JP2010056399A - Method of joining substrate and object to be mounted using solder paste having excellent registration - Google Patents

Method of joining substrate and object to be mounted using solder paste having excellent registration Download PDF

Info

Publication number
JP2010056399A
JP2010056399A JP2008221633A JP2008221633A JP2010056399A JP 2010056399 A JP2010056399 A JP 2010056399A JP 2008221633 A JP2008221633 A JP 2008221633A JP 2008221633 A JP2008221633 A JP 2008221633A JP 2010056399 A JP2010056399 A JP 2010056399A
Authority
JP
Japan
Prior art keywords
substrate
solder paste
metallized layer
solder
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008221633A
Other languages
Japanese (ja)
Inventor
Masayuki Ishikawa
石川  雅之
Susumu Nakagawa
将 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008221633A priority Critical patent/JP2010056399A/en
Priority to US12/736,986 priority patent/US20110067911A1/en
Priority to PCT/JP2009/060785 priority patent/WO2009151123A1/en
Priority to KR1020107022971A priority patent/KR101565184B1/en
Priority to CN201310063158.9A priority patent/CN103208435B/en
Priority to TW098119752A priority patent/TWI536466B/en
Priority to CN2009801204361A priority patent/CN102047397B/en
Priority to EP09762553A priority patent/EP2290676A4/en
Publication of JP2010056399A publication Critical patent/JP2010056399A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of joining by which an object is mounted on the same position and in the same direction with respect to a substrate using a solder paste. <P>SOLUTION: A solder paste 3 is mounted or applied between a metalized layer formed on the substrate and a metalized layer formed on the square object 4 to be mounted, and then subjected to reflow processing. When the substrate and the square object 4 to be mounted are jointed using the solder paste, the metalized layer formed on the surface of the substrate has a planar shape that has a metalized layer body part 6, the area of which is smaller than the area of the metalized layer on the object 4 to be mounted, and at least two solder inducing parts of the metalized layer 7 protruding from around the metalized layer body part 6, so that during the reflow processing, diagonal lines of the square object 4 to be mounted and the protruding direction of the solder inducing parts of the metalized layer 7 is rotated so as to coincide with each other for soldering. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、はんだペーストを用いて基板に対して被搭載物を同じ位置および方向となるように接合する方法に関するものであり、特にAu−Sn合金はんだペーストを用いて基板に対して素子を同じ位置および方向となるように接合する方法に関するものである。   The present invention relates to a method for bonding an object to be mounted to a substrate in the same position and direction using a solder paste, and in particular, the same element is used for a substrate using an Au-Sn alloy solder paste. The present invention relates to a method of joining so as to be in position and direction.

一般に、LED(発光ダイオード)素子、GaAs光素子、GaAs高周波素子、熱伝素子などの半導体素子と基板との接合などにAu−Sn合金はんだペーストなどが使用されるようになってきた。このAu−Sn合金はんだペーストは、Sn:15〜25質量%(好ましくはSn:20質量%)を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金ガスアトマイズ粉末とロジン、活性剤、溶剤および増粘剤からなる市販のフラックスとを混合して作られることが知られている。   In general, an Au—Sn alloy solder paste or the like has been used for bonding a semiconductor element such as an LED (light emitting diode) element, a GaAs optical element, a GaAs high frequency element, and a heat transfer element to a substrate. This Au—Sn alloy solder paste contains Sn: 15 to 25% by mass (preferably Sn: 20% by mass), and the remainder is composed of Au and inevitable impurities. Au—Sn eutectic alloy gas atomized powder and rosin It is known that it is made by mixing a commercially available flux comprising an activator, a solvent and a thickener.

このAu−Sn合金はんだペーストを使用して素子と基板を接合するとAu−Sn合金はんだ接合層がAu−Snはんだ合金であるので熱伝導性が良く接合信頼性も高いこと、ペーストであるので複数の接合部に一括供給でき、さらに一括熱処理できること、リフロー時にフラックスがAu−Snはんだ合金表面を覆っているために酸化膜が少なく、そのため、接合時の溶融Au−Snはんだ合金の流動性が大きく、濡れが良くなって素子全面を接合することができること、さらに接合時に素子に過剰な荷重をかける必要がないことなどのメリットがあるとされている。 When an element and a substrate are joined using this Au—Sn alloy solder paste, since the Au—Sn alloy solder joint layer is an Au—Sn solder alloy, the thermal conductivity is high and the joint reliability is high, and since it is a paste, a plurality of Can be supplied to the joints at once, and further heat treatment can be performed, and the flux covers the surface of the Au—Sn solder alloy during reflow, so there is little oxide film. Therefore, the fluidity of the molten Au—Sn solder alloy during joining is large. It is said that there are merits such that the entire surface of the element can be bonded by improving the wettability, and that it is not necessary to apply an excessive load to the element at the time of bonding.

このAu−Sn合金はんだペーストを用いて基板と素子を接合するには、まず、図10(a)の断面側面図に示されるように、基板1の表面に形成されたメタライズ層2の上にAu−Sn合金はんだペースト3を搭載または塗布し、このAu−Sn合金はんだペースト3の上に素子4を素子4のメタライズ層2´がAu−Sn合金はんだペースト3に接するように搭載し、この状態で加熱してリフロー処理を施したのち冷却すると、図10(b)の断面側面図に示されるように、Au−Sn合金はんだ接合層5を介して基板1と素子4が接合する(特許文献1など参照)。この時、基板1の表面に形成されるメタライズ層2の面積は、素子4のメタライズ層2´の面積と同じかまたは素子4のメタライズ層2´の面積よりも大きくとることが普通である。また、素子4は一般に正方形状を有しているが、長方形状を有しているものもある。
特開2007−61857
In order to join the substrate and the element using this Au—Sn alloy solder paste, first, as shown in the sectional side view of FIG. 10A, on the metallized layer 2 formed on the surface of the substrate 1. The Au—Sn alloy solder paste 3 is mounted or applied, and the element 4 is mounted on the Au—Sn alloy solder paste 3 so that the metallized layer 2 ′ of the element 4 is in contact with the Au—Sn alloy solder paste 3. When the substrate 1 is heated and then reflowed and then cooled, the substrate 1 and the element 4 are bonded via the Au—Sn alloy solder bonding layer 5 as shown in the sectional side view of FIG. Reference 1 etc.). At this time, the area of the metallized layer 2 formed on the surface of the substrate 1 is generally the same as the area of the metallized layer 2 ′ of the element 4 or larger than the area of the metallized layer 2 ′ of the element 4. The element 4 generally has a square shape, but some elements have a rectangular shape.
JP2007-61857

