JP4000346B1 - Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby - Google Patents

Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby Download PDF

Info

Publication number
JP4000346B1
JP4000346B1 JP2006113624A JP2006113624A JP4000346B1 JP 4000346 B1 JP4000346 B1 JP 4000346B1 JP 2006113624 A JP2006113624 A JP 2006113624A JP 2006113624 A JP2006113624 A JP 2006113624A JP 4000346 B1 JP4000346 B1 JP 4000346B1
Authority
JP
Japan
Prior art keywords
heavy metal
cadmium
organic substance
adsorbent
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006113624A
Other languages
Japanese (ja)
Other versions
JP2007282572A (en
Inventor
秀司 関
雅生 川辺
Original Assignee
国立大学法人 北海道大学
環境創研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 北海道大学, 環境創研株式会社 filed Critical 国立大学法人 北海道大学
Priority to JP2006113624A priority Critical patent/JP4000346B1/en
Application granted granted Critical
Publication of JP4000346B1 publication Critical patent/JP4000346B1/en
Publication of JP2007282572A publication Critical patent/JP2007282572A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Abstract

【課題】水産物には内臓に有害な重金属を含有するもの、また野菜,豆類,穀物等の農産物にも土壌から吸収した重金属を含むものがあり、これらを利用した食品加工品、飼料および肥料には必然的に重金属が含まれることから、これらの農水産物などから鮮度と品質を保ったまま経済的に重金属を除去する技術を提供する。
【解決手段】重金属を含む有機物を、弱酸性水溶液中で重金属吸着材と共に混合攪拌することにより、該有機物と液相から同時に短時間で重金属を吸着除去する。
【選択図】図1
[PROBLEMS] Some marine products contain heavy metals harmful to internal organs, and some agricultural products such as vegetables, beans, and grains contain heavy metals absorbed from the soil. Since inevitably contains heavy metals, it provides a technology for economically removing heavy metals from these agricultural and marine products while maintaining freshness and quality.
By mixing and stirring an organic substance containing heavy metal together with a heavy metal adsorbent in a weakly acidic aqueous solution, the heavy metal is simultaneously adsorbed and removed from the organic substance and the liquid phase in a short time.
[Selection] Figure 1

Description

本発明は、重金属を含む有機物から鮮度と品質を保ったまま重金属を除去する方法に関し、さらに重金属を除去した有機物を食品として利用する技術に関するものである。 The present invention relates to a method for removing heavy metals from organic materials containing heavy metals while maintaining freshness and quality, and further relates to a technique for using organic materials from which heavy metals have been removed as food.

食品に適さない低鮮度、低品質の有機物を処理対象とする場合には、重金属を除去した後に飼料や肥料として利用することもできる。 In the case where low freshness and low quality organic substances that are not suitable for food are processed, they can be used as feed or fertilizer after removing heavy metals.

重金属を含有する有機物から重金属を除去する方法には、有機物を硫酸等の強酸性水溶液(pH1)に浸漬し重金属を解離させた後に電極に析出させる方法(特許文献1)や、自己消化酵素を利用し重金属を液相に解離させた後に液相の重金属を吸着除去する方法(特許文献2)、乳酸菌や酵母等の微生物を利用し重金属を液相に解離させた後に液相の重金属を吸着除去する方法がある(特許文献3)。 Methods for removing heavy metals from organic materials containing heavy metals include methods in which organic materials are immersed in a strongly acidic aqueous solution (pH 1) such as sulfuric acid to dissociate the heavy metals and then deposited on the electrode (Patent Document 1). A method of adsorbing and removing heavy metal in the liquid phase after dissociating the heavy metal into the liquid phase (Patent Document 2), and adsorbing the heavy metal in the liquid phase after dissociating the heavy metal into the liquid phase using microorganisms such as lactic acid bacteria and yeast There is a method of removing (Patent Document 3).

しかしながら、有機物を硫酸等の強酸性水溶液(pH1)に浸漬し重金属を解離させた後に電極に析出させる方法は、有機物中の有用成分(タンパク質、脂質等)が変性し、石灰等のアルカリを用いて中和しても変性は戻らないことや、強酸性の水溶液を中和するために多量に添加した石灰が石膏の形で残留する有機物を食品として利用することが困難であること、および処理コストが高く処理日数が長い等の問題があった。 However, the method of precipitating an organic substance in a strongly acidic aqueous solution (pH 1) such as sulfuric acid to dissociate heavy metals and then depositing it on the electrode uses a denatured useful component (protein, lipid, etc.) in the organic substance and uses an alkali such as lime. Neutralization does not return to denaturation, and it is difficult to use organic matter in which a large amount of lime added to neutralize strongly acidic aqueous solution remains in the form of gypsum as food. There were problems such as high cost and long processing days.

また、自己消化酵素を利用し重金属を液相に解離させた後に液相の重金属を吸着除去する方法については、中性域で重金属を吸着させるため雑菌による汚染の抑制が難しく有機物が腐敗しやすいこと、および他の酵素により多種多様な分解生成物が生じることが、食品として利用する上で大きな問題となる。 In addition, with regard to the method of adsorbing and removing heavy metal in the liquid phase after dissociating heavy metal into the liquid phase using self-digesting enzymes, it is difficult to suppress contamination by bacteria because the heavy metal is adsorbed in the neutral range, and organic matter is likely to decay. In addition, the generation of a wide variety of degradation products due to other enzymes is a major problem when used as food.

さらに、乳酸菌や酵母等の微生物を利用して重金属を液相に解離させた後に液相の重金属を吸着除去する方法については、液相への重金属解離、有機物と液相の固液分離および液相からの重金属吸着除去の一連の工程が長時間を要し、食味や匂い等の品質が低下するため、飼料や肥料としては利用可能であるが、食品としての利用は難しい。 Furthermore, for the method of adsorbing and removing heavy metal in the liquid phase after dissociating heavy metal into the liquid phase using microorganisms such as lactic acid bacteria and yeast, dissociation of heavy metal into the liquid phase, solid-liquid separation of organic and liquid phases, and liquid A series of steps for removing heavy metal from the phase takes a long time, and the quality such as taste and odor is lowered. Therefore, it can be used as feed and fertilizer, but it is difficult to use as food.

