JP7125001B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP7125001B2
JP7125001B2 JP2018058839A JP2018058839A JP7125001B2 JP 7125001 B2 JP7125001 B2 JP 7125001B2 JP 2018058839 A JP2018058839 A JP 2018058839A JP 2018058839 A JP2018058839 A JP 2018058839A JP 7125001 B2 JP7125001 B2 JP 7125001B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
temperature
storage tank
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058839A
Other languages
Japanese (ja)
Other versions
JP2019173975A (en
Inventor
辰巳 稲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2018058839A priority Critical patent/JP7125001B2/en
Publication of JP2019173975A publication Critical patent/JP2019173975A/en
Application granted granted Critical
Publication of JP7125001B2 publication Critical patent/JP7125001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、貯湯給湯装置に関し、特に学習制御により予測した給湯使用量を貯湯する場合に予測誤差により貯湯タンク内に残留した残留湯水を有効利用する技術に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water storage apparatus, and more particularly to a technique for effectively utilizing residual hot water remaining in a hot water storage tank due to prediction errors when storing hot water consumption predicted by learning control.

従来より、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路で接続してなるヒートポンプ熱源機と、このヒートポンプ熱源機によって加熱された湯水を貯留するための貯湯タンクと、この貯湯タンクとヒートポンプ熱源機との間で湯水を循環させる循環ポンプと、貯湯タンクの湯水温度が低下した場合に再加熱するための補助熱源機とを備えた貯湯給湯装置は、広く実用に供されている。 Conventionally, a heat pump heat source device in which a compressor, a condensation heat exchanger, an expansion means, and an evaporative heat exchanger are connected by a refrigerant circuit, a hot water storage tank for storing hot water heated by the heat pump heat source device, A hot water storage and hot water supply apparatus equipped with a circulation pump for circulating hot water between the hot water storage tank and the heat pump heat source, and an auxiliary heat source for reheating the hot water in the hot water storage tank when the temperature of the hot water drops is widely put into practical use. It is

そして、この種の貯湯給湯装置において、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留することも広く行なわれている。 In this type of hot water storage and hot water supply apparatus, the hot water usage is learned and stored to predict the future hot water usage, and before the hot water is used, the heat pump heat source is driven to generate the heat amount corresponding to the predicted hot water usage. Storing hot water in a hot water storage tank is also widely practiced.

ここで、前記予測給湯使用量よりも実際の給湯使用量が少ない場合には、1日の給湯使用終了後に、貯湯タンク内に残留湯水が残留する場合があり、この場合翌朝の最初の貯湯運転に際しては前記の残留湯水を加味して貯湯運転を行なうことが望ましい。しかし、残留湯水は放熱により温度低下するため翌日の給湯時に補助熱源機による再加熱が必要な再加熱必要 温度以上の温度を保持しているとは限らず、貯湯温度や残留湯水の湯量や外気温度によって翌日の貯湯運転時おける温度が異なる。そのため、翌日の貯湯運転時に前記の残留湯水をどのように加味して貯湯運転するのが有利であるのか難しい問題である。 Here, if the actual amount of hot water supply is less than the estimated amount of hot water supply, residual hot water may remain in the hot water storage tank after the hot water supply for the day is finished. In this case, it is desirable to carry out the hot water storage operation in consideration of the residual hot water. However, since the temperature of the residual hot water drops due to heat dissipation, it is not always possible to maintain the temperature above the reheating required temperature when supplying hot water the next day. Depending on the temperature, the temperature during hot water storage operation on the next day differs. Therefore, it is a difficult problem how to add the above-mentioned residual hot water in the hot water storage operation for the next day.

特許文献1の貯湯式給湯システムにおいては、貯湯タンク内に高温層と、追い焚き有効温度以上の中温層と、低温層とがある場合には、前記の高温層と中温層を混合させることにより、前記貯湯タンク内の上部の温度を低下させ、追い焚き湯切れに対する耐力を向上させる。 In the hot water storage type hot water supply system of Patent Document 1, when the hot water storage tank has a high temperature layer, an intermediate temperature layer above the reheating effective temperature, and a low temperature layer, the high temperature layer and the intermediate temperature layer are mixed. , to lower the temperature of the upper part in the hot water storage tank and improve the durability against running out of hot water for reheating.

特許第5454534号公報Japanese Patent No. 5454534

前記のように、貯湯タンク内に残留湯水が残留した場合、その残留湯水は翌朝までに放熱により温度低下し、給湯設定温度よりも低温の中温水となる。その中温水をヒートポンプ熱源機で加熱する場合は、ヒートポンプ熱源機のCOPが低下するという問題がある。 As described above, when residual hot water remains in the hot water storage tank, the temperature of the residual hot water drops due to heat radiation by the next morning, and becomes intermediate hot water at a temperature lower than the hot water supply set temperature. When the medium-temperature water is heated by the heat pump heat source equipment, there is a problem that the COP of the heat pump heat source equipment is lowered.

本発明の目的は、残留湯水を加味した貯湯運転を行う場合のヒートポンプ熱源機のCOPを改善可能な貯湯給湯装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a hot water storage and hot water supply apparatus capable of improving the COP of a heat pump heat source machine when performing a hot water storage operation in consideration of residual hot water.

請求項1の貯湯給湯装置は、圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路で接続してなるヒートポンプ熱源機と、このヒートポンプ熱源機によって加熱された湯水を貯留するための貯湯タンクと、この貯湯タンクとヒートポンプ熱源機との間で湯水を循環させる循環ポンプを含む循環加熱通路と、貯湯タンクの湯水温度が低下した場合に再加熱して出湯するための補助熱源機とを備えた貯湯給湯装置であって、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留する貯湯給湯装置において、
前記貯湯タンク内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定する残留温度推定手段を備え、この残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度になる場合には、貯湯タンク内の湯水温度の均一化を図る均一化処理を行なうと共に、外気温度が設定温度以下の場合には、前記循環加熱通路の凍結を予防する凍結予防運転として前記循環ポンプを駆動して湯水を循環させるように構成し、前記均一化処理が行われている状態での凍結予防運転は、前記貯湯タンクを含む通路構成で前記循環加熱通路による循環を行い、前記均一化処理が行われていない状態での凍結予防運転は、前記貯湯タンクをバイパスする通路構成で前記循環加熱通路による循環を行なうことを特徴としている。
A hot water storage and hot water supply apparatus according to claim 1 comprises a heat pump heat source device comprising a compressor, a condensing heat exchanger, an expansion means, and an evaporative heat exchanger connected by a refrigerant circuit, and a hot water heated by the heat pump heat source device is stored. a hot water storage tank, a circulating heating passage including a circulation pump that circulates hot water between the hot water storage tank and the heat pump heat source device, and a hot water storage tank for reheating and discharging hot water when the temperature of hot water in the hot water storage tank drops A hot water storage and hot water supply apparatus including an auxiliary heat source, predicting the future hot water consumption by learning and storing the hot water supply usage condition, and driving the heat pump heat source before using the hot water supply to achieve the predicted hot water consumption. In a hot water storage hot water supply device that stores an equivalent amount of heat in a hot water storage tank,
A residual temperature estimating means is provided for estimating a temperature in the case where the temperature of the residual hot water in the hot water storage tank decreases due to heat radiation until the next hot water storage operation, and the residual hot water temperature estimated by the residual temperature estimating means is used for the next hot water storage operation. When the temperature reaches a temperature that requires reheating by the auxiliary heat source unit during operation, a homogenization process is performed to homogenize the hot water temperature in the hot water storage tank, and when the outside air temperature is below the set temperature, As a freeze prevention operation for preventing freezing of the circulation heating passage, the circulation pump is driven to circulate hot water. Circulation is performed by the circulation heating passage with a passage configuration that includes the hot water storage tank, and the anti-freezing operation in a state where the homogenization process is not performed is characterized by performing circulation by the circulation heating passage with a passage configuration that bypasses the hot water storage tank. and

