲線Germination and growth curves of coated CMV seeds 被覆種子の生長に対する被覆中の海藻粉末と微生物胞子の効果を示す表Table showing the effect of seaweed powder and microbial spores during coating on the growth of coated seeds 被覆中の海藻粉末と胞子の有無による生長IRGの葉と根の乾燥重量分布表Dry weight distribution table of growing IRG leaves and roots with and without seaweed powder and spores in the coating 被覆中の海藻粉末と胞子の有無による生長CMVの葉と根の乾燥重量分布表Table of dry weight distribution of leaves and roots of growing CMV with and without seaweed powder and spores in the coating 被覆IRG種子の生長に対する被覆中の海藻粉末と胞子の効果を示すグラフGraph showing the effect of seaweed powder and spores during coating on the growth of coated IRG seeds 被覆CMV種子の生長に対する被覆中の海藻粉末と胞子の効果を示すグラフGraph showing the effect of seaweed powder and spores during coating on the growth of coated CMV seeds 第1次植物栽培収穫後の土壌の見かけの呼吸能と種子被覆物質組成との関係を示すグラフGraph showing the relationship between apparent respiration capacity and seed coating composition of soil after first plant cultivation harvest 第2次栽培での無被覆種子の発芽・生長に対する第1次栽培条件の効果を示す表Table showing the effect of primary cultivation conditions on germination and growth of uncoated seeds in secondary cultivation 第1次栽培後の土壌で、第2次栽培した後の土壌の見かけの呼吸能(ml/min)を示す表Table showing apparent respiration capacity (ml / min) of soil after secondary cultivation in soil after primary cultivation

Claims (6)

草木の種子を、
保水性を有する多糖類又は生分解性高分子と、
微生物で分解されて栄養源となる生体起源物質と、
上記多糖類又は生分解性高分子及び上記生体起源物質を分解しうる微生物の胞子と、
を含有する被覆物質で被覆した被覆種子。
Plant seeds
A polysaccharide or biodegradable polymer having water retention,
A biogenic substance that is decomposed by microorganisms and becomes a nutrient source;
Microbial spores capable of degrading the polysaccharide or biodegradable polymer and the biogenic substance,
Coated seed coated with a coating material containing
前記生体起源物質が単細胞藻若しくは海草の乾燥粉末、微細木材粉及び動植物の乾燥粉末から選ばれた1種以上の生体起源物質である請求項1に記載の被覆種子。   The coated seed according to claim 1, wherein the biogenic substance is one or more biogenic substances selected from dry powders of single-celled algae or seaweed, fine wood powders, and dry powders of animals and plants. 前記生体起源物質がハプト藻の乾燥粉末である請求項1に記載の被覆種子。   The coated seed according to claim 1, wherein the biogenic substance is a dry powder of haptoalgae. 前記保水性を有する多糖類が、キサンタンガム、カラギーナン、CMC及びコンニャクマンナンから選ばれた1種以上の多糖類である請求項1ないし請求項3のいずれかに記載の被覆種子。   The coated seed according to any one of claims 1 to 3, wherein the polysaccharide having water retention is one or more polysaccharides selected from xanthan gum, carrageenan, CMC and konjac mannan. 前記微生物の胞子が、その被覆種子を播種する地域で採取された微生物に由来するものであることを特徴とする請求項1ないし請求項4のいずれかに記載の被覆種子。   The coated seed according to any one of claims 1 to 4, wherein the spore of the microorganism is derived from a microorganism collected in an area where the coated seed is sown. 請求項1ないし請求項5のいずれかに記載の被覆種子を土壌に散布することにより土壌環境を改良する方法。   A method for improving a soil environment by spraying the coated seed according to any one of claims 1 to 5 on soil.
JP2008232207A 2008-09-10 2008-09-10 Covered seed Pending JP2010063400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232207A JP2010063400A (en) 2008-09-10 2008-09-10 Covered seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232207A JP2010063400A (en) 2008-09-10 2008-09-10 Covered seed

Publications (1)

Publication Number Publication Date
JP2010063400A true JP2010063400A (en) 2010-03-25

Family

ID=42189569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232207A Pending JP2010063400A (en) 2008-09-10 2008-09-10 Covered seed

Country Status (1)

Country Link
JP (1) JP2010063400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870138B1 (en) * 2017-10-25 2018-06-25 영원산업개발 주식회사 Vegetation Mat Containing Spore-forming Soil Microorganism Coated Seeds And Manufacturing Method Thereof
KR101870137B1 (en) * 2017-10-25 2018-07-19 영원산업개발 주식회사 A Method For Slope Reinforcement and Vegetation Using Eco-friendly Soil Bag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870138B1 (en) * 2017-10-25 2018-06-25 영원산업개발 주식회사 Vegetation Mat Containing Spore-forming Soil Microorganism Coated Seeds And Manufacturing Method Thereof
KR101870137B1 (en) * 2017-10-25 2018-07-19 영원산업개발 주식회사 A Method For Slope Reinforcement and Vegetation Using Eco-friendly Soil Bag

Similar Documents

Publication Publication Date Title
Vidya et al. Water hyacinth as a green manure for organic farming
Ghehsareh et al. Comparison of date-palm wastes and perlite as growth substrates on some tomato growing indexes
CN107094568B (en) Blueberry planting method in mild saline-alkali soil
CN102613000A (en) Method for cultivating oyster mushrooms at bottoms of tea-oil trees by taking tea-oil tree nutshells as major raw materials
CN104541969B (en) A kind of cultivation of agaricus bisporus method
CN112385507B (en) Seedling culture medium containing arbuscular mycorrhiza and preparation method and application thereof
CN101395995B (en) Method for planting lyophyllum decastes
CN103548575A (en) Tuber Magnatum mycorrhiza synthetic method
CN105165389A (en) Industrial production method for wild thelephora ganbajun
CN104737782A (en) Planting method for south ramulus mori bamboo fungus
CN104744182A (en) Tobacco water retention biological organic fertilizer and preparation method thereof
JP4587856B2 (en) Method for cultivating vegetables with reduced nitrate nitrogen content
Meng et al. Novel seedling substrate made by different types of biogas residues: Feasibility, carbon emission reduction and economic benefit potential
CN1799316A (en) Artificial cultivated strain of tianshan Mountain wild mushroom and cultivation method therefor
CN103695318A (en) Phosphorus-dissolving fungi and method for preparing biological phosphate fertilizer through fermenting edible fungi residues by phosphorus-dissolving fungi
CN109429971A (en) The preparation method of bush mycorrhizal fungi preparation
Bucki et al. Impact of soil management practices on yield quality, weed infestation and soil microbiota abundance in organic zucchini production
CN109593014A (en) A kind of alkaline land modifying agent and saline and alkali land improvement method based on lake silt
CN104770177A (en) Rosa roxburghii ex-vivo twig culturing method and application thereof in stony desertification control
JP2010063400A (en) Covered seed
CN102177779A (en) Method for purifying wild ginseng seeds
CN102060601A (en) Organic matrix for planting ginger and method for organically planting ginger
Vendrame et al. Comparison of herbaceous perennial plant growth in seaweed compost and biosolids compost
KR101108721B1 (en) Soil composition for restoring ecological groundcovers and method using the same
US11000035B2 (en) Soil-borne disease control method, soil for plant cultivation use, and soil-borne disease control agent