一方、発明者は、ホタテウロのカドミウム結合サイト数と結合定数を決定した上で、不溶化フミン酸を吸着材として、硝酸溶液中でホタテウロと混合撹拌することにより、カドミウムを吸着除去する方法を発表している(非特許文献1)。しかしながら、前記方法によれば、カドミウム吸着した不溶化フミン酸が処理後のホタテウロ中に残留し、食品としての利用は難しい。
特開07−203036号公報 特開06−106155号公報 特許第3174827号公報 Hideki S., Akira S. (1997) A new method for the removal of toxic metal ions from acid−sensitive biomaterial. Journal of colloid and interface science 190, pp. 206−211.
On the other hand, the inventor announced a method of adsorbing and removing cadmium by determining the number of cadmium binding sites and binding constants of scallopuro and mixing and stirring with scallopuro in nitric acid solution using insolubilized humic acid as an adsorbent. (Non-Patent Document 1). However, according to the above method, the insolubilized humic acid adsorbed by cadmium remains in the treated scallop and is difficult to use as a food.
JP 07-203036 A JP 06-106155 A Japanese Patent No. 3174825 Hideki S.H. , Akira S. (1997) A new method for the removal of toxic metal ions from acid-sensitive biomaterial. Journal of colloid and interface science 190, pp. 206-211.

本発明は、重金属を含有する有機物から鮮度と品質を保ったまま短時間で経済的に重金属を分離し食品として利用することを課題とする。 This invention makes it a subject to isolate | separate a heavy metal economically in a short time, and to utilize as a foodstuff, maintaining the freshness and quality from the organic substance containing a heavy metal.

本発明の重金属除去方法は、重金属を含む有機物を加熱することなく、重金属吸着材を酸性水溶液中で撹拌混合することにより、有機物と液相から同時に重金属を除去できることを特徴としており、本方法を低温で行うことにより自己消化酵素の働きと微生物の繁殖を抑制し、短時間で有機物の鮮度と品質を保ったまま重金属を除去することができる。 The heavy metal removal method of the present invention is characterized in that heavy metals can be simultaneously removed from an organic substance and a liquid phase by stirring and mixing the heavy metal adsorbent in an acidic aqueous solution without heating the organic substance containing the heavy metal. By carrying out at a low temperature, the action of self-digesting enzymes and the growth of microorganisms can be suppressed, and heavy metals can be removed in a short time while maintaining the freshness and quality of organic matter.

また、本発明の重金属除去方法は、前記有機物と前記吸着材の重金属イオンに対する競争的吸着平衡を利用し、弱酸性条件において前記吸着材の重金属吸着容量が前記有機物の重金属吸着容量に対して過剰となるように前記吸着材を添加しても良く、これにより有機物と液相から同時に重金属をより効率よく吸着除去することができる。 Further, the heavy metal removal method of the present invention uses a competitive adsorption equilibrium of the organic matter and the adsorbent with heavy metal ions, and the heavy metal adsorption capacity of the adsorbent is excessive with respect to the heavy metal adsorption capacity of the organic matter under weakly acidic conditions. The adsorbent may be added so that the heavy metal can be more efficiently adsorbed and removed simultaneously from the organic substance and the liquid phase.

また、本発明の重金属除去方法は、2℃ 〜 7℃の低温条件下で行うことが好ましい。 Moreover, it is preferable to perform the heavy metal removal method of this invention on low-temperature conditions of 2 degreeC-7 degreeC.

さらに、本発明の重金属除去方法により得られる有機物は、カドミウムが90.0 %以上除去され、食品として利用することができる。 Furthermore, the organic substance obtained by the heavy metal removal method of the present invention is free from cadmium of 90.0% and can be used as food.

本発明により、重金属を含む有機物から弱酸性下において短時間で重金属を除去できることから、カドミウム等の重金属を含む農水産物から鮮度と品質を損なわず経済的に重金属を分離することができ、飼料、肥料だけでなく食品としての高度利用が可能となる。 According to the present invention, since heavy metals can be removed from organic substances containing heavy metals in a short period of time under weak acidity, it is possible to economically separate heavy metals from agricultural and marine products containing heavy metals such as cadmium without impairing freshness and quality, feed, It can be used not only as a fertilizer but also as a food.

本発明における「重金属」とは、カドミウム、鉛、砒素、水銀等をいい、少なくともカドミウムを含み、かつイオン状に存在するものを意味する。 The “heavy metal” in the present invention refers to cadmium, lead, arsenic, mercury and the like, and means at least containing cadmium and existing in an ionic form.

本発明においては、重金属を含む有機物を対象とする。本発明のおける「有機物」とは、魚介類等の水産物、畜肉や鶏卵等の畜産物、および野菜や豆類、穀物等の農産物をいい、天然物のみならず、遺伝子組換産物や加工品も含まれる。よって、イカ内臓や大豆等が有機物に含まれることは当業者にとって自明である。なお、前記「イカ内臓」とは一般的には烏賊の臓腑をいい、肝臓のみをいう場合もある。 In the present invention, organic substances containing heavy metals are targeted. The “organic matter” in the present invention refers to marine products such as seafood, livestock products such as livestock meat and chicken eggs, and agricultural products such as vegetables, beans, and grains, and not only natural products but also genetically modified products and processed products. included. Therefore, it is obvious to those skilled in the art that squid viscera, soybeans, and the like are included in the organic matter. The “squid internal organs” generally refers to the viscera of a bandit, and sometimes only the liver.