上記の構成によれば、貯湯タンク内の残留湯水の次回貯湯運転時における温度を推定する残留温度推定手段を設け、この残留温度推定手段により推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度 になる場合には、貯湯タンク内の温水温度の均一化を図る均一化処理を行うため、貯湯タンク内の湯水温度を全体的に均一に低下させることができ、次回の貯湯運転時におけるヒートポンプ熱源機のCOPの低下を防ぐことができる。
前記均一化処理を行なう場合の凍結予防運転は、貯湯タンクを含む通路構成で循環加熱通路による循環を行なうため、凍結予防のためヒートポンプ熱源機を作動させる必要がないから省エネルギーになる。また、均一化処理を行なわない場合の凍結予防運転は、貯湯タンクをバイパスする通路構成で循環加熱通路による循環を行なうため、貯湯タンク内の温度成層を維持することができる。
According to the above configuration, the residual temperature estimating means for estimating the temperature of the hot water remaining in the hot water storage tank during the next hot water storing operation is provided, and the residual hot water temperature estimated by the residual temperature estimating means is used as the auxiliary heat source during the next hot water storing operation. When the temperature reaches a level that requires reheating by the machine, a uniform process is performed to equalize the temperature of the hot water in the hot water storage tank. It is possible to prevent the COP of the heat pump heat source from decreasing during the next hot water storage operation.
In the anti-freezing operation for the homogenization process, since circulation is performed by a circulation heating passage with a hot water storage tank, there is no need to operate the heat pump heat source for anti-freezing, which saves energy. Further, in the anti-freezing operation when the homogenization process is not performed, circulation is performed by the circulating heating passage with a passage configuration bypassing the hot water storage tank, so that the temperature stratification in the hot water storage tank can be maintained.

請求項2の貯湯給湯装置は、請求項1の発明において、前記均一化処理は、前記ヒートポンプ熱源機を駆動しない状態で前記循環ポンプを駆動し貯湯タンク内を攪拌することにより行うことを特徴としている。
上記の構成によれば、循環ポンプを利用して貯湯タンク内を攪拌することができる。
The hot water storage and hot water supply apparatus according to claim 2 is characterized in that, in the invention according to claim 1, the homogenization process is performed by driving the circulation pump to agitate the inside of the hot water storage tank while not driving the heat pump heat source device. there is
According to the above configuration, the inside of the hot water storage tank can be agitated using the circulation pump.

請求項3の貯湯給湯装置は、請求項1又は2の発明において、前記次回貯湯運転時に残留湯水を前記ヒートポンプ熱源機により加熱しない場合には、前記残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度であっても前記均一化処理を行わないことを特徴としている。 In the hot water storage apparatus of claim 3, in the invention of claim 1 or 2, when the residual hot water is not heated by the heat pump heat source device during the next hot water storage operation, the residual hot water temperature estimated by the residual temperature estimating means is The homogenization process is not performed even if the temperature is such that reheating by the auxiliary heat source is required during the next hot water storage operation.

上記の構成によれば、例えば残留湯水の量が少ない場合には、次回貯湯運転時に残留湯水が前記ヒートポンプ熱源機により加熱されないため、残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度であっても、前記均一化処理を行わない方が有利である。 According to the above configuration, for example, when the amount of residual hot water is small, the residual hot water is not heated by the heat pump heat source equipment during the next hot water storage operation, so that the residual hot water temperature is not reheated by the auxiliary heat source equipment during the next hot water storage operation. Even at the required temperature, it is advantageous not to carry out the homogenization treatment.

請求項4の貯湯給湯装置は、請求項1~3の何れか1項の発明において、前記均一化処理は、次回貯湯運転開始の直前に行うことを特徴としている。
上記の構成によれば、前記均一化処理を次回貯湯運転開始の直前に行うことで、貯湯時における貯湯タンク内の均一化状態を維持することできる。
According to a fourth aspect of the present invention, there is provided a hot water storage and hot water supply apparatus according to any one of the first to third aspects of the invention, wherein the homogenization process is performed immediately before the next hot water storage operation is started.
According to the above configuration, by performing the homogenization process immediately before starting the next hot water storage operation, it is possible to maintain the homogenization state in the hot water storage tank during hot water storage.

以上説明したように、本願発明は種々の効果を奏する。 As described above, the present invention has various effects.

本発明の実施形態に係る貯湯給湯装置の全体構成図である。1 is an overall configuration diagram of a hot water storage and hot water supply apparatus according to an embodiment of the present invention; 給湯装使用量データ取得制御のフローチャートである。4 is a flow chart of hot water supply usage amount data acquisition control. 貯湯運転制御のフローチャートである。4 is a flowchart of hot water storage operation control; 貯湯タンクに残留湯水発生時の均一化処理のフローチャートである。4 is a flow chart of equalization processing when residual hot water is generated in the hot water storage tank. 予測給湯使用量と貯湯運転湯量のタイムチャートである。4 is a time chart of predicted hot water supply consumption and hot water storage operation hot water quantity; 貯湯タンク内に残留湯水発生時の次回貯湯運転までの待機時間を示すタイムチャートである。4 is a time chart showing a standby time until the next hot water storage operation when residual hot water is generated in the hot water storage tank.

以下、本発明を実施するための形態について実施例に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated based on an Example.

