JP2010057442A - Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same - Google Patents

Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same Download PDF

Info

Publication number
JP2010057442A
JP2010057442A JP2008228173A JP2008228173A JP2010057442A JP 2010057442 A JP2010057442 A JP 2010057442A JP 2008228173 A JP2008228173 A JP 2008228173A JP 2008228173 A JP2008228173 A JP 2008228173A JP 2010057442 A JP2010057442 A JP 2010057442A
Authority
JP
Japan
Prior art keywords
heavy metal
cadmium
heavy metals
resin
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008228173A
Other languages
Japanese (ja)
Inventor
Hideji Seki
秀司 関
Masao Kawabe
雅生 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO SOKEN KK
Hokkaido University NUC
Original Assignee
KANKYO SOKEN KK
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO SOKEN KK, Hokkaido University NUC filed Critical KANKYO SOKEN KK
Priority to JP2008228173A priority Critical patent/JP2010057442A/en
Publication of JP2010057442A publication Critical patent/JP2010057442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for removing in a short time a heavy metal from fishes and shellfishes or the like without adding water and an acid thereto while maintaining freshness and qualities thereof, considering that some fishes and shellfishes contain a harmful heavy metal in their internal organ and that therefore processed foodstuffs, fodder and fertilizers obtained utilizing the fishes and shellfishes inevitably contain the heavy metal. <P>SOLUTION: The method for removing a heavy metal includes crushing fishes and shellfishes containing the heavy metal and mixing it with a heavy metal-absorbing material with agitation under heating. Thus, the heavy metal can be removed from the fishes and shellfishes in a short time without adding water and an acid thereto while maintaining freshness and qualities thereof. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、重金属を含む魚介類から品質を保ったまま水及び酸を加えることなく重金属を除去する方法に関し、さらに重金属を除去した魚介類を食品として利用する技術に関するものである。 The present invention relates to a method for removing heavy metals without adding water and acid while maintaining quality from fish and shellfish containing heavy metals, and further relates to a technique for using fish and shellfishes from which heavy metals have been removed as food.

新鮮な食品に適さない低鮮度、低品質の魚介類を処理対象とする場合には、重金属を除去した後に飼料や肥料として利用する。 When processing fish with low freshness and low quality that are not suitable for fresh foods, use them as feed or fertilizer after removing heavy metals.

重金属を含有する有機物から重金属を除去する方法には、有機物を硫酸等の強酸性水溶液(pH1)に浸漬し重金属を解離させた後に電極に析出させる方法(特許文献1)や、自己消化酵素を利用し、重金属を液相に解離させた後に液相の重金属を吸着除去する方法(特許文献2)、乳酸菌や酵母等の微生物を利用し重金属を液相に解離させた後に液相の重金属を吸着除去する方法(特許文献3)、ホタテ内臓を塩酸等pH1〜2の溶液中に浸漬して重金属を液相に解離させた後に液相からキレート繊維で重金属を除去する方法(特許文献4)などがある。 Methods for removing heavy metals from organic materials containing heavy metals include methods in which organic materials are immersed in a strongly acidic aqueous solution (pH 1) such as sulfuric acid to dissociate heavy metals and then deposited on electrodes (Patent Document 1). A method of adsorbing and removing the heavy metal in the liquid phase after dissociating the heavy metal into the liquid phase (Patent Document 2), using a microorganism such as lactic acid bacteria or yeast to dissociate the heavy metal into the liquid phase and then removing the heavy metal in the liquid phase Method of adsorbing and removing (Patent Document 3), Method of removing heavy metal with chelate fiber from liquid phase after scallop viscera is immersed in pH 1-2 solution such as hydrochloric acid to dissociate heavy metal into liquid phase (Patent Document 4) and so on.

しかしながら、有機物を硫酸等の強酸性水溶液(pH1)に浸漬し重金属を解離させた後に電極に析出させる方法は、有機物中の有用成分(タンパク質、脂質等)が変性し、石灰等のアルカリを用いて中和しても変性は戻らない。また、強酸性の水溶液を中和するために多量に添加した石灰が石膏の形で残留する有機物を食品として利用することが困難であること、および処理コストが高く処理日数が長い等の問題がある。 However, the method of precipitating an organic substance in a strongly acidic aqueous solution (pH 1) such as sulfuric acid to dissociate heavy metals and then depositing it on the electrode uses a denatured useful component (protein, lipid, etc.) in the organic substance and uses an alkali such as lime. Neutralization does not return. In addition, it is difficult to use organic substances in which lime added in a large amount to neutralize strongly acidic aqueous solution remains in the form of gypsum, and there are problems such as high processing costs and long processing days. is there.

また、自己消化酵素を利用し重金属を液相に解離させた後に液相の重金属を吸着除去する方法については、中性域で重金属を吸着させるため雑菌による汚染の抑制が難しく有機物が腐敗しやすいこと、および他の酵素により多種多様な分解生成物が生じることが、食品として利用する上で大きな問題となる。 In addition, with regard to the method of adsorbing and removing heavy metal in the liquid phase after dissociating heavy metal into the liquid phase using self-digesting enzymes, it is difficult to suppress contamination by bacteria because the heavy metal is adsorbed in the neutral range, and organic matter is likely to decay. In addition, the generation of a wide variety of degradation products due to other enzymes is a major problem when used as food.

さらに、乳酸菌や酵母等の微生物を利用して、重金属を液相に解離させた後に液相の重金属を吸着除去する方法については、液相への重金属解離、有機物と液相の固液分離および液相からの重金属吸着除去の一連の工程が長時間を要し、食味や匂い等の品質が低下するため、飼料や肥料としては利用可能であるが、食品としての利用は難しい。 Furthermore, with respect to a method of adsorbing and removing heavy metal in the liquid phase after dissociating the heavy metal into the liquid phase using microorganisms such as lactic acid bacteria and yeast, dissociation of the heavy metal into the liquid phase, solid-liquid separation of the organic substance and the liquid phase, and Since a series of steps of heavy metal adsorption removal from the liquid phase takes a long time and quality such as taste and smell is lowered, it can be used as feed and fertilizer, but it is difficult to use as food.