本発明における「重金属吸着材」とは、キレート作用やイオン交換作用を有する樹脂、繊維もしくは天然素材等をいい、腐食物質、藻類、粘土鉱物等の安価な天然材料をも含むことは当業者にとって自明である。 The “heavy metal adsorbent” in the present invention refers to a resin, fiber or natural material having a chelating action or an ion exchange action, and includes those inexpensive natural materials such as corrosive substances, algae and clay minerals for those skilled in the art. It is self-explanatory.

本発明における「酸」とは、蟻酸、乳酸、酢酸、クエン酸等の有機酸、もしくは塩酸、硫酸、リン酸等の無機酸をいい、「酸性」とは、一般にpH7.0未満をいう。また、「酸性水溶液」とは、酸を水に溶かした液体であって酸性であるものをいう。 In the present invention, “acid” refers to organic acids such as formic acid, lactic acid, acetic acid and citric acid, or inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and “acidic” generally refers to a pH of less than 7.0. The “acidic aqueous solution” refers to a liquid in which an acid is dissolved in water and is acidic.

本発明における「混合攪拌」とは、重金属を含む有機物と重金属吸着材とを混ぜ合わせ、かき回すことをいうが、重金属を含む有機物と重金属吸着材とを合わせた上でかき回してもよく、いずれか一方をかき回しているところに他方を添加してもよい。 “Mixing and stirring” in the present invention refers to mixing and stirring the organic substance containing heavy metal and the heavy metal adsorbent, and may be stirred after combining the organic substance containing heavy metal and the heavy metal adsorbent. The other may be added while stirring one.

本発明における「吸着」とは、重金属が重金属吸着材に吸い付くこと、若しくは重金属が重金属吸着材に捕捉されることをいい、正吸着のみならず負吸着をも含む。また、「吸着除去」とは、重金属が吸着した重金属吸着材を除去すること、及び重金属が吸着した重金属吸着剤から重金属のみを除去することをいう。 “Adsorption” in the present invention means that a heavy metal is attracted to a heavy metal adsorbent or that a heavy metal is captured by the heavy metal adsorbent, and includes not only positive adsorption but also negative adsorption. Further, “adsorption removal” means removal of a heavy metal adsorbent on which heavy metals have been adsorbed, and removal of only heavy metals from a heavy metal adsorbent on which heavy metals have been adsorbed.

本発明における競争的吸着平衡とは、重金属を含む有機物を含む溶液中に重金属吸着材を添加すると、前記有機物と前記吸着材との間において競争的にカドミウム重金属を奪い合う現象が生ずるが、前記吸着材の吸着容量が前記有機物の吸着容量に対して過剰となるように前記吸着材を添加することにより、前期現象が平衡状態に至ること、すなわち相互の吸着作用が平衡状態に至ることをいい、競争的吸着平衡の状態においては、前記有機物よりも前記吸着材の方が多くの重金属を吸着する。 Competitive adsorption equilibrium in the present invention means that when a heavy metal adsorbent is added to a solution containing an organic substance containing heavy metal, a phenomenon in which cadmium heavy metal is competing competitively between the organic substance and the adsorbent occurs. By adding the adsorbent so that the adsorption capacity of the material is excessive with respect to the adsorption capacity of the organic matter, it means that the previous phenomenon reaches an equilibrium state, that is, the mutual adsorption action reaches an equilibrium state, In the state of competitive adsorption equilibrium, the adsorbent adsorbs more heavy metals than the organic matter.

本発明における「弱酸性」とは、好ましくはpH3.0〜5.0をいい、より好ましくはpH4.0〜4.5をいう。 “Weakly acidic” in the present invention preferably means pH 3.0 to 5.0, more preferably pH 4.0 to 4.5.

一般に、重金属は有機物中の特異なタンパク質(メタロチオネイン)と結合しており、酸処理によりメタロチオネインと結合している重金属を完全(99.5%以上)に解離させるには、pH1.0の強酸性にする必要があった(前記特許文献1)。本発明の重金属(吸着)除去方法によれば、重金属を含む有機物と重金属吸着材を混合攪拌することにより、弱酸性条件下で有機物から重金属を分離することができる。 In general, heavy metals are bound to specific proteins (metallothionein) in organic matter. In order to completely dissociate heavy metals bound to metallothionein (99.5% or more) by acid treatment, a strong acid at pH 1.0 is used. (Patent Document 1). According to the heavy metal (adsorption) removal method of the present invention, heavy metals can be separated from organic substances under weakly acidic conditions by mixing and stirring an organic substance containing heavy metals and a heavy metal adsorbent.

本発明の重金属除去方法において、自己消化や雑菌繁殖による品質低下の抑制の面から、pH4.5以下の条件下で行うことが好ましく、pH4.0〜4.5の条件下で行うことがより好ましい。 In the heavy metal removal method of the present invention, it is preferably performed under conditions of pH 4.5 or less, more preferably performed under conditions of pH 4.0 to 4.5, from the viewpoint of suppression of quality degradation due to self-digestion and propagation of various bacteria. preferable.

本発明の重金属除去方法は、弱酸性条件下において、重金属吸着容量が有機物の約40倍 (乾燥重量基準で有機物の10.0〜20.0%) となるように吸着材を添加して行うことにより、有機物と液相から同時に短時間で重金属を分離することが可能となる。 The heavy metal removal method of the present invention is carried out by adding an adsorbent so that the heavy metal adsorption capacity is about 40 times that of organic substances (10.0 to 20.0% of organic substances on a dry weight basis) under weakly acidic conditions. Thus, it is possible to simultaneously separate heavy metals from the organic substance and the liquid phase in a short time.

