JP2010054131A - Storage type hot water supply device - Google Patents

Storage type hot water supply device Download PDF

Info

Publication number
JP2010054131A
JP2010054131A JP2008220225A JP2008220225A JP2010054131A JP 2010054131 A JP2010054131 A JP 2010054131A JP 2008220225 A JP2008220225 A JP 2008220225A JP 2008220225 A JP2008220225 A JP 2008220225A JP 2010054131 A JP2010054131 A JP 2010054131A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water storage
storage tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008220225A
Other languages
Japanese (ja)
Other versions
JP4731589B2 (en
Inventor
Masaki Toyoshima
正樹 豊島
So Hiraoka
宗 平岡
Akihiro Nishida
明広 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008220225A priority Critical patent/JP4731589B2/en
Publication of JP2010054131A publication Critical patent/JP2010054131A/en
Application granted granted Critical
Publication of JP4731589B2 publication Critical patent/JP4731589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage type hot water supply device surely estimating temperature distribution of hot water and water in a hot water storage tank by directly solving a heat energy balancing formula. <P>SOLUTION: This storage type hot water supply device includes: the hot water storage tank; a heating means for heating the hot water/water in the hot water storage tank; a load side circuit for supplying the hot water/water in the hot water storage tank to a load side; a temperature sensor for measuring a temperature of the hot water/water flowing into the hot water storage tank, a flow rate sensor for measuring a flow rate of the hot water/water flowing into the hot water storage tank; and a temperature sensor for detecting an outside air temperature, and it further includes a temperature distribution calculating means for calculating a temperature of each layer inside of the hot water storage tank vertically divided into the plurality of layers on the basis of a temperature measurement value of the temperature sensor and a flow rate measurement value of the flow rate sensor, on the basis of the summation of inflow heat quantity from a pipe connected to each layer, heat radiation based on difference between a temperature of each layer and the outside air temperature, and a heat transferring amount of each layer to the layers vertically adjacent thereto. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、貯湯式給湯装置に関し、特に、貯湯タンクの温度分布演算手段を備える貯湯式給湯装置に関するものである。   The present invention relates to a hot water storage type hot water supply apparatus, and more particularly to a hot water storage type hot water supply apparatus provided with a temperature distribution calculating means of a hot water storage tank.

従来、ヒートポンプ式給湯装置のような貯湯式給湯装置では、貯湯タンクとヒートポンプ式加熱手段との間でタンク内の水を循環させることにより、高温の湯をタンク上部へ戻して沸き上げており、その際、貯湯タンクに多数の温度センサを設けてタンク内の温度分布を把握し、蓄熱量を推測していた。しかし、貯湯タンク内に高温水と低温水が存在するとその中間に温度境界層が発生するため、温度境界層の位置と温度分布状態を把握しなければ正確な蓄熱量が推測できないという問題があった。   Conventionally, in a hot water storage hot water supply device such as a heat pump hot water supply device, by circulating water in the tank between the hot water storage tank and the heat pump heating means, hot water is returned to the upper part of the tank and boiled up. At that time, a large number of temperature sensors were provided in the hot water storage tank to grasp the temperature distribution in the tank and to estimate the heat storage amount. However, if hot water and low-temperature water exist in the hot water storage tank, a temperature boundary layer is generated between them, so there is a problem that accurate heat storage cannot be estimated unless the position and temperature distribution state of the temperature boundary layer are known. It was.

この課題に対する解決策として、貯湯タンク内の湯水の沸上げにおいて、タンク内の湯水が移動して、貯湯タンクに設けられた温度センサの位置を時間の経過と共に通過することを利用して、温度センサの温度履歴と貯湯タンク内の湯水の移動速度とに基づいて、混合層(温度境界層)の温度分布を推定する方法が知られている(例えば、特許文献1参照)。   As a solution to this problem, when boiling hot water in a hot water storage tank, the hot water in the tank moves and passes through the position of a temperature sensor provided in the hot water storage tank over time. A method of estimating the temperature distribution of the mixed layer (temperature boundary layer) based on the temperature history of the sensor and the moving speed of hot water in the hot water storage tank is known (for example, see Patent Document 1).

特開2006−214622号公報(第3−4頁、図1)JP 2006-214622 A (page 3-4, FIG. 1)

しかし、特許文献1に開示された発明では、湯水が温度センサの位置を通過しなければ貯湯タンク内の湯水の温度分布がわからないため、温度センサの位置と湯水の移動速度によっては、つまり貯湯量によっては温度分布が計算できず、蓄熱量を把握できない時間が長く続いてしまうという課題があった。前記課題を解決するためには温度センサを多く設置すれば解決するが、コストが高くなるという課題が残る。   However, in the invention disclosed in Patent Document 1, since the temperature distribution of the hot water in the hot water storage tank is not known unless the hot water passes through the position of the temperature sensor, the hot water storage amount depends on the position of the temperature sensor and the hot water movement speed. Depending on the situation, the temperature distribution cannot be calculated, and there is a problem that the time during which the heat storage amount cannot be grasped continues for a long time. In order to solve the above problem, it is possible to solve the problem by installing a large number of temperature sensors, but the problem that the cost becomes high remains.

また、貯湯タンクと風呂(浴槽水)追焚き熱交換器、床暖房熱交換器などを接続する多機能型の貯湯式給湯装置においては、貯湯タンクの中間部に中温水(30〜50℃程度の中温の湯)が戻るために、貯湯タンク内の温度分布が複雑に変動するが、特許文献1に開示された発明では貯湯タンクの湯水が移動して再び温度センサを通過するまで正確な温度分布が把握できないという課題があった。   In addition, in a multi-function hot water storage hot water supply device that connects a hot water storage tank to a bath (tub water) reheating heat exchanger, floor heating heat exchanger, etc., intermediate hot water (about 30-50 ° C.) is provided in the middle of the hot water storage tank. However, the temperature distribution in the hot water storage tank fluctuates in a complicated manner. However, in the invention disclosed in Patent Document 1, an accurate temperature is maintained until the hot water in the hot water storage tank moves and passes through the temperature sensor again. There was a problem that the distribution could not be grasped.

本発明は、上述のような課題を解決するためになされたものであり、貯湯タンクの湯水の温度分布を熱エネルギー収支式を直接解くことにより、正確に推定することができる貯湯式給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a hot water storage type hot water supply apparatus that can accurately estimate the temperature distribution of hot water in a hot water storage tank by directly solving the thermal energy balance equation. The purpose is to provide.

本発明に係る貯湯式給湯装置は、貯湯タンクと、前記貯湯タンクの湯水を加熱する加熱手段と、前記貯湯タンクの湯水を負荷側に供給する負荷側回路と、前記貯湯タンクへ流入する湯水の温度を測定する温度センサと、前記貯湯タンクへ流入する湯水の流量を測定する流量センサと、外気温度を検出する温度センサと、前記温度センサの温度測定値と前記流量センサの流量測定値とに基づいて、前記貯湯タンク内を上下方向に複数の層に分割した各層の温度を、各層へ接続する配管からの流入熱量と、各層の温度と外気温度との差に基づく放熱量と、各層に対し上下に隣接する層との伝熱量との総和から算出する温度分布演算手段とを備えたものである。   The hot water storage type hot water supply apparatus according to the present invention includes a hot water storage tank, heating means for heating hot water in the hot water storage tank, a load side circuit for supplying hot water in the hot water storage tank to a load side, and hot water flowing into the hot water storage tank. A temperature sensor that measures temperature, a flow sensor that measures the flow rate of hot water flowing into the hot water storage tank, a temperature sensor that detects the outside air temperature, a temperature measurement value of the temperature sensor, and a flow rate measurement value of the flow sensor. Based on the temperature of each layer divided into a plurality of layers in the hot water storage tank in the vertical direction, the amount of heat input from the pipe connected to each layer, the amount of heat released based on the difference between the temperature of each layer and the outside air temperature, On the other hand, it is provided with a temperature distribution calculating means for calculating from the sum of the heat transfer amounts with the layers adjacent in the vertical direction.

本発明に係る貯湯式給湯装置は、貯湯タンク内を上下方向に複数の層に分割した各層の温度を、各層へ接続される配管からの流入熱量と、各層の温度と外気温度との差に基づく放熱量と、各層に対し上下に隣接する層との伝熱量との総和から算出する、すなわち熱エネルギー収支式を直接解くための温度分布演算手段を備えたものであるので、貯湯タンクの湯水の温度分布を正確に推定することができる。また、この温度分布演算手段により、中温水流入による温度混合をも考慮した正確な温度分布を求めることができる。   In the hot water storage type hot water supply apparatus according to the present invention, the temperature of each layer obtained by dividing the hot water storage tank into a plurality of layers in the vertical direction is calculated based on the difference between the amount of heat input from the pipe connected to each layer and the temperature of each layer and the outside air temperature. Calculated from the sum of the heat dissipation amount based on the heat dissipation amount of the layers adjacent to the upper and lower layers, that is, equipped with temperature distribution calculation means for directly solving the thermal energy balance equation. Can be accurately estimated. In addition, the temperature distribution calculating means can determine an accurate temperature distribution that takes into account temperature mixing caused by the inflow of medium-temperature water.

以下、本発明に係る貯湯式給湯装置の実施の形態について図面を参照して説明する。   Embodiments of a hot water storage type hot water supply apparatus according to the present invention will be described below with reference to the drawings.