塩酸等pH1〜2の溶液中に浸漬して重金属を液相に解離させる方法は、内臓液中のアミノ酸などが加水処理により希釈され価値が低下し、また、廃水処理量は被処理内臓に数倍する問題がある。 The method of immersing in a pH 1-2 solution such as hydrochloric acid to dissociate heavy metals into the liquid phase reduces the value by diluting amino acids in the visceral fluid by hydration, and the amount of wastewater treated is several There is a problem to double.

一方、発明者は、ホタテウロのカドミウム結合サイト数と結合定数を決定した上で、不溶化フミン酸を吸着材として、硝酸溶液中でホタテウロと混合撹拌することにより、カドミウムを吸着除去する方法を発表している( 非特許文献1 ) 。さらに、低温での重金属吸着材を用いた
有機物からの重金属除去方法を開発している(特許文献5)。しかしながら、前記方法によれば、カドミウムの吸着除去には弱酸性条件下、24時間を必要とし、若干の酸の添加及び中和剤の添加が必要であった。
特開07−203036号公報 特開06−106155号公報 特許第3174827号公報 特許第4092252号公報 Hideshi S.,Akira S.(1997) A new method for the removal of toxic metal ions from acid −sensitive biomaterial. Journal of colloid and interface science 190, pp . 206−211. 特許第4000346号公報
On the other hand, the inventor announced a method of adsorbing and removing cadmium by determining the number of cadmium binding sites and binding constants of scallopuro and mixing and stirring with scallopuro in nitric acid solution using insolubilized humic acid as an adsorbent. (Non-Patent Document 1). Furthermore, the heavy metal removal method from the organic substance using the heavy metal adsorbent at low temperature is developed (patent document 5). However, according to the above method, cadmium adsorption / removal required 24 hours under weakly acidic conditions, and it was necessary to add some acid and neutralizer.
JP 07-203036 A JP 06-106155 A Japanese Patent No. 3174825 Japanese Patent No. 4092252 Hideshi S.H. , Akira S. (1997) A new method for the removal of toxic metal ions from acid-sensitive biomaterial. Journal of colloid and interface science 190, pp. 206-211. Japanese Patent No. 4000346

本発明は、重金属を含有する魚介類から品質を保ったまま水及び酸を加えず短時間で経済的に重金属を分離し食品として利用することを課題とする。 This invention makes it a subject to isolate | separate a heavy metal economically in a short time, and to use as a foodstuff, without adding water and an acid, keeping quality from the fish and shellfish containing a heavy metal.

本発明の重金属除去方法は、重金属を含む魚介類を粉砕し、40℃から70℃、好ましくは60℃で加温しながら重金属吸着材を撹拌混合することにより、魚介類から重金属を除去できることを特徴としており、本方法を行うことにより雑菌の繁殖を抑制し、短時間で魚介類の品質を保ったまま水及び酸を加えることなく重金属を除去することができる。 The heavy metal removal method of the present invention is capable of removing heavy metals from seafood by crushing seafood containing heavy metals and stirring and mixing the heavy metal adsorbent while heating at 40 ° C to 70 ° C, preferably 60 ° C. By carrying out this method, propagation of various bacteria can be suppressed, and heavy metals can be removed without adding water and acid while maintaining the quality of seafood in a short time.

また、本発明の重金属除去方法は、前記魚介類と前記吸着材の重金属イオンに対する競争的吸着平衡を利用し、前記吸着材の重金属吸着容量が前記魚介類の重金属吸着容量に対して過剰となるように前記吸着材を添加することで、魚介類から重金属をより効率よく吸着除去することができる。 In addition, the heavy metal removal method of the present invention uses a competitive adsorption equilibrium of the seafood and the adsorbent for heavy metal ions, and the heavy metal adsorption capacity of the adsorbent becomes excessive with respect to the heavy metal adsorption capacity of the seafood. Thus, by adding the adsorbent, heavy metals can be more efficiently adsorbed and removed from seafood.

さらに、本発明の重金属除去方法により得られる魚介類は、カドミウムが95.0%以上除去され、食品及び飲料等として利用することができる。 Furthermore, the seafood obtained by the heavy metal removal method of the present invention can be used as food, beverages, etc., with cadmium removed by 95.0% or more.

本発明により、重金属を含む魚介類からpH5.0〜pH7.0において短時間で水及び酸を加えることなく重金属を除去できることから、カドミウム等の重金属を含む魚介類から品質を損なわず経済的に重金属を分離することができ、飼料、肥料だけでなく食品としての高度利用が可能となる。 According to the present invention, since heavy metals can be removed from fish and shellfish containing heavy metals at pH 5.0 to pH 7.0 in a short time without adding water and acid, economically without losing quality from fish and shellfish containing heavy metals such as cadmium. Heavy metals can be separated, and it can be used not only as feed and fertilizer but also as food.

本発明における「重金属」とは、カドミウム、鉛、砒素、水銀等をいい、少なくともカドミウムを含み、かつタンパク質に結合、またはイオン状に存在するものを意味する。 The “heavy metal” in the present invention refers to cadmium, lead, arsenic, mercury and the like, and means at least containing cadmium and binding to proteins or existing in an ionic form.

本発明においては、重金属を含む魚介類を対象とする。本発明における「魚介類」とは、魚類、貝類及びその内臓を含み、天然物のみならず、加工品も含まれる。よって、ホタテ内臓やイカ内臓が魚介類に含まれることは当業者にとって自明である。なお、前記「ホタテ内臓」とは、貝柱以外の諸器官をいい、中腸腺、生殖腺、鰓、外套膜などを含む。また、前記「イカ内臓」とは一般的には烏賊の臓腑をいい、肝臓のみをいう場合もある。 In the present invention, fish and shellfish containing heavy metals are targeted. “Seafood” in the present invention includes fish, shellfish and their internal organs, and includes not only natural products but also processed products. Therefore, it is obvious to those skilled in the art that scallop viscera and squid viscera are included in seafood. The “scallop viscera” refers to various organs other than scallops, and includes the midgut gland, gonads, sputum, mantle, and the like. In addition, the “squid viscera” generally refers to the viscera of a bandit and sometimes only the liver.

本発明における「重金属吸着材」とは、キレート作用やイオン交換作用を有する樹脂、繊維若しくは天然素材等をいい、腐食物質、藻類、粘土鉱物等の安価な天然材料をも含むことは当業者にとって自明である。 The “heavy metal adsorbent” in the present invention refers to a resin, fiber, natural material or the like having a chelating action or an ion exchange action, and includes those inexpensive natural materials such as corrosive substances, algae and clay minerals for those skilled in the art. It is self-explanatory.