また、本発明の重金属除去方法は、低温条件で行うことが好ましく、好ましくは1℃ 〜 12℃、さらに好ましくは2℃ 〜 7℃、より好ましくは4℃ 〜 6℃の低温条件下で行う。 Moreover, it is preferable to perform the heavy metal removal method of this invention on low temperature conditions, Preferably it is 1 to 12 degreeC, More preferably, it is 2 to 7 degreeC, More preferably, it is performed on low temperature conditions of 4 to 6 degreeC.

従来の酸処理法では有機物中の重金属と液相の水素イオンの置換反応を利用して重金属を解離させており、液相の水素イオン濃度が置換反応の推進力となるため強酸性水溶液を用いる必要があった。本発明の重金属除去方法では、有機物から液相に解離した微量の重金属を即座に吸着材で除去することにより液相の重金属濃度を常に低濃度に保ち、有機物中と液相の重金属の濃度差を推進力として有機物から重金属を解離させるため、弱酸性条件においても有機物中の重金属を99.0%以上除去することができる。 In conventional acid treatment methods, heavy metals are dissociated using substitution reactions between heavy metals in organic substances and liquid phase hydrogen ions, and strong acidic aqueous solutions are used because the hydrogen ion concentration in the liquid phase is the driving force for substitution reactions. There was a need. In the heavy metal removal method of the present invention, the heavy metal concentration in the liquid phase is always kept at a low concentration by immediately removing a small amount of heavy metal dissociated from the organic material into the liquid phase with the adsorbent, and the concentration difference between the organic material and the heavy metal in the liquid phase As a driving force, the heavy metals are dissociated from the organic matter, so that 99.0% or more of the heavy metals in the organic matter can be removed even under weakly acidic conditions.

従来の方法では、重金属の低減に4 〜 7日の時間を要していたが(前記特許文献3)、本発明の重金属除去方法によれば、弱酸性、低温条件において約24時間と短時間で重金属を99.0%以上除去することができるので、鮮度と品質低下の原因となるタンパク質や脂質等の酸変性、酵素による自己消化、雑菌の繁殖等を抑制でき、処理後の有機物を生鮮食品として利用することが可能となる。 In the conventional method, it took 4 to 7 days to reduce the heavy metal (Patent Document 3). However, according to the heavy metal removal method of the present invention, it takes a short time of about 24 hours under mildly acidic and low temperature conditions. Can remove more than 99.0% of heavy metals, so that it can suppress acid denaturation of proteins and lipids, self-digestion by enzymes, and proliferation of various bacteria that cause deterioration of freshness and quality. It can be used as food.

また、重金属を除去した有機物を食品として利用するためには、中和剤を用いて中性に調整する必要があるが、本発明で使用する酸性水溶液の水素イオン濃度は、既存技術で使用する強酸性水溶液(pH1.0)の約1/10000であり、中和剤の量を格段に削減できるため品質にほとんど影響を及ぼさない。 Moreover, in order to use the organic substance from which heavy metals have been removed as food, it is necessary to adjust the neutrality with a neutralizing agent. However, the hydrogen ion concentration of the acidic aqueous solution used in the present invention is used in the existing technology. It is about 1 / 10,000 of a strongly acidic aqueous solution (pH 1.0), and the amount of neutralizing agent can be greatly reduced, so it hardly affects the quality.

本発明によれば、有機物に含まれる重金属が含水状態で0.1mg/kg以下となるまで除去できる。また、弱酸性において短時間で重金属を除去できるので、作業安全性が高く処理コストも低い。 According to the present invention, the heavy metal contained in the organic substance can be removed until it becomes 0.1 mg / kg or less in a water-containing state. Further, since heavy metals can be removed in a short time under weak acidity, the work safety is high and the processing cost is low.

本発明の方法によれば、既存技術に比べて処理時間と使用薬品量を大幅に削減できるので本来低コストであるが、吸着材として腐食物質、藻類、粘土鉱物等の安価な天然材料を使用することにより、重金属吸着材にかかるコストをさらに大幅に削減できるため、食品として利用できない低鮮度、低品質有機物からの飼料や肥料の生産にも適している。 According to the method of the present invention, the processing time and the amount of chemicals used can be significantly reduced compared to the existing technology, which is inherently low cost, but cheap natural materials such as corrosive substances, algae and clay minerals are used as the adsorbent. By doing so, the cost of the heavy metal adsorbent can be further greatly reduced, so it is suitable for the production of feed and fertilizer from low freshness and low quality organic matter that cannot be used as food.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.

この実施例ではイカの内臓を使用した。 In this example, squid internal organs were used.

処理対象有機物としてカドミウムを含む新鮮なイカ(北海道浦河町産)内臓200gをホモジナイズしたものを使用した。 What homogenized 200 g of internal organs of fresh squid (Uragawa-cho, Hokkaido) containing cadmium as the organic substance to be treated was used.

pH3.0に調製した希クエン酸(和光純薬製)水溶液190gに該イカ内臓を添加し2時間撹拌した。イカ内臓を添加するとpHが上昇するため、希クエン酸水溶液を添加しpH4.0に調整した。 The squid viscera was added to 190 g of dilute citric acid (manufactured by Wako Pure Chemical Industries), adjusted to pH 3.0, and stirred for 2 hours. Since the pH increased when squid viscera was added, dilute aqueous citric acid solution was added to adjust the pH to 4.0.

次に、キレート樹脂(ミヨシ油脂製 エポラスMX−8C)をイカ内臓に対して20%添加し、攪拌機(東京理化機器 ハイスターラーHI−15)に撹拌翼を取り付けて水溶液、イカ内臓およびキレート樹脂を24時間混合撹拌した。 Next, 20% of chelate resin (Eporus MX-8C made by Miyoshi Oil & Fats) is added to the squid viscera, and a stirring blade is attached to a stirrer (Tokyo Rika Histarr HI-15) to prepare an aqueous solution, squid viscera and chelate resin. The mixture was stirred for 24 hours.