実施の形態1.
《全体構成》
図1は本発明の実施の形態1に係る貯湯式給湯装置の全体構成を示す構成図で、図2はこの貯湯式給湯装置の制御系の概要を示す概略構成図である。
本実施の形態に係る貯湯式給湯装置は、貯湯ユニットAと、熱源ユニットBと、負荷側回路Cとから構成されている。
貯湯ユニットAは、貯湯タンク1、一般給湯側混合弁2a、風呂側混合弁2b、減圧弁3、電磁弁4、制御部10、水ポンプ14a、14b、14c、風呂追焚熱交換器15、断熱材20を有しており(センサ類及び配管については後述する)、これらの構成品を金属製の外装ケース30内に収めている。貯湯タンク1はステンレスなどの金属製もしくは樹脂性などであり、貯湯タンク1の外側には断熱材20が配置されており、高温の湯(以下、高温水と記す)を長時間保温することができる。風呂追焚熱交換器15の1次側には貯湯タンク1上部からの往き配管25と貯湯タンク1中間部への戻り配管26が接続されており、2次側には浴槽5との往復配管27が接続されている。風呂追焚熱交換器15の1次側、2次側流路にはそれぞれポンプ14b、14cが接続されている。なお、図1ではタンクを1つの構成例としているが、2つもしくはこれ以上の貯湯タンクを直列もしくは並列に接続し、貯湯ユニットA内に設置してもよい。
Embodiment 1 FIG.
"overall structure"
FIG. 1 is a configuration diagram showing an overall configuration of a hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a schematic configuration diagram showing an outline of a control system of the hot water storage type hot water supply apparatus.
The hot water storage type hot water supply apparatus according to the present embodiment includes a hot water storage unit A, a heat source unit B, and a load side circuit C.
The hot water storage unit A includes a hot water storage tank 1, a general hot water supply side mixing valve 2a, a bath side mixing valve 2b, a pressure reducing valve 3, a solenoid valve 4, a control unit 10, water pumps 14a, 14b, 14c, a bath recuperation heat exchanger 15, A heat insulating material 20 is provided (sensors and piping will be described later), and these components are housed in a metal outer case 30. The hot water storage tank 1 is made of metal such as stainless steel or resin, and a heat insulating material 20 is disposed outside the hot water storage tank 1 so that hot water (hereinafter referred to as high temperature water) can be kept warm for a long time. it can. The primary side of the bath remedy heat exchanger 15 is connected with an outgoing pipe 25 from the upper part of the hot water storage tank 1 and a return pipe 26 to the intermediate part of the hot water storage tank 1, and a reciprocating pipe with the bathtub 5 on the secondary side. 27 is connected. Pumps 14 b and 14 c are connected to the primary side and secondary side flow paths of the bath remedy heat exchanger 15, respectively. In FIG. 1, the tank is shown as one configuration example, but two or more hot water storage tanks may be connected in series or in parallel and installed in the hot water storage unit A.

熱源ユニットBは、内部に市水温度の水(以下、水もしくは低温水と記す)を目標の貯湯温度まで昇温加熱する熱交換器などの加熱器(図示せず)が内蔵されている。熱源ユニットBは、例えばHFCやCO2などを冷媒とするヒートポンプであり、圧縮機(図示せず)、水と冷媒間で熱交換を行う水熱交換器(凝縮器、図示せず)、外気と冷媒間で熱交換を行う空気熱交換器(蒸発器、図示せず)、膨張弁(図示せず)などから構成されている。また、ヒートポンプに換えて、加熱源を電気ヒーターやガスなどに置き換えても良いし、加熱源を貯湯タンク1に内蔵する構成としてもよい。 The heat source unit B has a built-in heater (not shown) such as a heat exchanger that heats up water at a city water temperature (hereinafter referred to as water or low-temperature water) to a target hot water temperature. The heat source unit B is a heat pump that uses, for example, HFC or CO 2 as a refrigerant, a compressor (not shown), a water heat exchanger (condenser, not shown) that exchanges heat between water and the refrigerant, outside air And an air heat exchanger (evaporator, not shown), an expansion valve (not shown), etc. for exchanging heat between the refrigerant and the refrigerant. Further, instead of the heat pump, the heating source may be replaced with an electric heater, gas, or the like, or the heating source may be built in the hot water storage tank 1.

負荷側回路Cには、例えば、風呂側混合弁2bから給湯される給湯水を貯留する浴槽5や、一般給湯側混合弁2aから給湯される温水と水源から供給される市水とを混合して給湯する混合栓6、あるいは床暖房装置(図示せず)などが接続される。混合栓6にはシャワー(図示せず)が接続される場合などもある。7は貯湯ユニットAと熱源ユニットBから構成される貯湯システムとの情報入出力(給湯温度の設定や浴槽への給湯の開始又は停止操作など)が可能なリモコンである。リモコン7は、風呂側と台所用など複数個設置してもよい。   In the load side circuit C, for example, a bathtub 5 that stores hot water supplied from the bath side mixing valve 2b, hot water supplied from the general hot water side mixing valve 2a, and city water supplied from a water source are mixed. A mixing plug 6 for supplying hot water or a floor heating device (not shown) is connected. A shower (not shown) may be connected to the mixing plug 6. Reference numeral 7 denotes a remote controller capable of information input / output (setting of hot water supply temperature, start or stop operation of hot water supply to a bathtub, etc.) with a hot water storage system composed of a hot water storage unit A and a heat source unit B. A plurality of remote controllers 7 may be installed for the bath side and kitchen.

続いて、貯湯システムの配管構成について説明する。
水源から供給される市水温度の水は、貯湯タンク1と、混合弁2a、2b側と、混合栓6に3分岐される。貯湯タンク1の下部には、市水の導入管21と、熱源ユニットBへ貯湯タンク1下部の水を送水するための配管23とが接続されている。貯湯タンク1下部から送水された水は、熱源ユニットBで目標温度まで加熱昇温されて、熱源ユニットBから貯湯タンク1の上部へと繋がる配管24を経て貯湯タンク1の上部に戻される。貯湯タンク1と熱源ユニットB間の水の循環はポンプ14aにて行われる。なお、ポンプ14aは熱源ユニットB内に内蔵する構成としてもよい。
Next, the piping configuration of the hot water storage system will be described.
The city water temperature water supplied from the water source is branched into the hot water storage tank 1, the mixing valves 2 a and 2 b, and the mixing plug 6. Connected to the lower part of the hot water storage tank 1 are a city water introduction pipe 21 and a pipe 23 for feeding the water in the lower part of the hot water storage tank 1 to the heat source unit B. The water sent from the lower part of the hot water storage tank 1 is heated to the target temperature by the heat source unit B, and returned to the upper part of the hot water storage tank 1 via the pipe 24 connected from the heat source unit B to the upper part of the hot water storage tank 1. Water circulation between the hot water storage tank 1 and the heat source unit B is performed by a pump 14a. The pump 14a may be built in the heat source unit B.

貯湯タンク1の上部には、上記の風呂追焚熱交換器15の1次側往き配管25のほかに、出湯用の配管22が設けられており、貯湯タンク1から出た高温水は配管22から2分岐して一般給湯側混合弁2aと風呂側混合弁2bへと分配される。一方、混合弁2a、2bの水側入口には水源からの水配管28が減圧弁3を経て2分岐して接続されており、混合弁2a、2bにて湯と水が混合されて所定の温度の温水となってそれぞれ給湯される。風呂側は、風呂側混合弁2bと浴槽5とが配管29で電磁弁4を経由して接続されており、浴槽5に風呂側混合弁2bから給湯される温水が溜まる構成となっている。また、一般給湯側は、一般給湯側混合弁2aから配管30を経て給湯される温水が、水源から水配管31を経て供給される水と混合されて、混合栓6から給湯されるようになっている。   In the upper part of the hot water storage tank 1, a hot water outlet pipe 22 is provided in addition to the primary side outgoing pipe 25 of the bath recuperation heat exchanger 15, and the hot water discharged from the hot water storage tank 1 is supplied with the pipe 22. Are branched into two from the hot water supply side mixing valve 2a and the bath side mixing valve 2b. On the other hand, a water pipe 28 from a water source is branched and connected to the water side inlets of the mixing valves 2a and 2b through the pressure reducing valve 3 so that hot water and water are mixed in the mixing valves 2a and 2b. Each hot water is supplied as hot water of temperature. On the bath side, the bath-side mixing valve 2b and the bathtub 5 are connected by a pipe 29 via the electromagnetic valve 4, and the hot water supplied from the bath-side mixing valve 2b is stored in the bathtub 5. On the general hot water supply side, the hot water supplied from the general hot water supply side mixing valve 2a via the pipe 30 is mixed with the water supplied from the water source via the water pipe 31 and supplied from the mixing tap 6. ing.

なお、図1の例は混合栓6がひとつの構成を例に挙げたが、混合栓は、例えば台所や洗面所の蛇口、浴室のカラン兼シャワーなどに接続されるものであり、2つ以上の複数でもよく、混合弁の数を増やしてそれぞれの混合栓に対応する構成としてもよい。また、混合弁2a、2bは、例えばサーボモータ等の駆動源により弁体を駆動する電動弁であり、弁体が動くことにより高温水と水の混合比率を調整して給湯温度を制御できる構造のものである。   In the example of FIG. 1, the configuration of the mixing tap 6 is taken as an example, but the mixing tap is connected to, for example, a kitchen faucet, a bathroom faucet, a bathroom currant and shower, and the like. It is good also as a structure corresponding to each mixing plug by increasing the number of mixing valves. Further, the mixing valves 2a and 2b are electric valves that drive the valve body by a drive source such as a servo motor, for example, and a structure capable of controlling the hot water supply temperature by adjusting the mixing ratio of high-temperature water and water by moving the valve body. belongs to.