最初に、図1に基づいてヒートポンプ給湯装置1の全体構成について説明する。
ヒートポンプ給湯装置1は、貯湯給湯ユニット2と、ヒートポンプ熱源機3とを有し、貯湯給湯ユニット2は、貯湯タンク4、ガス燃焼式の補助熱源機5、その他の機器(配管、バルブ、温度センサ等々)と、貯湯給湯ユニット2を覆う外装ケース2aとを備えている。この貯湯給湯ユニット2は、ヒートポンプ熱源機3を駆動して加熱した湯水を貯湯タンク4に貯留し、この貯留した湯水を給湯や浴槽6の湯張りに使用する。また、必要に応じて貯湯タンク4から取り出した湯水を補助熱源機5により加熱して給湯や風呂追焚等に使用可能である。
First, based on FIG. 1, the overall configuration of the heat pump water heater 1 will be described.
The heat pump water heater 1 has a hot water storage unit 2 and a heat pump heat source device 3. The hot water storage unit 2 includes a hot water storage tank 4, a gas combustion type auxiliary heat source device 5, and other devices (pipes, valves, temperature sensors, etc.). etc.) and an exterior case 2 a that covers the hot water storage and hot water supply unit 2 . The hot water supply unit 2 stores hot water heated by driving the heat pump heat source 3 in the hot water storage tank 4 and uses the stored hot water for hot water supply and filling of the bathtub 6 with hot water. In addition, hot water taken out from the hot water storage tank 4 can be heated by the auxiliary heat source device 5 as needed and used for hot water supply, bath reheating, and the like.

貯湯タンク4の上部には、貯湯タンク4に貯留した湯水を出湯するための出湯通路7が接続されている。貯湯タンク4の下部には、貯湯タンク4に上水源から上水を供給するための給水通路8が接続されている。この給水通路8から分岐したバイパス通路9が出湯通路7に接続され、この接続部に出湯通路7の湯水とバイパス通路9の上水を混合する混合比率を調整可能な湯水混合弁10が介装されている。湯水混合弁10には給湯通路11が接続され、湯水混合弁10で混合された湯水は、給湯通路11を流通して図示外の給湯栓等に給湯可能であり、給湯通路11から分岐して追焚通路12に接続する湯張り通路13を介して浴槽6に湯張り可能である。湯張り通路13には、湯張り用の開閉弁13aが設けられている。 A hot water discharge passage 7 for discharging hot water stored in the hot water storage tank 4 is connected to the upper portion of the hot water storage tank 4 . A water supply passage 8 for supplying tap water from a tap water source to the hot water storage tank 4 is connected to the lower portion of the hot water storage tank 4 . A bypass passage 9 branched from the water supply passage 8 is connected to the hot water discharge passage 7, and a hot water mixing valve 10 capable of adjusting the mixing ratio of mixing the hot water of the hot water discharge passage 7 and the clean water of the bypass passage 9 is interposed at this connection portion. It is A hot water supply passage 11 is connected to the hot water mixing valve 10, and the hot water mixed by the hot water mixing valve 10 flows through the hot water supply passage 11 and can be supplied to a hot water tap or the like (not shown). Hot water can be filled in the bathtub 6 through a hot water filling passage 13 connected to the reheating passage 12.例文帳に追加The hot water filling passage 13 is provided with an on-off valve 13a for hot water filling.

貯湯タンク4の下部にはヒートポンプ熱源機3に湯水を供給する往き側湯水通路16が接続され、このヒートポンプ熱源機3で加熱された湯水を貯湯タンク4に供給する戻り側湯水通路17が貯湯タンク4の上部に接続されて、貯湯タンク4とヒートポンプ熱源機3の間で湯水が循環可能な循環加熱通路15が形成されている。 A forward hot water passage 16 for supplying hot water to the heat pump heat source device 3 is connected to the lower part of the hot water storage tank 4, and a return hot water passage 17 for supplying hot water heated by the heat pump heat source device 3 to the hot water storage tank 4 is connected to the hot water storage tank. 4, a circulation heating passage 15 through which hot water can circulate between the hot water storage tank 4 and the heat pump heat source device 3 is formed.

往き側湯水通路16には、貯湯タンク4からヒートポンプ熱源機3に入水する湯水の入水温度を検知する入水温度センサ18と循環ポンプ19と切換弁20が接続されている。戻り側湯水通路17には、ヒートポンプ熱源機3で加熱された湯水の温度を検知する加熱温度センサ21が接続され、往き側湯水通路16と戻り側湯水通路17とを接続するバイパス通路22が設けられ、往き側湯水通路16とバイパス通路22との接続部には切換弁20が接続されている。ヒートポンプ熱源機3の起動直後等の加熱温度が低い場合に、切換弁20を切換えてヒートポンプ熱源機3で加熱した湯水を再びヒートポンプ熱源機3に送って再加熱することができる。 The incoming hot water passage 16 is connected with an incoming water temperature sensor 18 for detecting the incoming water temperature of the hot water entering the heat pump heat source device 3 from the hot water storage tank 4, a circulation pump 19, and a switching valve 20. A heating temperature sensor 21 for detecting the temperature of hot water heated by the heat pump heat source device 3 is connected to the return hot water passage 17, and a bypass passage 22 connecting the outgoing hot water passage 16 and the return hot water passage 17 is provided. A switching valve 20 is connected to the connecting portion between the forward hot water passage 16 and the bypass passage 22 . When the heating temperature is low immediately after starting the heat pump heat source device 3, the switching valve 20 is switched to send the hot water heated by the heat pump heat source device 3 again to the heat pump heat source device 3 for reheating.

貯湯タンク4の外周には、貯留された湯水の温度を検知する複数の貯湯温度センサ4a~4dが上下方向に所定間隔おきに設けられている。これら貯湯温度センサ4a~4d及び貯湯タンク4は図示外の保温材により覆われている。出湯通路7には、湯水混合弁10に供給される湯水の出湯温度を検知するための出湯温度センサ7aが接続されている。給水通路8には、上水源から供給される上水の温度を検知するための給水温度センサ8aが接続されている。給湯通路11のうちの湯水混合弁10よりも下流側には、給湯する湯水の流量を検出する流量計11bと、給湯温度を検知するための給湯温度センサ11aが接続されている。 A plurality of stored hot water temperature sensors 4a to 4d for detecting the temperature of stored hot water are provided on the outer periphery of the hot water storage tank 4 at predetermined intervals in the vertical direction. These hot water temperature sensors 4a to 4d and hot water tank 4 are covered with a heat insulating material (not shown). An outlet hot water temperature sensor 7 a for detecting the outlet temperature of the hot water supplied to the hot water mixing valve 10 is connected to the hot water outlet passage 7 . A water supply temperature sensor 8a is connected to the water supply passage 8 for detecting the temperature of the water supply supplied from the water supply source. On the downstream side of the hot water mixing valve 10 in the hot water supply passage 11, a flow meter 11b for detecting the flow rate of hot water to be supplied and a hot water supply temperature sensor 11a for detecting the temperature of the hot water supply are connected.