攪拌速度はキレート樹脂が全体に拡散する程度とし、処理温度はインキュベータ(EYELA製 LTI601SD)中で5℃を保って行った。 The stirring speed was such that the chelate resin diffused throughout, and the treatment temperature was maintained at 5 ° C. in an incubator (LTI601SD manufactured by EYELA).

その結果、初期濃度が含水状態で23mg/kgであったイカ内臓中のカドミウムが12時間後には前記状態で0.6mg/kg以下に低下し、24時間後には前記状態で0.1mg/kg以下となった。その後、重曹で中和し風味と食味を生と比較したところ、風味はほとんど同じであり、食味は水と混合した分、生よりも若干味が薄くなったが劣ることはなかった。 As a result, cadmium in the squid viscera, whose initial concentration was 23 mg / kg in the water-containing state, decreased to 0.6 mg / kg or less in the above state after 12 hours, and 0.1 mg / kg in the state after 24 hours. It became the following. Then, when neutralizing with sodium bicarbonate and comparing the flavor and taste with raw, the flavor was almost the same, and the taste was slightly inferior to that of raw, but not inferior.

図1は、本発明に係る方法によりイカ内臓からカドミウムを分離した様子を示すため、液相と固相、及び液相のみのカドミウム濃度の推移を示す。本例においては、該攪拌の直後では、固相すなわち有機物からカドミウムが解離する速度は、重金属吸着剤におけるカドミウムの吸着速度を上回るため、液相のカドミウム濃度が比較的高いが、徐々にカドミウムの解離速度と解離吸着速度が等しくなるため、液相のカドミウム濃度は低くなる。 FIG. 1 shows the transition of the cadmium concentration in the liquid phase, the solid phase, and only the liquid phase in order to show the state where cadmium was separated from the squid viscera by the method according to the present invention. In this example, immediately after the stirring, the cadmium dissociation rate from the solid phase, that is, the organic substance exceeds the cadmium adsorption rate in the heavy metal adsorbent, so the cadmium concentration in the liquid phase is relatively high. Since the dissociation rate and the dissociation adsorption rate are equal, the cadmium concentration in the liquid phase is lowered.

一方、図2は、有機物と重金属吸着材を同時に攪拌せず、重金属吸着材を充填したカラムに液体だけを通水し循環させることにより、イカ内臓からカドミウムを分離した様子を示す。本例によると、液相から速やかにカドミウムを取り除くことができないため、固相からのカドミウム分離に時間がかかる。本発明に係る方法と比較して、カドミウムの分離には少なくとも4倍の時間を要することがわかる。 On the other hand, FIG. 2 shows a state in which cadmium is separated from the squid viscera by passing only liquid through a column filled with the heavy metal adsorbent and circulating it without stirring the organic substance and the heavy metal adsorbent simultaneously. According to this example, since cadmium cannot be quickly removed from the liquid phase, it takes time to separate cadmium from the solid phase. It can be seen that the separation of cadmium takes at least four times longer than the method according to the invention.

また、重金属吸着材を添加しない場合、有機物からのカドミウムの解離にともない液相のカドミウム濃度が上昇するため、pH4.0 〜 4.5の酸で洗浄すると有機物中のカドミウムは80.0% 〜 50.0%程度解離する。 In addition, when no heavy metal adsorbent is added, the cadmium concentration in the liquid phase increases with the dissociation of cadmium from the organic matter, so when washed with an acid having a pH of 4.0 to 4.5, the cadmium in the organic matter is 80.0% to Dissociates about 50.0%.

表1は、経過時間とカドミウムの残留濃度及びカドミウム除去率との相関を表したものである。本発明に係る方法においては、重金属吸着材と有機物を同時に混合攪拌するため、有機物から解離した重金属は速やかに吸着材により捕捉されることが表1より明らかである。 Table 1 shows the correlation between the elapsed time, the residual concentration of cadmium, and the cadmium removal rate. In the method according to the present invention, since the heavy metal adsorbent and the organic substance are mixed and stirred simultaneously, it is clear from Table 1 that the heavy metal dissociated from the organic substance is quickly captured by the adsorbent.

Figure 0004000346
Figure 0004000346

図3は、クエン酸によるカドミウム溶出実験の結果である。イカ内臓(含水物)に対して同重量のクエン酸水溶液を加え、pHはクエン酸濃度を変えることにより調整した。約pH4.0〜5.0の範囲で、pHの低下にともないカドミウム溶出率が急激に上昇することがわかる。また、99.0%以上のカドミウムを溶出させるためには、少なくともpH3.0以下にしなければならないこともわかる。 FIG. 3 shows the results of a cadmium elution experiment with citric acid. The same weight citric acid aqueous solution was added to the squid viscera (water-containing product), and the pH was adjusted by changing the citric acid concentration. It can be seen that the cadmium elution rate increases rapidly with decreasing pH in the range of about pH 4.0 to 5.0. It can also be seen that in order to elute 99.0% or more of cadmium, the pH must be at least 3.0 or less.

図4は、イカ内臓(含水物)に対して同重量のクエン酸水溶液を加えた場合(図3と同条件)のクエン酸添加量とpHの関係を示したものである。pH4.5に調整する場合はイカ内臓に対して約1.0%、pH4.0では約2.0%程度のクエン酸を添加すればよいが、pH3.0に調整する場合には約10.0%のクエン酸を添加しなければならない。該図より、強酸性領域で脱カドミウム処理を行うことにより、処理対象である有機物の品質が損なわれるだけでなく、処理コストが大幅に増大することがわかる。 FIG. 4 shows the relationship between the amount of citric acid added and the pH when the same amount of citric acid aqueous solution was added to the squid viscera (water-containing product) (same conditions as in FIG. 3). When adjusting to pH 4.5, about 1.0% citric acid may be added to the squid viscera, and about 2.0% at pH 4.0, but when adjusting to pH 3.0, about 10% is added. 0.0% citric acid must be added. From this figure, it can be seen that by performing the cadmium treatment in the strongly acidic region, not only the quality of the organic matter to be treated is impaired, but also the treatment cost is greatly increased.