図11は、図10(a)を上方向から見た平面図である。図10(a)および図11に示されるように、基板1のメタライズ層2の上にAu−Sn合金はんだペースト3を搭載または塗布し、このAu−Sn合金はんだペースト3の上に正方形状の素子4を基板1のメタライズ層2の中心部に同軸でかつ同一方向となるように搭載し、この状態で加熱してリフロー処理を施したのち冷却すると、正方形状の素子4は基板1のメタライズ層2の中心部に同軸でかつ同一方向となるようにはんだ付けされる。しかし、リフロー処理時に溶融したAu−Sn合金はんだは、基板1におけるメタライズ層2の全面に広がると同時に一時的に素子4が溶融したAu−Sn合金はんだの上に浮んだ状態になり、このとき素子4が回転または移動するなどして、冷却後は、図10(b)の上方向から見た平面図である図12に示されるように、素子4はメタライズ層2の上のAu−Sn合金はんだ接合層5の上に、基板1のメタライズ層2に対して基板1のメタライズ層2の中心部よりずれたり傾いた状態ではんだ接合されることが多い。特に工業的に素子4を基板にはんだ接合するには、広い基板の上に多数の整列したメタライズ層を形成し、この多数のメタライズ層の上にそれぞれAu−Sn合金はんだペーストを搭載または塗布し、このAu−Sn合金はんだペーストの上に素子を規則正しく搭載した状態で加熱炉に装入し、多数個の素子を1回のリフロー処理により素子を基板にはんだ接合するが、リフロー処理時に素子が回転して、整列した基板のメタライズ層に対して中心部よりランダムな方向にずれて傾いて素子がはんだ接合され、出荷するための製品としては好ましくない。また、今後のパッケージサイズの更なる微小化の際に、素子同士の距離が近づくと、素子同士の接触が生じることも懸念される。 FIG. 11 is a plan view of FIG. 10A viewed from above. As shown in FIG. 10A and FIG. 11, an Au—Sn alloy solder paste 3 is mounted or applied on the metallized layer 2 of the substrate 1, and a square shape is formed on the Au—Sn alloy solder paste 3. When the element 4 is mounted on the central portion of the metallized layer 2 of the substrate 1 so as to be coaxial and in the same direction, heated in this state, subjected to reflow treatment, and then cooled, the square element 4 becomes the metallization of the substrate 1. It is soldered so as to be coaxial and in the same direction at the center of the layer 2. However, the Au—Sn alloy solder melted during the reflow process spreads over the entire surface of the metallized layer 2 in the substrate 1 and at the same time the element 4 temporarily floats on the melted Au—Sn alloy solder. After cooling, for example, when the element 4 is rotated or moved, the element 4 is made of Au—Sn on the metallized layer 2 as shown in FIG. 12 which is a plan view seen from above in FIG. On the alloy solder bonding layer 5, solder bonding is often performed with respect to the metallized layer 2 of the substrate 1 in a state shifted or inclined from the center of the metallized layer 2 of the substrate 1. In particular, in order to solder the element 4 to the substrate industrially, a large number of aligned metallized layers are formed on a wide substrate, and Au-Sn alloy solder paste is mounted or applied on each of the large number of metallized layers. The elements are regularly mounted on the Au-Sn alloy solder paste and placed in a heating furnace, and a large number of elements are soldered to the substrate by a single reflow process. The device rotates and tilts in a random direction from the center with respect to the metallized layers of the aligned substrates, and the elements are soldered, which is not preferable as a product for shipment. In addition, when the package size is further reduced in the future, there is a concern that contact between the elements may occur when the distance between the elements approaches.

そこで、本発明者らは、基板のメタライズ層に対して素子が常に同じ位置でかつ一定の方向を向くようにはんだ付けすることができるAu−Sn合金はんだペーストを用いた基板と素子の接合方法を開発すべく研究を行った。その結果、
(イ)図1(a)の平面図に示されるように、基板表面に形成されるメタライズ層を、メタライズ層本体部分6とこのメタライズ層本体部分6の周囲から正方形状の素子4の対角線と同じ角度で交差して突出したはんだ誘引部メタライズ層7を有する平面形状とし、このメタライズ層本体部分6の上にAu−Sn合金はんだペースト3を搭載し、このAu−Sn合金はんだペースト3の上に前記メタライズ層本体部分6の面積よりも大きな面積を有する正方形状の素子4を任意の方向に搭載しリフロー処理すると、溶融はんだの表面張力が作用して図1(b)の平面図に示されるように、リフロー処理中に正方形状の素子4の対角線と前記はんだ誘引部メタライズ層7の突出方向とが一致するように回転してはんだ付けされ、正方形状の素子は一定の方向に向いてはんだ付けされる、
(ロ)素子が長方形状を有する素子4´である場合は、図2(a)の平面図に示されるように、基体表面に、メタライズ層本体部分6と長方形状を有する素子4´の対角線と同じ角度で交差するようにメタライズ層本体部分6から突出して形成されたはんだ誘引部メタライズ層7を有するメタライズ層を形成し、前記メタライズ層本体部分6の上にAu−Sn合金はんだペースト3を搭載し、このAu−Sn合金はんだペースト3の上に長方形状を有する素子4´を任意の方向を向くように搭載したのちリフロー処理すると、長方形状を有する素子4´の対角線方向とはんだ誘引部メタライズ層7の方向は一致するように一定の方向に向いて長方形状を有する素子4をはんだ付けすることができる、
(ハ)前記(イ)に示される現象は、基板と正方形状素子に限定されるものではなく、基板に対する一般の正方形状を有する被搭載物に対しても生じるものであり、さらに前記(ロ)に示される現象は、基板と長方形状の素子に限定されるものではなく、基板に対して接合する一般の長方形状を有する被搭載物に対しても生じるものであることから、この現象を基板と正方形状を有する被搭載物または基板と長方形状を有する被搭載物とのはんだ接合に適用して被搭載物を基板に対して一定の位置および方向にはんだ接合することができる、
(ニ)前記メタライズ層本体部分6とこのメタライズ層本体部分6の周囲から突出したはんだ誘引部メタライズ層7は電極膜として使用することができる、などの研究結果が得られたのである。
Therefore, the present inventors have made a bonding method of a substrate and an element using an Au—Sn alloy solder paste that can be soldered so that the element is always in the same position and in a certain direction with respect to the metallization layer of the substrate. Researched to develop. as a result,
(A) As shown in the plan view of FIG. 1A, the metallized layer formed on the substrate surface is divided into a metallized layer main body part 6 and a diagonal line of the square element 4 from the periphery of the metallized layer main body part 6. A planar shape having a solder attracting metallization layer 7 projecting at the same angle is provided, and an Au—Sn alloy solder paste 3 is mounted on the metallized layer main body portion 6. When a square-shaped element 4 having an area larger than the area of the metallized layer main body portion 6 is mounted in an arbitrary direction and subjected to a reflow process, the surface tension of the molten solder acts and is shown in the plan view of FIG. As shown in the figure, during the reflow process, the square-shaped element 4 is rotated and soldered so that the diagonal line of the square-shaped element 4 and the protruding direction of the solder attracting portion metallization layer 7 coincide with each other. It is soldered oriented in a predetermined direction,
(B) When the element is an element 4 ′ having a rectangular shape, as shown in the plan view of FIG. 2A, a diagonal line between the metallized layer body portion 6 and the element 4 ′ having a rectangular shape on the surface of the substrate. A metallized layer having a solder attracting part metallized layer 7 formed to protrude from the metallized layer main body part 6 so as to intersect at the same angle is formed, and Au—Sn alloy solder paste 3 is formed on the metallized layer main body part 6. When the element 4 ′ having a rectangular shape is mounted on the Au—Sn alloy solder paste 3 so as to face an arbitrary direction and then subjected to reflow treatment, the diagonal direction of the element 4 ′ having the rectangular shape and the solder attracting portion The element 4 having a rectangular shape can be soldered in a certain direction so that the directions of the metallized layer 7 coincide.
(C) The phenomenon shown in (a) above is not limited to the substrate and the square-shaped element, but also occurs for a mounted object having a general square shape with respect to the substrate. The phenomenon shown in (2) is not limited to the substrate and the rectangular element, but also occurs for an object having a general rectangular shape that is bonded to the substrate. It can be applied to solder bonding between a substrate and a mounted object having a square shape or a substrate and a mounted object having a rectangular shape, and the mounted object can be soldered to the substrate in a certain position and direction.
(D) The research results were obtained that the metallized layer main body part 6 and the solder attracting part metallized layer 7 protruding from the periphery of the metallized layer main body part 6 can be used as an electrode film.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した正方形状を有する被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と正方形状を有する被搭載物を接合するはんだペーストを用いた基板と正方形状を有する被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出した少なくとも2個のはんだ誘引部メタライズ層とからなる平面形状を有し、前記はんだ誘引部メタライズ層は隣のはんだ誘引部メタライズ層と前記正方形状を有する被搭載物の対角線と同じ角度で交差するように突出している位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(2)前記正方形状を有する被搭載物は正方形状を有する素子である前記(1)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(3)基板に形成されるメタライズ層は、電極膜である前記(1)または(2)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(4)メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した長方形状を有する被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と長方形状を有する被搭載物を接合するはんだペーストを用いた基板と被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が長方形状を有する被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出した少なくとも2個のはんだ誘引部メタライズ層とからなる平面形状を有し、前記はんだ誘引部メタライズ層は前記長方形状を有する被搭載物の対角線と同じ角度で交差するように突出している位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(5)前記長方形状を有する被搭載物は長方形状を有する素子である前記(4)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(6)基板に形成されるメタライズ層は、電極膜である前記(4)または(5)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、に特徴を有するものである。
The present invention has been made based on such research results,
(1) A solder paste is mounted or applied between the metallized layer on the substrate on which the metallized layer is formed and the metallized layer on the mounted object having the square shape on which the metallized layer is formed, and then reflowed in a non-oxidizing atmosphere. In the method of joining a substrate having a square shape and a substrate using a solder paste for joining the substrate and the load having a square shape,
The metallized layer formed on the surface of the substrate includes a metallized layer main body part having an area smaller than the area of the metallized layer of the mounted object, and at least two solder-inducing portion metallized layers protruding from the periphery of the metallized layer main body part. The solder attracting part metallized layer has an excellent alignment property that protrudes so as to intersect with the diagonal line of the mounting object having the square shape with the adjacent solder attracting part metallized layer. A method of joining the substrate and the mounting object using solder paste,
(2) The method for joining the substrate and the mounted object using the solder paste having excellent alignment property according to (1), wherein the mounted object having a square shape is an element having a square shape.
(3) The metallized layer formed on the substrate is an electrode film, and the bonding method between the substrate and the mounted object using the solder paste having excellent alignment properties according to (1) or (2),
(4) A solder paste is mounted or applied between the metallized layer in the substrate on which the metallized layer is formed and the metallized layer in the rectangular object on which the metallized layer is formed, and then reflowed in a non-oxidizing atmosphere. In the method of joining the substrate and the mounted object using the solder paste for joining the substrate and the mounted object having a rectangular shape,
The metallized layer formed on the surface of the substrate has a metallized layer main body part smaller in area than the metallized layer area of the mounted object having a rectangular shape, and at least two solder attractions protruding from the periphery of the metallized layer main body part A solder paste having a planar shape composed of a part metallized layer, wherein the solder attracting part metallized layer protrudes so as to intersect at the same angle as a diagonal line of the mounted object having the rectangular shape. The bonding method of the substrate and the mounted object,
(5) The mounting method of the substrate and the mounting object using the solder paste having excellent alignment property according to (4), wherein the mounting object having the rectangular shape is an element having a rectangular shape,
(6) The metallized layer formed on the substrate is characterized by a bonding method of the substrate and the mounted object using the solder paste having excellent alignment as described in (4) or (5), which is an electrode film. Is.