次に、貯湯ユニットAに設けられるセンサ類と制御部について説明する。
混合弁2a、2bの出口側には給湯流量を計測する流量センサが設けられており、一般給湯側混合弁2aの出口側には流量センサ11aが、風呂側混合弁2bの出口側には流量センサ11bがそれぞれ設けられており、また貯湯タンク1内の水を沸上げる際に熱源ユニットBと貯湯タンク1の間を循環する水の流量測定用に流量センサ11cが、風呂追焚熱交換器15と貯湯タンク1の間を流れる1次側流路の水流量測定用に流量センサ11dが設けられている。そして、各配管内を流れる湯水の温度を計測する温度センサが設けられている。すなわち、混合弁2a、2bの水側入口の水温測定用に温度センサ12cが、混合弁2a、2bの高温水側入口の高温水温度測定とタンク最上部の温度測定用に温度センサ13a(図1では温度センサ13aをタンク上部の缶体表面に設けているが、タンク上部缶体内部の湯温を直接測定する構成としてもよい)が、一般給湯側混合弁2a出口側の給湯温度測定用に温度センサ12aが、風呂側混合弁2b出口側の給湯温度測定用に温度センサ12bが、熱源ユニットBにて加熱昇温された湯の沸上温度測定用に温度センサ12dが設けられており、さらに、風呂追焚熱交換器15に接続される1次側には貯湯タンク1への戻り水温度測定用に温度センサ12fが、2次側には浴槽5からの戻り水温度測定用に温度センサ12eが設けられている。貯湯タンク1には前記温度センサ13aに加えて貯湯タンク中間部における貯湯水温度測定用の温度センサ13bが設けられている。また、外気温度を測定する温度センサ16が外装ケース30内に設けられている。なお、上記の各温度センサ12a〜12f、13a、13bは、配管やタンクの表面にロー付け、溶接、ねじ固定、フォルダ固定するなどの方法や、水温を直接測るように配管やタンクの内部にセンサを内没させる設置方法などでもよい。
Next, sensors and a control unit provided in the hot water storage unit A will be described.
A flow rate sensor for measuring the hot water supply flow rate is provided on the outlet side of the mixing valves 2a and 2b, a flow rate sensor 11a is provided on the outlet side of the general hot water supply side mixing valve 2a, and a flow rate is provided on the outlet side of the bath side mixing valve 2b. A sensor 11b is provided, and a flow rate sensor 11c for measuring the flow rate of water circulating between the heat source unit B and the hot water storage tank 1 when boiling the water in the hot water storage tank 1 is provided. A flow rate sensor 11 d is provided for measuring the water flow rate of the primary flow path that flows between the hot water storage tank 15 and the hot water storage tank 1. And the temperature sensor which measures the temperature of the hot water flowing through each piping is provided. That is, the temperature sensor 12c is used to measure the water temperature at the water inlet of the mixing valves 2a and 2b, and the temperature sensor 13a is used to measure the temperature of the hot water at the hot water inlet of the mixing valves 2a and 2b and the temperature at the top of the tank. 1, the temperature sensor 13a is provided on the surface of the can at the upper part of the tank, but it may be configured to directly measure the temperature of the hot water inside the tank upper part of the tank). The temperature sensor 12a is provided with a temperature sensor 12b for measuring the hot water supply temperature on the outlet side of the bath-side mixing valve 2b, and a temperature sensor 12d for measuring the boiling temperature of hot water heated by the heat source unit B. Further, a temperature sensor 12f is used for measuring the temperature of the return water to the hot water storage tank 1 on the primary side connected to the bath reheating heat exchanger 15, and a temperature sensor 12f is used for measuring the return water temperature from the bathtub 5 on the secondary side. Temperature sensor 12e is provided That. In addition to the temperature sensor 13a, the hot water storage tank 1 is provided with a temperature sensor 13b for measuring the hot water temperature in the intermediate portion of the hot water tank. A temperature sensor 16 for measuring the outside air temperature is provided in the exterior case 30. Each of the temperature sensors 12a to 12f, 13a, and 13b is brazed to the surface of the pipe or tank, welded, screwed, fixed to a folder, or the like, or inside the pipe or tank to directly measure the water temperature. An installation method in which the sensor is immersed may be used.

制御部10へ接続されるセンサ類、および、リモコン7、熱源ユニットB、弁類(混合弁、電磁弁)の接続構成を図2に示す。制御部10と前記センサ類などは通信ケーブルにより有線接続されており、信号の授受が可能である。なお、制御部10と前記センサ類などの通信は、無線経由としてもよい。
制御部10は貯湯ユニットAに内蔵されており、温度、流量などのセンサ類の計測を行う測定部(図示せず)、測定結果に基づき演算、比較、判定などの処理を行う演算部(図示せず)、演算結果に基づき、弁類などを駆動するための駆動部(図示せず)、熱源ユニットBへの運転情報などを送受信する送受信部(図示せず)により構成されている。また、演算部によって得られた結果や予め定められた関数などを計算する近似式やテーブルなどを記憶する記憶部(図示せず)も内蔵しており、必要に応じてこれらの記憶内容を参照、書き換えることが可能である。上記測定、演算、駆動などの処理はマイコンにより処理され、記憶部は半導体メモリーなどによって構成される。また、制御部10には、マイコンによる処理結果をLEDやモニターなどにより表示したり、警告音などを出力したり、電話回線、LAN回線、無線などの通信手段(図示せず)により遠隔地へ情報を出力する出力部(図示せず)、リモコンや基板上のスイッチ類からの操作入力、もしくは電話回線、LAN回線、無線などの通信手段(図示せず)からの通信データ情報を入力する入力部(図示せず)が設けられている。なお、上記構成例では制御部10を貯湯ユニットAに内蔵する構成としているが、貯湯ユニットAにメイン制御部を、熱源ユニットB側に制御部の機能の一部を持つサブ制御部を設けて、メイン制御部とサブ制御部間ではデータ通信を行うことにより連携処理を行う構成や、リモコンにそれらの機能を持たせる構成、あるいは貯湯ユニットAの外部に制御部を別置する形態などとしてもよい。
FIG. 2 shows a connection configuration of sensors connected to the control unit 10, the remote controller 7, the heat source unit B, and valves (mixing valve, electromagnetic valve). The control unit 10 and the sensors are wired by a communication cable so that signals can be exchanged. The communication between the control unit 10 and the sensors may be via wireless.
The control unit 10 is built in the hot water storage unit A, and includes a measurement unit (not shown) that measures sensors such as temperature and flow rate, and a calculation unit that performs processing such as calculation, comparison, and determination based on the measurement results (see FIG. (Not shown), a driving unit (not shown) for driving valves and the like based on the calculation result, and a transmission / reception unit (not shown) for transmitting / receiving operation information to the heat source unit B and the like. In addition, a storage unit (not shown) that stores approximate expressions and tables for calculating results obtained by the calculation unit and predetermined functions is also built in, and the stored contents are referred to as necessary. It is possible to rewrite. The processes such as measurement, calculation, and driving are processed by a microcomputer, and the storage unit is constituted by a semiconductor memory or the like. Further, the processing result by the microcomputer is displayed on the control unit 10 by an LED or a monitor, a warning sound or the like is output, or a communication means (not shown) such as a telephone line, a LAN line, or a wireless communication is used to reach a remote place. An output unit (not shown) for outputting information, an operation input from a remote controller or a switch on the board, or an input for inputting communication data information from a communication means (not shown) such as a telephone line, a LAN line, or a radio. A portion (not shown) is provided. In the above configuration example, the control unit 10 is built in the hot water storage unit A, but the main control unit is provided in the hot water storage unit A, and the sub control unit having a part of the function of the control unit is provided on the heat source unit B side. The main control unit and the sub-control unit may perform data communication to perform cooperative processing, a configuration in which the remote controller has those functions, or a configuration in which a control unit is provided outside the hot water storage unit A. Good.

《貯湯動作説明》
加熱源である熱源ユニットBにて沸き上げられた高温水は、熱源ユニットBと貯湯ユニットAとを接続する配管24を経て、貯湯タンク1へ上部から流入する。貯湯タンク1に流入した体積分の水(高温水もしくは低温水)が貯湯タンク1の上部から下部へ移動する。そして、貯湯タンク1の下部からは流入体積分の低温水が水ポンプ14aにより排出されて、配管接続される配管23を経て熱源ユニットBへと戻る。このように、熱源ユニットBと貯湯タンク1間では循環回路が形成されて、貯湯タンク1内の低温水は順次高温に沸き上げられて貯湯タンク1に貯湯される。この貯湯運転は、基本的には電力料金が安価な夜間に行われるが、昼間に貯湯熱量が不足する場合には昼間にも運転を行うことで(追加沸き上げ)、湯切れを防ぐことが可能となる。
<Explanation of hot water storage operation>
The high-temperature water boiled in the heat source unit B, which is a heating source, flows into the hot water storage tank 1 from above through a pipe 24 connecting the heat source unit B and the hot water storage unit A. A volume of water (high-temperature water or low-temperature water) flowing into the hot water storage tank 1 moves from the upper part to the lower part of the hot water storage tank 1. Then, low temperature water corresponding to the inflow volume is discharged from the lower part of the hot water storage tank 1 by the water pump 14a, and returns to the heat source unit B through the pipe 23 connected to the pipe. In this way, a circulation circuit is formed between the heat source unit B and the hot water storage tank 1, and the low temperature water in the hot water storage tank 1 is sequentially heated to a high temperature and stored in the hot water storage tank 1. This hot water storage operation is basically performed at night when the electricity rate is low, but if the amount of stored hot water is insufficient during the day, it can also be operated during the day (additional boiling) to prevent running out of hot water. It becomes possible.