貯湯タンク4の湯水を補助熱源機5で加熱するための補助加熱通路23が、出湯通路7から分岐して補助熱源機5に接続されている。補助熱源機5で加熱した湯水を出湯するための補助出湯通路24は、補助加熱通路23の分岐部より下流側の出湯通路7に調整弁25を介して接続されている。補助出湯通路24には温度センサ24aが設けられている。
調整弁25は、補助出湯通路24を通って出湯通路7に供給される湯水流量を調整する。補助加熱通路23には、三方弁26と補助熱源機5に湯水を送るためのポンプ27が介装されている。
An auxiliary heating passage 23 for heating the hot water in the hot water storage tank 4 with the auxiliary heat source machine 5 is branched from the hot water discharge passage 7 and connected to the auxiliary heat source machine 5 . An auxiliary hot water discharge passage 24 for discharging hot water heated by the auxiliary heat source machine 5 is connected via a regulating valve 25 to the hot water discharge passage 7 on the downstream side of the branch of the auxiliary heating passage 23 . A temperature sensor 24 a is provided in the auxiliary hot water outlet passage 24 .
The adjustment valve 25 adjusts the flow rate of hot water supplied to the hot water outlet passage 7 through the auxiliary hot water outlet passage 24 . A three-way valve 26 and a pump 27 for sending hot water to the auxiliary heat source machine 5 are interposed in the auxiliary heating passage 23 .

補助出湯通路24から分岐した熱交換通路28は、三方弁26に接続されている。三方弁26は、貯湯タンク4の湯水又は熱交換通路28の湯水を補助熱源機5に供給可能となるように切換えられる。熱交換通路28には熱交換器29と開閉弁30と温度センサ28aが介装されている。 熱交換器29は、追焚ポンプ31の作動により追焚通路12を流れる浴槽6の湯水を補助熱源機5で加熱した湯水との熱交換により加熱する追焚運転に使用される。 A heat exchange passage 28 branched from the auxiliary hot water discharge passage 24 is connected to a three-way valve 26 . The three-way valve 26 is switched so that hot water in the hot water storage tank 4 or hot water in the heat exchange passage 28 can be supplied to the auxiliary heat source device 5 . A heat exchanger 29, an on-off valve 30, and a temperature sensor 28a are interposed in the heat exchange passage 28. As shown in FIG. The heat exchanger 29 is used for a reheating operation in which the hot water in the bathtub 6 flowing through the reheating passage 12 is heated by heat exchange with the hot water heated by the auxiliary heat source device 5 by the operation of the reheating pump 31 .

給水通路8には、逆止弁32と、給水通路8から分岐して熱交換通路28に接続する分岐通路部33が接続されている。バイパス通路9には逆止弁34が介装され、バイパス通路9から分岐して給湯通路11に接続された高温出湯回避通路35には、高温出湯回避電磁弁36が介装されている。尚、以上説明した種々の機器(ポンプ、弁類、センサ類)は制御部43に電気的に接続され、制御部43により制御される。 The water supply passage 8 is connected to a check valve 32 and a branch passage portion 33 branched from the water supply passage 8 and connected to the heat exchange passage 28 . A check valve 34 is interposed in the bypass passage 9, and a high temperature discharge avoidance solenoid valve 36 is interposed in a high temperature discharge avoidance passage 35 branched from the bypass passage 9 and connected to the hot water supply passage 11. - 特許庁The various devices (pumps, valves, sensors) described above are electrically connected to the controller 43 and controlled by the controller 43 .

ヒートポンプ熱源機3は、圧縮機37と、凝縮熱交換器38と、膨張弁39と、蒸発熱交換器40とを冷媒配管41により接続してなるヒートポンプ回路を備えている。このヒートポンプ熱源機3は、冷媒配管41に封入された冷媒を圧縮機37で圧縮して昇温し、循環ポンプ19を駆動して循環加熱回路15を流通する湯水を凝縮熱交換器38において高温の冷媒との熱交換により加熱する。熱交換後の冷媒は、膨張弁39で膨張して外気より低温になり、蒸発熱交換器40において外気から吸熱した後、再び圧縮機37に導入される。 The heat pump heat source device 3 includes a heat pump circuit in which a compressor 37 , a condensing heat exchanger 38 , an expansion valve 39 , and an evaporative heat exchanger 40 are connected by refrigerant pipes 41 . The heat pump heat source device 3 compresses the refrigerant enclosed in the refrigerant pipe 41 by the compressor 37 to raise the temperature, drives the circulation pump 19, and heats the hot water flowing through the circulation heating circuit 15 to a high temperature in the condensation heat exchanger 38. heat by heat exchange with the refrigerant. After the heat exchange, the refrigerant expands in the expansion valve 39 to have a lower temperature than the outside air, absorbs heat from the outside air in the evaporative heat exchanger 40, and is introduced into the compressor 37 again.

蒸発熱交換器40は、外気温度を検知する外気温センサ40aと送風機40bを備えている。ヒートポンプ熱源機3は、圧縮機37、膨張弁39、送風機40b等を制御する補助制御部42を備えている。補助制御部42は、制御部43に通信可能に接続され、制御部43らの指令に従ってヒートポンプ熱源機3を制御する。外気温センサ40aで検知された外気温度は、補助制御部42を介して制御部43に送信される。 The evaporative heat exchanger 40 includes an outside air temperature sensor 40a for detecting outside air temperature and a blower 40b. The heat pump heat source device 3 includes an auxiliary control section 42 that controls the compressor 37, the expansion valve 39, the blower 40b, and the like. The auxiliary control unit 42 is communicably connected to the control unit 43 and controls the heat pump heat source device 3 according to commands from the control unit 43 and others. The outside air temperature detected by the outside air temperature sensor 40 a is transmitted to the control section 43 via the auxiliary control section 42 .

次に、この貯湯給湯装置1に採用した種々の制御について説明する。
この貯湯給湯装置1においては、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機3を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留する。尚、以下に説明するフローチャートは、制御部43に格納されており、フローチャート中の符号Si(i=1,2,・・・)は各ステップを示す。
Next, various controls employed in this hot water storage and hot water supply apparatus 1 will be described.
In this hot water storage and hot water supply apparatus 1, the future hot water consumption amount is predicted by learning and storing the hot water supply usage state, and before using the hot water supply, the heat pump heat source device 3 is driven to store the heat amount corresponding to the predicted hot water consumption amount. Store in a tank. The flow charts described below are stored in the control unit 43, and symbols Si (i=1, 2, . . . ) in the flow charts indicate steps.