この発明の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法において形成されるメタライズ層のその他の平面形状を図面に基づいて説明する。
図3〜7は、いずれもメタライズ層本体部分6とこのメタライズ層本体部分6の周囲から正方形状の被搭載物(素子)4の対角線と同じ角度で交差して突出したはんだ誘引部メタライズ層7を有するメタライズ層の平面形状を示し、このメタライズ層本体部分6の上にAu−Sn合金はんだペーストを搭載し、このAu−Sn合金はんだペーストの上に前記メタライズ層本体部分6の面積よりも大きな面積を有する正方形状の被搭載物(素子)4を任意の方向に搭載しリフロー処理した後の正方形状の被搭載物(素子)4がはんだ付けされた状態を示す平面図である。
この発明の位置合わせ性に優れたはんだペーストを用いた基板と正方形状を有する被搭載物(素子)4の接合方法において、メタライズ層本体部分6の形状は、図1に示されるように正方形であることが好ましいが、特に正方形に限定されるものではなく、例えば、円形など任意の形状を有していても良い。また、メタライズ層本体部分6の大きさは、例えば図3に示されるように、はんだ誘引部メタライズ層7の幅と同じ大きさであってもよく、はんだペーストを搭載または塗布できる面積があればよい。さらに、はんだ誘引部メタライズ層7の形状は、図1に示されるように帯状であることが好ましいが、これに限定されるものではなく、例えば図4および図7に示されるように三角形状を有するものであっても良い。さらに、はんだ誘引部メタライズ層7の数は図1、図3および図4に示されるように4個あることが好ましいが、図5〜7に示されるように2個であってもよく、2個以上あれば良い。
Other planar shapes of the metallized layer formed in the bonding method of the substrate and the mounting object using the solder paste having excellent alignment property according to the present invention will be described with reference to the drawings.
FIGS. 3 to 7 all show a metallization layer main body part 6 and a solder attracting part metallization layer 7 projecting from the periphery of the metallization layer main body part 6 at the same angle as the diagonal line of the square object (element) 4. The Au-Sn alloy solder paste is mounted on the metallized layer main body part 6 and the area of the metallized layer main body part 6 is larger on the Au-Sn alloy solder paste. It is a top view which shows the state by which the square-shaped to-be-mounted object (element) 4 which has an area was mounted in arbitrary directions, and the square-shaped to-be-mounted object (element) 4 was soldered.
In the method of joining a substrate using a solder paste excellent in alignment of the present invention and a mounted object (element) 4 having a square shape, the shape of the metallized layer body portion 6 is square as shown in FIG. Although it is preferable, it is not particularly limited to a square, and may have an arbitrary shape such as a circle. Further, the size of the metallized layer main body portion 6 may be the same as the width of the solder attracting portion metallized layer 7 as shown in FIG. 3, for example, as long as there is an area on which the solder paste can be mounted or applied. Good. Further, the shape of the solder attracting portion metallization layer 7 is preferably a strip shape as shown in FIG. 1, but is not limited to this, for example, a triangular shape as shown in FIGS. 4 and 7. You may have. Further, the number of solder attracting portion metallized layers 7 is preferably four as shown in FIGS. 1, 3 and 4, but may be two as shown in FIGS. There should be more than one.