《給湯動作説明》
貯湯タンク1の沸き上げ湯温はリモコン7で予め設定することが可能であり、深夜時間帯に、熱源ユニットBのヒートポンプ熱源により貯湯タンク1の水温を目標沸き上げ湯温まで沸き上げる。また、一般給湯側の給湯温度と、浴槽の設定温度は、予めリモコン7にて設定することが可能である。また、昼間時間帯に貯湯量が不足する場合には、熱源ユニットBを運転して貯湯タンク1に追加貯湯することで貯湯量の不足を補うことも可能である。
<Explanation of hot water supply operation>
The boiling water temperature of the hot water storage tank 1 can be set in advance by the remote controller 7, and the water temperature of the hot water storage tank 1 is heated to the target boiling water temperature by the heat pump heat source of the heat source unit B at midnight. Further, the hot water supply temperature on the general hot water supply side and the set temperature of the bathtub can be set in advance by the remote controller 7. In addition, when the amount of hot water storage is insufficient during daytime hours, it is possible to compensate for the shortage of hot water storage by operating the heat source unit B and storing additional hot water in the hot water storage tank 1.

(一般給湯側への給湯動作)
混合栓6を開くと、制御部10は、一般給湯側の温度センサ12aでの検出温度が、設定されている給湯温度となるように一般給湯側混合弁2aを制御し、貯湯タンク1上部から給湯される高温水と水源からの水を適温(例えば42℃)に混合する。
(Hot-water supply operation to the general hot water supply side)
When the mixing tap 6 is opened, the control unit 10 controls the general hot water supply side mixing valve 2a so that the temperature detected by the temperature sensor 12a on the general hot water supply side becomes the set hot water supply temperature. Hot water to be supplied with hot water and water from a water source are mixed at an appropriate temperature (for example, 42 ° C.).

(風呂給湯側への給湯動作)
浴槽5への給湯温度は、予めリモコン7で設定することが可能であり、浴槽5への給湯動作を行う。湯張りを行うためには、まずリモコン7で、湯張りスイッチを押す。これにより湯張りの指令が出力され、制御部10が、風呂側の温度センサ12bでの検出温度が設定されている浴槽湯温となるように風呂給湯側混合弁2bを制御するとともに、配管29に設けられている電磁弁4を開いて浴槽5への湯張りを開始する。浴槽5への湯張り開始後、浴槽側の配管29に設けられている流量センサ11bにより、積算流量をカウントし、リモコン7であらかじめ設定された浴槽湯量に到達するまで、湯張りを継続する。積算流量が、設定された浴槽湯量に到達すると、電磁弁4を閉じて湯張りを完了する。
(Hot-water supply operation to the bath hot-water supply side)
The hot water supply temperature to the bathtub 5 can be set in advance by the remote controller 7 and the hot water supply operation to the bathtub 5 is performed. In order to fill the hot water, first press the hot water switch with the remote controller 7. As a result, a hot water filling command is output, and the control unit 10 controls the bath hot water supply side mixing valve 2b so that the temperature detected by the bath side temperature sensor 12b is set, and the piping 29 The solenoid valve 4 provided in is opened and hot water filling to the bathtub 5 is started. After the hot water filling to the bathtub 5 is started, the integrated flow rate is counted by the flow rate sensor 11b provided in the pipe 29 on the bathtub side, and the hot water filling is continued until the amount of the hot water bath set in advance by the remote controller 7 is reached. When the integrated flow rate reaches the set amount of bathtub hot water, the solenoid valve 4 is closed to complete the hot water filling.

(浴槽水の追焚動作)
リモコン7からの指令により、浴槽水が冷めたときの追焚運転が実行される。追焚運転が開始されると、風呂追焚熱交換器15の1次側、2次側流路に接続されているポンプ14b、14cが駆動する。これにより、貯湯タンク1の高温水と浴槽5の湯水を熱交換することが可能となり、浴槽水の加熱追焚が可能となる。このとき、貯湯タンク1側には浴槽水と熱交換した後の中温水(40〜60℃程度)が貯湯タンク1の上下方向中間部もしくは下部の配管26接続部より戻される。貯湯タンク1内では、配管26接続部の貯湯タンク1内の湯水と風呂追焚熱交換器15からの戻り湯水との混合が行われ、両者の温度差異により貯湯タンク1内の温度分布が複雑に変化する。
(Memorial operation of bathtub water)
In accordance with a command from the remote controller 7, a memorial operation when the bathtub water is cooled is executed. When the chasing operation is started, the pumps 14b and 14c connected to the primary side and secondary side channels of the bath chasing heat exchanger 15 are driven. Thereby, it becomes possible to heat-exchange the hot water of the hot water storage tank 1 and the hot water of the bathtub 5, and the heating of the bathtub water can be tracked. At this time, medium temperature water (about 40 to 60 ° C.) after heat exchange with the bath water is returned to the hot water storage tank 1 side from the intermediate portion in the vertical direction of the hot water storage tank 1 or the pipe 26 connection portion at the bottom. In the hot water storage tank 1, the hot water in the hot water storage tank 1 connected to the pipe 26 is mixed with the hot water returning from the bath reheating heat exchanger 15, and the temperature distribution in the hot water storage tank 1 is complicated due to the temperature difference between the two. To change.

(貯湯タンクの湯水温度分布推定方法)
貯湯タンク1内の湯水の温度分布を正確に推定するためには、水の流れの影響および温度差により生じる浮力を考慮してタンク内の流れと温度拡散を解く必要がある。このような浮力の影響を考慮して貯湯タンク内の温度分布を解く解析手法は、例えば下記の文献2に記載されている。
(Method for estimating hot water temperature distribution in hot water storage tanks)
In order to accurately estimate the temperature distribution of the hot water in the hot water storage tank 1, it is necessary to solve the flow and temperature diffusion in the tank in consideration of the influence of the water flow and the buoyancy caused by the temperature difference. An analysis method for solving the temperature distribution in the hot water storage tank in consideration of the influence of such buoyancy is described, for example, in Document 2 below.

(文献2)豊島・岡島・渡邊・風間:多機能型ヒートポンプ給湯装置の貯湯タンク内温度分布シミュレーション、空気調和・衛生工学会学術講演論文集、2004.9,pp.69−72   (Reference 2) Toshima, Okajima, Watanabe, Kazama: Simulation of temperature distribution in hot water storage tank of multifunction heat pump water heater, Proceedings of Academic Lectures of Society of Air Conditioning and Sanitation Engineering, 2004.9, pp. 69-72

以下にその概要を記す。
図3に貯湯タンク内温度分布の計算モデルを示す。モデルではタンク内の湯水を上部から順に1〜n層の小区間に分割している。分割した各層内は完全混合層と仮定しており、層ごとに熱エネルギー収支式である式(1)を一定時間間隔ごとに逐次解いて各層の温度を求める。
j層における熱エネルギー収支式は次式で表される。
The outline is described below.
FIG. 3 shows a calculation model of the temperature distribution in the hot water storage tank. In the model, hot water in the tank is divided into small sections of 1 to n layers in order from the top. Each divided layer is assumed to be a completely mixed layer, and the temperature of each layer is obtained by successively solving Formula (1), which is a thermal energy balance equation, for each layer at regular time intervals.
The thermal energy balance equation in the j layer is expressed by the following equation.

Figure 2010054131
ここで、
ρ[kg/m3]:水密度、Cp[J/kgK]:水比熱、V[m3]:タンク容積、T[K]:温度、t[s]:時間、Gh[m3/s]:加熱ポンプ流量、Gb[m3/s]:追焚きポンプ流量、Gf[m3/s]:床暖ポンプ流量、Gtop[m3/s]:上部出湯流量、Gmid[m3/s]:中温水出湯流量、K[W/m2K]:タンク熱通過率、λ[W/mK]:熱伝導率、At[m3]:タンク断面伝熱面積、Aj[m3]:j層タンク側面伝熱面積、Ta[K]:外気温度、d[m]:タンク分割高さ
である。
Figure 2010054131
here,
ρ [kg / m 3 ]: Water density, Cp [J / kgK]: Water specific heat, V [m 3 ]: Tank volume, T [K]: Temperature, t [s]: Time, Gh [m 3 / s ]: Heating pump flow rate, Gb [m 3 / s]: Reheating pump flow rate, Gf [m 3 / s]: Floor warming pump flow rate, Gtop [m 3 / s]: Upper hot water flow rate, Gmid [m 3 / s ]: Medium hot water discharge flow rate, K [W / m 2 K]: Tank heat passage rate, λ [W / mK]: Thermal conductivity, At [m 3 ]: Tank cross-sectional heat transfer area, Aj [m 3 ]: j layer tank side surface heat transfer area, Ta [K]: outside air temperature, d [m]: tank division height.