本発明における「酸」とは、蟻酸、乳酸、酢酸、クエン酸等の有機酸、若しくは塩酸、硫酸、リン酸等の無機酸をいい、「酸性」とは、一般にpH6.0未満をいう。また、「酸性水溶液」とは、酸を水に溶かした液体であって酸性であるものをいう。 In the present invention, “acid” refers to organic acids such as formic acid, lactic acid, acetic acid and citric acid, or inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and “acidic” generally refers to a pH of less than 6.0. The “acidic aqueous solution” refers to a liquid in which an acid is dissolved in water and is acidic.

本発明における「混合攪拌」とは、重金属を含む魚介類と重金属吸着材とを混ぜ合わせ、かき回すことをいうが、重金属を含む魚介類と重金属吸着材とを合わせた上でかき回してもよく、いずれか一方をかき回しているところに他方を添加してもよい。 `` Mixing and stirring '' in the present invention refers to mixing and stirring the seafood containing heavy metal and the heavy metal adsorbent, but may be stirred after combining the seafood containing heavy metal and the heavy metal adsorbent, You may add the other to the place which is stirring either one.

本発明における「吸着」とは、重金属が重金属吸着材に捕捉されることをいい、正吸着のみならず負吸着をも含む。また、「吸着除去」とは、重金属が吸着した重金属吸着材を除去すること、及び重金属が吸着した重金属吸着剤から重金属のみを除去することをいう。 “Adsorption” in the present invention means that heavy metal is captured by the heavy metal adsorbent, and includes not only positive adsorption but also negative adsorption. Further, “adsorption removal” means removal of a heavy metal adsorbent on which heavy metals have been adsorbed, and removal of only heavy metals from a heavy metal adsorbent on which heavy metals have been adsorbed.

本発明における競争的吸着平衡とは、重金属を含む魚介類の粉砕物に重金属吸着材を添加すると、前記魚介類と前記吸着材との間において競争的にカドミウムを奪い合う現象が生ずるが、前記吸着材の吸着容量が前記魚介類の吸着容量に対して過剰となるように前記吸着材を添加することにより、前期現象が平衡状態に至ること、すなわち相互の吸着作用が平衡状態に至ることをいい、競争的吸着平衡の状態においては、前記魚介類よりも前記吸着材の方が多くの重金属を吸着する。 Competitive adsorption equilibrium in the present invention means that when a heavy metal adsorbent is added to a ground product of seafood containing heavy metals, a phenomenon occurs in which cadmium is competing competitively between the seafood and the adsorbent. By adding the adsorbent so that the adsorption capacity of the material is excessive with respect to the adsorption capacity of the fish and shellfish, it means that the previous phenomenon reaches an equilibrium state, that is, the mutual adsorption action reaches an equilibrium state. In the state of competitive adsorption equilibrium, the adsorbent adsorbs more heavy metals than the seafood.

本発明における攪拌温度のうち、60℃から70℃での攪拌条件では低温殺菌効果が得られ、各種病原菌の殺菌、腐敗防止効果がある。 Among the stirring temperatures in the present invention, the pasteurization effect at 60 ° C. to 70 ° C. provides a pasteurization effect and has the effect of sterilizing various pathogens and preventing spoilage.

一般に、重金属は有機物中の特異なタンパク質(メタロチオネイン)と結合しており、酸処理によりメタロチオネインと結合している重金属を完全(99.5%以上)に解離させるには、pH1.0の強酸性にする必要があった(前記特許文献1) 。本発明の重金属吸着除去方法によれば、重金属を含む水産物とキレート作用やイオン交換作用を有する樹脂又は繊維のH型とNa型を組み合わせた重金属吸着材を混合攪拌することにより、水及び酸を加えず中性条件下で水産物から重金属を分離することができる。 In general, heavy metals are bound to specific proteins (metallothionein) in organic matter. In order to completely dissociate heavy metals bound to metallothionein (99.5% or more) by acid treatment, a strong acid at pH 1.0 is used. (Patent Document 1). According to the heavy metal adsorption / removal method of the present invention, water and acid can be obtained by mixing and stirring a heavy metal-containing marine product and a heavy metal adsorbent combining a H-type and Na-type resin or fiber having chelating and ion-exchange effects. In addition, heavy metals can be separated from marine products under neutral conditions.

本発明の重金属吸着除去方法によれば、魚介類に水及び酸を添加せず水産物の本来持つpH付近において、重金属吸着容量が魚介類の約40倍(乾燥重量基準で魚介類の10.0〜20.0%) となるようにキレート作用やイオン交換作用を有する樹脂又は繊維のH型とNa型を組み合わせた重金属吸着材を添加することで、魚介類から短時間で重金属を分離することが可能となる。 According to the heavy metal adsorption removal method of the present invention, water and acid are not added to fish and shellfish, and the heavy metal adsorption capacity is about 40 times that of fish and shellfish (about 10.0 times that of fish and shellfish on a dry weight basis). Separation of heavy metals from fish and shellfish in a short time by adding heavy metal adsorbent that combines H type and Na type of resin or fiber having chelating action and ion exchange action so that Is possible.

従来の酸処理法では有機物中の重金属と液相の水素イオンの置換反応を利用して重金属を解離させており、液相の水素イオン濃度が置換反応の推進力となるため酸性あるいは強酸性水溶液を用いる必要があった。本発明の重金属除去方法では、水及び酸を添加せず40℃から70℃、好ましくは60℃に魚介類を加温し、その水分中に解離している微量の重金属を即座に吸着材で除去することにより水分中の重金属濃度を常に低濃度に保ち、魚介類中とその水分中の重金属の濃度差を推進力として魚介類から重金属を解離させるため、中性条件においても魚介類中の重金属を95.0%以上除去することができる。 In the conventional acid treatment method, heavy metals in organic matter are dissociated by using substitution reaction of hydrogen ions in liquid phase, and the concentration of hydrogen ions in liquid phase is the driving force for substitution reaction, so acidic or strongly acidic aqueous solution It was necessary to use. In the method for removing heavy metals according to the present invention, seafood is heated to 40 ° C. to 70 ° C., preferably 60 ° C. without adding water and acid, and trace amounts of heavy metals dissociated in the water are immediately adsorbed. The concentration of heavy metals in the water is always kept at a low level by removing them, and the heavy metals are dissociated from the seafood with the difference in the concentration of heavy metals in the seafood and the water as a driving force. 95.0% or more of heavy metals can be removed.