図8〜9は、いずれもメタライズ層本体部分6とこのメタライズ層本体部分6の周囲から長方形状の被搭載物(素子)4´の対角線と同じ角度で交差して突出したはんだ誘引部メタライズ層7を有するメタライズ層の平面形状を示し、このメタライズ層本体部分6´の上にAu−Sn合金はんだペーストを搭載し、このAu−Sn合金はんだペーストの上に前記メタライズ層本体部分6´の面積よりも大きな面積を有する長方形状の被搭載物(素子)4´を任意の方向に搭載しリフロー処理した後の長方形状の被搭載物(素子)4´がはんだ付けされた状態を示す平面図である。
この発明の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法において、被搭載物の形状が長方形状を有する被搭載物(素子)4´であるときは、メタライズ層本体部分6´の形状は、図2、図8および図9に示されるように、長方形であることが好ましいが、特に長方形に限定されるものではなく、例えば楕円形など任意の形状を有していても良い。さらに、はんだ誘引部メタライズ層7の数は図2および図8〜9に示されるように、2個以上あれば良い。
FIGS. 8 to 9 all show a metallized layer main body part 6 and a solder attracting part metallized layer protruding from the periphery of the metallized layer main body part 6 at the same angle as the diagonal line of the rectangular object (element) 4 ′. 7 shows a planar shape of a metallized layer having an Au-Sn alloy solder paste on the metallized layer main body part 6 ', and the area of the metallized layer main body part 6' on the Au-Sn alloy solder paste. FIG. 9 is a plan view showing a state in which a rectangular mounted object (element) 4 ′ having a larger area is mounted in an arbitrary direction and subjected to a reflow process, and then the rectangular mounted object (element) 4 ′ is soldered. It is.
In the method for joining a substrate and a mounting object using a solder paste having excellent positioning properties according to the present invention, when the mounting object is a mounting object (element) 4 ′ having a rectangular shape, the metallized layer body The shape of the portion 6 ′ is preferably rectangular as shown in FIGS. 2, 8, and 9, but is not particularly limited to a rectangle, and has an arbitrary shape such as an ellipse, for example. May be. Furthermore, the number of the solder attraction part metallization layers 7 should just be 2 or more, as FIG. 2 and FIGS.

この発明の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、特に基板と素子の接合方法において使用するはんだペーストはAu−Sn合金はんだペーストであることが好ましいが、前記Au−Sn合金はんだペーストに換えて、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペースト、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペースト、またはSn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストであっても同じ作用を奏する。 The solder paste used in the method for joining a substrate and an object to be mounted using the solder paste excellent in alignment property of the present invention, particularly the method for joining the substrate and the element, is preferably an Au-Sn alloy solder paste. Instead of Au—Sn alloy solder paste, Pb: Pb—Sn alloy solder paste containing Pb: 35-60% by mass, balance: Sn and Pb—Sn solder alloy powder which is an inevitable impurity, Pb: 90 Pb-Sn alloy solder paste containing Sn and Pb-Sn solder alloy powder, which is an inevitable impurity, or Sn: 40-100% by mass, the balance: Ag, One or more metals selected from the group consisting of Au, Cu, Bi, Sb, In and Zn, and inevitable impurities Even Pb-free Pb-free solder paste obtained by mixing a flux to the solder alloy powder exhibits the same effect.

したがって、この発明は、
(7)前記はんだペーストは、Sn:20〜25質量%を含有し、残部:Auおよび不可避不純物であるAu−Snはんだ合金粉末にフラックスを混合したAu−Sn合金はんだペーストである前記(1)、(2)、(3)、(4)、(5)または(6)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(8)前記はんだペーストは、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである前記(1)、(2)、(3)、(4)、(5)または(6)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(9)前記はんだペーストは、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである前記(1)、(2)、(3)、(4)、(5)または(6)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(10)前記はんだペーストは、Sn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストである前記(1)、(2)、(3)、(4)、(5)または(6)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、に特徴を有するものである。
Therefore, the present invention
(7) The solder paste is an Au-Sn alloy solder paste containing Sn: 20 to 25% by mass, and the balance: Au and an inevitable impurity Au-Sn solder alloy powder mixed with a flux (1) , (2), (3), (4), (5) or (6), a method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties,
(8) The solder paste is a Pb—Sn alloy solder paste containing Pb: 35-60 mass%, and the balance: Sn and Pb—Sn solder alloy powder, which is an inevitable impurity, and a flux. , (2), (3), (4), (5) or (6), a method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties,
(9) The solder paste is a Pb—Sn alloy solder paste containing Pb: 90 to 95% by mass, and the balance: Sn and a Pb—Sn solder alloy powder, which is an inevitable impurity, and a flux. , (2), (3), (4), (5) or (6), a method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties,
(10) The solder paste contains Sn: 40 to 100% by mass, and the balance: one or more metals selected from the group consisting of Ag, Au, Cu, Bi, Sb, In and Zn, and In the alignment described in (1), (2), (3), (4), (5) or (6), which is a Pb-free solder paste in which flux is mixed with Pb-free solder alloy powder, which is an inevitable impurity It has a feature in a method of joining a substrate and an object to be mounted using an excellent solder paste.

この発明の基板と被搭載物の接合方法によると、すべての被搭載物を所望の位置および方向に合わせてはんだ接合することができる。   According to the method for bonding a substrate and a mounted object of the present invention, all the mounted objects can be soldered together in a desired position and direction.

実施例1
Sn:20質量%を含有し、残部がAuからなる成分組成を有し平均粒径D50:11.1μm、最大粒径:20.1μmを有するAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:8.0質量%、残部がAu−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:85Pa・sを有するAu−Sn合金はんだペーストを作製し、このAu−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
Example 1
An Au—Sn alloy solder powder containing Sn: 20% by mass with the balance being composed of Au and having an average particle size D 50 : 11.1 μm and a maximum particle size: 20.1 μm was prepared. -Combined commercially available RMA flux to Sn alloy solder powder so that RMA flux is 8.0 mass% and the balance is the composition of Au-Sn alloy solder powder and mixed to have paste viscosity: 85 Pa · s An Au—Sn alloy solder paste was prepared, and this Au—Sn alloy solder paste was filled in a syringe and attached to a dispenser device (manufactured by Musashi Engineering, model number: ML-606GX).

さらに、縦:400μm、横:400μmの寸法を有する正方形状を有する50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:400μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:200μm、横:200μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層本体部分と、前記メタライズ層本体部分から十字状に突出した幅:50μm、長さ:150μmの寸法を有し前記メタライズ層本体部分と同じ複合メタライズ層からなるはんだ誘引部メタライズ層とからなる図1に示される平面形状のメタライズ層を50個所形成した。
Further, 50 LED elements having a square shape with dimensions of 400 μm in the vertical direction and 400 μm in the horizontal direction were prepared, and Au having a dimension of 3 μm in thickness, 400 μm in the vertical direction, 400 μm in the horizontal direction and 400 μm in the horizontal direction on the entire surface of these LED elements. Plated.
Further, an alumina substrate is prepared, and on the surface of the alumina substrate, a Cu layer having a length: 200 μm, a width: 200 μm, a thickness: 10 μm, a Ni layer having a thickness: 5 μm, and a thickness. A metallized layer main body part in which a composite metallized layer made of an Au layer having a thickness of 0.1 μm is formed, and a width protruding from the metallized layer main body part in a cross shape: 50 μm, and a length: 150 μm. 50 metallized layers having a planar shape shown in FIG. 1 composed of a solder attracting part metallized layer made of the same composite metallized layer as the part were formed.

これらメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層におけるメタライズ層本体部中心位置に、先に用意したディスペンサー装置により0.03mgの量のAu−Sn合金はんだペーストを塗布し、このAu−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:300℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここでは50個接合したLED素子の中心位置のX軸方向のブレおよびy軸方向のブレをそれぞれ平均x軸位置に対する標準偏差および平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置のx軸ぶれは±4.8μmであり、y軸ぶれは±5.2μmであり、素子の位置精度が非常に高いことがわかった。 The Au-Sn alloy solder paste in an amount of 0.03 mg was applied to the center position of the metallized layer main body part in 50 metallized layers consisting of the metallized layer main body part and the solder attracting part by using a dispenser device prepared in advance. -Mount the 50 LED elements prepared above on the Sn alloy solder paste using a mounter, perform a reflow treatment in a nitrogen atmosphere at a temperature of 300 ° C for 30 seconds, and then cool down. The element center position was measured for 50 LED element positions arranged in a line using a three-dimensional measuring machine (NEXIV VMR-3020 manufactured by Nikon). Here, the blur in the X-axis direction and the blur in the y-axis direction at the center position of 50 LED elements joined were calculated as a standard deviation with respect to the average x-axis position and a standard deviation with respect to the average y-axis position, respectively. As a result, the x-axis shake at the element center position is ± 4.8 μm, and the y-axis shake is ± 5.2 μm, indicating that the position accuracy of the element is very high.

実施例2
Pb:37質量%を含有し、残部がSnからなる成分組成を有し平均粒径D50:11.4μm、最大粒径:14.5μmを有するPb−Sn合金はんだ粉末を用意し、このPb−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:11.0質量%、残部がPb−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:120Pa・sを有するPb−Sn合金はんだペーストを作製し、このPb−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
Example 2
Pb: A Pb—Sn alloy solder powder containing 37% by mass and having the balance of Sn and having an average particle diameter D 50 of 11.4 μm and a maximum particle diameter of 14.5 μm is prepared. -Combined commercially available RMA flux to Sn alloy solder powder so that RMA flux is 11.0% by mass and the balance is the composition of Pb-Sn alloy solder powder, and has a paste viscosity of 120 Pa.s when mixed. A Pb—Sn alloy solder paste was prepared, and this Pb—Sn alloy solder paste was filled in a syringe and attached to a dispenser device (manufactured by Musashi Engineering, model number: ML-606GX).

さらに、縦:200μm、横:400μmの寸法を有する長方形状を有する50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:200μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:100μm、横:200μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層本体部分と、前記メタライズ層本体部分から長方形状のLED素子の対角線と同じ角度で突出した幅:50μm、長さ:150μmの寸法を有し前記メタライズ層本体部分と同じ複合メタライズ層からなるはんだ誘引部メタライズ層とからなる図2に示される平面形状のメタライズ層を50個所形成した。
Further, 50 LED elements having a rectangular shape with dimensions of 200 μm in the vertical direction and 400 μm in the horizontal direction were prepared, and Au having a dimension of 3 μm in thickness, 200 μm in the vertical direction, and 400 μm in the horizontal direction on the entire surface of these LED elements. Plated.
Further, an alumina substrate is prepared, and on the surface of the alumina substrate, a Cu layer having a length: 100 μm, a width: 200 μm, a thickness: 10 μm, a Ni layer having a thickness: 5 μm, and a thickness. : A metallized layer main body part in which a composite metallized layer composed of an Au layer having 0.1 μm is formed, and a width protruding from the metallized layer main body part at the same angle as the diagonal line of the rectangular LED element: 50 μm, length: 150 μm 50 planar metallization layers having dimensions and comprising a solder attracting part metallization layer made of the same composite metallization layer as the metallization layer main body part were formed in 50 places.

これらメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層におけるメタライズ層本体部中心位置に、先に用意したディスペンサー装置により0.02mgの量のPb−Sn合金はんだペーストを塗布し、このPb−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:220℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここでは50個接合したLED素子の中心位置のX軸方向のブレおよびy軸方向のブレをそれぞれ平均x軸位置に対する標準偏差および平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置のx軸ぶれは±7.1μmであり、y軸ぶれは±6.8μmであり、素子の位置精度が非常に高いことがわかった。 A Pb—Sn alloy solder paste in an amount of 0.02 mg was applied to the central position of the metallized layer main body portion of the 50 metallized layers consisting of the metallized layer main body portion and the solder attracting portion by a dispenser device prepared in advance. -Mount 50 LED elements previously prepared on a Sn alloy solder paste using a mounter, and perform a reflow treatment under a condition of maintaining a temperature of 220 ° C for 30 seconds in a nitrogen atmosphere, and then cooling. The element center position was measured for 50 LED element positions arranged in a line using a three-dimensional measuring machine (NEXIV VMR-3020 manufactured by Nikon). Here, the blur in the X-axis direction and the blur in the y-axis direction at the center position of 50 LED elements joined were calculated as a standard deviation with respect to the average x-axis position and a standard deviation with respect to the average y-axis position, respectively. As a result, the x-axis shake at the element center position is ± 7.1 μm, and the y-axis shake is ± 6.8 μm, indicating that the position accuracy of the element is very high.

実施例3
Pb:95質量%を含有し、残部がSnからなる成分組成を有し平均粒径D50:11.7μm、最大粒径:14.8μmを有するPb−Sn合金はんだ粉末を用意し、このPb−Sn合金はんだ粉末に市販のRAフラックスを、RAフラックス:10.0質量%、残部がPb−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:80Pa・sを有するPb−Sn合金はんだペーストを作製し、このPb−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
Example 3
A Pb—Sn alloy solder powder containing a component composition of Pb: 95% by mass, the balance being Sn, and having an average particle size D 50 : 11.7 μm and a maximum particle size: 14.8 μm was prepared. -A commercially available RA flux is mixed with Sn alloy solder powder so that the RA flux is 10.0% by mass and the balance is the composition of Pb-Sn alloy solder powder, and mixed to have a paste viscosity of 80 Pa · s. A Pb—Sn alloy solder paste was prepared, and this Pb—Sn alloy solder paste was filled in a syringe and attached to a dispenser device (manufactured by Musashi Engineering, model number: ML-606GX).

さらに、縦:200μm、横:400μmの寸法を有する長方形状を有する50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:200μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:100μm、横:200μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層本体部分と、前記メタライズ層本体部分から長方形状のLED素子の対角線と同じ角度で突出した幅:100μm、長さ:150μmの寸法を有し前記メタライズ層本体部分と同じ複合メタライズ層からなるはんだ誘引部メタライズ層とからなる図8に示される平面形状のメタライズ層を50個所形成した。
Further, 50 LED elements having a rectangular shape with dimensions of 200 μm in the vertical direction and 400 μm in the horizontal direction were prepared, and Au having a dimension of 3 μm in thickness, 200 μm in the vertical direction, and 400 μm in the horizontal direction on the entire surface of these LED elements. Plated.
Further, an alumina substrate is prepared, and on the surface of the alumina substrate, a Cu layer having a length: 100 μm, a width: 200 μm, a thickness: 10 μm, a Ni layer having a thickness: 5 μm, and a thickness. : A metallized layer main body part in which a composite metallized layer composed of an Au layer having 0.1 μm is formed, and a width protruding from the metallized layer main body part at the same angle as the diagonal line of the rectangular LED element: 100 μm, length: 150 μm 50 planar metallization layers having dimensions and comprising a solder attracting part metallization layer made of the same composite metallization layer as the metallization layer main body part were formed in 50 places.

これらメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層におけるメタライズ層本体部中心位置に、先に用意したディスペンサー装置により0.03mgの量のPb−Sn合金はんだペーストを塗布し、このPb−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:330℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここでは50個接合したLED素子の中心位置のX軸方向のブレおよびy軸方向のブレをそれぞれ平均x軸位置に対する標準偏差および平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置のx軸ぶれは±6.6μmであり、y軸ぶれは±7.2μmであり、素子の位置精度が非常に高いことがわかった。 A Pb—Sn alloy solder paste in an amount of 0.03 mg was applied to the center position of the metallized layer main body portion of the 50 metallized layers consisting of the metallized layer main body portion and the solder attracting portion by a dispenser device prepared in advance. -Mount 50 LED elements previously prepared on a Sn alloy solder paste using a mounter, and perform a reflow treatment under the condition of holding in a nitrogen atmosphere at a temperature of 330 ° C for 30 seconds, and then cooling. The element center position was measured for 50 LED element positions arranged in a line using a three-dimensional measuring machine (NEXIV VMR-3020 manufactured by Nikon). Here, the blur in the X-axis direction and the blur in the y-axis direction at the center position of 50 LED elements joined were calculated as a standard deviation with respect to the average x-axis position and a standard deviation with respect to the average y-axis position, respectively. As a result, the x-axis shake at the element center position was ± 6.6 μm, and the y-axis shake was ± 7.2 μm, indicating that the position accuracy of the element was very high.

実施例4
Sn:96.5質量%、Ag:3.0質量%を含有し、残部がCuからなる成分組成を有し平均粒径D50:10.8μm、最大粒径:14.1μmを有するPbフリーはんだ粉末を用意し、このPbフリーはんだ粉末に市販のRMAフラックスを、RMAフラックス:12.5質量%、残部がPbフリーはんだ粉末の配合組成となるように配合し、混合してペースト粘度:72Pa・sを有するPbフリーはんだペーストを作製し、このPbフリーはんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
Example 4
Pb-free containing Sn: 96.5% by mass, Ag: 3.0% by mass, the balance being a component composition consisting of Cu and having an average particle size D 50 : 10.8 μm and a maximum particle size: 14.1 μm Solder powder is prepared, and commercially available RMA flux is blended with this Pb-free solder powder so that the RMA flux is 12.5% by mass, and the balance is the blended composition of Pb-free solder powder, and the paste viscosity is 72 Pa. A Pb-free solder paste having s was prepared, and this Pb-free solder paste was filled in a syringe and attached to a dispenser device (manufactured by Musashi Engineering, model number: ML-606GX).

さらに、縦:400μm、横:400μmの寸法を有する正方形状を有する50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:400μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:200μm、横:200μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層本体部分と、前記メタライズ層本体部分からL字状に突出した幅:100μm、長さ:200μmの寸法を有し前記メタライズ層本体部分と同じ複合メタライズ層からなるはんだ誘引部メタライズ層とからなる図5に示される平面形状のメタライズ層を50個所形成した。
Further, 50 LED elements having a square shape with dimensions of 400 μm in the vertical direction and 400 μm in the horizontal direction were prepared, and Au having a dimension of 3 μm in thickness, 400 μm in the vertical direction, 400 μm in the horizontal direction and 400 μm in the horizontal direction on the entire surface of these LED elements. Plated.
Further, an alumina substrate is prepared, and on the surface of the alumina substrate, a Cu layer having a length: 200 μm, a width: 200 μm, a thickness: 10 μm, a Ni layer having a thickness: 5 μm, and a thickness. : A metallized layer main body part in which a composite metallized layer composed of an Au layer having a thickness of 0.1 μm is formed, and a width protruding from the metallized layer main body part in an L shape: 100 μm, and a length: 200 μm. 50 metallization layers having a planar shape shown in FIG. 5 composed of a solder attracting part metallization layer made of the same composite metallization layer as the main body part were formed.

これらメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層におけるメタライズ層本体部中心位置に、先に用意したディスペンサー装置により0.02mgの量のPbフリーはんだペーストを塗布し、このPbフリーはんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:240℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここでは50個接合したLED素子の中心位置のX軸方向のブレおよびy軸方向のブレをそれぞれ平均x軸位置に対する標準偏差および平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置のx軸ぶれは±9.3μmであり、y軸ぶれは±8.9μmであり、素子の位置精度が非常に高いことがわかった。 A Pb-free solder paste in an amount of 0.02 mg is applied to the center position of the metallized layer main body portion of the 50 metallized layers including the metallized layer main body portion and the solder attracting portion by the previously prepared dispenser device. The 50 LED elements prepared above are mounted on the paste using a mounter, subjected to a reflow treatment under the condition of holding in a nitrogen atmosphere at a temperature of 240 ° C. for 30 seconds, and then cooled and arranged in a line. The element center position was measured for 50 LED element positions using a three-dimensional measuring machine (NEXIV VMR-3020 manufactured by Nikon). Here, the blur in the X-axis direction and the blur in the y-axis direction at the center position of 50 LED elements joined were calculated as a standard deviation with respect to the average x-axis position and a standard deviation with respect to the average y-axis position, respectively. As a result, the x-axis shake at the element center position was ± 9.3 μm, and the y-axis shake was ± 8.9 μm, indicating that the position accuracy of the element was very high.

従来例1
Sn:20質量%を含有し、残部がAuからなる成分組成を有し平均粒径D50:11.1μm、最大粒径:20.1μmを有するAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:8.0質量%、残部がAu−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:85Pa・sを有するAu−Sn合金はんだペーストを作製し、このAu−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
さらに、50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:400μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:500μm、横:500μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層を400μm間隔で50個所一列に形成した。
Conventional Example 1
An Au—Sn alloy solder powder containing Sn: 20% by mass with the balance being composed of Au and having an average particle size D 50 : 11.1 μm and a maximum particle size: 20.1 μm was prepared. -Combined commercially available RMA flux to Sn alloy solder powder so that RMA flux is 8.0 mass% and the balance is the composition of Au-Sn alloy solder powder and mixed to have paste viscosity: 85 Pa · s An Au—Sn alloy solder paste was prepared, and this Au—Sn alloy solder paste was filled in a syringe and attached to a dispenser device (manufactured by Musashi Engineering, model number: ML-606GX).
Further, 50 LED elements were prepared, and Au plating having dimensions of thickness: 3 μm, length: 400 μm, width: 400 μm was applied to the entire surface of one side of these LED elements.
Further, an alumina substrate is prepared, and a surface of the alumina substrate has a length: 500 μm, a width: 500 μm, a thickness: a Cu layer having a thickness of 10 μm, a thickness: a Ni layer having a thickness of 5 μm, and a thickness. A metallized layer formed with a composite metallized layer composed of an Au layer having a thickness of 0.1 μm was formed in a line at 50 locations at intervals of 400 μm.