図5は、弱酸性陽イオン交換キレート樹脂(▲)と強酸性陽イオン交換樹脂(△)によるカドミウム吸着実験の結果である。カドミウム初期濃度を10ppm、樹脂添加量を200g/Lとして実験を行った。キレート樹脂の吸着率(▲)は約pH3.0からpHの上昇とともに急激に増加するが,強酸性樹脂の吸着率(△)はpH3.0以上でほとんど変化しない。該図より、カドミウム吸着率がpHの影響を受けない強酸性陽イオン交換樹脂の方が、本発明によるカドミウム除去操作に適しているように思われるが、このような吸着特性をもつ樹脂の再生にはpH1.0以下の強酸性水溶液によるカドミウム脱着処理が必要となる。よって、使用後の吸着剤の再生を含むプロセスのコストと安全性を考えた場合、弱酸性水溶液での再生が可能なキレート樹脂のような吸着特性をもつ吸着剤が適している。
FIG. 5 shows the results of a cadmium adsorption experiment using a weak acid cation exchange chelate resin (A) and a strong acid cation exchange resin (A). The experiment was conducted with an initial cadmium concentration of 10 ppm and a resin addition amount of 200 g / L. The adsorption rate (▲) of the chelate resin increases rapidly from about pH 3.0 as the pH rises, but the adsorption rate (Δ) of the strongly acidic resin hardly changes at pH 3.0 or higher. From the figure, it seems that the strongly acidic cation exchange resin whose cadmium adsorption rate is not affected by pH seems to be more suitable for the cadmium removal operation according to the present invention, but the regeneration of the resin having such adsorption characteristics. Requires a cadmium desorption treatment with a strongly acidic aqueous solution having a pH of 1.0 or less. Therefore, when considering the cost and safety of the process including regeneration of the adsorbent after use, an adsorbent having an adsorption characteristic such as a chelate resin that can be regenerated with a weakly acidic aqueous solution is suitable.

図6は、イカ内臓からのカドミウム溶出(図3)とキレート樹脂へのカドミウム吸着(図5)のpH依存性を比較したものである。イカ内臓からのカドミウム溶出率が高いpH3.0ではキレート樹脂へのカドミウム吸着率がきわめて低く、キレート樹脂へのカドミウム吸着率が高いpH6.0ではイカ内臓からのカドミウム脱着率がきわめて低い。このことから、イカ内臓中のカドミウムを効率よくキレート樹脂に移動させる操作条件として、脱着率と吸着率がともに約50%となるpH4.5付近が最適であることがわかる。また、前述したように約pH4.5における操作はコスト面においても有利である。 FIG. 6 compares the pH dependence of cadmium elution from the squid viscera (FIG. 3) and cadmium adsorption to the chelate resin (FIG. 5). At pH 3.0 where the cadmium elution rate from the squid viscera is high, the cadmium adsorption rate to the chelate resin is extremely low, and at pH 6.0 where the cadmium adsorption rate to the chelate resin is high, the cadmium desorption rate from the squid viscera is extremely low. From this, it can be seen that the optimum operating condition for efficiently transferring cadmium in the squid viscera to the chelate resin is around pH 4.5 where both the desorption rate and the adsorption rate are about 50%. As described above, operation at about pH 4.5 is advantageous in terms of cost.


処理温度によるイカ内臓のpH変化を図7に示す。該図より、30℃においては、脂質の分解による脂肪酸の増加によりpHが低下することがわかる。

The change in pH of the squid viscera with the treatment temperature is shown in FIG. From this figure, it can be seen that at 30 ° C., the pH decreases due to the increase in fatty acids due to lipid degradation.

この実施例ではカドミウムを含む大豆について行った。 In this example, the experiment was conducted on soybeans containing cadmium.

処理対象有機物としてカドミウムを含む大豆(当社に於いてカドミウムを含む土壌で生育させた大豆)50gをミル(オスター社製 ミニブレンダー)で破砕したものを使用した。 As the organic substance to be treated, 50 g of soybean containing cadmium (in this company, soybean grown on soil containing cadmium) crushed with a mill (Minister blender manufactured by Oster) was used.

pH3.0に調製した希クエン酸水溶液50gに該大豆粉砕物を浸漬し撹拌した。大豆粉砕物を添加するとpHが上昇するので、クエン酸水溶液を添加しpH4.0に調整した。 The pulverized soybean was immersed in 50 g of dilute citric acid aqueous solution adjusted to pH 3.0 and stirred. Since the pH increased when the soybean ground material was added, an aqueous citric acid solution was added to adjust the pH to 4.0.

攪拌機に撹拌翼を取り付けて水溶液と大豆を混合撹拌した。攪拌速度はキレート樹脂が全体に拡散する程度とし、処理温度はインキュベータ中で5℃を保って行った。 A stirring blade was attached to the stirrer, and the aqueous solution and soybean were mixed and stirred. The stirring speed was such that the chelate resin diffused throughout, and the treatment temperature was maintained at 5 ° C. in an incubator.

大豆が水分を吸って膨潤するまでに約12時間を要し、その後カドミウムの解離が起こるため、12時間後にキレートに樹脂を添加し、さらに約36時間攪拌を続けた。 It took about 12 hours for the soybean to absorb water and swell, and then cadmium dissociation occurred. Therefore, after 12 hours, the resin was added to the chelate and stirring was continued for about 36 hours.