従来の方法では、有機物の重金属の低減に4〜7日の時間を要していた(前記特許文献3)。一方、本発明者は弱酸性、低温条件において約24時間で重金属を99.0%以上除去する方法を開発した(前記特許文献5)が、酸の添加と中和剤の添加が必要であった。本発明の重金属除去方法によれば、短時間で酸を加えることなしに魚介類から重金属を除去することが可能となり、酸や中和剤が添加されていないことから、食品としてより広い範囲での利用が可能となる。 In the conventional method, it took 4 to 7 days to reduce organic heavy metals (Patent Document 3). On the other hand, the present inventor has developed a method of removing 99.0% or more of heavy metals in weakly acidic, low temperature conditions in about 24 hours (Patent Document 5), but it requires addition of an acid and a neutralizing agent. It was. According to the heavy metal removal method of the present invention, it becomes possible to remove heavy metals from fish and shellfish without adding acid in a short time, and since no acid or neutralizing agent is added, the food can be used in a wider range. Can be used.

本発明によれば、魚介類に含まれる重金属は含水状態で0.1〜1.0mg/kg以下となるまで除去できる。また、水及び酸を加えることなく中性条件において短時間で重金属を除去できるので、作業安全性が高く処理コストも低い。 According to the present invention, heavy metals contained in fish and shellfish can be removed until the water content becomes 0.1 to 1.0 mg / kg or less. In addition, heavy metals can be removed in a short time under neutral conditions without adding water and acid, so that work safety is high and processing costs are low.

本発明の方法によれば、既存技術に比べて処理時間と使用薬品量を大幅に削減できるので本来低コストであるが、吸着材として腐食物質、藻類、粘土鉱物等の安価な天然材料を使用することにより、重金属吸着材にかかるコストをさらに大幅に削減できるため、食品として利用できない低鮮度、低品質水産物からの飼料や肥料の生産にも適している。 According to the method of the present invention, the processing time and the amount of chemicals used can be significantly reduced compared to the existing technology, which is inherently low cost, but cheap natural materials such as corrosive substances, algae and clay minerals are used as the adsorbent. By doing so, the cost of the heavy metal adsorbent can be greatly reduced, which is suitable for the production of feed and fertilizer from low freshness and low quality marine products that cannot be used as food.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.

この実施例では、処理対象魚介類としてカドミウムを含む新鮮なホタテ(北海道苫小牧産)内臓を充分にホモジナイズしたものを使用した。 In this example, a freshly scallop (Hokkaido Tomakomai) visceral viscera containing cadmium was used as the treatment target seafood.

キレート樹脂は市販の三菱化学製ダイヤイオンCR11(Na型)と、1N塩酸水溶液によりNa型樹脂から調製したH型樹脂を使用した。この2種類の樹脂を組み合わせて攪拌時のpHが約7.0になるように調製したものを使用した。 As the chelating resin, commercially available Diaion CR11 (Na type) manufactured by Mitsubishi Chemical Corporation and an H type resin prepared from Na type resin with 1N hydrochloric acid aqueous solution were used. A combination of these two types of resins was used so that the pH during stirring was about 7.0.

ホモジナイズしたホタテ内臓100gずつをビーカーに取り、40℃、50℃、60℃、70℃の各温度の恒温槽に入れ、それぞれ撹拌機(EYELA製MAZERA Z−1200)を用いて100rpmで攪拌した。 100 g of homogenized scallop viscera was placed in a beaker, placed in a thermostatic bath at each temperature of 40 ° C., 50 ° C., 60 ° C., and 70 ° C., and stirred at 100 rpm using a stirrer (MAZERA Z-1200 manufactured by EYELA).

使用したホタテ内臓に含まれるカドミウムは、原子吸光装置(パーキンエルマー製AAnalyst100)を用いて測定し、初期濃度は3.73mg/kg(現物)であった。 The cadmium contained in the used scallop viscera was measured using an atomic absorption device (AAnalyst100 manufactured by PerkinElmer), and the initial concentration was 3.73 mg / kg (actual).

15分後、上記調製したキレート樹脂(Na型及びH型混在、pH7)をホタテ内臓に対して20%添加し、各温度においてホタテ内臓中のカドミウムの吸着除去を行った。 After 15 minutes, 20% of the prepared chelate resin (mixed Na type and H type, pH 7) was added to the scallop viscera, and cadmium in the scallop viscera was adsorbed and removed at each temperature.

その結果、初期濃度が3.73mg/kgであったホタテ内臓中のカドミウムは、温度が高くなるほど吸着速度が速くなることが確認された。40℃ではホタテ内臓中のCdが0.21mg/kg(現物)に低下するまでに7時間必要であったが、50℃では0.21mg/kg(現物)に低下するまでに4時間、60℃では0.20mg/kg(現物)に低下するまでに3時間、170℃では3時間で0.14mg/kg(現物)に低下した(図1)。 As a result, it was confirmed that the adsorption rate of cadmium in the scallop viscera with an initial concentration of 3.73 mg / kg increased as the temperature increased. At 40 ° C., it took 7 hours for Cd in the scallop viscera to drop to 0.21 mg / kg (actual), but at 50 ° C., it took 4 hours to decrease to 0.21 mg / kg (actual). The temperature dropped to 0.20 mg / kg (actual) at 0 ° C. for 3 hours and at 170 ° C. for 3 hours to 0.14 mg / kg (actual) (FIG. 1).

この実施例では、処理対象魚介類としてカドミウムを含む新鮮なイカ(北海道函館産)内臓を充分にホモジナイズしたものを使用した。 In this example, a fresh squid (produced in Hakodate, Hokkaido) viscera containing cadmium was sufficiently homogenized as the seafood to be treated.

キレート樹脂は市販の三菱化学製ダイヤイオンCR11(Na型)と、1N塩酸水溶液によりNa型樹脂から調製したH型樹脂を使用した。この2種類の樹脂を組み合わせて攪拌時のpHが約7.0になるように調製したものを使用した。 As the chelating resin, commercially available Diaion CR11 (Na type) manufactured by Mitsubishi Chemical Corporation and an H type resin prepared from Na type resin with 1N hydrochloric acid aqueous solution were used. A combination of these two types of resins was used so that the pH during stirring was about 7.0.