この学習記憶(給湯使用量データ取得制御)について、図2、図3、図5に基づいて説明する。
図2において、給湯使用量データ取得制御は、貯湯給湯装置1の稼働中は常時実行される制御である。この給湯使用量データ取得制御が開始されると、S1においてセンサ類から各種信号が読み込まれ、次にS2において、60分毎の給湯使用量のデータが時系列にて演算される。
尚、給湯使用量は、温度センサ24a,7a,11a,28aや流量計11bの検出データを用いて熱量計算を介して演算される。次にS3において上記の60分毎の給湯使用量のデータが、年月日、曜日、時間帯と対応付けて所定のメモリに格納され、上記のS1~S3が繰り返し実行される。
This learning memory (hot water supply consumption data acquisition control) will be described with reference to FIGS. 2, 3, and 5. FIG.
In FIG. 2, the hot water supply consumption data acquisition control is a control that is always executed while the hot water storage and hot water supply apparatus 1 is in operation. When this hot water usage amount data acquisition control is started, various signals are read from the sensors in S1, and next, in S2, hot water usage amount data is calculated in time series every 60 minutes.
The amount of hot water supply is calculated through calorie calculation using the data detected by the temperature sensors 24a, 7a, 11a, 28a and the flow meter 11b. Next, in S3, the data of the amount of hot water supply used every 60 minutes is stored in a predetermined memory in association with the date, day of the week, and time zone, and the above S1 to S3 are repeatedly executed.

次に、貯湯運転制御について図3、図5に基づいて説明する。
この貯湯運転制御が開始されると、S10において、先週の対応する曜日の1日分の給湯使用量データがメモリから読み込まれ、次にS11において、S10で読み込んだ給湯使用量データに基づいて、60分毎の予測給湯使用量を時間帯別に1日分演算する。例えば、図5に示すように、給湯使用量と同様の予測給湯使用量が演算される。
Next, hot water storage operation control will be described with reference to FIGS. 3 and 5. FIG.
When this hot water storage operation control is started, in S10, hot water consumption data for one day corresponding to the day of the week last week is read from the memory, and in S11, based on the hot water consumption data read in S10, Estimated hot water consumption for every 60 minutes is calculated for one day for each time zone. For example, as shown in FIG. 5, a predicted hot water usage amount similar to the hot water usage amount is calculated.

次に、S12において、60分毎の予測給湯使用量に基づいて1日分の60分毎の貯湯運転スケジュールが作成される。これは、各60分毎の予測給湯使用量を給湯直前(例えば、1時間前倒し)に貯湯しておくための貯湯運転スケジュールである。 Next, in S12, a hot water storage operation schedule for every 60 minutes for one day is created based on the estimated amount of hot water supply used every 60 minutes. This is a hot water storage operation schedule for storing the predicted hot water consumption amount for each 60 minutes just before the hot water supply (for example, one hour ahead).

例えば、図5に示すように、予測給湯使用量を1時間前倒しした貯湯運転湯量のスケジュールが演算される。次に、S13では、前記の貯湯運転スケジュールに基づいて、貯湯運転のタイミングか否か判定し、その判定がYesのときはS14において貯湯運転スケジュールに基づく貯湯運転が実行される。次に、S15において時刻は24時か否か判定し、その判定がNoのときはS13~S15を繰り返し、S15の判定がYesになると制御は終了する。尚、24時に制御を終了しないで、翌日の0時からの貯湯運転制御を開始してもよい。 For example, as shown in FIG. 5, a schedule of hot water storage operating hot water amount is calculated by moving the predicted hot water consumption amount forward by one hour. Next, in S13, it is determined whether or not it is time for the hot water storage operation based on the hot water storage operation schedule. Next, in S15, it is determined whether or not the time is 24:00. When the determination is No, S13 to S15 are repeated, and when the determination in S15 becomes Yes, the control ends. Note that the hot water storage operation control may be started from 0:00 the next day without ending the control at 24:00.

次に、各日の給湯終了時(例えば、24時)の時点において貯湯タンク4内に残留湯水が発生した場合に行う均一化処理について、図4に基づいて説明する。
この均一化処理は、貯湯タンク4内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定し、この推定された残留湯水温度が次回貯湯運転時に補助燃料による再加熱が必要な温度になる場合には、貯湯タンク4内の温水温度の均一化を図る処理である。
Next, the equalization process performed when hot water is left in the hot water storage tank 4 at the end of hot water supply (for example, 24:00) on each day will be described with reference to FIG.
This equalization process estimates the temperature at which the temperature of the residual hot water in the hot water storage tank 4 will decrease due to heat radiation until the next hot water storage operation, and the estimated residual hot water temperature will be reduced by the auxiliary fuel during the next hot water storage operation. When the temperature reaches a temperature that requires reheating, this is a process for equalizing the temperature of the hot water in the hot water storage tank 4 .

この制御が開始されると、S20において24時の時点(各日の給湯終了時)で貯湯タンク 内に残留湯水が有りか否か判定する。この判定は貯湯タンク4の温度センサ4a~4dの検出信号に基づいて判定する。S20の判定がNoの場合は制御が終了し、S20の判定がYesのときは、S21において残留湯水温度Trが貯湯タンク4の温度センサ4a~4dの検出信号に基づいて検出される。 When this control is started, it is determined whether or not there is residual hot water in the hot water storage tank at 24:00 (at the end of hot water supply for each day) in S20. This determination is made based on detection signals from the temperature sensors 4a to 4d of the hot water storage tank 4. FIG. If the determination in S20 is No, the control ends, and if the determination in S20 is Yes, the residual hot water temperature Tr is detected based on the detection signals of the temperature sensors 4a to 4d of the hot water storage tank 4 in S21.

次に、S22においては、翌朝の最初の貯湯運転までの待機時間を演算すると共に、その待機時間と貯湯タンク4に設定されている放熱特性に基づいて翌朝の残留湯水温度Tyが推定演算される。図6は、待機時間と、翌朝の最初の貯湯運転を示すタイムチャートである。
尚、S22のステップと制御部43が残留温度推定手段に相当する。
Next, in S22, the standby time until the first hot water storage operation in the next morning is calculated, and the residual hot water temperature Ty in the next morning is estimated and calculated based on the standby time and the heat dissipation characteristics set in the hot water storage tank 4. . FIG. 6 is a time chart showing the standby time and the first hot water storage operation in the next morning.
It should be noted that the step of S22 and the control unit 43 correspond to residual temperature estimating means.