式(1)の右辺の各項について説明する。
右辺第1項:第j層への流入項であり、各面からの流量×温度差の合計で表される。
右辺第2項:タンク側壁からの放熱項である。ここで、熱通過率Kは実験結果から決定する。
右辺第3項、第4項:第j層に隣接する上下層間の熱伝導に関する項である。
Each term on the right side of Equation (1) will be described.
Right-side first term: an inflow term to the j-th layer, which is represented by the sum of the flow rate x temperature difference from each surface.
Second term on the right side: This is a heat dissipation term from the tank side wall. Here, the heat transfer rate K is determined from the experimental results.
3rd term and 4th term on right side: Terms related to heat conduction between upper and lower layers adjacent to the jth layer.

ここで、式(1)をそのまま解くと、図4(b)のようにタンク側面からの流入がある局所の水温のみが変化して、実際の現象(図4(a)参照)とは異なる結果となる。この原因は、右辺第3項と第4項の上下層間熱伝導項の解き方に起因するものであり、式(1)を解く上で、水温の違いによる密度差によって生じる浮力の影響を考慮し温度拡散を解く必要がある。そこで、右辺第3項、第4項において、j層に対する隣り合う層の密度を比較して、浮力が発生する場合にはその層の熱伝導率が向上したものと仮定して、熱伝導率λの値を通常の水(常温の水をいう)の熱伝導率λwよりも大きい値λzに設定し、密度に逆転がない場合(浮力の影響なしの場合)には通常の水の熱伝導率λwで計算する。なお、ここで浮力が発生した場合の熱伝導率λzは実験結果から決定する。   Here, when equation (1) is solved as it is, only the local water temperature where the inflow from the tank side surface changes as shown in FIG. 4 (b) changes, which is different from the actual phenomenon (see FIG. 4 (a)). Result. This is due to the way of solving the upper and lower interlayer heat conduction terms in the third and fourth terms on the right side. In solving equation (1), the influence of buoyancy caused by the density difference due to the difference in water temperature is taken into account. It is necessary to solve the temperature diffusion. Therefore, in the third and fourth terms on the right side, the density of adjacent layers relative to the j layer is compared, and when buoyancy occurs, it is assumed that the thermal conductivity of that layer has been improved. If the value of λ is set to a value λz that is larger than the thermal conductivity λw of normal water (referred to room temperature water), and there is no reversal in density (no influence of buoyancy), normal heat transfer of water Calculate with the rate λw. Here, the thermal conductivity λz when buoyancy occurs is determined from the experimental results.

具体的には、以下のような計算となる。j層の密度ρjと、ひとつ上のj−1層の密度ρj-1、ひとつ下のj+1層の密度ρj+1とを比較して、
ρj-1>ρjのとき λj-1=λz[W/mK]
ρj-1≦ρjのとき λj-1=λw[W/mK]
ρj>ρj+1のとき λj+1=λz[W/mK]
ρj≦ρj+1のとき λj+1=λw[W/mK]
上記仮定により、タンク内の流れを直接解かずに浮力を模擬して温度拡散を簡易的に解くことができる。
Specifically, the calculation is as follows. Compared with the density [rho j of j layer, the density of one on the j-1-layer [rho j-1, and the density [rho j + 1 of one of a j + 1 layer,
When ρ j-1 > ρ j λ j-1 = λz [W / mK]
When ρ j-1 ≦ ρ j λ j-1 = λw [W / mK]
When ρ j > ρ j + 1 λ j + 1 = λz [W / mK]
When ρ j ≦ ρ j + 1 λ j + 1 = λw [W / mK]
Based on the above assumption, temperature diffusion can be solved simply by simulating buoyancy without directly solving the flow in the tank.

本実施の形態は、前記式(1)の演算を制御部10にて行い、貯湯タンク1内の湯水の温度分布を時々刻々推定するものである。そして、式(1)を実際の装置(実機)に適用するにあたり、本実施の形態では以下に説明する内容を適用している。   In the present embodiment, the calculation of the formula (1) is performed by the control unit 10 to estimate the temperature distribution of hot water in the hot water storage tank 1 every moment. And when applying Formula (1) to an actual apparatus (actual machine), in this Embodiment, the contents explained below are applied.

実際の装置では、流量センサの誤差、温度センサの誤差、日照・風雨の影響などによるタンク熱通過率の変化などの誤差要因が存在する。したがって、実際の装置にて式(1)を直接解いても誤差が生じ、補正をしなければ誤差が累積して大きな誤差となる可能性がある。この対応として、本実施の形態では、貯湯タンクに、湯水の温度を測定し、参照する温度センサ(タンク温度センサともいう)13a、13bを設けた。タンク温度センサ13a、13bの位置においては、式(1)に基づく温度推定値を使用せず、タンク温度センサ13a、13bの温度測定値に置き換える置換処理を逐次行う。   In an actual apparatus, there are error factors such as a flow rate sensor error, a temperature sensor error, and a change in the tank heat passage rate due to the influence of sunlight and wind and rain. Therefore, even if the equation (1) is directly solved by an actual apparatus, an error occurs. If no correction is made, the error may accumulate and become a large error. In response to this, in the present embodiment, the hot water storage tank is provided with temperature sensors (also referred to as tank temperature sensors) 13a and 13b that measure and refer to the temperature of the hot water. At the positions of the tank temperature sensors 13a and 13b, the replacement process for replacing the temperature estimated values based on the equation (1) with the measured temperature values of the tank temperature sensors 13a and 13b is sequentially performed.

図5に逐次温度補正の概念図、すなわち貯湯タンク内温度分布の修正による推移を表した図を示す。図5では、貯湯タンクの沸上げ動作を表しており、左から右に時間が経過する様子を表している。左の図では温度分布推定値(破線)と実際の値(実線)に差異が生じているが、タンク内の湯水が移動し、タンク中間部の温度センサ(タンク温度センサ13b)の位置を通過することにより、予測誤差が修正されて、誤差部分が通過し終わる右の図では、誤差が修正されて推定値と実際の値が完全に一致している様子がわかる。このため、温度分布予測値に誤差が生じていても、温度センサ(タンク温度センサ13b)位置を誤差部分が通過することにより修正が可能となる。また、本修正方法によれば、タンク内を流れる流量が流量センサにより正確に測定できずに誤差を含んでいても、誤差を最小限に抑えて温度分布を予測することが可能となる。温度センサ(タンク温度センサ13b)の位置は、タンク内の湯水が通過する頻度が高い中間部に設けることが理想的である。また、検知精度を重視する位置、例えば残湯量が少量のときの検出精度を向上させたいのであれば、タンクの下部に設けることで任意の領域の検知精度を向上させることが可能となる。また、タンク温度センサを複数設けることにより、さらに精度を向上させることが可能となる。   FIG. 5 shows a conceptual diagram of sequential temperature correction, that is, a diagram showing a transition due to correction of the temperature distribution in the hot water storage tank. FIG. 5 shows the boiling operation of the hot water storage tank, and shows how time passes from left to right. In the figure on the left, there is a difference between the estimated temperature distribution (dashed line) and the actual value (solid line), but the hot water in the tank moves and passes the position of the temperature sensor (tank temperature sensor 13b) in the middle of the tank. As a result, the prediction error is corrected, and in the figure on the right where the error part has passed, it can be seen that the error is corrected and the estimated value and the actual value completely match. For this reason, even if an error occurs in the predicted temperature distribution value, the error portion can be corrected by passing through the position of the temperature sensor (tank temperature sensor 13b). Further, according to this correction method, even if the flow rate flowing through the tank cannot be accurately measured by the flow rate sensor and includes an error, the temperature distribution can be predicted with the error being minimized. The position of the temperature sensor (tank temperature sensor 13b) is ideally provided in an intermediate portion where the hot water in the tank passes frequently. In addition, if it is desired to improve the detection accuracy when the detection accuracy is important, for example, when the amount of remaining hot water is small, the detection accuracy of an arbitrary region can be improved by providing the detection accuracy in the lower part of the tank. Further, by providing a plurality of tank temperature sensors, the accuracy can be further improved.

図5では、タンク最上部にも温度センサ(タンク温度センサ13a)を設けている。貯湯タンク1の温度分布は、通常、タンク最上部が最も高温であり、タンク最上部から温度境界層位置までほぼ同一の高温部が形成される。タンク温度分布から貯湯タンク内の蓄熱量を推定する場合にはこの高温部の影響が大きくなるため、高温部の予測精度向上が課題となる。   In FIG. 5, a temperature sensor (tank temperature sensor 13a) is also provided at the top of the tank. Regarding the temperature distribution of the hot water storage tank 1, the uppermost part of the tank is usually the hottest, and almost the same high temperature part is formed from the uppermost part of the tank to the temperature boundary layer position. When the heat storage amount in the hot water storage tank is estimated from the tank temperature distribution, the influence of the high temperature part becomes large, so that it is a problem to improve the prediction accuracy of the high temperature part.

本実施の形態では、この課題を解決するためにタンク最上部にタンク温度センサ13aを設け、タンク上部から温度境界層位置までの高温部(図5参照)の温度はタンク最上部の温度に連動して変化するものとして扱っている。これにより、蓄熱量予測に対し影響の大きい高温部の空気への放熱予測値にずれが生じるなどの誤差が生じても逐次温度が修正されるため、温度分布および蓄熱量予測値の予測精度を高めることが可能となる。   In this embodiment, in order to solve this problem, a tank temperature sensor 13a is provided at the uppermost part of the tank, and the temperature of the high temperature part (see FIG. 5) from the upper part of the tank to the temperature boundary layer position is linked to the temperature of the uppermost part of the tank. It is treated as something that changes. As a result, even if an error such as a deviation occurs in the predicted heat release to the air in the high-temperature part, which has a large effect on the heat storage amount prediction, the temperature is sequentially corrected, so the prediction accuracy of the temperature distribution and the heat storage amount prediction value is improved. It becomes possible to raise.