ホモジナイズしたイカ内臓100gずつをビーカーに取り、40℃、50℃、60℃、70℃の各温度の恒温槽に入れ、それぞれ撹拌機(EYELA製MAZERA Z−1200)を用いて100rpmで攪拌した。 100 g of homogenized squid viscera was placed in a beaker, placed in a thermostatic bath at each temperature of 40 ° C., 50 ° C., 60 ° C., and 70 ° C., and stirred at 100 rpm using a stirrer (MAZERA Z-1200 manufactured by EYELA).

使用したイカ内臓に含まれるカドミウムは、原子吸光装置(パーキンエルマー製AAnalyst100)を用いて測定し、初期濃度は56.81mg/kg(現物)であった。 The cadmium contained in the squid viscera used was measured using an atomic absorption device (AAnalyst 100 manufactured by PerkinElmer), and the initial concentration was 56.81 mg / kg (actual).

15分後、上記調製したキレート樹脂(Na型及びH型混在、pH7)をイカ内臓に対して20%添加し、各温度においてイカ内臓中のカドミウムの吸着除去を行った。 After 15 minutes, 20% of the prepared chelate resin (mixed Na type and H type, pH 7) was added to the squid viscera, and cadmium in the squid viscera was adsorbed and removed at each temperature.

その結果、初期濃度が56.81mg/kgであったイカ内臓中のカドミウムは温度が高くなるほど吸着速度は速くなることが確認された。40℃では4時間でイカ内臓中のCdは3.23mg/kg(現物)までしか低下しないが、70℃では4時間で0.81mg/kg(現物)まで低下した(図2)。 As a result, it was confirmed that the adsorption rate of cadmium in the squid viscera having an initial concentration of 56.81 mg / kg increased as the temperature increased. Cd in the squid viscera decreased only to 3.23 mg / kg (actual) at 40 ° C. in 4 hours, but decreased to 0.81 mg / kg (actual) in 70 hours at 4 ° C. (FIG. 2).

カドミウムの吸着除去が完了した後、イカ内臓中に分散したキレート樹脂は、フィルターろ過を行い固液分離を行うことで速やかに分離された。 After the adsorption and removal of cadmium was completed, the chelate resin dispersed in the squid viscera was quickly separated by filter filtration and solid-liquid separation.

一般にキレート樹脂の耐用温度は、80℃から100℃あるいは120℃前後とされており、それ以上の温度での使用は、樹脂の破損が懸念される。実使用にあたっては、さらに低い温度での使用が奨励されている。実施例1及び実施例2の結果から、短時間で効率的に魚介類からカドミウムを吸着除去できる温度は40℃から70℃、好ましくは60℃であり、それ以下の温度では処理に半日以上時間かかるため効率的ではなく、また、それ以上の温度では樹脂が破損する恐れがあるため好ましくない。 In general, the service temperature of chelate resins is from 80 ° C. to 100 ° C. or around 120 ° C., and use at higher temperatures is likely to damage the resin. In actual use, use at lower temperatures is encouraged. From the results of Example 1 and Example 2, the temperature at which cadmium can be efficiently adsorbed and removed from fish and shellfish in a short time is 40 ° C to 70 ° C, preferably 60 ° C. For this reason, it is not efficient, and a temperature higher than that is not preferable because the resin may be damaged.

この実施例では、処理対象魚介類としてカドミウムを含む新鮮なホタテ(北海道苫小牧産) 内臓を充分にホモジナイズしたものを使用した。 In this example, fresh scallops (produced in Tomakomai, Hokkaido) that contained cadmium as the treatment target seafood were sufficiently homogenized.

キレート樹脂は市販の三菱化学製ダイヤイオンCR11(Na型)と、1N塩酸水溶液によりNa型樹脂から調製したH型樹脂を使用した。この2種類の樹脂を組み合わせて攪拌時のpHが約7.0になるように調製したものを使用した。 As the chelating resin, commercially available Diaion CR11 (Na type) manufactured by Mitsubishi Chemical Corporation and an H type resin prepared from Na type resin with 1N hydrochloric acid aqueous solution were used. A combination of these two types of resins was used so that the pH during stirring was about 7.0.

ホモジナイズしたホタテ内臓100gずつをビーカーに取り、濃塩酸を用いて、pHを5.0、6.0、7.0に調製した後、60℃の恒温槽に入れ、それぞれ撹拌機(EYELA製MAZERA Z−1200)を用いて100rpmで攪拌した。 100 g of homogenized scallop viscera was placed in a beaker and adjusted to pH 5.0, 6.0, 7.0 using concentrated hydrochloric acid, and then placed in a constant temperature bath at 60 ° C., respectively, and a stirrer (MAZERA made by EYELA). Z-1200) and stirred at 100 rpm.

使用したホタテ内臓に含まれるカドミウムは、原子吸光装置(パーキンエルマー製AAnalyst100)を用いて測定し、初期濃度は3.73mg/kg(現物)であった。 The cadmium contained in the used scallop viscera was measured using an atomic absorption device (AAnalyst100 manufactured by PerkinElmer), and the initial concentration was 3.73 mg / kg (actual).

15分後、上記調製したキレート樹脂(Na型及びH型混在、pH7)をホタテ内臓に対して20%添加し、各温度においてホタテ内臓中のカドミウムの吸着除去を行った。カドミウム除去中のpHは濃塩酸及び水酸化ナトリウムの添加によって初期値を保持した。 After 15 minutes, 20% of the prepared chelate resin (mixed Na type and H type, pH 7) was added to the scallop viscera, and cadmium in the scallop viscera was adsorbed and removed at each temperature. The pH during cadmium removal was maintained at the initial value by adding concentrated hydrochloric acid and sodium hydroxide.