次に、S23において、残留湯水温度Tyが補助熱源機5による再加熱が必要な再加熱必要温度(例えば、36°C以下)以下か否か判定し、その判定がYesの場合は、S24においては、ポンプ19を駆動し、貯湯タンク4内の湯水を循環加熱通路15に循環させて貯湯タンク4内の湯水を攪拌し、湯水温度を均一化させる(これが湯水温度の均一化を図る均一化処理である)。尚、この均一化処理は、例えば、貯湯タンク4内の湯水の全量の約半分を循環加熱通路15に循環させる位の時間行なう。 Next, in S23, it is determined whether or not the residual hot water temperature Ty is equal to or lower than the reheating necessary temperature (for example, 36° C. or lower) at which reheating by the auxiliary heat source device 5 is required. drives the pump 19 to circulate the hot water in the hot water storage tank 4 through the circulating heating passage 15 to agitate the hot water in the hot water storage tank 4 to equalize the temperature of the hot water (this is the homogenization of the temperature of the hot water). processing). This homogenization process is performed for a period of time sufficient to circulate about half of the total amount of hot water in the hot water storage tank 4 through the circulation heating passage 15, for example.

上記のように、貯湯タンク4内の湯水を攪拌し、その温度を均一化して温度低下させておくと、翌朝にヒートポンプ熱源機3を作動させて貯湯運転する際に、ヒートポンプ熱源機3のCOPを高めることができる。 As described above, if the hot water in the hot water storage tank 4 is agitated and the temperature thereof is made uniform and the temperature is lowered, the COP of the heat pump heat source device 3 will be reduced when the heat pump heat source device 3 is operated to perform the hot water storage operation the next morning. can increase

すなわち、貯湯タンク4の上部に残留湯水がある場合、仮に攪拌しない場合は、翌朝の貯湯運転時に、最初貯湯タンク4内の下部の低温の湯水をヒートポンプ熱源機3に供給できるためCOPを高く維持できるものの、その後中温の残留湯水をヒートポンプ熱源機3に供給する際にはヒートポンプ熱源機3のCOPが著しく低下し、全体としてヒートポンプ熱源機3のCOPが低下することになるため、上記のような均一化処理を行う方が有利になる。 That is, if there is residual hot water in the upper part of the hot water storage tank 4, and if it is not stirred, the low-temperature hot water in the lower part of the hot water storage tank 4 can be initially supplied to the heat pump heat source device 3 during the hot water storage operation in the next morning, thereby maintaining a high COP. Although it can be done, when medium-temperature residual hot water is supplied to the heat pump heat source device 3 after that, the COP of the heat pump heat source device 3 is significantly lowered, and the COP of the heat pump heat source device 3 as a whole is lowered. It is more advantageous to perform a homogenization process.

次に、S25において、温度センサ40aにより検出される外気温度が設定温度Ts(例えば、0°C)以下か否か判定し、その判定がNoの場合は制御を終了し、S25の判定がYesの場合は、貯湯タンク4内の中温の湯水を循環加熱通路15に間欠的に循環させて加熱通路15の配管の凍結を予防する凍結予防運転を行う。次に、S27において翌朝の最初の給湯運転が終了したか否か判定し、その判定がNoのうちはS25へ戻ってS25~S27を繰り返し、S27の判定がYesになるとこの制御が終了する。 Next, in S25, it is determined whether or not the outside air temperature detected by the temperature sensor 40a is equal to or lower than the set temperature Ts (for example, 0°C). In the case of (2), a freeze prevention operation is performed to prevent freezing of the piping of the heating passage 15 by intermittently circulating the medium temperature hot water in the hot water storage tank 4 through the circulation heating passage 15 . Next, in S27, it is determined whether or not the first hot water supply operation in the next morning has been completed.

他方、翌朝の残留湯水温度Tyが再加熱必要温度より高温で、S23の判定がNoの場合は、S28において外気温度が設定温度Ts以下か否か判定し、その判定がNoのときは制御を終了し、S28の判定がYesのときは、往き側湯水通路16とバイパス通路22が連通するように切換弁20が切換えられ、ヒートポンプ熱源機3及びポンプ19を間欠的に駆動し、加熱した湯水を凝縮熱交換器38と戻り側湯水通路17とバイパス通路22と往き側湯水通路16とに循環させる凍結予防運転を行う。次に、S30において翌朝の最初の給湯運転が終了したか否か判定し、その判定がNoのうちはS28へ戻ってS28~S30を繰り返し、S30の判定がYesになるとこの制御が終了する。 On the other hand, if the residual hot water temperature Ty in the next morning is higher than the reheating required temperature and the determination in S23 is No, it is determined in S28 whether or not the outside air temperature is equal to or lower than the set temperature Ts. When the determination in S28 is YES, the switching valve 20 is switched so that the forward hot water passage 16 and the bypass passage 22 are communicated, and the heat pump heat source device 3 and the pump 19 are intermittently driven to heat hot water. is circulated through the condensing heat exchanger 38, the return-side hot water passage 17, the bypass passage 22, and the going-side hot water passage 16 to perform a freeze prevention operation. Next, in S30, it is determined whether or not the first hot water supply operation in the next morning has been completed.

上記の貯湯給湯装置1の作用、効果について説明する。
図4に示すように、貯湯タンク4内の残留湯水の次回貯湯運転時における温度を推定し、この推定された残留湯水温度Tyが次回貯湯運転時に再加熱必要温度になる場合には、貯湯タンク4内の温水温度の均一化を図る均一化処理を行うため、貯湯タンク内の湯水の温度を全体的に均一に低下させ、次回の貯湯運転時におけるヒートポンプ熱源機3のCOPの低下を防ぐことができる。尚、前記均一化処理は、ヒートポンプ熱源機3を駆動しない状態で循環ポンプ19を駆動し貯湯タンク4内を攪拌することにより行う。
The operation and effects of the hot water storage and hot water supply apparatus 1 will be described.
As shown in FIG. 4, the temperature of the hot water remaining in the hot water storage tank 4 during the next hot water storage operation is estimated. 4, the temperature of the hot water in the hot water storage tank is uniformly lowered to prevent the COP of the heat pump heat source device 3 from decreasing during the next hot water storage operation. can be done. The homogenization process is performed by driving the circulation pump 19 to agitate the inside of the hot water storage tank 4 while the heat pump heat source 3 is not driven.