これらメタライズ層からなる50個所のメタライズ層の中心位置に、先に用意したディスペンサー装置により0.03mgの量のAu−Sn合金はんだペーストを塗布し、このAu−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:300℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のX軸方向のブレおよびy軸方向のブレをそれぞれ平均x軸位置に対する標準偏差および平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置のx軸ぶれは±42.1μmであり、y軸ぶれは±37.5μmであり、素子の位置精度が低いことがわかった。 An Au-Sn alloy solder paste in an amount of 0.03 mg is applied to the center position of the 50 metallized layers made of these metallized layers by a dispenser device prepared in advance. The prepared 50 LED elements are mounted using a mounter, subjected to a reflow process under the condition of holding in a nitrogen atmosphere at a temperature of 300 ° C. for 30 seconds, and then cooled and arranged in a row. The center position of the element was measured using a three-dimensional measuring machine (NEXIV VMR-3020 manufactured by Nikon). Here, the blur in the X-axis direction and the blur in the y-axis direction at the center position of 50 LED elements joined in a row in the X-axis direction were calculated as the standard deviation with respect to the average x-axis position and the standard deviation with respect to the average y-axis position, respectively. As a result, the x-axis shake at the element center position was ± 42.1 μm and the y-axis shake was ± 37.5 μm, indicating that the position accuracy of the element was low.

この発明の方法により基板と素子を接合した結果を説明するための平面図である。It is a top view for demonstrating the result of having joined the board | substrate and the element by the method of this invention. この発明の方法により基板と素子を接合した結果を説明するための平面図である。It is a top view for demonstrating the result of having joined the board | substrate and the element by the method of this invention. この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). この発明の方法で使用する基板表面に形成されるメタライズ層の形状およびはんだ付けされた被搭載物(素子)の状態を説明するための平面図である。It is a top view for demonstrating the shape of the metallization layer formed in the board | substrate surface used by the method of this invention, and the state of the to-be-mounted to-be-mounted (element). 従来の方法により基板と素子を接合する工程を説明するための断面側面図である。It is a cross-sectional side view for demonstrating the process of joining a board | substrate and an element with the conventional method. 図10(a)の断面側面図における上方向から見た平面図である。It is the top view seen from the upper direction in the cross-sectional side view of Fig.10 (a). 図10(b)の断面側面図における上方向から見た平面図である。It is the top view seen from the upper direction in the cross-sectional side view of FIG.10 (b).

符号の説明Explanation of symbols

1:基板、
2:メタライズ層
2´:メタライズ層
3:Au−Sn合金はんだペースト、
4:正方形状を有する素子、被搭載物
4´:長方形状を有する素子、被搭載物
5:Au−Sn合金はんだ接合層、
6:メタライズ層本体部分、
6´:メタライズ層本体部分、
7:はんだ誘引部
1: substrate
2: Metallized layer 2 ′: Metallized layer 3: Au—Sn alloy solder paste,
4: Element having a square shape, Mounted object 4 ′: Element having a rectangular shape, Mounted object 5: Au—Sn alloy solder joint layer,
6: Metallized layer body,
6 ': Metallized layer body part,
7: Solder attracting part

Claims (10)

メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した正方形状を有する被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と正方形状を有する被搭載物を接合するはんだペーストを用いた基板と正方形状を有する被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出した少なくとも2個のはんだ誘引部メタライズ層とからなる平面形状を有し、前記はんだ誘引部メタライズ層は隣のはんだ誘引部メタライズ層と前記正方形状を有する被搭載物の対角線と同じ角度で交差するように突出していることを特徴とする位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
A solder paste is mounted or applied between the metallized layer on the substrate on which the metallized layer is formed and the metallized layer on the object to be mounted having a square shape on which the metallized layer is formed, and then reflow-treated in a non-oxidizing atmosphere to form a square with the substrate. In a method for joining a substrate having a square shape and a substrate using a solder paste for joining a mounted object having a shape,
The metallized layer formed on the surface of the substrate includes a metallized layer main body part having an area smaller than the area of the metallized layer of the mounted object, and at least two solder-inducing portion metallized layers protruding from the periphery of the metallized layer main body part. The solder attracting part metallized layer has a planar shape consisting of the following, and the solder attracting part metallized layer protrudes so as to intersect at the same angle as the diagonal line of the mounting object having the square shape A method of joining a substrate and a mounted object using a solder paste with excellent matching properties.
前記正方形状を有する被搭載物は正方形状を有する素子であることを特徴とする請求項1記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 2. The method for bonding a substrate and a mounting object using a solder paste having excellent alignment properties according to claim 1, wherein the mounting object having a square shape is an element having a square shape. 基板に形成されるメタライズ層は、電極膜であることを特徴とする請求項1または2記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 The metallized layer formed on the substrate is an electrode film, and the method of joining the substrate and the mounted object using the solder paste having excellent alignment properties according to claim 1 or 2. メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した長方形状を有する被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と長方形状を有する被搭載物を接合するはんだペーストを用いた基板と長方形状を有する被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が長方形状を有する被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出した少なくとも2個のはんだ誘引部メタライズ層とからなる平面形状を有し、前記はんだ誘引部メタライズ層は前記長方形状を有する被搭載物の対角線と同じ角度で交差するように突出していることを特徴とする位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
After mounting or applying a solder paste between the metallized layer in the substrate on which the metallized layer is formed and the metallized layer in the rectangular object on which the metallized layer is formed, the substrate and the rectangle are subjected to reflow treatment in a non-oxidizing atmosphere. In a method for joining a substrate having a rectangular shape and a substrate using a solder paste for joining a mounted object having a shape,
The metallized layer formed on the surface of the substrate has a metallized layer main body part smaller in area than the metallized layer area of the mounted object having a rectangular shape, and at least two solder attractions protruding from the periphery of the metallized layer main body part It has a planar shape composed of a part metallized layer, and the solder attracting part metallized layer protrudes so as to intersect at the same angle as the diagonal line of the mounting object having the rectangular shape. A method of joining a substrate and an object using a solder paste.
前記長方形状を有する被搭載物は長方形状を有する素子であることを特徴とする請求項4記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 5. The method for bonding a substrate and a mounting object using a solder paste having excellent alignment properties according to claim 4, wherein the mounting object having a rectangular shape is an element having a rectangular shape. 基板に形成されるメタライズ層は、電極膜であることを特徴とする請求項4または5記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 6. The method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties according to claim 4, wherein the metallized layer formed on the substrate is an electrode film. 前記はんだペーストは、Sn:20〜25質量%を含有し、残部:Auおよび不可避不純物であるAu−Snはんだ合金粉末にフラックスを混合したAu−Sn合金はんだペーストであることを特徴とする請求項1、2、3、4、5または6記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 The solder paste is an Au-Sn alloy solder paste containing Sn: 20 to 25% by mass, the balance: Au and Au-Sn solder alloy powder, which is an inevitable impurity, and a flux. A method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties according to 1, 2, 3, 4, 5 or 6. 前記はんだペーストは、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストであることを特徴とする請求項1、2、3、4、5または6記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 The solder paste is a Pb-Sn alloy solder paste containing Pb: 35-60 mass%, and the balance: Sn and Pb-Sn solder alloy powder, which is an inevitable impurity, and a flux. A method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties according to 1, 2, 3, 4, 5 or 6. 前記はんだペーストは、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストであることを特徴とする請求項1、2、3、4、5または6記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 The solder paste is a Pb-Sn alloy solder paste containing Pb: 90 to 95% by mass, and the balance: Sn and Pb-Sn solder alloy powder, which is an inevitable impurity, and a flux. A method for joining a substrate and an object to be mounted using a solder paste having excellent alignment properties according to 1, 2, 3, 4, 5 or 6. 前記はんだペーストは、Sn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストであることを特徴とする請求項1、2、3、4、5または6記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。 The solder paste contains Sn: 40 to 100% by mass, and the balance: one or more metals selected from the group consisting of Ag, Au, Cu, Bi, Sb, In and Zn, and inevitable impurities. 7. A substrate using a solder paste excellent in alignment according to claim 1, 2, 3, 4, 5 or 6, wherein the substrate is a Pb-free solder paste in which a flux is mixed with a certain Pb-free solder alloy powder. Bonding method of mounted objects.
JP2008221633A 2008-06-12 2008-08-29 Method of joining substrate and object to be mounted using solder paste having excellent registration Pending JP2010056399A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008221633A JP2010056399A (en) 2008-08-29 2008-08-29 Method of joining substrate and object to be mounted using solder paste having excellent registration
US12/736,986 US20110067911A1 (en) 2008-06-12 2009-06-12 Method of bonding parts to substrate using solder paste
PCT/JP2009/060785 WO2009151123A1 (en) 2008-06-12 2009-06-12 Method for joining substrate and object to be mounted using solder paste
KR1020107022971A KR101565184B1 (en) 2008-06-12 2009-06-12 Method for joining substrate and object to be mounted using solder paste
CN201310063158.9A CN103208435B (en) 2008-06-12 2009-06-12 The substrate using tinol to carry out and the joint method of weldment
TW098119752A TWI536466B (en) 2008-06-12 2009-06-12 Method of bonding parts to substrate using soldering paste
CN2009801204361A CN102047397B (en) 2008-06-12 2009-06-12 Method for joining substrate and object to be mounted using solder paste
EP09762553A EP2290676A4 (en) 2008-06-12 2009-06-12 Method for joining substrate and object to be mounted using solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221633A JP2010056399A (en) 2008-08-29 2008-08-29 Method of joining substrate and object to be mounted using solder paste having excellent registration

Publications (1)

Publication Number Publication Date
JP2010056399A true JP2010056399A (en) 2010-03-11

Family

ID=42071977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221633A Pending JP2010056399A (en) 2008-06-12 2008-08-29 Method of joining substrate and object to be mounted using solder paste having excellent registration

Country Status (1)

Country Link
JP (1) JP2010056399A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119519A (en) * 2010-12-01 2012-06-21 Denki Kagaku Kogyo Kk Ceramic circuit board and module using same
JP2012222128A (en) * 2011-04-08 2012-11-12 Nichicon Corp Power module
US9221130B2 (en) 2010-12-17 2015-12-29 Furukawa Electric Co., Ltd. Material for thermal bonding, coating material for thermal bonding, coating, and electronic component bonding method
KR20170037959A (en) 2014-07-31 2017-04-05 씨씨에스 가부시키가이샤 Led mounting substrate and led
JP2018500752A (en) * 2014-12-19 2018-01-11 ウォーカー マイロンWALKER, Myron Spoked solder pads for improved solderability and self-alignment of integrated circuit packages
JP2018022742A (en) * 2016-08-02 2018-02-08 日亜化学工業株式会社 Light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107173A (en) * 1995-10-11 1997-04-22 Tokai Rika Co Ltd Pad structure and wiring board device
JP2003264267A (en) * 2002-03-08 2003-09-19 Rohm Co Ltd Semiconductor device using semiconductor chip
JP2006339595A (en) * 2005-06-06 2006-12-14 Rohm Co Ltd Semiconductor device
JP2007081064A (en) * 2005-09-13 2007-03-29 Rohm Co Ltd Semiconductor device, manufacturing method thereof and substrate
JP2008118071A (en) * 2006-11-08 2008-05-22 Nichia Chem Ind Ltd Mounting component, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107173A (en) * 1995-10-11 1997-04-22 Tokai Rika Co Ltd Pad structure and wiring board device
JP2003264267A (en) * 2002-03-08 2003-09-19 Rohm Co Ltd Semiconductor device using semiconductor chip
JP2006339595A (en) * 2005-06-06 2006-12-14 Rohm Co Ltd Semiconductor device
JP2007081064A (en) * 2005-09-13 2007-03-29 Rohm Co Ltd Semiconductor device, manufacturing method thereof and substrate
JP2008118071A (en) * 2006-11-08 2008-05-22 Nichia Chem Ind Ltd Mounting component, and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119519A (en) * 2010-12-01 2012-06-21 Denki Kagaku Kogyo Kk Ceramic circuit board and module using same
US9221130B2 (en) 2010-12-17 2015-12-29 Furukawa Electric Co., Ltd. Material for thermal bonding, coating material for thermal bonding, coating, and electronic component bonding method
JP2012222128A (en) * 2011-04-08 2012-11-12 Nichicon Corp Power module
KR20170037959A (en) 2014-07-31 2017-04-05 씨씨에스 가부시키가이샤 Led mounting substrate and led
JP2018500752A (en) * 2014-12-19 2018-01-11 ウォーカー マイロンWALKER, Myron Spoked solder pads for improved solderability and self-alignment of integrated circuit packages
JP2018022742A (en) * 2016-08-02 2018-02-08 日亜化学工業株式会社 Light emitting device
US10243125B2 (en) 2016-08-02 2019-03-26 Nichia Corporation Light emitting device

Similar Documents

Publication Publication Date Title
WO2009151123A1 (en) Method for joining substrate and object to be mounted using solder paste
JP4924920B2 (en) Method for bonding the entire bonding surface of an element to a substrate using an Au-Sn alloy solder paste
KR0167470B1 (en) Flip chip bonding method of ic chip onto chip carrier
JP5585751B1 (en) Cu ball, Cu core ball, solder joint, solder paste, and foam solder
US6583517B1 (en) Method and structure for joining two substrates with a low melt solder joint
JP2010056399A (en) Method of joining substrate and object to be mounted using solder paste having excellent registration
EP2633551B1 (en) Lead-free structures in a semiconductor device
JP4356581B2 (en) Electronic component mounting method
JP2015527935A (en) Method for soldering electronic components with high lateral accuracy
JP5849421B2 (en) Solder, semiconductor device using solder, and soldering method
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
WO2019054509A1 (en) Semiconductor element mounting structure, and combination of semiconductor element and substrate
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
JP2009283628A (en) Method for mounting semiconductor element
JP2009302229A (en) Method of joining substrate and object to be mounted using solder paste with superior positioning property
JP6958156B2 (en) Manufacturing method of semiconductor devices
JP2014146635A (en) Solder joint method and joint structure of solder ball and electrode
JP4940662B2 (en) Solder bump, method of forming solder bump, and semiconductor device
JP2007266405A (en) Method for joining substrate, and element using au-sn alloy solder paste
JPH0318041A (en) Electric junction part
JP2002076605A (en) Semiconductor module and circuit board for connecting semiconductor device
JP2001001180A (en) Solder and electronic part using the solder
JP2007142124A (en) Semiconductor device, and method of manufacturing same
JP5391584B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste with less void generation
TW200603700A (en) Method of soldering electronic component having solder bumps to substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140130