その結果、初期濃度が3.73mg/kgであったホタテ内臓中のカドミウムは、pHが低くなるほど初期吸着速度が速くなることが確認された(図3)。これは、ホタテ内臓のpHが低下したことにより、ホタテ内臓中のメタロチオネインなどのタンパク質と結合したカドミウムのイオン解離が促進され、キレート樹脂に捕捉されやすくなるためである。 As a result, it was confirmed that the initial adsorption rate of cadmium in the scallop viscera with an initial concentration of 3.73 mg / kg increased as the pH decreased (FIG. 3). This is because the ionic dissociation of cadmium bound to a protein such as metallothionein in the scallop viscera is promoted and is easily captured by the chelate resin because the pH of the scallop viscera is lowered.

この実施例では、処理対象魚介類としてカドミウムを含む新鮮なイカ(北海道函館産)内臓を充分にホモジナイズしたものを使用した。 In this example, a fresh squid (produced in Hakodate, Hokkaido) viscera containing cadmium was sufficiently homogenized as the seafood to be treated.

キレート樹脂は市販の三菱化学製ダイヤイオンCR11(Na型)と、1N塩酸水溶液によりNa型樹脂から調製したH型樹脂を使用した。この2種類の樹脂を組み合わせて攪拌時のpHが約7.0になるように調製したものを使用した。 As the chelating resin, commercially available Diaion CR11 (Na type) manufactured by Mitsubishi Chemical Corporation and an H type resin prepared from Na type resin with 1N hydrochloric acid aqueous solution were used. A combination of these two types of resins was used so that the pH during stirring was about 7.0.

ホモジナイズしたイカ内臓100gずつをビーカーに取り、濃塩酸を用いて、pHを5.0、6.0、7.0に調製した後、60℃の恒温槽に入れ、それぞれ撹拌機(EYELA製MAZERA Z−1200)を用いて100rpmで攪拌した。 100 g of homogenized squid viscera was placed in a beaker and adjusted to pH 5.0, 6.0, 7.0 using concentrated hydrochloric acid, and then placed in a constant temperature bath at 60 ° C., respectively, and a stirrer (MAZERA made by EYELA). Z-1200) and stirred at 100 rpm.

使用したイカ内臓に含まれるカドミウムは、原子吸光装置(パーキンエルマー製AAnalyst100)を用いて測定し、初期濃度は56.81mg/kg(現物)であった。 The cadmium contained in the squid viscera used was measured using an atomic absorption device (AAnalyst 100 manufactured by PerkinElmer), and the initial concentration was 56.81 mg / kg (actual).

15分後、上記調製したキレート樹脂(Na型及びH型混在、pH7)をイカ内臓に対して20%添加し、各温度においてホタテ内臓中のカドミウムの吸着除去を行った。カドミウム除去中のpHは濃塩酸及び水酸化ナトリウムの添加によって初期値を保持した。 After 15 minutes, 20% of the prepared chelate resin (Na type and H type mixed, pH 7) was added to the squid viscera, and cadmium in the scallop viscera was removed by adsorption at each temperature. The pH during cadmium removal was maintained at the initial value by adding concentrated hydrochloric acid and sodium hydroxide.

その結果、初期濃度が56.81mg/kgであったイカ内臓中のカドミウムは、pHが低くなるほど吸着速度が速くなることが確認された(図4)。 As a result, it was confirmed that the adsorption rate of cadmium in the squid viscera having an initial concentration of 56.81 mg / kg increased as the pH decreased (FIG. 4).

イカ内臓からのCd溶出率とキレート樹脂へのCd吸着率のpH依存性の比較を図5に示す。pH7ではホタテ内臓のカドミウムの溶出率が0%に近いが、pH5では25%と増加している。これは、pH5においては樹脂へのカドミウム吸着が、タンパク質に結合したカドミウムと樹脂との直接接触によるものだけでなく、溶出したカドミウムイオンと樹脂との吸着も加わるため、pH5のほうがpH7よりも速い速度で吸着することを示唆しており、実施例3及び4の結果と一致する。 A comparison of the pH dependence of the Cd elution rate from the squid viscera and the Cd adsorption rate to the chelate resin is shown in FIG. At pH 7, the cadmium elution rate of scallop viscera is close to 0%, but at pH 5, it increases to 25%. This is because at pH 5, cadmium adsorption to the resin is not only due to direct contact between the cadmium bound to the protein and the resin, but also the adsorption between the eluted cadmium ions and the resin, so that pH 5 is faster than pH 7. It suggests adsorption at a rate, which is consistent with the results of Examples 3 and 4.

実施例3及び4の結果から、短時間で魚介類からカドミウムを吸着除去する場合、pHは低いほうが好ましいと言える。しかし、ホタテ内臓、イカ内臓ともに、pHを下げるための薬品の使用は、コスト増加やその後の食品としての利用及び肥料や飼料として利用する場合に影響が出る可能性があるため、pH5.0からpH7.0、好ましくは薬品を添加しないpH6前後におけるカドミウム処理が望ましいと言える。 From the results of Examples 3 and 4, it can be said that a lower pH is preferable when cadmium is adsorbed and removed from seafood in a short time. However, the use of chemicals for lowering the pH of both scallop and squid viscera may affect the cost increase and subsequent use as food and as fertilizer and feed. It can be said that cadmium treatment at pH 7.0, preferably around pH 6 without adding chemicals is desirable.

この実施例では、処理対象魚介類としてカドミウムを含む新鮮なホタテ(北海道苫小牧産) 内臓を充分にホモジナイズしたものを使用した。 In this example, fresh scallops (produced in Tomakomai, Hokkaido) that contained cadmium as the treatment target seafood were sufficiently homogenized.

キレート樹脂は三菱化学製ダイヤイオンCR11のNa型樹脂、Na型及びH型の混在した樹脂(pH7)、及びH型樹脂の3種類を使用した。Na型は市販品をそのまま使用、Na型及びH型の混在した樹脂(pH7)は実施例1と同様に調製し、H型樹脂は1N塩酸を用いて既定の方法で調製した。 Three types of chelate resins were used: Dia Chemical CR11 Na-type resin, Na-type and H-type mixed resin (pH 7), and H-type resin. As the Na type, a commercially available product was used as it was, and a resin (pH 7) mixed with Na type and H type was prepared in the same manner as in Example 1, and the H type resin was prepared by a predetermined method using 1N hydrochloric acid.

ホモジナイズしたホタテ内臓100gずつをビーカーに取り、60℃の恒温槽に入れ、それぞれ撹拌機(EYELA製MAZERA Z−1200)を用いて100rpmで攪拌した。 100 g of homogenized scallop viscera was placed in a beaker, placed in a thermostatic bath at 60 ° C., and stirred at 100 rpm using a stirrer (MAZERA Z-1200 manufactured by EYELA).