また、図4のS26に示すように、外気温が低い場合には、貯湯タンク4内の均一化された温度の中温水を循環させることで配管の凍結を予防する凍結予防運転を行うため、凍結予防のためにヒートポンプ熱源機3を作動させる必要がないから省エネルギーになる。 In addition, as shown in S26 in FIG. 4, when the outside temperature is low, the freeze prevention operation is performed to prevent the piping from freezing by circulating medium-temperature hot water of uniform temperature in the hot water storage tank 4. Since it is not necessary to operate the heat pump heat source machine 3 for freezing prevention, energy can be saved.

また、残留湯水温度Tyが次回貯湯運転時に再加熱必要温度にならない場合には、前記均一化処理を省略することで貯湯タンク4内の温度成層を維持することができる。
この場合、S29において説明したように、ヒートポンプ熱源機3を間欠的に駆動し、バイパス通路22を利用して湯水を循環させるような凍結予防運転を行うため、貯湯タンク4内の温度成層を維持することができる。
Further, when the residual hot water temperature Ty does not reach the temperature required for reheating in the next hot water storage operation, the temperature stratification in the hot water storage tank 4 can be maintained by omitting the equalization process.
In this case, as described in S29, the heat pump heat source unit 3 is intermittently driven and the bypass passage 22 is used to perform the freeze prevention operation in which hot water is circulated. can do.

次に、前記実施形態を部分的に変更する例について説明する。
1]図4の均一化処理においては、凍結予防運転を行う関係上、S24のステップを24時の直後に実行した。しかし、この特定運転実行後に数時間経過すると、高温水が上部へ移動し、低温水が下部に移動して湯水温度が不均一化する。
そこで、翌朝の最初の貯湯運転開始の直前の時点において、S24と同様のステップを繰り返して、貯湯タンク4内の湯水温度の均一化を図るようにしてもよい。
Next, an example in which the above embodiment is partially modified will be described.
1] In the equalization process of FIG. 4, the step of S24 was executed immediately after 24:00 because of the anti-freezing operation. However, after several hours have passed since the execution of this specific operation, the high temperature water moves to the upper part and the low temperature water moves to the lower part, resulting in non-uniform hot water temperature.
Therefore, the same step as S24 may be repeated at the point immediately before the start of the first hot water storage operation in the next morning to equalize the temperature of the hot water in the hot water storage tank 4. FIG.

2]S24を実行する条件として、残留湯水の量が所定量(例えば、貯湯タンク4の容積の1/3)以上の場合にのみS24を実行するようにし、残留湯水の量が所定量以下の場合には、S23の判定がYesであっても均一化処理を実行しないようにする。 2] As conditions for executing S24, S24 is executed only when the amount of residual hot water is equal to or greater than a predetermined amount (for example, 1/3 of the volume of the hot water storage tank 4), and when the amount of residual hot water is equal to or less than the predetermined amount. In this case, the equalization process is not executed even if the determination in S23 is Yes.

即ち、残留湯水の量が所定量以下の場合は、次回貯湯運転時に残留湯水が前記ヒートポンプ熱源機3により再加熱されない。即ち、均一化処理により貯湯タンク4内の湯水温度を均一化させたとしても、均一化による温度低下が小さく、ヒートポンプ熱源機3のCOP低下防止の効果を余り期待できないことに鑑みて、均一化処理を実行しないものとする。 That is, when the amount of residual hot water is less than a predetermined amount, the residual hot water is not reheated by the heat pump heat source device 3 during the next hot water storage operation. That is, even if the temperature of the hot water in the hot water storage tank 4 is made uniform by the equalization process, the temperature decrease due to the equalization is small, and the effect of preventing the COP of the heat pump heat source device 3 from decreasing cannot be expected so much. No processing shall be performed.

3]貯湯タンク4内の湯水を攪拌可能な攪拌手段(例えば、モータで回転駆動される攪拌翼等)を設ける場合には、その攪拌手段を駆動することで前記特定運転を行うことができる。
4]その他、本発明の趣旨を逸脱することなく、前記実施形態を部分的に変更して本発明を実施可能であり、本発明はそのような変更形態も包含するものである。
3) When a stirring means capable of stirring hot water in the hot water storage tank 4 (for example, a stirring blade rotated by a motor) is provided, the specific operation can be performed by driving the stirring means.
4] In addition, the present invention can be implemented by partially changing the above-described embodiment without departing from the gist of the present invention, and the present invention includes such modifications.

1 貯湯給湯装置
2 貯湯給湯ユニット
3 ヒートポンプ熱源機
4 貯湯タンク
5 補助熱源機
15 循環加熱通路
19 循環ポンプ
37 圧縮機
38 凝縮熱交換器
39 膨張手段
40 蒸発熱交換器
43 制御部
1 hot water storage device 2 hot water storage hot water supply unit 3 heat pump heat source device 4 hot water storage tank 5 auxiliary heat source device 15 circulation heating passage 19 circulation pump 37 compressor 38 condensation heat exchanger 39 expansion means 40 evaporative heat exchanger 43 control unit

Claims (4)