高温部の具体的な温度補正方法を以下に説明する。式(1)の演算方法では、分割区間のタンク温度推定値の演算・更新をタンク上方から下方に向かって行う。この演算において、タンク温度推定値がタンク最上部に設けたタンク温度センサ13aの水温(温度測定値)よりも高い場合(温度逆転が発生している場合)には、タンク温度推定値がタンク温度センサ13aの温度測定値よりも低い温度となる位置まで、タンク温度推定値をタンク温度センサ13aの温度測定値に置き換える。つまり、高温部の温度は全て同一温度で変化すると仮定する。   A specific temperature correction method for the high temperature part will be described below. In the calculation method of Formula (1), the tank temperature estimated value in the divided section is calculated and updated from the upper side to the lower side. In this calculation, when the estimated tank temperature is higher than the water temperature (temperature measured value) of the tank temperature sensor 13a provided at the top of the tank (when temperature reversal occurs), the estimated tank temperature is the tank temperature. The estimated tank temperature value is replaced with the measured temperature value of the tank temperature sensor 13a until the temperature becomes lower than the measured temperature value of the sensor 13a. That is, it is assumed that all the temperatures in the high temperature part change at the same temperature.

上記方法の利点として、貯湯タンク上部に低温水が流入した場合の温度分布変化にも対応が可能という点が挙げられる。以下にその内容を説明する。   As an advantage of the above method, it is possible to cope with a temperature distribution change when low temperature water flows into the upper part of the hot water storage tank. The contents will be described below.

図6は加熱装置であるヒートポンプの起動からの沸上げ温度(熱交換器出口水温)の立上り変化を表したものである。ヒートポンプは熱交換器、圧縮機などの熱容量が大きいために瞬間的に高温の沸上げ温度で立ち上げることができず、起動時は図6に示すように沸上げ温度が徐々に立ち上がる傾向となり、図6のAに至るまで、沸上げ設定温度すなわち貯湯タンク最上部の温度より低い温度の水が流入することになる。このように低温水が貯湯タンク1の上部に流入すると、高温部の高温水を冷却することになり、高温部の水温が全体的に低下することになる。この現象は、ヒートポンプ式のように沸上げ温度の瞬時立ち上げが困難な加熱装置を沸上げに用いる場合には避けられない現象であり、ヒートポンプを起動するたびにこの現象が起きる。このため、貯湯タンク温度分布予測精度を高めるためには、この現象に対応する必要がある。前記説明の本実施の形態の高温部温度補正方法によれば、低温水が流入した場合に高温部の水温をタンク上部のタンク温度センサ13aの温度測定値に基づいて逐次更新するために、ヒートポンプの特性に対応した適切な温度分布の補正が可能となり、予測精度を高めることができる。   FIG. 6 shows the rise change of the boiling temperature (heat exchanger outlet water temperature) from the start of the heat pump as a heating device. Since heat pumps have large heat capacities such as heat exchangers and compressors, they cannot be instantaneously started up at a high boiling temperature, and when starting, the boiling temperature tends to gradually rise as shown in FIG. Until reaching A in FIG. 6, water having a temperature lower than the boiling setting temperature, that is, the temperature at the top of the hot water storage tank flows. When the low-temperature water flows into the upper part of the hot water storage tank 1 in this way, the high-temperature water in the high-temperature part is cooled, and the water temperature in the high-temperature part decreases as a whole. This phenomenon is unavoidable when a heating device that is difficult to instantly raise the boiling temperature, such as a heat pump type, is unavoidable, and this phenomenon occurs every time the heat pump is started. For this reason, in order to improve the hot water tank temperature distribution prediction accuracy, it is necessary to cope with this phenomenon. According to the high temperature part temperature correction method of the present embodiment described above, in order to sequentially update the water temperature of the high temperature part based on the temperature measurement value of the tank temperature sensor 13a in the upper part of the tank when low temperature water flows in, the heat pump Therefore, it is possible to correct an appropriate temperature distribution corresponding to the characteristics, and to improve the prediction accuracy.

続いて、本実施の形態において、タンク中間部に中温水が流入した場合の演算方法について説明する。中温水の流入は、例えば図1の浴槽追焚回路の運転を行う追焚運転や、床暖房などその他負荷側熱交換器(図示せず)を貯湯式給湯装置に付加した場合の戻り配管付近で発生する。前記説明の従来の式(1)による演算方法では、タンクのある隣り合う分割層において上下で密度逆転が生じた場合(上の層の密度の方が下の層の密度より大きい場合)には、発生する浮力を模擬して水の熱伝導率を大きな値で計算していた。本実施の形態では実際の装置の適用化を図るに当り、実際の装置での演算負荷を減らすために水の密度演算を無くし、上下層の温度比較のみで対応可能とする。すなわち、水の密度は温度上昇に対しほぼ単調に低下する傾向がある。このため、「密度が大きい=温度が低い」の関係が成り立つ。したがって、上下層の温度を比較し、上の層の温度が下の層の温度よりも低い場合には密度逆転が発生していると判断して、この場合に上下層間の水の熱伝導率を大きな値として計算することで、従来の演算方法と同様に中温水流入時においてもタンク温度分布を正確に推定することが可能となる。   Subsequently, in the present embodiment, a calculation method when the medium-temperature water flows into the tank middle part will be described. The inflow of medium-temperature water is, for example, in the vicinity of the return pipe when adding a load-side heat exchanger (not shown) such as a floor heating operation or the like for operation of the bathtub tracking circuit in FIG. Occurs. In the calculation method according to the conventional formula (1) described above, when density inversion occurs in the upper and lower sides of adjacent divided layers with tanks (when the density of the upper layer is greater than the density of the lower layer) The thermal conductivity of water was calculated with a large value by simulating the buoyancy generated. In this embodiment, when applying an actual device, in order to reduce the calculation load on the actual device, the density calculation of water is eliminated, and only the temperature comparison between the upper and lower layers is possible. That is, the density of water tends to decrease almost monotonously with increasing temperature. Therefore, the relationship “high density = low temperature” is established. Therefore, the temperature of the upper and lower layers is compared, and if the temperature of the upper layer is lower than the temperature of the lower layer, it is determined that density reversal has occurred, and in this case, the thermal conductivity of water between the upper and lower layers By calculating as a large value, it becomes possible to accurately estimate the tank temperature distribution even when the medium-temperature water flows in, as in the conventional calculation method.

式(1)の右辺第2項に用いられている熱通過率Kは、試験により値を決定するが、実際の装置では個体差などにより差異が生じる可能性がある。これに対する対処方法として本実施の形態では、ある時間帯の始点から終点までの温度センサ12a〜12f、13a、13bの各測定温度平均値と、外気平均温度との差から実測に基づき熱通過率Kを算出し、逐次修正する。これにより、実際の装置の個体差や機種差、外界条件差により生じる熱通過率Kの誤差を適切に修正することが可能となる。   The value of the heat transfer rate K used in the second term on the right side of the equation (1) is determined by a test, but in an actual apparatus, a difference may occur due to individual differences. As a coping method for this, in the present embodiment, the heat passage rate is based on the actual measurement from the difference between the measured temperature average values of the temperature sensors 12a to 12f, 13a, and 13b from the start point to the end point of a certain time zone and the average outside air temperature. K is calculated and corrected sequentially. As a result, it is possible to appropriately correct an error in the heat transfer rate K caused by an individual difference, a model difference, or an external condition difference of an actual device.

図1に示す貯湯タンク1と風呂追焚熱交換器15との間で形成される浴槽追焚回路では、水ポンプ、管路損失が常に同じであるため、流量を固定値として扱っても大きな支障がない。このため、事前に試験で追焚回路運転時の水流量を求めておき、温度分布予測においてはこの値を用い、流量センサ11dを省いてもよい。これにより部品が減り、低コスト化が可能となる。   In the bathtub remedy circuit formed between the hot water storage tank 1 and the bath remedy heat exchanger 15 shown in FIG. 1, the water pump and the pipe loss are always the same, so that even if the flow rate is treated as a fixed value, it is large. There is no hindrance. For this reason, the water flow rate during the operation of the remedy circuit may be obtained in advance by testing, and this value may be used in the temperature distribution prediction to omit the flow rate sensor 11d. As a result, the number of parts is reduced and the cost can be reduced.