使用したホタテ内臓に含まれるカドミウムは、原子吸光装置(パーキンエルマー製AAnalyst100)を用いて測定し、初期濃度は3.73mg/kg(現物)であった。 The cadmium contained in the used scallop viscera was measured using an atomic absorption device (AAnalyst100 manufactured by PerkinElmer), and the initial concentration was 3.73 mg / kg (actual).

15分後、上記調製したキレート樹脂3種 をホタテ内臓に対して20%添加し、ホタテ内臓中のカドミウムの吸着除去を行った。 After 15 minutes, 20% of the three chelate resins prepared above were added to the scallop viscera, and the cadmium in the scallop viscera was removed by adsorption.

その結果、初期濃度が3.73mg/kgであったイカ内臓中のカドミウムは、H型樹脂、Na型及びH型混在樹脂、Na型の順に初期吸着速度が速くなることが確認された(図6)。カドミウム除去後のホタテ内臓のpHは順に4.13、6.12、7.15であった。
As a result, it was confirmed that cadmium in the squid viscera having an initial concentration of 3.73 mg / kg increases in the initial adsorption rate in the order of H-type resin, Na-type and H-type mixed resin, and Na-type (FIG. 3). 6). The pH of the scallop viscera after removal of cadmium was 4.13, 6.12, and 7.15, respectively.

実施例5結果から、短時間で魚介類からカドミウムを吸着除去する場合、樹脂はH型の方が好ましいといえる。Na型ではカドミウムの吸着速度は遅い。しかし、H型樹脂を用いた場合、ホタテ内臓、イカ内臓ともに、カドミウム除去後に下がったpHを中和するための薬品の使用が必要となる。薬品コストの増加やその後の食品としての利用及び肥料や飼料として利用する場合に影響が出るため、Na型及びH型の混在した樹脂(pH7)を用いるのが最適であると言える。 From the results of Example 5, it can be said that when the cadmium is adsorbed and removed from the seafood in a short time, the H-type resin is preferable. In the Na type, the adsorption rate of cadmium is slow. However, when the H-type resin is used, it is necessary to use chemicals for neutralizing the lowered pH after removing cadmium in both the scallop and squid viscera. It can be said that it is optimal to use a resin (pH 7) in which Na type and H type are mixed because it increases the cost of chemicals and affects the subsequent use as food and the use as fertilizer and feed.

図1は、カドミウムを含むホタテ内臓とキレート樹脂とを混合攪拌した場合の温度の違いによるカドミウム濃度と処理時間の違いを示すグラフである。図1の横軸は処理にかかった時間(h)を示し、縦軸はカドミウム濃度(mg/kg現物)を示す。FIG. 1 is a graph showing a difference in cadmium concentration and treatment time due to a difference in temperature when scallop viscera containing cadmium and a chelate resin are mixed and stirred. The horizontal axis in FIG. 1 indicates the time (h) required for the treatment, and the vertical axis indicates the cadmium concentration (mg / kg actual product). 図2は、カドミウムを含むイカ内臓とキレート樹脂とを混合攪拌した場合の温度の違いによるカドミウム濃度と処理時間の違いを示すグラフである。図2の横軸は処理にかかった時間(h)を示し、縦軸はカドミウム濃度(mg/kg現物)を示す。FIG. 2 is a graph showing a difference in cadmium concentration and treatment time due to a difference in temperature when squid viscera containing cadmium and a chelate resin are mixed and stirred. The horizontal axis of FIG. 2 indicates the time (h) required for the treatment, and the vertical axis indicates the cadmium concentration (mg / kg actual product). 図3は、カドミウムを含むホタテ内臓とキレート樹脂とを混合攪拌した場合の各pHにおけるカドミウム濃度と処理時間の違いを示すグラフである。図3の横軸は処理にかかった時間(h)を示し、縦軸はカドミウム濃度(mg/kg現物)を示す。FIG. 3 is a graph showing the difference in cadmium concentration and treatment time at each pH when scallop viscera containing cadmium and a chelating resin are mixed and stirred. The horizontal axis of FIG. 3 shows the time (h) required for the treatment, and the vertical axis shows the cadmium concentration (mg / kg actual product). 図4は、カドミウムを含むイカ内臓とキレート樹脂とを混合攪拌した場合の各pHにおけるカドミウム濃度と処理時間の違いを示すグラフである。図4の横軸は処理にかかった時間(h)を示し、縦軸はカドミウム濃度(mg/kg現物)を示す。FIG. 4 is a graph showing the difference in cadmium concentration and treatment time at each pH when squid viscera containing cadmium and a chelating resin are mixed and stirred. The horizontal axis in FIG. 4 indicates the time (h) required for the treatment, and the vertical axis indicates the cadmium concentration (mg / kg actual product). 図5は、イカ内臓からのCd溶出率とキレート樹脂へのCd吸着率のpH依存性の比較を示すグラフである。図5の横軸はpHを示し、縦軸にカドミウムの吸着率または溶出率(%)を示す。FIG. 5 is a graph showing a comparison of the pH dependence of the Cd elution rate from the squid viscera and the Cd adsorption rate to the chelate resin. The horizontal axis of FIG. 5 indicates pH, and the vertical axis indicates cadmium adsorption rate or elution rate (%). 図6は、カドミウムを含むホタテ内臓とキレート樹脂とを混合攪拌した場合のH型、Na型及びH型混在、Na型樹脂を使用した場合におけるカドミウム濃度と処理時間の違いを示すグラフである。図6の横軸は処理にかかった時間(h)を示し、縦軸はカドミウム濃度(mg/kg現物)を示す。FIG. 6 is a graph showing the difference between the cadmium concentration and the treatment time when scallop viscera containing cadmium and a chelate resin are mixed and agitated and when H type, Na type and H type mixed, and Na type resin is used. The horizontal axis in FIG. 6 indicates the time (h) required for the treatment, and the vertical axis indicates the cadmium concentration (mg / kg actual product).

Claims (3)

重金属を含む魚介類を粉砕した後、40℃から70℃、好ましくは60℃で加温しながら撹拌し、重金属を吸着するキレート作用やイオン交換作用を有する樹脂又は繊維等の重金属吸着剤を加温した前記魚介類の内臓に加え、混合撹拌することにより、魚介類から重金属を吸着除去することを特徴とする、重金属除去方法。 After pulverizing fish and shellfish containing heavy metals, heat and stir at 40 ° C to 70 ° C, preferably 60 ° C, and add a heavy metal adsorbent such as a resin or fiber having a chelating action or ion exchange action to adsorb heavy metals. A method for removing heavy metals, characterized by adsorbing and removing heavy metals from seafood by mixing and stirring in addition to the warmed internal organs of the seafood. 重金属を吸着するキレート作用やイオン交換作用を有する樹脂又は繊維等の重金属吸着剤のH型とNa型を組み合わせて使用することにより、水及び酸を添加せずpH5.0〜pH7.0に於いて重金属を分離することを特徴とする、請求項1に記載の重金属除去方法。 By using a combination of H type and Na type heavy metal adsorbents such as chelate and ion exchange functions for adsorbing heavy metals and fibers or the like, water and acids can be added at pH 5.0 to pH 7.0. The heavy metal removing method according to claim 1, wherein heavy metal is separated. 重金属を含む食品を細かくした後、40℃から70℃、好ましくは60℃で加温しながら撹拌し、重金属を吸着するキレート作用やイオン交換作用を有する樹脂又は繊維等の重金属吸着剤を加温した前記食品に対して加え、混合撹拌することにより、食品から重金属を吸着除去することを特徴とする、重金属が除去された食品の製造方法。 After the food containing the heavy metal is made fine, it is stirred while heating at 40 ° C. to 70 ° C., preferably 60 ° C., and the heavy metal adsorbent such as a resin or fiber having a chelating action or an ion exchange action for adsorbing the heavy metal is heated. A method for producing a food from which heavy metals have been removed, wherein the heavy metals are adsorbed and removed from the food by adding to and mixing with the food.
JP2008228173A 2008-09-05 2008-09-05 Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same Pending JP2010057442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228173A JP2010057442A (en) 2008-09-05 2008-09-05 Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008228173A JP2010057442A (en) 2008-09-05 2008-09-05 Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same

Publications (1)

Publication Number Publication Date
JP2010057442A true JP2010057442A (en) 2010-03-18

Family

ID=42184991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228173A Pending JP2010057442A (en) 2008-09-05 2008-09-05 Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same

Country Status (1)

Country Link
JP (1) JP2010057442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039955A (en) * 2010-08-20 2012-03-01 Ishikawa Prefecture Method for removing heavy metal in fish sauce
CN109604296A (en) * 2017-10-04 2019-04-12 株式会社神户制钢所 The processing method of living marine resources
CN112273598A (en) * 2020-11-02 2021-01-29 浙江大学舟山海洋研究中心 Method for removing heavy metal cadmium from internal organs of squid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106155A (en) * 1992-09-09 1994-04-19 Mutsumi Shoji Removal of heavy metals from amino acid solution of fishes and shellfishes
JP2004344802A (en) * 2003-05-23 2004-12-09 Marine Science Kk Method of obtaining useful substance from tissue of scallop gut, and plant therefor
JP2007282572A (en) * 2006-04-17 2007-11-01 Hokkaido Univ Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106155A (en) * 1992-09-09 1994-04-19 Mutsumi Shoji Removal of heavy metals from amino acid solution of fishes and shellfishes
JP2004344802A (en) * 2003-05-23 2004-12-09 Marine Science Kk Method of obtaining useful substance from tissue of scallop gut, and plant therefor
JP2007282572A (en) * 2006-04-17 2007-11-01 Hokkaido Univ Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained by the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010055280; いんだすと,第12巻,第39-42頁(1997年) *
JPN6010055290; 北海道立釧路水産試験場平成16年度事業報告書,第113-115頁(2005年) *
JPN6012005314; 水産増殖,第54巻,第449-453頁(2006) *
JPN6012005315; 日本水産学会誌,第74巻,第216-218頁(2008年3月) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039955A (en) * 2010-08-20 2012-03-01 Ishikawa Prefecture Method for removing heavy metal in fish sauce
CN109604296A (en) * 2017-10-04 2019-04-12 株式会社神户制钢所 The processing method of living marine resources
CN112273598A (en) * 2020-11-02 2021-01-29 浙江大学舟山海洋研究中心 Method for removing heavy metal cadmium from internal organs of squid

Similar Documents

Publication Publication Date Title
JP4000346B1 (en) Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby
CN101297673B (en) Method for processing fish collagen oligopeptide
JP5341299B2 (en) Method for producing collagen and low molecular weight collagen
JP2008136945A (en) Natural-mineral containing agent and production method thereof
JP2010057442A (en) Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same
JP4995612B2 (en) Water purification agent
JP4092252B2 (en) Method for obtaining useful substance from scallop visceral tissue and plant therefor
KR20100102518A (en) Organic-inorganic hybrid for coagulation and antimicrobial applications and manufacturing method thereof
JP3534297B2 (en) Method for producing culture solution from seawater and method for using the same
JPH02203726A (en) Method for transporting live fish
RU2134520C1 (en) Method of producing iodinated food product
KR100399252B1 (en) A Handling Methods of the Kanari Waste
JP2011236411A (en) Method of manufacturing soil conditioner
JP5435578B2 (en) Histamine adsorbent and histamine removal method
JP6638931B2 (en) Environmental purification material using calcium
JP2893525B2 (en) Weathered reef coral grains / powder, method and apparatus for producing the same
Nilawati et al. Combination of in situ iodization and Haloferax spp. bacteria enrichment in salt crystallization process
JP2002045823A (en) Method for removing heavy metals
WO2007108286A1 (en) Process for producing organic fertilizer from leftover resulting from marine product processing
AU2020103919A4 (en) A simple method for removing cadmium from Pectinidae processing waste
JP2001137825A (en) Method for removing heavy metal from processing residue of fishes and shellfishes and method for manufacturing liquid fertilizer from processing residue of fishes and shellfishes
JPS5832805A (en) Red tide treating agent and its preparation
JP2009000004A (en) Method for eliminating heavy metal from broth of heavy metal-containing organic material
JP2005328797A (en) Method for removing heavy metal from food, or the like
JP3245485B2 (en) Pretreatment of water for food production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120