圧縮機と凝縮熱交換器と膨張手段と蒸発熱交換器とを冷媒回路で接続してなるヒートポンプ熱源機と、このヒートポンプ熱源機によって加熱された湯水を貯留するための貯湯タンクと、この貯湯タンクとヒートポンプ熱源機との間で湯水を循環させる循環ポンプを含む循環加熱通路と、貯湯タンクの湯水温度が低下した場合に再加熱して出湯するための補助熱源機とを備えた貯湯給湯装置であって、給湯の使用状況を学習記憶することによって将来の給湯使用量を予測し、その給湯使用前にヒートポンプ熱源機を駆動して予測給湯使用量に相当する熱量を貯湯タンクに貯留する貯湯給湯装置において、
前記貯湯タンク内の残留湯水の温度が次回の貯湯運転時までに放熱により温度低下する場合の温度を推定する残留温度推定手段を備え、
この残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度になる場合には、貯湯タンク内の湯水温度の均一化を図る均一化処理を行なうと共に、外気温度が設定温度以下の場合には、前記循環加熱通路の凍結を予防する凍結予防運転として前記循環ポンプを駆動して湯水を循環させるように構成し、
前記均一化処理が行われている状態での凍結予防運転は、前記貯湯タンクを含む通路構成で前記循環加熱通路による循環を行い、前記均一化処理が行われていない状態での凍結予防運転は、前記貯湯タンクをバイパスする通路構成で前記循環加熱通路による循環を行なうことを特徴とする貯湯給湯装置。
A heat pump heat source machine comprising a compressor, a condensing heat exchanger, an expansion means, and an evaporative heat exchanger connected by a refrigerant circuit, a hot water storage tank for storing hot water heated by the heat pump heat source machine, and the storage tank. A stored hot water supply having a circulation heating passage including a circulation pump for circulating hot water between a hot water tank and a heat pump heat source, and an auxiliary heat source for reheating and discharging hot water when the temperature of the hot water in the hot water storage tank drops. The device predicts the future amount of hot water supply by learning and storing the usage status of hot water supply, and drives a heat pump heat source device to store the amount of heat corresponding to the estimated amount of hot water supply in a hot water storage tank before using the hot water supply. In the hot water storage hot water supply device,
residual temperature estimating means for estimating a temperature in the case where the temperature of residual hot water in the hot water storage tank decreases due to heat radiation until the next hot water storage operation,
If the residual hot water temperature estimated by the residual temperature estimating means reaches a temperature at which reheating by the auxiliary heat source unit is required during the next hot water storage operation, a uniformization process is performed to equalize the temperature of the hot water in the hot water storage tank. In addition, when the outside air temperature is lower than the set temperature, the circulation pump is driven to circulate hot water as a freeze prevention operation for preventing freezing of the circulation heating passage,
The anti-freeze operation in the state where the homogenization process is performed performs circulation by the circulation heating passage in a passage configuration including the hot water storage tank, and the anti-freeze operation in the state where the homogenization process is not performed. A hot water storage and hot water supply apparatus characterized in that the hot water storage tank is bypassed and circulation is performed by the circulation heating path .
前記均一化処理は、前記ヒートポンプ熱源機を駆動しない状態で前記循環ポンプを駆動し貯湯タンク内を攪拌することにより行うことを特徴とする請求項1に記載の貯湯給湯装置。 2. The hot water storage and hot water supply apparatus according to claim 1, wherein said homogenization process is performed by driving said circulation pump to agitate the inside of said hot water storage tank while said heat pump heat source is not driven. 前記次回貯湯運転時に残留湯水を前記ヒートポンプ熱源機により加熱しない場合には、前記残留温度推定手段によって推定された残留湯水温度が次回貯湯運転時に前記補助熱源機による再加熱が必要な温度であっても前記均一化処理を行わないことを特徴とする請求項1又は2に記載の貯湯給湯装置。 When the residual hot water is not heated by the heat pump heat source during the next hot water storage operation, the residual hot water temperature estimated by the residual temperature estimating means is the temperature at which reheating by the auxiliary heat source is required during the next hot water storage operation. 3. The hot water storage and hot water supply apparatus according to claim 1 or 2, wherein the equalization process is not performed for the hot water storage and hot water supply apparatus. 前記均一化処理は、次回貯湯運転開始の直前に行うことを特徴とする請求項1~3の何れか1項に記載の貯湯給湯装置。 The hot water storage and hot water supply apparatus according to any one of claims 1 to 3, wherein the equalization process is performed immediately before the next hot water storage operation is started.
JP2018058839A 2018-03-26 2018-03-26 Hot water storage water heater Active JP7125001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058839A JP7125001B2 (en) 2018-03-26 2018-03-26 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058839A JP7125001B2 (en) 2018-03-26 2018-03-26 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2019173975A JP2019173975A (en) 2019-10-10
JP7125001B2 true JP7125001B2 (en) 2022-08-24

Family

ID=68166760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058839A Active JP7125001B2 (en) 2018-03-26 2018-03-26 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP7125001B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294087B2 (en) * 2019-11-26 2023-06-20 三菱電機株式会社 heat pump water heater
JP7441727B2 (en) 2020-05-28 2024-03-01 リンナイ株式会社 hot water storage system
JP7108210B2 (en) * 2020-12-28 2022-07-28 ダイキン工業株式会社 hot water system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056908A (en) 2001-08-10 2003-02-26 Noritz Corp Heating method for water heater utilizing external heat source
JP2003287278A (en) 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009257703A (en) 2008-04-18 2009-11-05 Chugoku Electric Power Co Inc:The Stored hot water temperature controller, hot water storage water heater, stored hot water temperature control method, and program
JP2009287810A (en) 2008-05-28 2009-12-10 Aisin Seiki Co Ltd Cogeneration system
JP2010054131A (en) 2008-08-28 2010-03-11 Mitsubishi Electric Corp Storage type hot water supply device
JP2018011465A (en) 2016-07-15 2018-01-18 大阪瓦斯株式会社 Cogeneration system
JP2018031523A (en) 2016-08-24 2018-03-01 株式会社ノーリツ Storage water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056908A (en) 2001-08-10 2003-02-26 Noritz Corp Heating method for water heater utilizing external heat source
JP2003287278A (en) 2002-03-27 2003-10-10 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009257703A (en) 2008-04-18 2009-11-05 Chugoku Electric Power Co Inc:The Stored hot water temperature controller, hot water storage water heater, stored hot water temperature control method, and program
JP2009287810A (en) 2008-05-28 2009-12-10 Aisin Seiki Co Ltd Cogeneration system
JP2010054131A (en) 2008-08-28 2010-03-11 Mitsubishi Electric Corp Storage type hot water supply device
JP2018011465A (en) 2016-07-15 2018-01-18 大阪瓦斯株式会社 Cogeneration system
JP2018031523A (en) 2016-08-24 2018-03-01 株式会社ノーリツ Storage water heater

Also Published As

Publication number Publication date
JP2019173975A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US7856835B2 (en) Hot water supply apparatus
JP7125001B2 (en) Hot water storage water heater
JP6977332B2 (en) Hot water storage and hot water supply device
JP2011214793A (en) Water heater
EP3412985B1 (en) Method for controlling water-heating system, and water-heating system
JP2009299941A (en) Hot water supply system
JP2004257583A (en) Storage water heater
JP5925035B2 (en) Heat pump heat source system
JP7070825B2 (en) Hot water storage and hot water supply device
JP4225984B2 (en) Hot water heater
JP2008064338A (en) Hot water storage device
JP5567947B2 (en) Heat source equipment
JP2011021775A (en) Heat storage utilization system
JP6191352B2 (en) Hot water storage system
JP7288806B2 (en) Water heater
JP7386663B2 (en) Hot water storage type water heater
JP5986455B2 (en) Hot water storage water heater
JP2019113278A (en) Storage water heater
JP6143614B2 (en) Thermal equipment
JP2019039596A (en) Heat pump heat source machine
JP6935703B2 (en) Hot water storage and hot water supply device
JPH09236317A (en) Hot water supply system
JP4546850B2 (en) Drain discharge method of heat source device and heat source device
JP6834665B2 (en) Hot water storage and heating system
JP6628576B2 (en) Heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7125001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150