その結果、初期濃度が含水状態で1.77mg/kgであった大豆中のカドミウムが、36時間後には前記状態で0.6mg/kg以下に低下し、48時間後には前記状態で0.07mg/kg以下となった。その後、重曹で中和し風味と食味を生の大豆と比較したところ遜色はなかった。 As a result, cadmium in soybean, which had an initial concentration of 1.77 mg / kg in a water-containing state, decreased to 0.6 mg / kg or less in the above state after 36 hours, and 0.07 mg in the above state after 48 hours. / kg or less. After that, it was neutralized with baking soda and compared with raw soybeans in flavor and taste.

約pH3で処理した場合はキレート樹脂の吸着効率が低く、樹脂を頻繁に交換する必要があるため、処理に3〜4日を要し使用する有機酸の量も約5〜10倍になる。また、約pH5.0で処理した場合には有機物からのカドミウムの解離率が低く、処理に長時間を要するため、酵素による自己消化や雑菌繁殖の影響で食味が著しく低下する。 When the treatment is carried out at about pH 3, the adsorption efficiency of the chelate resin is low and the resin needs to be frequently exchanged. Therefore, the treatment takes 3 to 4 days, and the amount of the organic acid used is also about 5 to 10 times. Further, when treated at about pH 5.0, the dissociation rate of cadmium from the organic matter is low, and the treatment takes a long time. Therefore, the taste is significantly lowered due to the effects of self-digestion by the enzyme and the propagation of various bacteria.

図1は、カドミウムを含む有機物と重金属吸着剤とを混合攪拌した場合の、液相と固相、及び液相のみのカドミウム濃度の推移を示すグラフである。図1の横軸は時間(h)を示し、縦軸はカドミウム濃度(mg/kg)を示す。FIG. 1 is a graph showing changes in cadmium concentration in a liquid phase and a solid phase and only in the liquid phase when an organic substance containing cadmium and a heavy metal adsorbent are mixed and stirred. In FIG. 1, the horizontal axis indicates time (h), and the vertical axis indicates cadmium concentration (mg / kg). 図2は、カドミウムを含む有機物と重金属吸着材を同時に攪拌せず、重金属吸着材を充填したカラムに液体だけを通水し循環させた場合の、液相と固相、及び液相のみのカドミウム濃度の推移を示すグラフである。図2の横軸は時間(h)を示し、縦軸はカドミウム濃度(mg/kg)を示す。Fig. 2 shows the liquid phase, solid phase, and liquid phase only cadmium when the organic substance containing cadmium and the heavy metal adsorbent are not stirred at the same time, but only the liquid is passed through the column packed with the heavy metal adsorbent and circulated. It is a graph which shows transition of a density | concentration. In FIG. 2, the horizontal axis indicates time (h), and the vertical axis indicates cadmium concentration (mg / kg). 図3は、イカ内臓からのカドミウム溶出率のpH依存性を示すグラフである。図3の横軸はpH(pH)を示し、縦軸はイカ内臓からのカドミウム溶出率(%)を示す。FIG. 3 is a graph showing the pH dependence of the cadmium elution rate from the squid viscera. The horizontal axis of FIG. 3 indicates pH (pH), and the vertical axis indicates cadmium elution rate (%) from the squid viscera. 図4は、クエン酸添加によるpHの変化を示すグラフである。図4の横軸は含水状態におけるイカ内臓物に対するクエン酸添加量(%)を示し、縦軸はpH(pH)を示す。FIG. 4 is a graph showing changes in pH due to addition of citric acid. The horizontal axis of FIG. 4 shows the amount of citric acid added (%) with respect to the squid viscera in a water-containing state, and the vertical axis shows pH (pH). 図5は、重金属吸着材である弱酸性陽イオン交換キレート樹脂と強酸性陽イオン交換樹脂によるCd吸着のpH依存性を示すグラフである。図5の横軸はpH(pH)を示し、縦軸はカドミウム吸着率(%)を示す。FIG. 5 is a graph showing the pH dependence of Cd adsorption by a weakly acidic cation exchange chelate resin and a strongly acidic cation exchange resin that are heavy metal adsorbents. The horizontal axis in FIG. 5 indicates pH (pH), and the vertical axis indicates cadmium adsorption rate (%). 図6は、イカ内臓からのカドミウム溶出率(図3)と重金属吸着材であるキレート樹脂へのカドミウム吸着率(図5)のpH依存性を比較したグラフである。図6の横軸はpH(pH)を示し、縦軸はカドミウム吸着率(%)又は溶出率(%)を示す。FIG. 6 is a graph comparing the pH dependence of the cadmium elution rate from the squid viscera (FIG. 3) and the cadmium adsorption rate to the chelate resin as the heavy metal adsorbent (FIG. 5). The horizontal axis of FIG. 6 indicates pH (pH), and the vertical axis indicates cadmium adsorption rate (%) or elution rate (%). 図7は、処理温度によるイカ内臓のpH変化を示すグラフである。図7の横軸は時間(h)を示し、縦軸はpH(pH)を示す。FIG. 7 is a graph showing the change in pH of the squid viscera with the treatment temperature. The horizontal axis in FIG. 7 indicates time (h), and the vertical axis indicates pH (pH).