また、実際の装置にて最初の浴槽追焚運転を行った際などに、追焚運転開始から停止までの所要時間と、この間の貯湯タンクの温度分布から計算される蓄熱量変化量と、風呂追焚熱交換器15の貯湯タンク側の出入口温度差の平均値から追焚流量を推定し、以降この流量を用いる方法としてもよい。ここで追焚流量は次式により求められる。
追焚流量[kg/s]=追焚によるタンク蓄熱量変化量[kJ]÷追焚所要時間[s]
÷追焚熱交換器出入口温度差の平均値[K]
÷水の比熱[kJ/kg/K]・・・・(2)
このように追焚熱量を実際の装置の実測データから求めることにより、実際の装置の個体差を吸収し、正確な流量の推定が可能となる。したがって、タンク温度分布計算の精度を高めることが可能となる。
In addition, when the first bath retreat operation is performed with an actual device, the required time from the start to the stop operation of the retreat operation, the amount of change in the heat storage amount calculated from the temperature distribution of the hot water storage tank during this time, and the bath A method may be used in which the flow rate is estimated from the average value of the inlet / outlet temperature difference on the hot water storage tank side of the heat exchanger 15 and this flow rate is used thereafter. Here, the memory flow rate is obtained by the following equation.
Mourning flow rate [kg / s] = Tank heat storage amount change [kJ] due to Mourning ÷ Mourning time [s]
÷ Average value of temperature difference between inlet and outlet of the heat exchanger [K]
÷ Specific heat of water [kJ / kg / K] (2)
In this way, by obtaining the amount of memorial heat from the actual measurement data of the actual device, it is possible to absorb individual differences of the actual device and accurately estimate the flow rate. Therefore, the accuracy of tank temperature distribution calculation can be increased.

図1に示す熱源ユニットBがヒートポンプである場合、ヒートポンプの加熱能力特性を関数化して制御部10に記憶することにより、貯湯タンク1へ流入するヒートポンプ水加熱回路の水流量を推定することが可能となる。ヒートポンプの加熱能力は、ヒートポンプの運転特性に影響を及ぼす外気温度と、流入水温度と、沸上げ温度の関数として表すことが可能である(特許文献1)。これにより、流量センサ11cを削除することが可能となり、給湯システムの低コスト化が実現可能となる。   When the heat source unit B shown in FIG. 1 is a heat pump, it is possible to estimate the water flow rate of the heat pump water heating circuit flowing into the hot water storage tank 1 by functionalizing the heating capacity characteristic of the heat pump and storing it in the control unit 10. It becomes. The heating capacity of the heat pump can be expressed as a function of the outside air temperature, the inflow water temperature, and the boiling temperature that affect the operation characteristics of the heat pump (Patent Document 1). As a result, the flow sensor 11c can be deleted, and the cost reduction of the hot water supply system can be realized.

また、熱源ユニットBの水流量制御に用いられているポンプが直流電源ポンプである場合には、印加される電圧と水流量の相関関係から水流量を推定することが可能となる。印加電圧は制御部10からの出力値であるため制御部10で認識しており、これに前記相関関係式を記憶して適用することで水流量の推定が可能となる。これにより、流量センサ11cを削除することが可能となり、給湯システムの低コスト化が実現可能となる。   Moreover, when the pump used for the water flow control of the heat source unit B is a DC power supply pump, it becomes possible to estimate the water flow rate from the correlation between the applied voltage and the water flow rate. Since the applied voltage is an output value from the control unit 10, the control unit 10 recognizes the applied voltage, and the water flow rate can be estimated by storing and applying the correlation equation to the control unit 10. As a result, the flow sensor 11c can be deleted, and the cost reduction of the hot water supply system can be realized.

以上のようにして演算された貯湯タンク温度分布を用いて貯湯タンク1が蓄える蓄熱量を演算する方法について説明する。
蓄熱量は次式により求められる。
A method of calculating the heat storage amount stored in the hot water storage tank 1 using the hot water storage tank temperature distribution calculated as described above will be described.
The amount of heat storage is obtained by the following equation.

Figure 2010054131
ここで、
ρ[kg/m3]:水密度、Cp[J/kgK]:水比熱、V[m3]:タンク分割区間の容積、Ti[℃]:タンク分割区間の温度、Tc[℃]:市水温度、i:タンク分割区間番号、n:タンク分割数
である。
Figure 2010054131
here,
ρ [kg / m 3 ]: water density, Cp [J / kgK]: water specific heat, V [m 3 ]: volume of tank division section, Ti [° C.]: temperature of tank division section, Tc [° C.]: city Water temperature, i: tank division section number, n: number of tank divisions.

このように本実施の形態で得られた貯湯タンク温度分布を用いることで、正確な蓄熱量を演算することが可能となり、正確な貯湯タンク蓄熱量を随時知ることができる。これにより、貯湯タンクの深夜沸き上げ時に必要とする蓄熱量に合せて正確に沸き上げることが可能となり、余計な沸上げを行わないため省エネに貢献することができる。また、昼間時間帯においても正確な蓄熱量を常に把握できるため、蓄熱量が不足する場合に追加沸き上げを開始すべき時間を正確に判断することが可能となる。これにより、沸き上げ運転開始遅れによる湯切れなどの不都合を防ぐことが可能となる。   As described above, by using the hot water storage tank temperature distribution obtained in the present embodiment, it is possible to calculate an accurate heat storage amount, and an accurate hot water storage tank heat storage amount can be known at any time. Thereby, it becomes possible to boil accurately according to the heat storage amount required at the time of boiling the hot water storage tank at midnight, and it is possible to contribute to energy saving because no extra boiling is performed. In addition, since an accurate amount of heat storage can be always grasped even during daytime hours, it is possible to accurately determine the time when additional boiling should be started when the amount of heat storage is insufficient. As a result, it is possible to prevent inconvenience such as running out of hot water due to the delay in starting the boiling operation.

本発明の実施の形態1に係る貯湯式給湯装置の構成図である。It is a block diagram of the hot water storage type hot water supply apparatus which concerns on Embodiment 1 of this invention. 同貯湯式給湯装置の制御系の概略構成図である。It is a schematic block diagram of the control system of the hot water storage type hot water supply apparatus. 貯湯タンク内温度分布の計算モデル図である。It is a calculation model figure of the temperature distribution in a hot water storage tank. タンク側面からの流入がある場合の貯湯タンク内温度分布の変化を実際と計算結果とを比較して表した図である。It is the figure which represented the change of the temperature distribution in a hot water storage tank in the case of the inflow from a tank side surface comparing an actual and a calculation result. 貯湯タンク内温度分布の修正による推移を表した図である。It is a figure showing transition by correction of temperature distribution in a hot water storage tank. 加熱源の沸上げ温度の立上り変化を表した図である。It is a figure showing the rising change of the boiling temperature of a heating source.

符号の説明Explanation of symbols

1 貯湯タンク、2a 一般給湯側混合弁、2b 風呂給湯側混合弁、3 減圧弁、4 電磁弁、5 浴槽、6 混合栓、7 リモコン、10 制御部、11a、11b、11c、11d 流量センサ、12a、12b、12c、12d、12e 温度センサ、13a、13b 温度センサ(タンク温度センサ)、14a、14b、14c 水ポンプ、15 風呂追焚熱交換器、16 温度センサ、20 断熱材、30 外装ケース、A 貯湯ユニット、B 熱源ユニット、C 負荷側回路。   DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2a General hot water supply side mixing valve, 2b Bath hot water supply side mixing valve, 3 Pressure reducing valve, 4 Solenoid valve, 5 Bathtub, 6 Mixing plug, 7 Remote control, 10 Control part, 11a, 11b, 11c, 11d 12a, 12b, 12c, 12d, 12e Temperature sensor, 13a, 13b Temperature sensor (tank temperature sensor), 14a, 14b, 14c Water pump, 15 Bath recuperation heat exchanger, 16 Temperature sensor, 20 Thermal insulation, 30 Exterior case , A Hot water storage unit, B Heat source unit, C Load side circuit.

Claims (12)

貯湯タンクと、
前記貯湯タンクの湯水を加熱する加熱手段と、
前記貯湯タンクの湯水を負荷側に供給する負荷側回路と、
前記貯湯タンクへ流入する湯水の温度を測定する温度センサと、
前記貯湯タンクへ流入する湯水の流量を測定する流量センサと、
外気温度を検出する温度センサと、
前記温度センサの温度測定値と前記流量センサの流量測定値とに基づいて、前記貯湯タンク内を上下方向に複数の層に分割した各層の温度を、各層へ接続する配管からの流入熱量と、各層の温度と外気温度との差に基づく放熱量と、各層に対し上下に隣接する層との伝熱量との総和から算出する温度分布演算手段と、
を備えたことを特徴とする貯湯式給湯装置。
A hot water storage tank,
Heating means for heating hot water in the hot water storage tank;
A load side circuit for supplying hot water from the hot water storage tank to the load side;
A temperature sensor for measuring the temperature of hot water flowing into the hot water storage tank;
A flow rate sensor for measuring the flow rate of hot water flowing into the hot water storage tank;
A temperature sensor for detecting the outside air temperature;
Based on the temperature measurement value of the temperature sensor and the flow rate measurement value of the flow sensor, the temperature of each layer divided into a plurality of layers in the hot water storage tank in the vertical direction, the inflow heat amount from the pipe connected to each layer, A temperature distribution calculating means for calculating from the sum of the amount of heat released based on the difference between the temperature of each layer and the outside air temperature and the amount of heat transferred to the layers adjacent to each layer vertically;
A hot water storage type hot water supply apparatus characterized by comprising:
貯湯タンクの温度を測定するタンク温度センサを備え、
前記温度分布演算手段は、
各層の温度分布演算結果と、前記タンク温度センサの温度測定値とを比較し、逐次温度分布演算結果を修正する構成となっていることを特徴とする請求項1に記載の貯湯式給湯装置。
It has a tank temperature sensor that measures the temperature of the hot water storage tank,
The temperature distribution calculating means includes
The hot water storage type hot water supply apparatus according to claim 1, wherein the temperature distribution calculation result of each layer is compared with the temperature measurement value of the tank temperature sensor, and the temperature distribution calculation result is sequentially corrected.
前記貯湯タンクの温度を測定するタンク温度センサは、少なくとも貯湯タンク最上部には設けることを特徴とする請求項2に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to claim 2, wherein a tank temperature sensor for measuring the temperature of the hot water storage tank is provided at least at the uppermost part of the hot water storage tank. 前記温度分布演算手段は、
分割区間におけるタンク温度推定値の更新を前記貯湯タンクの上方から下方へ向かって行うものとし、タンク温度推定値が、貯湯タンク最上部に設けたタンク温度センサの温度測定値よりも高い場合には、タンク温度推定値が前記タンク温度センサの温度測定値よりも低い温度となる位置まで、タンク温度推定値を前記タンク温度センサの温度測定値に置き換えることを特徴とする請求項3に記載の貯湯式給湯装置。
The temperature distribution calculating means includes
When the tank temperature estimation value in the divided section is updated from the upper side to the lower side of the hot water storage tank, and the tank temperature estimation value is higher than the temperature measurement value of the tank temperature sensor provided at the top of the hot water storage tank The hot water storage according to claim 3, wherein the estimated tank temperature value is replaced with the measured temperature value of the tank temperature sensor until the estimated temperature value of the tank is lower than the measured temperature value of the tank temperature sensor. Water heater.
前記各層に対し上下に隣接する層との伝熱量の計算に掛かる係数である水の熱伝導率を、上層の温度が下層の温度よりも低くなる場合に、常温の水の熱伝導率よりも大きな値とすることを特徴とする請求項1〜4のいずれかに記載の貯湯式給湯装置。   The thermal conductivity of water, which is a coefficient for calculating the amount of heat transfer between layers above and below each of the above layers, when the temperature of the upper layer is lower than the temperature of the lower layer, than the thermal conductivity of water at room temperature The hot water storage type hot water supply apparatus according to any one of claims 1 to 4, wherein the hot water storage apparatus has a large value. 前記各層の温度と外気温度との差に基づく放熱量の算出に用いる係数を、前記温度センサの所定時間の温度平均値と外気温度平均値との差から補正することを特徴とする請求項1〜5のいずれかに記載の貯湯式給湯装置。   The coefficient used for calculation of the heat release based on the difference between the temperature of each layer and the outside air temperature is corrected from the difference between the temperature average value of the temperature sensor for a predetermined time and the outside air temperature average value. The hot water storage type hot water supply apparatus according to any one of? 浴槽水の追焚を行う追焚熱交換器と、前記貯湯タンクと前記追焚熱交換器とを接続する往き配管と戻り配管とを設け、
前記温度分布演算手段は、追焚流量を固定値として演算することを特徴とする請求項1〜6のいずれかに記載の貯湯式給湯装置。
A remedy heat exchanger for recognizing bath water, and a forward pipe and a return pipe for connecting the hot water storage tank and the remedy heat exchanger,
The hot water storage type hot water supply apparatus according to any one of claims 1 to 6, wherein the temperature distribution calculation means calculates the re flow rate as a fixed value.
貯湯タンクの温度を測定するタンク温度センサは、少なくとも前記戻り配管の接続位置よりも上部に設けることを特徴とする請求項7に記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to claim 7, wherein a tank temperature sensor for measuring the temperature of the hot water storage tank is provided at least above a connection position of the return pipe. 追焚に要した熱量及び時間と、前記追焚熱交換器への往きと戻りの温度差の平均値とから追焚流量を推定する追焚流量推定手段を備えることを特徴とする請求項7又は8に記載の貯湯式給湯装置。   8. A remedy flow rate estimating means for estimating a remedy flow rate from the amount of heat and time required for remedy and the average value of the temperature difference between the return and return to the remedy heat exchanger is provided. Or the hot water storage type hot-water supply apparatus of 8 or 8. 前記加熱手段はヒートポンプであり、
ヒートポンプ加熱回路の水流量を前記加熱手段の性能特性から見積もる演算手段を備えることを特徴とする請求項1〜9のいずれかに記載の貯湯式給湯装置。
The heating means is a heat pump;
The hot water storage type hot water supply apparatus according to any one of claims 1 to 9, further comprising a calculation means for estimating a water flow rate of a heat pump heating circuit from performance characteristics of the heating means.
前記加熱手段は水ポンプを有し、
加熱回路の水流量を水ポンプ制御値から見積もる演算手段を備えることを特徴とする請求項1〜10のいずれかに記載の貯湯式給湯装置。
The heating means comprises a water pump;
The hot water storage type hot water supply apparatus according to any one of claims 1 to 10, further comprising a calculation means for estimating a water flow rate of the heating circuit from a water pump control value.
前記貯湯タンク内の温度分布から、貯湯タンク内の蓄熱量を算出する蓄熱量演算手段を備えたことを特徴とする請求項1〜11のいずれかに記載の貯湯式給湯装置。   The hot water storage type hot water supply apparatus according to any one of claims 1 to 11, further comprising heat storage amount calculation means for calculating a heat storage amount in the hot water storage tank from a temperature distribution in the hot water storage tank.
JP2008220225A 2008-08-28 2008-08-28 Hot water storage water heater Active JP4731589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220225A JP4731589B2 (en) 2008-08-28 2008-08-28 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220225A JP4731589B2 (en) 2008-08-28 2008-08-28 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2010054131A true JP2010054131A (en) 2010-03-11
JP4731589B2 JP4731589B2 (en) 2011-07-27

Family

ID=42070255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220225A Active JP4731589B2 (en) 2008-08-28 2008-08-28 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP4731589B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057486A (en) * 2011-09-09 2013-03-28 Mitsubishi Electric Corp Temperature distribution calculation method, and storage type water heater
JP2013124830A (en) * 2011-12-15 2013-06-24 Corona Corp Heat pump type hot-water supply apparatus
CN104748390A (en) * 2013-12-25 2015-07-01 珠海格力电器股份有限公司 Temperature measuring method of water heater
JP2019173975A (en) * 2018-03-26 2019-10-10 株式会社ノーリツ Hot water storage and supply device
JP2022548676A (en) * 2019-12-20 2022-11-21 ダイキン工業株式会社 Monitoring and controlling domestic hot water generation and distribution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196558A (en) * 1987-10-08 1989-04-14 Mizusawa Ind Chem Ltd Blood agglutinating and coagulating agent
JP2004092970A (en) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd Cogeneration system
JP2005140439A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006214622A (en) * 2005-02-02 2006-08-17 Chugoku Electric Power Co Inc:The Temperature distribution estimating system of hot water storage tank
JP2007218554A (en) * 2006-02-20 2007-08-30 Matsushita Electric Ind Co Ltd Storage type water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196558A (en) * 1987-10-08 1989-04-14 Mizusawa Ind Chem Ltd Blood agglutinating and coagulating agent
JP2004092970A (en) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd Cogeneration system
JP2005140439A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006214622A (en) * 2005-02-02 2006-08-17 Chugoku Electric Power Co Inc:The Temperature distribution estimating system of hot water storage tank
JP2007218554A (en) * 2006-02-20 2007-08-30 Matsushita Electric Ind Co Ltd Storage type water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057486A (en) * 2011-09-09 2013-03-28 Mitsubishi Electric Corp Temperature distribution calculation method, and storage type water heater
JP2013124830A (en) * 2011-12-15 2013-06-24 Corona Corp Heat pump type hot-water supply apparatus
CN104748390A (en) * 2013-12-25 2015-07-01 珠海格力电器股份有限公司 Temperature measuring method of water heater
CN104748390B (en) * 2013-12-25 2017-10-03 珠海格力电器股份有限公司 The thermometry of water heater
JP2019173975A (en) * 2018-03-26 2019-10-10 株式会社ノーリツ Hot water storage and supply device
JP7125001B2 (en) 2018-03-26 2022-08-24 株式会社ノーリツ Hot water storage water heater
JP2022548676A (en) * 2019-12-20 2022-11-21 ダイキン工業株式会社 Monitoring and controlling domestic hot water generation and distribution

Also Published As

Publication number Publication date
JP4731589B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR101222331B1 (en) Heat-pump hot water apparatus
JP4731589B2 (en) Hot water storage water heater
EP3412985B1 (en) Method for controlling water-heating system, and water-heating system
WO2014002133A1 (en) Heat-pump type hot water supply/heating system
US20110048404A1 (en) Heating system
KR20130102479A (en) Heat pump type hot water supply heater
JP2008020100A (en) Hot water storage type hot water supply heating device
JP5220083B2 (en) Hot water system
JP6115754B2 (en) Heat source machine and freeze prevention control method
JP4839879B2 (en) Hot water storage water heater
JP5542617B2 (en) Heating system
JP3550336B2 (en) Air conditioning system
JP5254660B2 (en) Control method for hot water heater
JP5569490B2 (en) Hot water storage water heater
JP5087417B2 (en) Hot water storage water heater
JP4867282B2 (en) Water heater
JP7035969B2 (en) Hot water storage type hot water supply device
CN114198904A (en) Gas heating water heater
JP6906164B2 (en) Cogeneration system and its operation method
JP2018031523A (en) Storage water heater
JP2007255745A (en) Heat source device, and control method and control program for flow rate of heating medium
JP2008122018A (en) Hot water supply apparatus and method for computing hot water storage amount
JP4876606B2 (en) Hot water storage water heater
JP5839096B2 (en) Hot water storage water heater
JP5742611B2 (en) Temperature distribution calculation method and hot water storage type water heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4731589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250