Claims (3)

重金属を含む有機物を加熱することなく、前記有機物が含まれた、pH3.0〜pH5.0の酸性水溶液を調製し、この弱酸性域に於いて重金属を吸着するキレート作用やイオン交換作用を有する樹脂又は繊維を前記酸性水溶液に対して加え、2℃から7℃の低温条件下で混合撹拌することにより、有機物と液相から同時に重金属を吸着除去することを特徴とする、重金属除去方法。 Prepare an acidic aqueous solution with a pH of 3.0 to pH 5.0 containing the organic substance without heating the organic substance containing the heavy metal, and have a chelating action and an ion exchange action for adsorbing the heavy metal in this weakly acidic region. A method for removing heavy metals, comprising adding resin or fiber to the acidic aqueous solution and mixing and stirring under low temperature conditions of 2 ° C to 7 ° C to simultaneously adsorb and remove heavy metals from the organic substance and the liquid phase. 前記有機物と前記吸着材の重金属イオンに対する競争的吸着平衡を利用し、pH3.0〜pH5.0の条件において前記吸着材の重金属吸着容量が前記有機物の重金属吸着容量に対して過剰となるように前記吸着材を添加することを特徴とする、請求項1に記載の重金属除去方法。 Utilizing the competitive adsorption equilibrium of the organic matter and the adsorbent with heavy metal ions, the adsorption capacity of the heavy metal of the adsorbent becomes excessive with respect to the heavy metal adsorption capacity of the organic matter under the condition of pH 3.0 to pH 5.0. The heavy metal removal method according to claim 1, wherein the adsorbent is added. 重金属を含む食品を加熱することなく、前記食品が含まれた、pH3.0〜pH5.0の酸性水溶液を調製し、この弱酸性域に於いて重金属を吸着するキレート作用やイオン交換作用を有する樹脂又は繊維を前記酸性水溶液に対して加え、2℃〜7℃の低温条件下で混合撹拌することにより、食品と液相から同時に重金属を吸着除去することを特徴とする、重金属が除去された食品の製造方法。Prepare an acidic aqueous solution with a pH of 3.0 to pH 5.0 containing the food without heating the food containing heavy metal, and have chelating action and ion exchange action to adsorb heavy metal in this weakly acidic region. The heavy metal is removed by adding a resin or fiber to the acidic aqueous solution and mixing and stirring under a low temperature condition of 2 ° C. to 7 ° C., thereby simultaneously adsorbing and removing the heavy metal from the food and liquid phase. A method for producing food.
JP2006113624A 2006-04-17 2006-04-17 Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby Expired - Fee Related JP4000346B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113624A JP4000346B1 (en) 2006-04-17 2006-04-17 Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113624A JP4000346B1 (en) 2006-04-17 2006-04-17 Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby

Publications (2)

Publication Number Publication Date
JP4000346B1 true JP4000346B1 (en) 2007-10-31
JP2007282572A JP2007282572A (en) 2007-11-01

Family

ID=38683419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113624A Expired - Fee Related JP4000346B1 (en) 2006-04-17 2006-04-17 Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby

Country Status (1)

Country Link
JP (1) JP4000346B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120939A (en) * 2008-11-17 2010-06-03 Beijing Ginko Group Biological Technology Co Ltd Method for producing fucoxanthin-containing extract

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324746B2 (en) * 2007-02-14 2013-10-23 公立大学法人大阪府立大学 Method for producing oil or fat from which heavy metals have been removed
JP4671203B2 (en) * 2008-04-16 2011-04-13 石川県 Method for removing heavy metals from fish sauce
JP2010057442A (en) * 2008-09-05 2010-03-18 Hokkaido Univ Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same
JP5386694B2 (en) * 2010-08-20 2014-01-15 石川県 Method for removing heavy metals in fish sauce
KR101291507B1 (en) 2011-08-03 2013-07-30 포항공과대학교 산학협력단 Method for reduction of hexavalent chromium
KR101546817B1 (en) 2014-11-13 2015-08-25 대한민국 Method for eliminating heavy metal in seaweeds using organic acids and seaweeds which heavy metal is eliminated by using thereof
CO2019006265A1 (en) * 2019-06-14 2020-12-21 Compania Nac De Chocolates S A S Process for the removal of heavy metals by chelation
CN113142464A (en) * 2021-03-22 2021-07-23 陈元曦 Method for removing heavy metal from marine products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120939A (en) * 2008-11-17 2010-06-03 Beijing Ginko Group Biological Technology Co Ltd Method for producing fucoxanthin-containing extract

Also Published As

Publication number Publication date
JP2007282572A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4000346B1 (en) Method for removing heavy metal from organic substance containing heavy metal, and method for producing food obtained thereby
US7867538B2 (en) Processes of improving the quality of oil and products produced therefrom
KR20140107663A (en) Method for processing crustaceans to produce low fluoride/low trimethyl amine products thereof
CA2833448C (en) A process for the manufacture of products from cruciferous crops
US5714075A (en) Method of processing a cheese processing waste stream
JP2022541399A (en) Process and product for isolating high-purity protein preparations from plant material
CN108935631B (en) Arsenic removal and fresh-keeping treatment method for euphausia superba
JP2016502573A (en) Removal of unwanted components from oil compositions
JP5341299B2 (en) Method for producing collagen and low molecular weight collagen
JP4921464B2 (en) Crosslinking of β-cyclodextrin for cholesterol removal and method for regenerating the same
JPS62253358A (en) Processed soybean and production thereof
JP2010057442A (en) Method for removing heavy metal from fish and shellfish containing harmful heavy metal in short time, and manufacturing method of foodstuff obtained by the same
CA2739311A1 (en) Process for removal of contaminations from organic oils
JP2008061571A (en) Method for producing liquid oil and fat for animal feeding stuff, and mixed animal feeding stuff
JP4092252B2 (en) Method for obtaining useful substance from scallop visceral tissue and plant therefor
CN102199190A (en) Method for deodorizing and decoloring silkworm chrysalis proteins
JP5512995B2 (en) Method for producing imidazole dipeptide-containing composition
CN102972806A (en) Deodorization method of tuna muscle and special reagent thereof
RU2329098C1 (en) Method of extracting ions of heavy metals from water solutions
JP2009000004A (en) Method for eliminating heavy metal from broth of heavy metal-containing organic material
JP2893525B2 (en) Weathered reef coral grains / powder, method and apparatus for producing the same
RU2799342C1 (en) Method for obtaining sorbents from waste products of deep processing of sunflower meal
JP2004097939A (en) Method for processing scallop internal organ
JP4698792B2 (en) Method for removing heavy metals from mushroom extract
RU2074257C1 (en) Method of antibiotic isolation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees