JP2007255745A - Heat source device, and control method and control program for flow rate of heating medium - Google Patents

Heat source device, and control method and control program for flow rate of heating medium Download PDF

Info

Publication number
JP2007255745A
JP2007255745A JP2006077880A JP2006077880A JP2007255745A JP 2007255745 A JP2007255745 A JP 2007255745A JP 2006077880 A JP2006077880 A JP 2006077880A JP 2006077880 A JP2006077880 A JP 2006077880A JP 2007255745 A JP2007255745 A JP 2007255745A
Authority
JP
Japan
Prior art keywords
heat
flow rate
heat medium
temperature
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077880A
Other languages
Japanese (ja)
Other versions
JP5038641B2 (en
Inventor
Akito Yamazaki
昭人 山崎
Kenichi Ito
健一 伊東
Neiko Hatada
寧孝 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP2006077880A priority Critical patent/JP5038641B2/en
Publication of JP2007255745A publication Critical patent/JP2007255745A/en
Application granted granted Critical
Publication of JP5038641B2 publication Critical patent/JP5038641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat source device utilizing a heating medium, optimizing the flow of the heating medium according to the heat demand on the heated fluid side without measuring the flow of the heating medium, eliminating the need of making special adjustment for every installation condition of the heating device, and achieving stable supply of the heating medium without influence of fluctuation of differential pressure caused in the supplied heating medium due to the working status of the heat source device. <P>SOLUTION: This heating source device taking the continuously supplied heating medium as a heat source achieves efficient heat exchange by utilizing limited heat exchange information such as a required heating value on the heated fluid side for exchanging heat with the heating medium without measuring the flow of the heating medium, differential pressure of the heating medium side, a temperature change and so on to optimize the flow of the heating medium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温水、加熱ガス等の加熱流体や、冷水、冷却ガス等の冷却流体の熱を熱源とする熱源装置に関し、特に、熱媒側の流量情報を参酌することなく、給湯需要に応じて熱媒の流れを制御する熱源装置、その熱媒流量の制御方法及び制御プログラムに関する。
The present invention relates to a heat source device that uses the heat of a heating fluid such as hot water or heating gas or the cooling fluid such as cold water or cooling gas as a heat source, and in particular, according to the demand for hot water supply without considering flow rate information on the heat medium side. The present invention relates to a heat source device that controls the flow of a heat medium, a control method for the flow rate of the heat medium, and a control program.

熱供給プラント、工場排気、その他の熱源器等、外部から提供される熱媒を熱源とする熱源装置として例えば、集合住宅や各種の施設等において、熱媒と被加熱流体との熱交換により間接加熱を行う所謂液々熱交換器を用いた熱源装置が知られている。外部から供給される加熱流体や冷却流体の熱を熱源に用いて熱媒を生成し、この熱媒を熱源とする各熱源装置へと供給すれば、熱の有効利用を図ることができ、新たな熱量を発生させないので、省エネルギ化を図ることができ、しかも、熱源装置側に加熱手段を設置することがないので、熱源装置側の設備の簡略化や設置スペースの削減に寄与するという利点がある。   As a heat source device that uses an externally provided heat medium as a heat source, such as a heat supply plant, factory exhaust, or other heat source device, for example, in an apartment house or various facilities, indirectly through heat exchange between the heat medium and the fluid to be heated A heat source device using a so-called liquid-liquid heat exchanger for heating is known. By using the heat of the heating fluid or cooling fluid supplied from the outside as a heat source to generate a heat medium and supplying it to each heat source device that uses this heat medium as a heat source, the heat can be used effectively. Because it does not generate a large amount of heat, it can save energy, and there is no need to install heating means on the heat source device side, which contributes to simplification of equipment on the heat source device side and reduction of installation space There is.

このような熱源装置に関し、外部から供給される熱媒を給湯、風呂の追焚、暖房等の熱源とし、その熱媒と上水とで熱交換をする構成において、給湯温度の調整をするミキシングバルブと熱交換器へ供給される上水の流量を調整する定流量弁の設置位置により給湯能力の無駄をなくすことについて、特許文献1の「給湯装置」がある。また外部から供給される熱媒を利用する熱交換ユニットについて、給湯時の要求温度に対する応答性を高めるために、熱交換器での熱媒温度を一定に保温することについて、特許文献2の「熱交換ユニット」がある。さらに熱媒供給型の熱交換を行う給湯器について、暖房運転中に風呂給湯を行う場合に上水が必要以上に加熱されることを防止する特許文献3の「給湯機」がある。また間接給湯について、水栓を開くことにより給湯側の上流と下流との間に生じる差圧に応じて熱媒流量を調整する特許文献4の「間接給湯装置」がある。
特開平08−200806号公報(段落番号0006、0007) 特開平11−281069号公報(段落番号0015、0016) 特開2004−278960号公報(段落番号0014、0027〜0030) 特開昭59−225244号公報
With regard to such a heat source device, mixing that adjusts the hot water supply temperature in a configuration in which a heat medium supplied from the outside is used as a heat source for hot water supply, bath tracking, heating, etc., and heat exchange is performed between the heat medium and tap water. Patent Document 1 discloses a “hot water supply device” for eliminating waste of hot water supply capacity by installing a constant flow valve that adjusts the flow rate of clean water supplied to a valve and a heat exchanger. Moreover, about the heat exchange unit using the heat medium supplied from the outside, in order to improve the responsiveness with respect to the required temperature at the time of hot water supply, about keeping constant the heat medium temperature in a heat exchanger, patent document 2 " There is a "heat exchange unit". Furthermore, regarding a water heater that performs heat exchange of a heat medium supply type, there is a “hot water heater” of Patent Document 3 that prevents water from being heated more than necessary when performing bath hot water supply during heating operation. As for indirect hot water supply, there is an “indirect hot water supply device” of Patent Document 4 in which the flow rate of the heat medium is adjusted according to the differential pressure generated between the upstream side and the downstream side on the hot water supply side by opening the faucet.
Japanese Patent Laid-Open No. 08-200806 (paragraph numbers 0006 and 0007) JP 11-281069 A (paragraph numbers 0015 and 0016) JP 2004-278960 A (paragraph numbers 0014, 0027 to 0030) JP 59-225244 A

ところで、熱媒を複数の熱源装置に供給する場合では、熱媒供給能力等により各施設毎に供給熱媒量が制限されている。外部から熱媒の供給を受ける熱源装置では、その設置場所や稼動状況によって、各施設毎の熱媒供給循環路で熱媒に生じる差圧が変動し、それが熱媒流量を変動させる。このような熱媒流量の変動の抑制には、各熱源装置毎に例えば、定流量弁や機械式の比例弁等を使用し、熱媒供給量を規制する対策が取られる。   By the way, in the case where the heat medium is supplied to a plurality of heat source devices, the amount of the supply heat medium is limited for each facility due to the heat medium supply capability and the like. In the heat source device that receives the supply of the heat medium from the outside, the differential pressure generated in the heat medium in the heat medium supply circulation path of each facility varies depending on the installation location and operation status, and this varies the heat medium flow rate. In order to suppress such fluctuations in the flow rate of the heat medium, for example, a constant flow valve, a mechanical proportional valve, or the like is used for each heat source device to take measures to regulate the heat medium supply amount.

しかし、定流量弁等を用いて熱媒流量を制御すると、熱媒供給循環路上での圧力損失が大きくなる等の不都合があり、熱媒を循環路に送り出す供給圧力が低い場合には、熱媒供給型の熱源装置が使用できない等の不都合もある。   However, controlling the flow rate of the heat medium using a constant flow valve or the like has a disadvantage such as a large pressure loss on the heat medium supply circuit, and if the supply pressure for sending the heat medium to the circuit is low, There is also a disadvantage that the medium supply type heat source device cannot be used.

また、熱媒流量の制御手段に機械式の比例弁を用いる比例制御方式では、被加熱流体である上水の熱交換前の水温が考慮されずに一定量の熱媒を供給するため、例えば、上水の水温が高くなっても、水温が低い場合と同量の熱媒が熱交換器に供給されることになり、熱エネルギーの過剰供給等、熱媒供給側への負担を増大させてしまう。   Further, in the proportional control method using a mechanical proportional valve as the heat medium flow rate control means, in order to supply a certain amount of heat medium without considering the water temperature before heat exchange of clean water as the fluid to be heated, for example, Even if the water temperature of the clean water rises, the same amount of heat medium as that when the water temperature is low will be supplied to the heat exchanger, increasing the burden on the heat medium supply side, such as excessive supply of heat energy. End up.

その他、複数の熱交換器に熱媒を供給する場合には、熱源である加熱手段の種類や熱媒を循環路に圧送するポンプ能力、熱媒を利用する施設の数等、熱源装置の設置条件により、熱媒に作用する圧力は一定にはならない。このため、熱源装置の設置時にその設置条件に適合させる調整は困難であり、また熱媒流路に流量計を設置して常に熱媒流量の制御を行えば、定流量弁を用いた場合と同様に流路抵抗を増大させることになる。   In addition, when supplying the heat medium to multiple heat exchangers, install the heat source device, such as the type of heating means that is the heat source, the pumping capacity to pump the heat medium to the circulation path, the number of facilities that use the heat medium, etc. Depending on the conditions, the pressure acting on the heating medium is not constant. For this reason, it is difficult to adjust the heat source device to match the installation conditions, and if a flow meter is always installed in the heat medium flow path to control the heat medium flow rate, a constant flow valve is used. Similarly, the flow path resistance is increased.

斯かる課題について、既述の特許文献1〜4にその開示はなく、それを解決する手段や着想についての開示もない。   Regarding such a problem, the above-mentioned Patent Documents 1 to 4 do not disclose the above, and do not disclose means and ideas for solving the problem.

そこで、本発明の目的は、熱媒の流量測定をすることなく、被加熱流体側の熱需要に応じて熱媒流量の最適化を図ることにある。   Therefore, an object of the present invention is to optimize the flow rate of the heat medium according to the heat demand on the heated fluid side without measuring the flow rate of the heat medium.

また、本発明の他の目的は、設置条件毎に特別な調整を施す必要がなく、熱源装置の使用状況等により、供給される熱媒に生じる差圧の変動に左右されずに安定した熱媒の供給を実現することにある。
Another object of the present invention is that there is no need to make a special adjustment for each installation condition, and the stable heat generation is not affected by fluctuations in the differential pressure generated in the supplied heat medium depending on the usage conditions of the heat source device. It is to realize the supply of the medium.

本発明は、連続的に供給される熱媒を熱源とする熱源装置に関し、熱媒の流量測定をすることなく、熱媒と熱交換をする被加熱流体側の要求熱量と、熱媒側の差圧、温度変化等の限られた熱交換情報を利用することにより、熱媒流量の最適化を図り、効率的な熱交換を実現している。   The present invention relates to a heat source device that uses a continuously supplied heat medium as a heat source, and does not measure the flow rate of the heat medium, and the required amount of heat on the heated fluid side that exchanges heat with the heat medium, By using limited heat exchange information such as differential pressure and temperature change, the heat medium flow rate is optimized and efficient heat exchange is realized.

上記目的を達成するための本発明の第1の側面は、供給される熱媒を熱源に用いる熱源装置であって、前記熱媒と加熱すべき被加熱流体との間で熱交換させる熱交換手段と、前記被加熱流体の温度を検出する第1の温度検出手段と、前記熱媒の温度を検出する第2の温度検出手段と、前記被加熱流体の流量を検出する流量検出手段と、前記熱交換手段に供給される前記熱媒の流量を調整する流量調整手段と、前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量調整手段の調整量を記憶する記憶手段と、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度と、前記記憶手段にある前記熱媒流量及び前記調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する制御部とを備える構成である。斯かる構成により、上記目的が達せられる。   In order to achieve the above object, a first aspect of the present invention is a heat source device that uses a supplied heat medium as a heat source, and performs heat exchange between the heat medium and a heated fluid to be heated. Means, first temperature detecting means for detecting the temperature of the heated fluid, second temperature detecting means for detecting the temperature of the heating medium, and flow rate detecting means for detecting the flow rate of the heated fluid; A flow rate adjusting means for adjusting the flow rate of the heat medium supplied to the heat exchange means, a heat medium flow rate at a reference differential pressure between the inlet side and the outlet side of the heat exchange means, and an adjustment amount of the flow rate adjusting means Storage means for storing, the detected flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, and the before and after heat exchange by the second temperature detecting means The detected temperature of the heating medium, the flow rate of the heating medium in the storage means and the previous A control unit that obtains an adjustment amount of the flow rate adjusting unit corresponding to a required heat amount of the fluid to be heated without measuring the flow rate of the heating medium, and controls the flow rate adjusting unit to the adjustment amount, without measuring the flow rate of the heating medium. It is the structure provided with. With such a configuration, the above object can be achieved.

この熱源装置において、好ましくは、前記制御部は、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する構成としてもよい。斯かる構成により、上記目的が達せられる。   In this heat source apparatus, preferably, the control unit detects the flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange by the first temperature detecting unit, and the second temperature detecting unit. Using the detected temperature of the heat medium before and after the heat exchange by obtaining the exchange heat amount, obtaining the current heat medium flow rate from the exchange heat amount, and obtaining the differential pressure of the heat medium corresponding to the reference differential pressure, The target heat medium flow rate is obtained from this differential pressure and the required heat amount on the heated fluid side, the adjustment amount of the flow rate adjusting means for the target heat medium flow rate is obtained, and the flow rate adjusting means is controlled to this adjustment amount. Also good. With such a configuration, the above object can be achieved.

この熱源装置において、好ましくは、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記流量検出手段による前記被加熱流体の検出流量と、前記第2の温度検出手段による熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と前記第1の温度検出手段による熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記流量調整手段の調整量を制御する構成である。斯かる構成によっても、上記目的が達せられる。   In this heat source device, preferably, the detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, the detected flow rate of the heated fluid by the flow rate detecting means, and the second temperature detecting means The target temperature of the heat medium after heat exchange is calculated from the detected temperature of the heat medium before heat exchange by the heat medium flow rate according to the required heat amount of the heated fluid, and the target temperature of the heat medium and the heat medium In this configuration, the amount of adjustment of the flow rate adjusting means is controlled so that the temperature difference from the temperature detected by the heat medium after heat exchange by the first temperature detecting means is within a predetermined range. Such a configuration can also achieve the above object.

上記目的を達成するための本発明の第2の側面は、供給される熱媒を熱源に用いる熱源装置の熱媒流量制御方法であって、前記熱媒と加熱すべき被加熱流体との間で熱交換手段により熱交換させる処理と、前記被加熱流体の温度を第1の温度検出手段で検出する処理と、前記熱媒の温度を第2の温度検出手段で検出する処理と、前記被加熱流体の流量を検出する処理と、前記熱交換手段に供給される前記熱媒の流量を流量調整手段で調整する処理と、前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量調整手段の調整量を記憶する処理と、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度と、前記記憶手段にある前記熱媒流量及び前記調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する処理とを含む構成である。斯かる構成によっても、上記目的が達せられる。   In order to achieve the above object, a second aspect of the present invention is a heat medium flow rate control method for a heat source device that uses a supplied heat medium as a heat source, and is provided between the heat medium and a fluid to be heated. A process of exchanging heat by the heat exchanging means, a process of detecting the temperature of the heated fluid by the first temperature detecting means, a process of detecting the temperature of the heating medium by the second temperature detecting means, A process for detecting the flow rate of the heating fluid, a process for adjusting the flow rate of the heat medium supplied to the heat exchange means by the flow rate adjustment means, and a reference differential pressure between the inlet side and the outlet side of the heat exchange means The flow rate of the heat medium, the process of storing the adjustment amount of the flow rate adjusting means, the detected flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, and the first The temperature of the heat medium detected before and after the heat exchange by the temperature detecting means 2 Based on the heat medium flow rate and the adjustment amount in the storage means, the adjustment amount of the flow rate adjustment means corresponding to the required heat amount of the heated fluid is obtained without measuring the flow rate of the heating medium, and the adjustment amount And a process for controlling the flow rate adjusting means. Such a configuration can also achieve the above object.

この熱源装置の熱媒流量制御方法において、好ましくは、前記制御処理は、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する構成としてもよい。斯かる構成によっても、上記目的が達せられる。   In the heat medium flow rate control method of the heat source device, preferably, the control processing includes a detected flow rate of the heated fluid, a detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, The amount of heat exchanged is determined using the detected temperature of the heat medium before and after heat exchange by the second temperature detection means, the current heat medium flow rate is obtained from the amount of heat exchanged, and the heat medium corresponding to the reference differential pressure The target heat medium flow rate is obtained from the differential pressure and the required heat amount on the heated fluid side, the adjustment amount of the flow rate adjusting means for the target heat medium flow rate is obtained, and the flow rate adjustment is performed on the adjustment amount. It is good also as a structure which controls a means. Such a configuration can also achieve the above object.

この熱源装置の熱媒流量制御方法において、好ましくは、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記被加熱流体の検出流量と、前記第2の温度検出手段による熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と前記第1の温度検出手段による熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記流量調整手段の調整量を制御する構成である。斯かる構成によっても、上記目的が達せられる。   In the heat medium flow rate control method of the heat source device, preferably, the detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, the detected flow rate of the heated fluid, and the second temperature detection The target temperature of the heat medium after heat exchange is calculated from the detected temperature of the heat medium before heat exchange by the means and the heat medium flow rate according to the required amount of heat of the fluid to be heated, and the target temperature of the heat medium The adjustment amount of the flow rate adjusting unit is controlled so that the temperature difference from the detected temperature of the heat medium after heat exchange by the first temperature detecting unit falls within a predetermined range. Such a configuration can also achieve the above object.

上記目的を達成するための本発明の第3の側面は、コンピュータにより実行され、供給される熱媒と加熱すべき被加熱流体との間で熱交換手段により熱交換させる熱源装置の熱媒流量制御プログラムであって、前記被加熱流体の温度を取り込むステップと、前記熱媒の温度を取り込むステップと、前記被加熱流体の流量を取り込むステップと、前記熱交換手段に供給される前記熱媒の流量を調整するステップと、前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量の調整量を記憶するステップと、前記被加熱流体の検出流量と、熱交換前後の前記被加熱流体の検出温度と、熱交換前後の前記熱媒の検出温度と、基準差圧における前記熱媒流量及び前記流量の調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量の調整量を求め、この調整量に前記流量調整手段を制御するステップとを含む構成である。斯かる構成によっても、上記目的が達せられる。   The third aspect of the present invention for achieving the above object is a heat medium flow rate of a heat source device that is executed by a computer and exchanges heat between a supplied heat medium and a fluid to be heated by heat exchange means. It is a control program, the step of taking in the temperature of the heated fluid, the step of taking in the temperature of the heating medium, the step of taking in the flow rate of the heated fluid, and the heating medium supplied to the heat exchange means A step of adjusting the flow rate, a step of storing the flow rate of the heat medium at a reference differential pressure between the inlet side and the outlet side of the heat exchanging means, the adjustment amount of the flow rate, a detected flow rate of the heated fluid, and a heat The flow rate of the heating medium is measured based on the detected temperature of the heated fluid before and after the exchange, the detected temperature of the heating medium before and after the heat exchange, and the heating medium flow rate and the flow rate adjustment amount at a reference differential pressure. Not Determine the adjustment amount of the flow rate corresponding to the required amount of heat of the heating fluid, a configuration including the step of controlling the flow rate adjusting means in the adjustment amount. Such a configuration can also achieve the above object.

この熱源装置の熱媒流量制御プログラムにおいて、好ましくは、前記制御ステップは、前記被加熱流体の検出流量と、熱交換前後の前記被加熱流体の検出温度と、熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記熱媒の調整量を求め、この調整量に前記熱媒の流量を制御する構成としてもよい。斯かる構成によっても、上記目的が達せられる。   In the heat medium flow rate control program of the heat source device, preferably, the control step includes the detection flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange, and the detection of the heat medium before and after heat exchange. The amount of heat exchanged is determined using the temperature, the current heat medium flow rate is determined from the amount of heat exchanged, and the pressure difference of the heat medium corresponding to the reference pressure difference is determined. A target heat medium flow rate may be obtained from the required heat amount, an adjustment amount of the heat medium with respect to the target heat medium flow amount may be obtained, and the flow rate of the heat medium may be controlled to the adjustment amount. Such a configuration can also achieve the above object.

この熱源装置の熱媒流量制御プログラムにおいて、好ましくは、熱交換前後の前記被加熱流体の検出温度と、前記被加熱流体の検出流量と、熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記熱媒の流量を制御する構成としてもよい。斯かる構成によっても、上記目的が達せられる。
In the heat medium flow rate control program of the heat source device, preferably, the detected temperature of the heated fluid before and after heat exchange, the detected flow rate of the heated fluid, the detected temperature of the heat medium before heat exchange, The target temperature of the heat medium after heat exchange is calculated from the heat medium flow rate corresponding to the required heat quantity of the heating fluid, and the temperature difference between the target temperature of the heat medium and the detected temperature of the heat medium after heat exchange is predetermined. It is good also as a structure which controls the flow volume of the said heat medium so that it may become in this range. Such a configuration can also achieve the above object.

本発明によれば、次の効果が得られる。   According to the present invention, the following effects can be obtained.

(1) 被加熱流体側の要求熱量により熱媒の必要流量を制御することができ、効率的な熱交換を実現できる。   (1) The required flow rate of the heat medium can be controlled by the required amount of heat on the heated fluid side, and efficient heat exchange can be realized.

(2) 給湯時等に各熱源装置毎に熱媒にかかる現在の差圧に応じた制御を行うので、熱源装置の設置時において、その設置環境に応じた特別な調整を行う必要がない。   (2) Since control according to the current differential pressure applied to the heat medium is performed for each heat source device at the time of hot water supply or the like, there is no need to make a special adjustment according to the installation environment when the heat source device is installed.

(3) また上記のように熱媒にかかる差圧を計測してそれに応じた制御を行っているので、熱源装置の使用中に差圧が変動しても熱源装置の能力を一定に保つことができる。   (3) Also, as described above, the differential pressure applied to the heat medium is measured and control is performed accordingly, so that the capacity of the heat source device is kept constant even if the differential pressure fluctuates during use of the heat source device. Can do.

(4) 熱媒を供給される各熱源装置毎に熱媒にかかる差圧に応じた制御を行うことで、全体として加熱手段に対する負荷を低減することができ、エネルギー効率を上げることができる。   (4) By performing the control according to the differential pressure applied to the heat medium for each heat source device to which the heat medium is supplied, the load on the heating means can be reduced as a whole, and the energy efficiency can be increased.

(5) 各熱源装置に供給される熱媒流量を一定にする定流量弁等の補助設備の設置が不要となるため、設備のコストを低減させることができ、また補助設備の設置により生じる循環路での圧力損失が少ないため、熱媒の圧送力が小さい場合であっても使用することができる。
(5) Since it is not necessary to install auxiliary equipment such as a constant flow valve that keeps the flow rate of the heat medium supplied to each heat source device constant, the cost of the equipment can be reduced and the circulation caused by the installation of auxiliary equipment Since there is little pressure loss in the road, it can be used even when the pumping force of the heat medium is small.

〔第1の実施の形態〕 [First Embodiment]

本発明の第1の実施の形態について、図1を参照して説明する。図1は、本発明に係る熱源装置を用いる熱交換システムを示した図である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a heat exchange system using a heat source device according to the present invention.

この熱交換システム2は、熱源である熱媒4を供給する加熱ユニット6を備えている。熱媒4は、温水、冷水、蒸気等の流体であって、熱交換に必要な熱量を備えている。熱媒4は、油や加熱ガスであってもよい。加熱ユニット6には、その燃料としてガス、電気、灯油、燃料電池等があり、その燃料をエネルギーとして熱媒4に変換する。   The heat exchange system 2 includes a heating unit 6 that supplies a heat medium 4 that is a heat source. The heat medium 4 is a fluid such as hot water, cold water, or steam, and has a heat amount necessary for heat exchange. The heat medium 4 may be oil or heated gas. The heating unit 6 includes gas, electricity, kerosene, a fuel cell and the like as the fuel, and converts the fuel into the heat medium 4 as energy.

加熱ユニット6には熱媒4を需要者側に効率的に循環させる主循環路8が接続され、この主循環路8は往管8Aと戻管8Bとを以て構成されており、往管8A及び戻管8Bの終端部には定流量弁10が接続され連結されている。加熱ユニット6には、図示しないが、熱媒4を主循環路8等に強制循環させるためのポンプが設置されている。   A main circulation path 8 for efficiently circulating the heat medium 4 to the consumer side is connected to the heating unit 6, and the main circulation path 8 includes an outward pipe 8A and a return pipe 8B. A constant flow valve 10 is connected to and connected to the end portion of the return pipe 8B. Although not shown, the heating unit 6 is provided with a pump for forcibly circulating the heat medium 4 to the main circulation path 8 or the like.

主循環路8には、複数の分岐循環路81、82、83・・・8Nが分岐され、熱媒4が各分岐循環路81、82、83・・・8Nにより需要側に供給されている。この場合、分岐循環路81は往管81Aと戻管81B、分岐循環路82は往管82Aと戻管82B、分岐循環路83は往管83Aと戻管83B・・・分岐循環路8Nは往管8NAと戻管8NBで構成されている。各往管81A、82A、83A・・・8NA、各戻管81B、82B、83B・・・8NBには熱媒4の供給又は停止を切り換えるための開閉弁11が設置されている。分岐循環路81、82、83・・・8Nの単位は住戸や施設等であってもよい。この場合、分岐循環路81には、複数の分岐循環路811、812・・・・・81Nが分岐されている。往管811A、812A・・・・・81NA、戻管811B、812B・・・・・81NBにも、熱媒4の供給又は停止を切り換えるための開閉弁11が設置されている。   The main circulation path 8 is branched into a plurality of branch circulation paths 81, 82, 83... 8N, and the heat medium 4 is supplied to the demand side through the respective branch circulation paths 81, 82, 83. . In this case, the branch circulation path 81 is the outgoing pipe 81A and the return pipe 81B, the branch circulation path 82 is the outgoing pipe 82A and the return pipe 82B, the branch circulation path 83 is the outgoing pipe 83A and the return pipe 83B, and so on. It consists of a tube 8NA and a return tube 8NB. Each of the outgoing pipes 81A, 82A, 83A,... 8NA and each of the return pipes 81B, 82B, 83B,. The unit of the branch circuit 81, 82, 83... 8N may be a dwelling unit or a facility. In this case, the branch circuit 81 is branched into a plurality of branch circuits 811, 812. The on / off valves 11 for switching the supply or stop of the heating medium 4 are also installed in the outgoing pipes 811A, 812A... 81NA and the return pipes 811B, 812B.

そして、この場合、分岐循環路812の往管812Aと戻管812Bには熱媒4を熱源に用いる熱源装置20が接続され、この実施の形態では、熱媒4と上水Wとの熱交換により、給湯する構成である。   In this case, the heat source device 20 using the heat medium 4 as a heat source is connected to the outgoing pipe 812A and the return pipe 812B of the branch circuit 812. In this embodiment, heat exchange between the heat medium 4 and the clean water W is performed. Thus, the hot water is supplied.

斯かる構成によれば、熱源装置20に対する熱需要に応じて熱媒4から熱量の供給を受け、給湯の他、図示していないが、暖房用熱媒加熱や浴槽水加熱等が行われる。   According to such a configuration, a heat amount is supplied from the heat medium 4 according to the heat demand for the heat source device 20, and although not shown, heating medium heating or bathtub water heating is performed in addition to hot water supply.

なお、循環路8の往管8Aの終端部側には排出弁12、循環路81の往管81Aの終端部側には同様に排出弁13が設けられ、循環路8の熱媒4を排出弁12を開くことにより廃棄することができ、また、循環路81側の熱媒4を排出弁13を開くことにより廃棄することができる。   In addition, a discharge valve 12 is provided on the end side of the outgoing pipe 8A of the circulation path 8, and a discharge valve 13 is similarly provided on the end side of the outgoing pipe 81A of the circulation path 81, and the heat medium 4 in the circulation path 8 is discharged. It can be discarded by opening the valve 12, and the heat medium 4 on the circulation path 81 side can be discarded by opening the discharge valve 13.

次に、熱源装置20の構成について、図2を参照して説明する。図2は、熱源装置20の構成例を示す図である。図2において、図1と同一部分には同一符号を付してある。   Next, the configuration of the heat source device 20 will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration example of the heat source device 20. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals.

この熱源装置20は、循環路の往管812Aを通ってきた熱媒4を熱源装置20の内部に循環させて熱交換を行い、その後循環路の戻管812Bへと排出する構成である。   The heat source device 20 has a configuration in which the heat medium 4 that has passed through the outgoing pipe 812A in the circulation path is circulated inside the heat source apparatus 20 to perform heat exchange, and is then discharged to the return pipe 812B in the circulation path.

熱源装置20は、給湯加熱を行う熱交換器16及びその熱交換器16へと熱媒4を循環させる循環路812、及び上水Wを熱交換器16へと導く水管路26により構成されている。循環路812上には、熱媒4の熱交換前後の温度を検出する第2の温度検出手段として熱媒入温度センサ18及び熱媒出温度センサ22が設置されている。また循環路812の往管812A上には、熱交換器16への熱媒4の流量を調整する流量調整手段として熱媒制御弁24が設置されている。なお、流量調整手段については、熱媒制御弁24に限られず、ポンプ等を用いる構成としてもよい。   The heat source device 20 includes a heat exchanger 16 that performs hot water heating, a circulation path 812 that circulates the heat medium 4 to the heat exchanger 16, and a water pipe 26 that guides the clean water W to the heat exchanger 16. Yes. On the circulation path 812, a heat medium entrance temperature sensor 18 and a heat medium exit temperature sensor 22 are installed as second temperature detection means for detecting temperatures before and after heat exchange of the heat medium 4. A heat medium control valve 24 is installed on the outgoing pipe 812A of the circulation path 812 as a flow rate adjusting means for adjusting the flow rate of the heat medium 4 to the heat exchanger 16. The flow rate adjusting means is not limited to the heat medium control valve 24, and may be configured to use a pump or the like.

また被加熱流体として例えば上水Wを流す水管路26上には、水制御弁28、バイパス管路30、バイパスミキシング弁32、流量検出手段として水量センサ34、上水側の温度を検出する第1の温度検出手段として入水温センサ36、出湯温センサ38、及び混合温センサ40を有している。そして、その他には、給湯量や熱媒4の流量制御等を行う制御部42(図3)が設けられている。バイパス管路30は、上水Wを熱交換器16の入り口側と出口側とに分流させるものである。水量センサ34は、上水Wの流量を検出し、入水温センサ36及び出湯温センサ38は、それぞれ熱交換前後の上水Wの温度を検出するものであり、混合温センサ40は、熱交換後の湯とバイパス管路30を通過してきた上水Wとを混合した後の出湯温度を検出する。そして各種センサで検出された検出値は、制御部42へと送られる。なお、上述した循環路812上及び水管路26上の各温度センサについては、例えばサーミスタ温度計を用いることができる。   For example, a water control valve 28, a bypass pipe 30, a bypass mixing valve 32, a water amount sensor 34 as a flow rate detection means, and a temperature of the water supply side are detected on a water pipe 26 through which, for example, clean water W flows as a fluid to be heated. As one temperature detection means, an incoming water temperature sensor 36, a hot water temperature sensor 38, and a mixed temperature sensor 40 are provided. In addition, a control unit 42 (FIG. 3) that performs hot water supply amount, flow rate control of the heat medium 4, and the like is provided. The bypass line 30 divides the clean water W into the inlet side and the outlet side of the heat exchanger 16. The water amount sensor 34 detects the flow rate of the clean water W, the incoming water temperature sensor 36 and the hot water temperature sensor 38 detect the temperature of the fresh water W before and after heat exchange, and the mixed temperature sensor 40 is used for heat exchange. The hot water temperature after mixing the subsequent hot water and the clean water W that has passed through the bypass conduit 30 is detected. The detection values detected by the various sensors are sent to the control unit 42. For example, a thermistor thermometer can be used for each temperature sensor on the circulation path 812 and the water pipe 26 described above.

熱交換の動作については、例えば給湯栓が開状態になると、水管路26に上水Wが流入し、一定量の水量が流れたことを水量センサ34が検出すると熱媒制御弁24を開状態にし、熱交換器16において熱交換を開始する。そして熱交換により加熱された高温の湯は、バイパス管路30を通過してくる低温の上水Wと混合され、混合温センサ40の検出温度に応じてバイパスミキシング弁32の開度を制御して所望の温度に調整されて出湯する。   With regard to the heat exchange operation, for example, when the hot water tap is opened, when the water sensor 34 detects that the clean water W has flowed into the water pipe 26 and a certain amount of water has flowed, the heat medium control valve 24 is opened. And heat exchange is started in the heat exchanger 16. The hot water heated by the heat exchange is mixed with the low-temperature clean water W passing through the bypass pipe 30, and the opening degree of the bypass mixing valve 32 is controlled according to the temperature detected by the mixed temperature sensor 40. The temperature is adjusted to the desired temperature and discharged.

次に、熱源装置の制御部について、図3を参照して説明する。図3は、制御部42の構成例を示す図である。なお、図3において図2と同一部分には同一符号を付してある。   Next, the controller of the heat source device will be described with reference to FIG. FIG. 3 is a diagram illustrating a configuration example of the control unit 42. In FIG. 3, the same parts as those in FIG.

熱源装置20の制御部42は、コンピュータにより構成されており、その内部はCPU(Central Processing Unit )44、記憶手段としてRAM(Random-Access Memory)46及びROM(Read-Only Memory)48、CPU44の動作タイミング及び各種時間計測を行うクロック50等が備えられている。ROM48には、流量制御プログラム300、熱媒流量及び弁開度の算出プログラム310、差圧計算プログラム320等の各種制御プログラムが格納されている。熱媒流量及び弁開度の算出プログラム310は、例えば、基準差圧が1〔kgf/cm2 〕における熱媒流量と流量調整手段の調整量に関するプログラムである。RAM46は記憶手段としてだけでなく、後述する差圧計算や流量制御に関する作業領域としても用いられ、その構成にはRAMの他、不揮発性メモリとして例えば、EEPROM等を用いてもよい。 The control unit 42 of the heat source device 20 is configured by a computer, and the inside thereof is a CPU (Central Processing Unit) 44, RAM (Random-Access Memory) 46 and ROM (Read-Only Memory) 48 as storage means, and CPU 44. A clock 50 for measuring operation timing and various times is provided. The ROM 48 stores various control programs such as a flow rate control program 300, a heat medium flow rate and valve opening calculation program 310, and a differential pressure calculation program 320. The heat medium flow rate and valve opening calculation program 310 is a program related to the heat medium flow rate and the adjustment amount of the flow rate adjusting means when the reference differential pressure is 1 [kgf / cm 2 ], for example. The RAM 46 is used not only as a storage unit but also as a work area related to differential pressure calculation and flow rate control, which will be described later. For example, an EEPROM or the like may be used as a nonvolatile memory in addition to the RAM.

また制御部42は、各種検出回路からの検出値の取込みを行うI/F(Inter Face)52、A/D変換回路54、制御指令に対して熱源装置4の各部分への動作指令を行う駆動装置56、給湯温度設定等を行う外部リモコン58及び電源回路59との運転指令に関する送受信を行う送受信回路60等から構成されている。   In addition, the control unit 42 issues an operation command to each part of the heat source device 4 in response to an I / F (Inter Face) 52, an A / D conversion circuit 54, and a control command that take in detection values from various detection circuits. The driving device 56 includes an external remote controller 58 that performs hot water supply temperature setting and the like, and a transmission / reception circuit 60 that performs transmission / reception regarding operation commands with the power supply circuit 59.

熱源装置20に設置された入水温センサ36、出湯温センサ38、混合温センサ40、熱媒入温度センサ18、熱媒出温度センサ22、水量センサ34からの検出信号は、I/F52から取込まれ、A/D変換回路54を通してディジタル信号に変換された後、CPU44に取込まれる。そしてROM48から各種制御プログラムを読込み、上記の検出値を用いて給湯号数演算、熱媒流量演算、差圧計算、熱媒流量補正演算等の制御処理を実行し、駆動装置56から各制御弁等に動作指令を送信する。またその計算値等をRAM46に記録して、次回の熱媒流量の制御等に用いることができるように構成されている。   Detection signals from the incoming water temperature sensor 36, the outgoing water temperature sensor 38, the mixed temperature sensor 40, the heat medium input temperature sensor 18, the heat medium output temperature sensor 22, and the water amount sensor 34 installed in the heat source device 20 are taken from the I / F 52. And converted into a digital signal through the A / D conversion circuit 54 and then taken into the CPU 44. Then, various control programs are read from the ROM 48, and control processing such as hot water supply number calculation, heat medium flow rate calculation, differential pressure calculation, heat medium flow rate correction calculation and the like are executed using the detected values. An operation command is transmitted to etc. The calculated value or the like is recorded in the RAM 46 and can be used for the next control of the flow rate of the heat medium.

次に、給湯熱媒制御について、図4を参照して説明する。図4は、給湯熱媒制御のフローチャートである。   Next, hot water supply heat medium control will be described with reference to FIG. FIG. 4 is a flowchart of hot water supply heat medium control.

熱源装置20の給湯熱媒制御は、熱媒4と被加熱流体である上水Wとの交換熱量を算出するとともに、循環路812上において熱媒4にかかる差圧を算出して、設定温度の湯を給湯するように熱媒4の流入量を変化させるため、流量調整手段の調整量として熱媒制御弁24の弁開度の制御を行うものである。   The hot water supply heat medium control of the heat source device 20 calculates the exchange heat amount between the heat medium 4 and the clean water W that is the fluid to be heated, calculates the differential pressure applied to the heat medium 4 on the circulation path 812, and sets the set temperature In order to change the inflow amount of the heat medium 4 so as to supply hot water, the opening degree of the heat medium control valve 24 is controlled as an adjustment amount of the flow rate adjusting means.

給湯熱媒制御では、まず給湯需要が発生した場合、熱源装置20が給湯可能な状態か、例えば、異常停止状態となっていないか、運転ONの状態か、給湯温度異常のため給湯停止状態となっていないか等のチェックを行う(ステップS1)。そして給湯可能(ステップS1のYES)ならば、給湯栓が開かれることにより水量センサ34が上水Wの流水を検出したかをチェックする(ステップS2)。   In the hot water supply heat medium control, first, when a hot water supply demand occurs, the heat source device 20 is in a state where hot water can be supplied, for example, is not in an abnormally stopped state, is in an operation ON state, or is in a hot water supply stopped state due to abnormal hot water supply temperature. It is checked whether it is not (step S1). If hot water supply is possible (YES in step S1), it is checked whether the water amount sensor 34 has detected flowing water of the clean water W by opening the hot water tap (step S2).

上水Wの流水を検出した場合(ステップS2のYES)、後述する給湯開始時の差圧計算により、熱源装置20の使用状態(図7)に応じて、ROM48に記録されている熱媒差圧の算出値、もしくは所定の基準差圧(例えば、1〔kgf/cm2 〕)に基づいて、予め規定されている熱媒流量(例えば、20〔L/min〕)が流れるように熱媒制御弁24を開いて給湯を開始し、熱媒差圧の計算を行う(ステップS3)。給湯を開始したら、給湯処理を終了しているか否かの判定として、再度上水Wの流水を検出したかの判断を行う(ステップS4)。 When flowing water of the clean water W is detected (YES in step S2), the heat medium difference recorded in the ROM 48 according to the use state of the heat source device 20 (FIG. 7) by the differential pressure calculation at the start of hot water supply described later. Based on the calculated value of the pressure or a predetermined reference differential pressure (for example, 1 [kgf / cm 2 ]), the heating medium flows so that a predetermined heat medium flow rate (for example, 20 [L / min]) flows. The control valve 24 is opened to start hot water supply, and the heat medium differential pressure is calculated (step S3). When the hot water supply is started, it is determined whether or not the running water of the clean water W has been detected again as a determination as to whether or not the hot water supply process has been completed (step S4).

上水Wの流水を検出した場合(ステップS4のYES)、給湯側の設定温度による必要給湯号数を算出し、ROM48に記憶されている必要給湯号数に応じた熱媒流量テーブルから目標給湯熱媒流量を決める(ステップS5)。なお目標熱媒流量の決定は、上記のように算出した必要号数を一定値ごとに区切ってテーブルを持つ以外に、必要給湯号数に応じて熱媒流量を細かく算出するようにしてもよい。   When flowing water of the clean water W is detected (YES in step S4), the required hot water supply number according to the set temperature on the hot water supply side is calculated, and the target hot water supply is obtained from the heat medium flow rate table corresponding to the required hot water supply number stored in the ROM 48. The heat medium flow rate is determined (step S5). In addition, the determination of the target heat medium flow rate may be performed by finely calculating the heat medium flow rate according to the required hot water supply number, in addition to having a table by dividing the necessary number calculated as described above into fixed values. .

ここで、上述した必要給湯号数と目標熱媒流量との関係を示すテーブルの一例を示す   Here, an example of the table which shows the relationship between the required hot water supply number mentioned above and target heat-medium flow volume is shown.

Figure 2007255745
Figure 2007255745

目標給湯熱媒流量が決定したら、現在の熱媒制御弁24の開度に設定されている目標熱媒流量とステップS5で算出された目標給湯熱媒流量とを比較して、目標熱媒流量が変更されたか否かを判断する(ステップS6)。その比較により、目標熱媒流量の変更(ステップS6のYES)である場合、熱源装置20に流入させる熱媒4の流量を調整するため、FF(フィード・フォワード)制御により熱媒制御弁24の開度の変更を行う(ステップS7)。FF制御では、ステップS3で測定した差圧と、ステップS5で算出した目標熱媒流量を用いて、熱媒制御弁24の開度を設定する。また、目標熱媒流量の変更でない(ステップS6のNO)場合には、後述するFB(フィード・バック)制御により、熱媒出温度センサ22による熱交換後の熱媒4の検出温度から、熱媒4に生じる差圧変動や給湯需要の変化等に応じて、流入する熱媒4の流量と目標熱媒流量とが一致するように熱媒4の流量調整を行う(ステップS8)。   When the target hot water supply heat medium flow rate is determined, the target heat medium flow rate set at the current opening degree of the heat medium control valve 24 is compared with the target hot water supply heat medium flow rate calculated in step S5, and the target heat medium flow rate is determined. It is determined whether or not has been changed (step S6). As a result of the comparison, when the target heat medium flow rate is changed (YES in step S6), the heat medium control valve 24 is controlled by FF (feed forward) control in order to adjust the flow rate of the heat medium 4 flowing into the heat source device 20. The opening is changed (step S7). In the FF control, the opening degree of the heat medium control valve 24 is set using the differential pressure measured in step S3 and the target heat medium flow rate calculated in step S5. If the target heat medium flow rate is not changed (NO in step S6), the heat medium 4 is heated from the detected temperature of the heat medium 4 after heat exchange by the heat medium temperature sensor 22 by FB (feedback) control described later. The flow rate of the heat medium 4 is adjusted so that the flow rate of the inflowing heat medium 4 and the target heat medium flow rate coincide with each other according to the differential pressure fluctuation generated in the medium 4 or the change in hot water supply demand (step S8).

また、給湯が不可能な状態の場合(ステップS1のNO)や上水Wの流水が検出されない場合(ステップS2及びステップS4のNO)には、熱媒制御弁24を閉じる(ステップS9)。   When hot water supply is impossible (NO in step S1) or when running water W is not detected (NO in steps S2 and S4), the heat medium control valve 24 is closed (step S9).

次に、差圧計算の方法を図5を参照して説明する。図5は、差圧計算のフローチャートである。   Next, a differential pressure calculation method will be described with reference to FIG. FIG. 5 is a flowchart of differential pressure calculation.

既述のように熱源装置20に供給される熱媒4の差圧が設置条件等によって一定ではないことから、同一の弁開度であっても熱媒4の流量が異なる。そこで、循環路812上に流路抵抗となる流量計や差圧計等を設置せずに熱媒4の流量制御を行うため、熱媒4に生じる現在の差圧を算出する手段を説明する。まず循環路812に現在流れている熱媒4の流量を算出する(ステップS10)。具体的には、被加熱流体である上水Wの流量と熱交換前後の上水Wの温度とから熱交換により授受される交換熱量を求め、その熱量から熱媒4の流量を算出する。次に、熱媒4の差圧が基準差圧として例えば1〔kgf/cm2 〕における熱媒流量及び弁開度の算出プログラム310をROM48から読み出し、現在設定されている熱媒制御弁24の開度から、基準差圧の時の熱媒4の流量を求める(ステップS11)。そして、ステップS10、S11で求めた流量を用いて差圧計算プログラム320により、熱媒4にかかる現在の差圧を算出する(ステップS12)。 As described above, since the differential pressure of the heat medium 4 supplied to the heat source device 20 is not constant depending on the installation conditions and the like, the flow rate of the heat medium 4 varies even with the same valve opening. Therefore, a means for calculating the current differential pressure generated in the heat medium 4 will be described in order to control the flow rate of the heat medium 4 without installing a flow meter or a differential pressure meter or the like serving as a flow path resistance on the circulation path 812. First, the flow rate of the heat medium 4 currently flowing through the circulation path 812 is calculated (step S10). Specifically, the exchange heat quantity exchanged by heat exchange is determined from the flow rate of clean water W that is the fluid to be heated and the temperature of clean water W before and after heat exchange, and the flow rate of the heat medium 4 is calculated from the heat quantity. Next, the heat medium flow rate and valve opening calculation program 310 is read from the ROM 48 when the differential pressure of the heat medium 4 is the reference differential pressure, for example, 1 [kgf / cm 2 ], and the currently set heat medium control valve 24 is set. From the opening, the flow rate of the heat medium 4 at the reference differential pressure is obtained (step S11). Then, the current differential pressure applied to the heat medium 4 is calculated by the differential pressure calculation program 320 using the flow rates obtained in steps S10 and S11 (step S12).

ステップS10で説明した現在の熱媒流量の算出について、図6を参照して説明する。図6は、熱交換器16の構成を示した図である。図2と同一部分には、同一の符号を付してある。   Calculation of the current heat medium flow rate described in step S10 will be described with reference to FIG. FIG. 6 is a diagram showing the configuration of the heat exchanger 16. The same parts as those in FIG. 2 are denoted by the same reference numerals.

熱交換器16は、循環路812及び水管路26がプレート62の内部で熱交換を行うように構成されている。このような構成において、現在の熱媒流量は、プレート62での熱媒側の与熱量と給湯側の受熱量が等しいとして熱媒流量を求める。ここで、算出する現在の熱媒流量をRn〔L/min〕とし、各センサから検出可能な値として、水量センサ34による被加熱側の給湯流量をRq〔L/min〕、混合温センサ40による出湯温度をTsth〔℃〕、入水温センサ36による入水温度をTqin〔℃〕、熱媒入温度センサ18による熱媒入温度をTnin〔℃〕、熱媒出温度センサ22による熱媒出温度をTnqo〔℃〕とおくと、上記条件より、これら流量と温度は定常状態で安定していることになる。   The heat exchanger 16 is configured such that the circulation path 812 and the water pipe line 26 perform heat exchange inside the plate 62. In such a configuration, the current heat medium flow rate is determined assuming that the amount of heat on the heat medium side and the amount of heat received on the hot water supply side of the plate 62 are equal. Here, the current heat medium flow rate to be calculated is Rn [L / min], and the hot water supply flow rate on the heated side by the water amount sensor 34 is Rq [L / min] as a value detectable by each sensor. The hot water temperature by Tsth [° C.], the incoming water temperature by the incoming water temperature sensor 36 is Tqin [° C.], the incoming temperature of the heat medium by the heat medium inlet temperature sensor 18 is Tnin [° C.], and the outgoing temperature of the heat medium by the heat medium temperature sensor 22 Is Tnqo [° C.], the flow rate and temperature are stable in a steady state from the above conditions.

上記の条件より、熱媒と上水Wとの温度と流量の積算値が、

Figure 2007255745
となる。この式(1) から現在の熱媒流Rnを求めるように変形すると、 From the above conditions, the integrated value of the temperature and flow rate of the heating medium and the clean water W is
Figure 2007255745
It becomes. From this equation (1), if the current heat transfer flow Rn is modified,

Figure 2007255745
となり、現在、循環路812に流れている熱媒4の流量Rnを算出することができる。
Figure 2007255745
Thus, the flow rate Rn of the heat medium 4 currently flowing through the circulation path 812 can be calculated.

次に、図5のステップS12による現在の差圧の算出方法について、具体的に説明する。差圧の算出については、流体のエネルギー保存の法則である定常ベルヌーイの式を用いて、異なる2種類の差圧と流量との関係比を求める。即ち定常ベルヌーイの式より、   Next, the current differential pressure calculation method in step S12 of FIG. 5 will be specifically described. Regarding the calculation of the differential pressure, a relational ratio between two different types of differential pressure and flow rate is obtained by using a steady Bernoulli equation that is a law of conservation of fluid energy. That is, from the steady Bernoulli equation,

Figure 2007255745
となる。この式でρは密度、uは流速、gは重力加速度、hは測定場所の高さ、Uは熱エネルギー(比熱×温度)、Pは圧力である。式(3) の左辺について各項は、第1項が運動エネルギー、第2項が位置エネルギー、第3項が内部エネルギー、第4項が圧力を表している。この流量制御においては、同一場所における差圧と流量変化を算出することが目的であるので、式(3) の第2項の位置エネルギーは無視することができる。また外部からのエネルギーの加減はないので、第3項も無視することができる。
Figure 2007255745
It becomes. In this equation, ρ is the density, u is the flow velocity, g is the acceleration of gravity, h is the height of the measurement location, U is the thermal energy (specific heat × temperature), and P is the pressure. Regarding the left side of Equation (3), the first term represents kinetic energy, the second term represents potential energy, the third term represents internal energy, and the fourth term represents pressure. The purpose of this flow rate control is to calculate the differential pressure and flow rate change at the same location, so the potential energy of the second term in equation (3) can be ignored. Since there is no external energy adjustment, the third term can be ignored.

この状態において、大気をP0とし、差圧P1の時の流速がuで、差圧P2の時の流速をvとすると、それぞれの差圧に対して、

Figure 2007255745
及び、
Figure 2007255745
が成り立つ。また式(4) を変形すると、 In this state, assuming that the atmosphere is P0, the flow velocity at the differential pressure P1 is u, and the flow velocity at the differential pressure P2 is v, for each differential pressure,
Figure 2007255745
as well as,
Figure 2007255745
Holds. Also, if equation (4) is transformed,

Figure 2007255745
となり、式(5) を変形すると、
Figure 2007255745
となる。流量及び圧力の比を取るために両辺をそれぞれ割ると、
Figure 2007255745
And transforming equation (5),
Figure 2007255745
It becomes. Dividing both sides to get the ratio of flow and pressure,

Figure 2007255745
となり、従って、
Figure 2007255745
となる。これを変形すると、
Figure 2007255745
And therefore
Figure 2007255745
It becomes. If this is transformed,

Figure 2007255745
となることから、流速は差圧の比の平方根に比例することになる。
Figure 2007255745
Therefore, the flow velocity is proportional to the square root of the differential pressure ratio.

流量と流速の関係は、流体における連続の式より、

Figure 2007255745
となる。ここでsは断面積である。同じ弁開度の条件において断面積は一定であることから、式(10)の両辺に断面積sをかけると、 The relationship between flow rate and flow velocity is
Figure 2007255745
It becomes. Here, s is a cross-sectional area. Since the cross-sectional area is constant under the same valve opening conditions, if the cross-sectional area s is applied to both sides of Equation (10),

Figure 2007255745
が成立する。予め差圧が1〔kgf/cm2 〕での流量と弁開度のデータを測定して記録しておき、そのデータから流量Rとなる弁開度に設定した時に、実際に流れた流量がrとすると、その設置場所の差圧pは式(12)より、
Figure 2007255745
となるので、これを変形すると、
Figure 2007255745
となる。ここでRは目標熱媒流量、r は式(2) の被加熱流体側の流量等から求められる熱媒の流量Rn である。
Figure 2007255745
Is established. The flow rate and valve opening data at a differential pressure of 1 [kgf / cm 2 ] are measured and recorded in advance, and when the valve opening is set to the flow rate R from that data, If r, then the differential pressure p at the installation location is
Figure 2007255745
So, if you transform this,
Figure 2007255745
It becomes. Here, R is the target heat medium flow rate, and r is the heat medium flow rate Rn obtained from the flow rate on the heated fluid side in equation (2).

以上より設置場所の差圧pを求めることができ、また差圧pにおける各弁開度での流量は、式(10)より求めることができる。そして、給湯熱媒の流量制御は、例えばステッピングモータ等により、駆動する弁体の開度で制御しているので、必要とする熱媒流量は、計算で求めた差圧から開度、熱媒流量を決定する。即ち、式(13)、(14)から、基準差圧(例えば、1〔kgf/cm2 〕)のときの流量Rと差圧が分かっていれば、同じ弁開度で流れる流量rが分かる。 From the above, the differential pressure p at the installation location can be obtained, and the flow rate at each valve opening at the differential pressure p can be obtained from the equation (10). Since the flow rate control of the hot water supply heat medium is controlled by the opening degree of the valve body to be driven by, for example, a stepping motor or the like, the required heat medium flow rate is determined based on the calculated differential pressure, the opening degree, and the heat medium. Determine the flow rate. That is, from equations (13) and (14), if the flow rate R and the differential pressure at the reference differential pressure (for example, 1 [kgf / cm 2 ]) are known, the flow rate r flowing at the same valve opening can be found. .

次に、図4のステップS3で行われる給湯開始時の差圧計算について、図7を参照して説明する。図7は、給湯開始時の差圧計算のフローチャートである。   Next, the differential pressure calculation at the start of hot water supply performed in step S3 of FIG. 4 will be described with reference to FIG. FIG. 7 is a flowchart of differential pressure calculation at the start of hot water supply.

まず、電源の初回投入時には、RAM46に熱媒流量制御に必要な差圧等の情報を有していないので、電源が初回投入であるか否かを判断する(ステップS13)。そして電源について初回投入の場合(ステップS13のYES)には、熱媒4の差圧を1〔kgf/cm2 〕であると仮定し(ステップS14)、熱媒制御弁24を開いて給湯動作を開始する(ステップS15)。給湯開始時には、給湯温度の応答性をよくするために、熱媒制御弁24の開度を要求号数に応じた流量ではなく規定熱媒流量(例えば、20〔L/min〕)が流れるように設定する。弁の開度は、既述のように、基準差圧として1〔kgf/cm2 〕の時の熱媒流量と熱媒制御弁24の開度との関係を示すプログラムに基づいて制御される。 First, when the power is turned on for the first time, the RAM 46 does not have information such as the differential pressure necessary for the heat medium flow rate control, so it is determined whether or not the power is turned on for the first time (step S13). When the power is turned on for the first time (YES in step S13), it is assumed that the differential pressure of the heating medium 4 is 1 [kgf / cm 2 ] (step S14), and the heating medium control valve 24 is opened to perform a hot water supply operation. Is started (step S15). At the start of hot water supply, in order to improve the responsiveness of the hot water supply temperature, the opening degree of the heat medium control valve 24 is set to flow at a prescribed heat medium flow rate (for example, 20 [L / min]) instead of a flow rate according to the required number. Set to. As described above, the opening degree of the valve is controlled based on a program indicating the relationship between the heating medium flow rate and the opening degree of the heating medium control valve 24 when the reference differential pressure is 1 [kgf / cm 2 ]. .

そして、差圧が1〔kgf/cm2 〕とした場合の現在の弁開度に対する熱媒流量と、上記式(2) を用いて算出した実際に流れている現在の熱媒流量から、式(14)を用いて、現在の差圧を算出し、RAM46に記憶する(ステップS16)。 Then, from the heat medium flow rate with respect to the current valve opening when the differential pressure is 1 [kgf / cm 2 ] and the current heat medium flow rate actually flowing calculated using the above equation (2), the equation Using (14), the current differential pressure is calculated and stored in the RAM 46 (step S16).

また、電源が初回投入でない場合(ステップS13のNO)には、前回の給湯終了から所定時間T(例えば、10分)が経過しているか否かを判断する(ステップS17)。前回の給湯終了から所定時間Tが経過している(ステップS17のYES)場合、RAM46に記憶されている前回算出した差圧pを読み出し、前記と同様に規定熱媒流量(例えば、20〔L/min〕)が流れるように熱媒制御弁24の開度を設定する(ステップS18)。差圧pにおける弁開度の設定は、既述の式(13)より、差圧p及び現在の熱媒流量rが分かっているので、差圧が基準差圧として1〔kgf/cm2 〕のときの流量Rを求め、その流量Rから弁の開度を求めることができる。熱媒制御弁24の開度を設定した後、現在の差圧を算出する(ステップS16)。 When the power is not turned on for the first time (NO in step S13), it is determined whether or not a predetermined time T (for example, 10 minutes) has elapsed since the end of the previous hot water supply (step S17). When the predetermined time T has elapsed since the end of the previous hot water supply (YES in step S17), the previously calculated differential pressure p stored in the RAM 46 is read out, and the prescribed heat medium flow rate (for example, 20 [L / Min]) is set so that the opening degree of the heat medium control valve 24 is set (step S18). Since the differential pressure p and the current heat medium flow rate r are known from the above-mentioned equation (13), the differential pressure is set to 1 [kgf / cm 2 ] as the reference differential pressure. The flow rate R at this time is obtained, and the opening degree of the valve can be obtained from the flow rate R. After setting the opening degree of the heat medium control valve 24, the current differential pressure is calculated (step S16).

前回の給湯終了から所定時間T(例えば、10分)が経過していない(ステップS17のNO)場合、給湯要求に対する応答性のロスを減らすために前回算出した差圧情報を利用し、規定熱媒流量(例えば、20〔L/ min〕)が流れるように熱媒制御弁24を開く(ステップS19)。この場合には、熱媒4の差圧状態に変化が少ないものとして、差圧計算は行わない。   When a predetermined time T (for example, 10 minutes) has not elapsed since the end of the previous hot water supply (NO in step S17), the differential pressure information calculated last time is used to reduce the loss of responsiveness to the hot water request, and the specified heat The heat medium control valve 24 is opened so that a medium flow rate (for example, 20 [L / min]) flows (step S19). In this case, the differential pressure is not calculated on the assumption that the change in the differential pressure state of the heat medium 4 is small.

(FF制御について) (About FF control)

上記ステップS7(図4)におけるFF制御について説明する。既述のように、供給される熱媒の差圧が異なれば一定の弁開度に対する流量が異なる。従って、熱媒4の流量から熱媒制御弁24の開度を決めるには現在の差圧を求める必要がある。ステップS7では、ステップS6の判断により目標熱媒流量が変更された場合に熱媒制御弁24の開度の変更を行うものである。即ち、上記のようにステップS15、S18、S19において、給湯開始時に所定の差圧(例えば基準差圧、又は前回計測の差圧)で給湯を開始した場合や給湯中の給湯量の変更等によって目標熱媒流量の変更があった場合に、FF制御により熱媒制御弁24の開度変更を行う。   The FF control in step S7 (FIG. 4) will be described. As described above, if the differential pressure of the supplied heat medium is different, the flow rate for a certain valve opening is different. Therefore, in order to determine the opening degree of the heat medium control valve 24 from the flow rate of the heat medium 4, it is necessary to obtain the current differential pressure. In step S7, the opening degree of the heat medium control valve 24 is changed when the target heat medium flow rate is changed by the determination in step S6. That is, in steps S15, S18, and S19 as described above, when hot water supply is started at a predetermined differential pressure (for example, a reference differential pressure or a previously measured differential pressure) at the start of hot water supply, or by changing the amount of hot water supply during hot water supply, etc. When the target heat medium flow rate is changed, the opening degree of the heat medium control valve 24 is changed by FF control.

FF制御では、ステップS16において算出した熱媒差圧、及びステップS5で算出した目標熱媒流量により、式(14)を利用して制御を行う。即ち、式(14)のpを算出した熱媒差圧、rを現在の差圧での目標熱媒流量として、基準差圧1〔kgf/cm2 〕での熱媒流量Rを求めることができる。そしてROM48に記憶されている熱媒流量及び弁開度の算出プログラム310に基づいて、熱媒制御弁24の開度を制御する。 In the FF control, control is performed using Equation (14) by the heat medium differential pressure calculated in step S16 and the target heat medium flow rate calculated in step S5. That is, the heat medium flow rate R at the reference differential pressure of 1 [kgf / cm 2 ] is obtained by using the heat medium differential pressure calculated by p in Equation (14) and r as the target heat medium flow rate at the current differential pressure. it can. Then, the opening degree of the heat medium control valve 24 is controlled based on the heat medium flow rate and valve opening degree calculation program 310 stored in the ROM 48.

(FB制御について) (About FB control)

ステップS8の給湯熱媒流量のFB制御について、図8を参照して説明する。図8は、給湯熱媒流量のFB制御に関するフローチャートである。   The FB control of the hot water supply heat medium flow rate in step S8 will be described with reference to FIG. FIG. 8 is a flowchart regarding FB control of the hot water supply heat medium flow rate.

熱源装置20では、目標熱媒流量に応じた弁開度の調整や供給されてくる熱媒4への圧送力の変動等により、差圧が変動してしまい、ステップS3もしくはステップS7で設定された熱媒流量に変動が生じるため、FB制御を行う。   In the heat source device 20, the differential pressure fluctuates due to adjustment of the valve opening degree according to the target heat medium flow rate, fluctuation of the pumping force to the supplied heat medium 4, etc., and is set in step S3 or step S7. FB control is performed because the flow rate of the heating medium varies.

FB制御では、熱交換で上水Wの受け取る熱量と、ステップS5で算出した目標熱媒流量と、熱交換前の熱媒4の温度とを用いて、目標熱媒流量で流れた場合の熱交換後の温度を目標値として算出し、その目標値と、熱媒出温度センサ22による検出温度とを比較して、熱媒流量の制御を行うものである。そこで、まず、式(1) より、熱媒4の熱交換後の温度である給湯熱媒出温度の目標値を算出する(ステップS20)。具体的には、式(1) を変形して、   In the FB control, the heat when flowing at the target heat medium flow rate using the amount of heat received by the clean water W by heat exchange, the target heat medium flow rate calculated in step S5, and the temperature of the heat medium 4 before heat exchange. The temperature after replacement is calculated as a target value, and the target value is compared with the temperature detected by the heat medium discharge temperature sensor 22 to control the flow rate of the heat medium. Therefore, first, the target value of the hot water supply heat medium discharge temperature, which is the temperature after heat exchange of the heat medium 4, is calculated from the equation (1) (step S 20). Specifically, by transforming equation (1),

Figure 2007255745
とする。この式(15)より、熱交換による与熱量と受熱量が等しいとすれば、目標熱媒流量Rx、給湯流量Rq、熱媒入温度Tnin、目標出湯温度Tsth、入水温度Tqinは、一定である。なお、式(15)において、Rq×(Tsth−Tqin)の部分は、単位換算により給湯側の実号数を表す。
Figure 2007255745
And From this equation (15), if the amount of heat applied and the amount of heat received by heat exchange are equal, the target heat medium flow rate Rx, the hot water supply flow rate Rq, the heat transfer temperature Tnin, the target hot water temperature Tsth, and the incoming water temperature Tqin are constant. . In Equation (15), the part of Rq × (Tsth−Tqin) represents the actual number of hot water supply side in terms of units.

そして、ステップS20で算出した給湯熱媒出温度の目標値と、熱媒出温度センサ22で検出した現在の給湯熱媒出温度とが一致するか否かを比較する(ステップS21)。現在の給湯熱媒出温度と目標値とが等しい(ステップS21のYES)場合、要求通りの熱媒流量で熱交換が行われているので、差圧計算をした後、その現在の差圧の算出値をRAM46に記憶して(ステップS22)、FB制御を終了する。   Then, a comparison is made as to whether or not the target value of the hot water supply heat medium output temperature calculated in step S20 matches the current hot water supply heat medium output temperature detected by the heat medium output temperature sensor 22 (step S21). When the current hot water supply heat medium discharge temperature is equal to the target value (YES in step S21), heat exchange is performed at the required heat medium flow rate. After calculating the differential pressure, the current differential pressure is calculated. The calculated value is stored in the RAM 46 (step S22), and the FB control is terminated.

現在の給湯熱媒出温度と目標値とが異なる(ステップS21のNO)場合、現在の給湯熱媒出温度が目標値よりも低いか否かの判断を行う(ステップS23)、現在の給湯熱媒出温度が目標値よりも低い(ステップS23のYES)場合、熱媒の入り温度と出温度との差が大きく、熱媒4の流量が少ないということであるので、熱媒4の流量を目標熱媒流量にするため、熱媒制御弁24を開いて流量を増加させる(ステップS24)。また、逆に現在の給湯熱媒出温度が、目標値よりも高い場合(ステップS23のNO)、熱媒流量を減らすために熱媒制御弁24を閉める(ステップS25)。   If the current hot water supply heat medium discharge temperature is different from the target value (NO in step S21), it is determined whether or not the current hot water supply heat medium discharge temperature is lower than the target value (step S23). When the medium discharge temperature is lower than the target value (YES in step S23), the difference between the entry temperature and the exit temperature of the heat medium is large and the flow rate of the heat medium 4 is small. In order to obtain the target heat medium flow rate, the heat medium control valve 24 is opened to increase the flow rate (step S24). Conversely, if the current hot water supply heat medium discharge temperature is higher than the target value (NO in step S23), the heat medium control valve 24 is closed to reduce the heat medium flow rate (step S25).

FB制御では、式(15)から求められる目標値である目標熱媒出温度Tnqoを設定値とし、現在の給湯熱媒戻り温度を制御変数、熱媒制御弁24の弁開度を操作変数としてPI(Proportion Integral )制御を行う。なお、FB制御は、現在の給湯熱媒出温度と目標値とが等しくなるまで行う場合の他、偏差が所定値になった場合に終了する構成としてもよい。   In the FB control, the target heat medium discharge temperature Tnqo, which is the target value obtained from the equation (15), is set as a set value, the current hot water supply heat medium return temperature is a control variable, and the valve opening of the heat medium control valve 24 is an operation variable. PI (Proportion Integral) control. In addition, FB control is good also as a structure which complete | finishes when a deviation becomes a predetermined value other than the case where it carries out until the present hot water supply heat-medium discharge temperature and target value become equal.

既述の熱媒流量制御について、図9を参照して説明する。図9は、熱媒流量制御のブロック図である。   The above-described heat medium flow rate control will be described with reference to FIG. FIG. 9 is a block diagram of heat medium flow control.

熱媒流量制御は、制御部42のコンピュータにより行われる。まず、外部リモコン等で設定された設定給湯温度200及び流量検出手段である水量センサ34、入水温センサ36の検出値により給湯号数演算処理202を行う。ここで算出された給湯号数に応じて、目標熱媒流量決定手段204がステップS5(図4)において目標熱媒流量を決める。この熱媒流量の決定では、例えばROM48等に記憶されている上記表1の目標熱媒流量決定用テーブル206を利用する。   The heat medium flow rate control is performed by the computer of the control unit 42. First, the hot water supply number calculation processing 202 is performed based on the set hot water supply temperature 200 set by an external remote controller or the like, and the detected values of the water amount sensor 34 and the incoming water temperature sensor 36 as flow rate detection means. The target heat medium flow rate determining means 204 determines the target heat medium flow rate in step S5 (FIG. 4) according to the hot water supply number calculated here. In determining the heat medium flow rate, for example, the target heat medium flow rate determination table 206 of Table 1 stored in the ROM 48 or the like is used.

また水量センサ34では、ステップS2、S4(図4)における上水Wの流水判定207の他、給湯開始状態の判定208(例えば、ステップS13、S17)を行う。   In addition, the water amount sensor 34 performs a hot water supply start state determination 208 (for example, steps S13 and S17) in addition to the running water determination 207 of the clean water W in steps S2 and S4 (FIG. 4).

熱媒4の設定流量は、給湯条件切換手段209により設定される。給湯条件切換手段209は、給湯開始状態の判定処理208の結果に基づいて、目標熱媒流量決定手段204で決定した熱媒流量と初期設定流量210とを切り換える。即ち、熱源装置20の運転状態状態(例えば、図7のステップS13、S17)に応じて、給湯設定温度に応じた目標熱媒流量とROM48に記憶されている初期設定流量210とを切り換える。そして設定された熱媒流量に応じた熱媒制御弁24の開度演算212を行う。   The set flow rate of the heat medium 4 is set by the hot water supply condition switching means 209. The hot water supply condition switching means 209 switches between the heat medium flow rate determined by the target heat medium flow rate determination means 204 and the initial set flow rate 210 based on the result of the hot water supply start state determination process 208. That is, the target heat medium flow rate according to the hot water supply set temperature and the initial set flow rate 210 stored in the ROM 48 are switched according to the operating state of the heat source device 20 (for example, steps S13 and S17 in FIG. 7). And the opening degree calculation 212 of the heat medium control valve 24 according to the set heat medium flow volume is performed.

熱媒制御弁24の開度演算処理212では、熱媒4に生じる差圧状態に基づいて演算を行う。従って、例えば、ステップS13、S17(図7)の給湯開始状態判定処理208に応じて、差圧条件切換手段213により、差圧条件を1〔kgf/ cm2 〕214とRAM46等の差圧記憶部216に記憶してある差圧とを切り換えて開度の演算を行う。この場合、弁開度については、ROM48に記憶されている熱媒流量及び弁開度の算出プログラム310等の参照用テーブル218を用いる。 In the opening degree calculation process 212 of the heat medium control valve 24, the calculation is performed based on the differential pressure state generated in the heat medium 4. Therefore, for example, in accordance with the hot water supply start state determination processing 208 in steps S13 and S17 (FIG. 7), the differential pressure condition switching means 213 stores the differential pressure condition as 1 [kgf / cm 2 ] 214 and the differential pressure memory such as the RAM 46. The opening degree is calculated by switching the differential pressure stored in the unit 216. In this case, for the valve opening, a reference table 218 such as a heat medium flow rate and valve opening calculation program 310 stored in the ROM 48 is used.

次に熱媒流量のFB制御に関しては、入水温センサ36、混合温センサ40、水量センサ34の検出値から実給湯号数の演算222を行う。そしてこの実給湯号数、熱媒入温度センサ18による検出温度、目標熱媒流量等により給湯熱媒出温度の目標値の算出処理224を行う。そして流量制御プログラム300等に基づく給湯熱媒出温度判定手段226及び熱媒出温度センサ22により、熱媒制御弁24の開度補正228を行なう他、実熱媒流量の算出230を行なう。   Next, regarding the FB control of the heat medium flow rate, the actual hot water supply number calculation 222 is performed from the detected values of the incoming water temperature sensor 36, the mixed temperature sensor 40, and the water amount sensor 34. Then, a target value calculation process 224 for the hot water supply heat medium discharge temperature is performed based on the actual hot water supply number, the temperature detected by the heat medium inlet temperature sensor 18, the target heat medium flow rate, and the like. Then, the hot water supply heat medium output temperature determination means 226 and the heat medium output temperature sensor 22 based on the flow rate control program 300 and the like perform opening degree correction 228 of the heat medium control valve 24 and calculate 230 of the actual heat medium flow rate.

給湯開始状態の判定処理208や目標熱媒流量の決定処理204から、ステップS6(図4)で行われる目標熱媒流量の変更判定処理220が行われ、その判定結果に基づいて、流量制御切換手段231により、上記FF制御である熱媒制御弁開度演算212とFB制御である熱媒制御弁開度補正228とを切り換える。そして弁調整切換手段233により、熱媒制御弁24の開度制御を行うか否かを切り換える。弁調整切換手段233は、上水Wの流水判定207により、流量制御切換手段231による熱媒制御弁24の切替え制御と上水Wの流水停止等に基づく制御弁の閉データ232とを切り換える。   From the hot water supply start state determination process 208 and the target heat medium flow rate determination process 204, the target heat medium flow rate change determination process 220 performed in step S6 (FIG. 4) is performed, and the flow rate control switching is performed based on the determination result. The means 231 switches between the heat medium control valve opening degree calculation 212 that is the FF control and the heat medium control valve opening degree correction 228 that is the FB control. Then, the valve adjustment switching means 233 switches whether to control the opening degree of the heat medium control valve 24. The valve adjustment switching means 233 switches between the switching control of the heat medium control valve 24 by the flow rate control switching means 231 and the control valve closing data 232 based on the stoppage of the flowing water of the fresh water W in accordance with the flowing water determination 207 of the fresh water W.

また、上記目標熱媒流量の変更や熱媒制御弁の開度補正等をした場合には、実熱媒流量の算出処理230結果等から差圧算出処理234を行う。そして、算出された差圧を差圧記憶部216に記憶するか否かについて、差圧記憶判定処理235で判定され、その判定に基づいて差圧記憶処理切換手段236を切り換える。   Further, when the target heat medium flow rate is changed or the opening degree of the heat medium control valve is corrected, a differential pressure calculation process 234 is performed from the result of the actual heat medium flow rate calculation process 230 or the like. Then, whether or not to store the calculated differential pressure in the differential pressure storage unit 216 is determined by the differential pressure storage determination processing 235, and the differential pressure storage processing switching means 236 is switched based on the determination.

〔第2の実施の形態〕 [Second Embodiment]

次に、本発明の第2の実施の形態に係る熱源装置について、図10、図11を参照して説明する。図10は、熱交換システム2を示す図であり、図11は、熱源装置20の構成を示す図である。図10、図11において、図1、図2と同一部分には同一符号を付してある。   Next, a heat source device according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a diagram illustrating the heat exchange system 2, and FIG. 11 is a diagram illustrating a configuration of the heat source device 20. 10 and 11, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.

この実施の形態は、加熱ユニット6から圧送されてくる熱媒4を給湯の他、浴槽への給湯、暖房端末64の運転及び全自動風呂装置66の追焚に利用するようにした熱源装置20である。なお、暖房端末64は、例えば、高温用と低温用に分かれた構成として、高温側を浴室暖房乾燥機などに使用する構成としても良い。   In this embodiment, the heat medium 4 pumped from the heating unit 6 is used not only for hot water supply, but also for hot water supply to a bathtub, operation of the heating terminal 64 and memorization of the fully automatic bath device 66. It is. In addition, the heating terminal 64 is good also as a structure which uses a high temperature side for a bathroom heating dryer etc. as a structure divided into high temperature use and low temperature use, for example.

(浴槽給湯機能) (Bath water supply function)

この熱源装置20には、浴槽68への給湯機能として、水管路26から湯HWを浴槽側へと導く風呂用給湯路70が設置され、その風呂用給湯路70上には、浴槽68への給湯量を制御する注湯制御弁71、注湯量センサ72、水管路26への逆流を防ぐ逆止弁73、74が設けられている。浴槽68への給湯は、風呂給湯栓を開くと、第1実施形態と同様に、前述の給湯加熱した湯HWを水管路26から風呂用給湯路70へと導かれる構成である。   In this heat source device 20, as a hot water supply function to the bathtub 68, a hot water supply path 70 for bathing the hot water HW from the water pipe 26 to the bathtub side is installed, and on the hot water supply path 70 for bath, A pouring control valve 71 that controls the amount of hot water supplied, a pouring amount sensor 72, and check valves 73 and 74 that prevent backflow to the water pipeline 26 are provided. The hot water supply to the bathtub 68 is configured such that when the bath hot water tap is opened, the hot water HW heated by the hot water supply is guided from the water pipe 26 to the hot water supply passage 70 for the bath, as in the first embodiment.

(暖房運転機能) (Heating operation function)

熱源装置20の暖房は、暖房用熱交換器76、暖房用熱交換器76へと熱媒4を導く暖房用循環路78、暖房用熱媒80を暖房端末64へと循環させる暖房熱媒循環路82、暖房用熱媒80を溜めるタンク84から構成されており、暖房用循環路78上には、熱媒4の流量を制御する熱媒制御弁86、熱交換後の熱媒4の温度を検出する熱媒出温度センサ87が設置されている。また暖房熱媒循環路82上には、熱交換後の暖房用熱媒80を溜めるタンク84、熱交換後の熱媒温度を検出する暖房熱媒出温度センサ88、暖房用熱媒80を循環させるポンプ90、低温往き温度センサ92、低温調整弁94が設置されている。また、タンク84には、暖房用熱媒80を補給するための給水路96が設けられており、その給水路96上には給水流量を制御する補水電磁弁98が設けられている。低温調整弁94は、タンク84から暖房端末64へと通じる暖房熱媒循環路82上に設置されており、低温往き温度センサ92による検出温度に応じて熱交換後の暖房用熱媒80とタンク84から導かれる暖房用熱媒80とを混合して温度を調整するものである。   Heating of the heat source device 20 is performed by heating the heat exchanger 76, the heating circulation path 78 that leads the heating medium 4 to the heating heat exchanger 76, and the heating heat medium circulation that circulates the heating heat medium 80 to the heating terminal 64. The heating medium 80 includes a passage 82 and a tank 84 that stores the heating medium 80. A heating medium control valve 86 that controls the flow rate of the heating medium 4 and the temperature of the heating medium 4 after heat exchange are provided on the heating circulation path 78. A heat medium temperature sensor 87 for detecting the above is installed. Further, on the heating heat medium circulation path 82, a tank 84 for storing the heating heat medium 80 after heat exchange, a heating heat medium temperature sensor 88 for detecting the heat medium temperature after heat exchange, and the heating heat medium 80 are circulated. A pump 90, a low temperature going temperature sensor 92, and a low temperature adjusting valve 94 are installed. Further, the tank 84 is provided with a water supply path 96 for replenishing the heating heat medium 80, and a water supplement electromagnetic valve 98 for controlling the water supply flow rate is provided on the water supply path 96. The low-temperature adjusting valve 94 is installed on the heating heat medium circuit 82 that leads from the tank 84 to the heating terminal 64, and the heating heat medium 80 and the tank after heat exchange according to the temperature detected by the low-temperature forward temperature sensor 92. The heating medium 80 is mixed with the heating medium 80 to adjust the temperature.

暖房端末64を運転状態にすると、ポンプ90が作動し、熱媒制御弁86が「開」状態となる。そして暖房端末64からの負荷に対し、暖房熱媒出温度センサ88による検出温度に基づいて熱媒制御弁86の開度を比例制御し、暖房の設定温度を保つように制御される。なお、給湯と暖房運転を同時に行う場合には、前述のステップS5(図4)の目標熱媒流量の算出に使用する必要給湯号数及び目標熱媒流量を示すテーブルの例として、以下の表2を使用してもよい。   When the heating terminal 64 is put into an operating state, the pump 90 is activated and the heat medium control valve 86 is in an “open” state. Then, the opening degree of the heat medium control valve 86 is proportionally controlled based on the temperature detected by the heating heat medium discharge temperature sensor 88 with respect to the load from the heating terminal 64, and is controlled so as to maintain the set temperature of heating. In addition, when performing hot water supply and heating operation simultaneously, the following table | surface is shown as an example of the table which shows the required hot water supply number used for calculation of the target heat-medium flow volume of above-mentioned step S5 (FIG. 4), and target heat-medium flow volume. 2 may be used.

Figure 2007255745
Figure 2007255745

(全自動風呂66の追焚機能) (Memorial function of fully automatic bath 66)

熱源装置20の風呂追焚機能として、風呂用給湯路70の一部を共有して追焚循環路100を構成し、その追焚循環路100には、風呂戻り温度センサ102、水位センサ104、切換弁106、ポンプ流水スイッチ108、ふろポンプ110が設置されている。また浴槽水の追焚は、前記暖房熱媒循環路82を流れる暖房用熱媒80と熱交換を行うように風呂用熱交換器112が設置されている。風呂戻り温度センサ102は、浴槽68から追焚循環路100へと流入する浴槽水BWの温度を検出し、水位センサ104は、浴槽64内の水位を検出する。また切換弁106は、追焚と浴槽給湯とを切り換える。   As a bath remedy function of the heat source device 20, a part of the hot water supply passage for bath 70 is shared to constitute the remedy circulation path 100. The remedy circulation path 100 includes a bath return temperature sensor 102, a water level sensor 104, A switching valve 106, a pump running water switch 108, and a bath pump 110 are installed. The bath water exchanger 112 is provided with a bath heat exchanger 112 so as to exchange heat with the heating medium 80 flowing in the heating medium circulation path 82. The bath return temperature sensor 102 detects the temperature of the bath water BW flowing from the bathtub 68 into the memorial circuit 100, and the water level sensor 104 detects the water level in the bathtub 64. In addition, the switching valve 106 switches between memorial service and bathtub hot water supply.

風呂の温度が設定されると、ふろポンプ110が始動し、浴槽68内の湯BWが追焚循環路100内に流れ、流量が一定以上になるとポンプ流水スイッチ108がON状態になる。そして追焚用の熱媒である暖房用熱媒80を風呂用熱交換器112へと循環させるためにポンプ90が始動し、暖房熱媒制御弁86を「開」状態にして浴槽水の追焚を行う構成である。   When the bath temperature is set, the bath pump 110 is started, the hot water BW in the bathtub 68 flows into the memorial circuit 100, and the pump flow switch 108 is turned on when the flow rate exceeds a certain level. Then, the pump 90 is started to circulate the heating heat medium 80, which is a heat medium for replenishment, to the bath heat exchanger 112, and the heating heat medium control valve 86 is set to the “open” state to add the bath water. It is the structure which performs a trap.

このような構成において、熱媒4の差圧計算及び熱媒流量制御を行うことにより、第1の実施の形態で説明した通り、熱媒4の流量測定をすることなく、被加熱流体側の熱需要に応じて熱媒流量の最適化を実現することができる。また設置場所や使用状況等の条件ごとに熱源装置調整を施す必要がなく、さらに熱媒を共有する他の熱源装置の使用状況等に左右されず安定した熱媒の供給を行うことが可能となる。   In such a configuration, by performing the differential pressure calculation of the heat medium 4 and the heat medium flow rate control, as described in the first embodiment, the flow rate of the heat medium 4 is not measured and the fluid to be heated is measured. The heat medium flow rate can be optimized according to the heat demand. In addition, it is not necessary to adjust the heat source device for each condition such as installation location and usage status, and it is possible to supply a stable heat medium regardless of the usage status of other heat source devices sharing the heat medium. Become.

〔その他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、FB制御において、熱媒4にかかる差圧が低い場合、熱媒制御弁24の弁開度を全開状態にしても設定流量が流れず、FB制御の停止条件にならない場合もあり得る。そこで、このような場合には、熱媒入温度と熱媒出温度とが所定時間T2(例えば、30秒間)継続して安定状態となっていることが検出されたら、差圧1〔kgf/cm2 〕の熱媒制御弁24の全開状態での流量Rと、実際の熱媒流量rから差圧を算出する構成としてもよい。 (1) In the above embodiment, in the FB control, when the differential pressure applied to the heat medium 4 is low, the set flow rate does not flow even when the opening degree of the heat medium control valve 24 is fully opened, and the FB control stop condition It may not be. Therefore, in such a case, if it is detected that the heat medium inlet temperature and the heat medium outlet temperature continue to be in a stable state for a predetermined time T2 (for example, 30 seconds), a differential pressure of 1 [kgf / The differential pressure may be calculated from the flow rate R in the fully open state of the heat medium control valve 24 of cm 2 ] and the actual heat medium flow rate r.

(2) 上記実施の形態において述べたように、給湯使用中に、暖房機能を使用し、その使用状況等に応じて、給湯必要号数を再計算して、熱媒流量を切り替える構成としてもよい。これにより無駄に熱媒4を流さないので、コストの節約や省エネ及び加熱ユニットへの負荷を減らすことが可能となる。   (2) As described in the above embodiment, it is possible to use a heating function while using hot water supply, recalculate the required number of hot water supply according to the use situation, etc., and switch the heat medium flow rate. Good. As a result, the heating medium 4 is not used unnecessarily, so that it is possible to save costs, save energy, and reduce the load on the heating unit.

(3) 上記実施の形態の給湯開始時の差圧計算において、熱媒4が所定温度以下で安定している場合、算出される差圧が非常に大きな値となり、使用可能な熱媒流量を超えるおそれがある。そこで、そのような場合には、給湯開始時に差圧計算を行わず、FB制御で熱媒流量が目標流量となったときに差圧計算を行う構成としてもよい。   (3) In the calculation of the differential pressure at the start of hot water supply in the above embodiment, when the heat medium 4 is stable below a predetermined temperature, the calculated differential pressure becomes a very large value, and the usable heat medium flow rate is There is a risk of exceeding. Therefore, in such a case, the differential pressure calculation may not be performed at the start of hot water supply, and the differential pressure calculation may be performed when the heat medium flow rate becomes the target flow rate by the FB control.

(4) 上記実施の形態において、暖房単独運転時には、前回給湯使用時に計測した差圧を用いて暖房熱媒流量及び暖房弁開度制御を行う構成としてもよく、暖房機能と給湯機能の併用時には、給湯側で算出される差圧を使用して上記の制御を行う構成としてもよい。また電源投入後、停電復帰後、もしくは給湯熱媒弁のエラー解除後の給湯動作により差圧が計測されるまでは、1〔kgf/cm2 〕で暖房運転をさせる構成としてもよい。 (4) In the above embodiment, at the time of heating single operation, the heating heat medium flow rate and the heating valve opening degree control may be performed using the differential pressure measured at the time of using the previous hot water supply. The above control may be performed using a differential pressure calculated on the hot water supply side. Alternatively, the heating operation may be performed at 1 [kgf / cm 2 ] until the differential pressure is measured after the power is turned on, after the power failure is restored, or after the error of the hot water supply heat medium valve is canceled.

(5) 上記実施の形態において、暖房単独運転時にRAM46に記憶されている前回の給湯使用時の差圧で熱媒流量が最大となる弁開度に達しているにもかかわらず、暖房の設定温度に達しないとともに、暖房熱媒出温度が、暖房単独運転における最大流量を流したときの暖房熱媒出温度に達しない状態であり、熱媒入り温度、熱媒出温度、及び暖房往き温度が所定時間T3(例えば、30秒)の間安定していることが検出された場合、現在の差圧が前回の給湯使用時の差圧よりも低い状態であると判断して、熱媒制御弁86の開度を暖房単独運転時の熱媒最大流量開度よりも所定値(例えば、+5%)だけアップさせる構成としてもよい。   (5) In the above embodiment, the heating setting is set despite the valve opening at which the flow rate of the heat medium reaches the maximum due to the differential pressure during the previous hot water use stored in the RAM 46 during the heating independent operation. The temperature of the heating medium does not reach the heating temperature, and the heating heat discharge temperature does not reach the heating heat discharge temperature when the maximum flow rate in the single heating operation flows. Is determined to be stable for a predetermined time T3 (for example, 30 seconds), it is determined that the current differential pressure is lower than the differential pressure during the previous hot water supply use, and the heat medium control is performed. The opening degree of the valve 86 may be increased by a predetermined value (for example, + 5%) from the maximum heating medium flow rate opening degree during the single heating operation.

(6) 上記実施の形態において、暖房熱媒循環路82を流れる熱交換後の暖房用熱媒80の暖房往き温度の目標温度を設定値とし、実際の測定温度を制御変数、熱媒制御弁86の弁開度を操作変数とするPI制御を用いて、暖房往き温度を熱媒流量でFB制御を行い、熱媒流量制御を行う構成としてもよい。   (6) In the above embodiment, the target temperature of the heating forward temperature of the heating medium 80 after heat exchange flowing through the heating medium circulation path 82 is set as a set value, the actual measured temperature is a control variable, and the heating medium control valve A configuration may be employed in which the heating medium flow rate control is performed by performing FB control on the heating forward temperature with the heat medium flow rate using PI control using the valve opening of 86 as an operation variable.

(7) 上記実施の形態において、熱媒弁の開閉制御による暖房制御を行う場合、暖房側が無負荷に近い状態で制御を行うと、一定の弁開度に達したときに弁に振動音が発生することがある。そこで、熱媒制御弁86に前記の振動音が発生しない所定の最小開度を設定し、その最小弁開度と暖房用熱媒80の所定温度に基づいてON/OFF制御を行う構成としてもよい。即ち、熱媒制御弁86を前記最小開度にした場合であって、暖房往き温度が所定の暖房停止温度以上を所定時間(例えば、1分間)であることを検出した場合には、暖房をOFFにして熱媒制御弁86を閉じる。そして暖房往き温度が所定の暖房運転の開始温度未満になったら、暖房をONにして最小開度で熱媒制御弁86を開く構成としてもよい。また、熱媒制御弁86を前記の最小開度に移動させる際に、その移動速度が一定以上であると、前記のように振動による弁鳴り現象が生じ、さらに暖房往き温度のハンチング現象を引き起こす場合がある。そこで、熱媒制御弁86の閉動作において、最小開度から所定ステップ(例えば、+70ステップ)以下になったらPI制御の比例ゲインを減らし(例えば、元の1/3にする)、そして熱媒制御弁86の開動作において、最小開度から所定ステップ(例えば、+70ステップ)以上となったときには、比例ゲインを元に戻す構成としてもよい。   (7) In the above embodiment, when performing the heating control by the opening / closing control of the heat transfer valve, if the heating side is controlled with no load, when the valve reaches a certain valve opening degree, a vibration sound is generated in the valve. May occur. Therefore, the heat medium control valve 86 may be set to a predetermined minimum opening degree at which the vibration noise is not generated, and the ON / OFF control may be performed based on the minimum valve opening degree and the predetermined temperature of the heating medium 80 for heating. Good. That is, when the heating medium control valve 86 is set to the minimum opening, and when it is detected that the heating forward temperature is equal to or higher than a predetermined heating stop temperature for a predetermined time (for example, one minute), heating is performed. The heat medium control valve 86 is closed by turning it off. And when heating going-out temperature becomes less than the starting temperature of predetermined heating operation, it is good also as a structure which turns on heating and opens the heat-medium control valve 86 by the minimum opening degree. Further, when the heat medium control valve 86 is moved to the minimum opening, if the moving speed is a certain level or more, the squealing phenomenon due to vibration occurs as described above, and further the hunting phenomenon of the heating temperature is caused. There is a case. Therefore, in the closing operation of the heat medium control valve 86, the PI control proportional gain is reduced (for example, reduced to 1/3 of the original) when the minimum opening is less than a predetermined step (for example, +70 step), and the heat medium is In the opening operation of the control valve 86, the proportional gain may be returned to the original when the minimum opening is equal to or greater than a predetermined step (for example, +70 steps).

(8) 上記実施の形態において、熱媒4と暖房用熱媒80との熱交換では、100%の熱交換がされても暖房用熱媒80の温度は、熱媒4の温度以上にはならない。そのため、暖房装置の設定温度に対して熱媒4の温度が低い場合には、熱媒制御弁86の開度を調整しても暖房の設定温度にならないおそれがある。また暖房単独運転時には、熱媒4の温度等から熱媒4の差圧を算出し、その差圧に応じて熱媒流量を増やす制御を行うので、上記のような場合には、要求温度にするために余分な量の熱媒4を流してしまうおそれがある。そこで、熱源装置20に供給されてくる熱媒4の温度が、予め定められている仕様温度よりも低い場合には、暖房の設定温度を熱媒4の測定温度よりも所定温度(例えば、−5℃)だけ低い温度にしかできない構成としてもよい。   (8) In the above embodiment, in the heat exchange between the heat medium 4 and the heating medium 80, the temperature of the heating medium 80 is higher than the temperature of the heat medium 4 even if 100% heat exchange is performed. Don't be. Therefore, when the temperature of the heat medium 4 is lower than the set temperature of the heating device, there is a possibility that the set temperature of the heating medium will not be reached even if the opening degree of the heat medium control valve 86 is adjusted. Further, during the heating independent operation, the control unit calculates the pressure difference of the heat medium 4 from the temperature of the heat medium 4 and increases the flow rate of the heat medium according to the pressure difference. Therefore, there is a risk that an excessive amount of the heat medium 4 will flow. Therefore, when the temperature of the heat medium 4 supplied to the heat source device 20 is lower than a predetermined specification temperature, the heating set temperature is set to a predetermined temperature (for example, − It is good also as a structure which can only be made to temperature only 5 degreeC low.

(9) 上記実施の形態において、給湯機能と暖房機能を同時に使用する場合、給湯側の余剰流量を暖房側に振り分けるように制御する構成としてもよい。   (9) In the above embodiment, when the hot water supply function and the heating function are used at the same time, it may be configured to control the surplus flow rate on the hot water supply side to be distributed to the heating side.

(10)上記実施の形態において、制御基盤の電源保護のために、バイパスミキシング弁32や各熱媒制御弁の動作に用いられるステッピングモータについて、同時に動作可能なモータの個数を制限する構成としてもよい。また、この制限において、バイパスミキシング弁32については、給湯温度の調整を優先するために、常に動作可能とする構成としてもよい。さらに、上記の実施の形態(9) のように、給湯動作を優先させる場合には、熱媒制御弁24を熱媒制御弁86よりも優先して動作させる構成としてもよい。この構成の一例を表すと、熱媒制御弁24の動作中は、熱媒制御弁86の動作指令があっても給湯側を優先させる。また熱媒制御弁86の動作中に給湯指令が入ると、熱媒制御弁86の動作を中断して熱媒制御弁24を動作させ、熱媒制御弁24の動作完了後に熱媒制御弁86の動作を再開させる構成としてもよい。   (10) In the above embodiment, in order to protect the power supply of the control base, the stepping motor used for the operation of the bypass mixing valve 32 and each heat medium control valve may be configured to limit the number of motors that can be operated simultaneously. Good. In this restriction, the bypass mixing valve 32 may be configured to always be operable in order to prioritize adjustment of the hot water supply temperature. Further, as in the above embodiment (9), when priority is given to the hot water supply operation, the heat medium control valve 24 may be operated with priority over the heat medium control valve 86. As an example of this configuration, during operation of the heat medium control valve 24, priority is given to the hot water supply side even if there is an operation command for the heat medium control valve 86. When a hot water supply command is input during the operation of the heat medium control valve 86, the operation of the heat medium control valve 86 is interrupted to operate the heat medium control valve 24, and after the operation of the heat medium control valve 24 is completed, the heat medium control valve 86. The operation may be resumed.

(11)上記実施の形態において、熱媒弁の固着防止のために所定条件に応じて原点検出処理を行う構成としてもよい。この原点検出処理は、差圧データを維持するものである。   (11) In the above embodiment, the origin detection process may be performed according to a predetermined condition to prevent the heat medium valve from sticking. This origin detection process maintains the differential pressure data.

以上の通り、本発明の最も好ましい実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
As mentioned above, although the most preferable embodiment of this invention was described, this invention is not limited to said embodiment.

本発明によれば、熱媒流量を測定することなく、被加熱流体側の要求熱量に応じた最適な熱媒流量に調整でき、熱源装置の設置条件毎の調整の不要化、熱媒側の差圧変動による給湯流量等の変動がなく、効率的かつ安定した熱交換を実現することができ、各種の給湯熱源や暖房熱源等、各種の熱源装置として活用でき、有用である。
According to the present invention, it is possible to adjust the heat medium flow rate to the optimum heat medium flow rate according to the required heat amount on the heated fluid side without measuring the heat medium flow rate, making it unnecessary to adjust for each installation condition of the heat source device, There is no fluctuation of the hot water flow rate due to the differential pressure fluctuation, it is possible to realize an efficient and stable heat exchange, and it is useful as various heat source devices such as various hot water supply heat sources and heating heat sources.

第1の実施の形態に係る熱源装置を用いる熱交換システムを示す図である。It is a figure which shows the heat exchange system using the heat-source apparatus which concerns on 1st Embodiment. 熱源装置の構成例を示す図である。It is a figure which shows the structural example of a heat-source apparatus. 制御部の構成例を示す図である。It is a figure which shows the structural example of a control part. 熱媒流量制御のフローチャートである。It is a flowchart of heat medium flow control. 差圧計算のフローチャートである。It is a flowchart of differential pressure calculation. 熱交換器の構成例を示した図である。It is the figure which showed the structural example of the heat exchanger. 給湯開始時の差圧計算のフローチャートである。It is a flowchart of the differential pressure | voltage calculation at the time of a hot water supply start. 給湯熱媒流量のFB制御に関するフローチャートである。It is a flowchart regarding FB control of the hot water supply heat medium flow rate. 熱媒流量制御のブロック図である。It is a block diagram of heat medium flow control. 第2の実施の形態に係る熱源装置を用いる熱交換システムを示す図である。It is a figure which shows the heat exchange system using the heat-source apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る熱源装置の構成例を示す図である。It is a figure which shows the structural example of the heat-source apparatus which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

6 加熱ユニット
8 主循環路
16 熱交換器
18 熱媒入温度センサ(第2の温度検出手段)
20 熱源装置
22 熱媒出温度センサ(第2の温度検出手段)
24 熱媒制御弁(流量調整手段)
26 水管路
34 水量センサ(流量検出手段)
36 入水温センサ(第1の温度検出手段)
38 出湯温センサ(第1の温度検出手段)
40 混合温センサ(第1の温度検出手段)
42 制御部
6 Heating unit 8 Main circuit 16 Heat exchanger 18 Temperature sensor with heat medium (second temperature detection means)
20 heat source device 22 heat medium temperature sensor (second temperature detecting means)
24 Heat medium control valve (flow rate adjusting means)
26 Water pipe 34 Water volume sensor (Flow rate detection means)
36 Water temperature sensor (first temperature detecting means)
38 Hot water temperature sensor (first temperature detection means)
40 Mixed temperature sensor (first temperature detection means)
42 Control unit

Claims (9)

供給される熱媒を熱源に用いる熱源装置であって、
前記熱媒と加熱すべき被加熱流体との間で熱交換させる熱交換手段と、
前記被加熱流体の温度を検出する第1の温度検出手段と、
前記熱媒の温度を検出する第2の温度検出手段と、
前記被加熱流体の流量を検出する流量検出手段と、
前記熱交換手段に供給される前記熱媒の流量を調整する流量調整手段と、
前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量調整手段の調整量を記憶する記憶手段と、
前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度と、前記記憶手段にある前記熱媒流量及び前記調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する制御部と、
を備えることを特徴とする熱源装置。
A heat source device that uses a supplied heat medium as a heat source,
Heat exchange means for exchanging heat between the heat medium and the fluid to be heated;
First temperature detecting means for detecting the temperature of the heated fluid;
Second temperature detecting means for detecting the temperature of the heat medium;
Flow rate detection means for detecting the flow rate of the heated fluid;
Flow rate adjusting means for adjusting the flow rate of the heat medium supplied to the heat exchange means;
A storage means for storing a heat medium flow rate at a reference differential pressure between an inlet side and an outlet side of the heat exchange means, and an adjustment amount of the flow rate adjusting means;
A detected flow rate of the heated fluid, a detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, a detected temperature of the heat medium before and after heat exchange by the second temperature detecting means, Based on the heat medium flow rate and the adjustment amount in the storage means, the adjustment amount of the flow rate adjustment means corresponding to the required heat amount of the fluid to be heated is obtained without measuring the flow rate of the heating medium, and this adjustment amount A control unit for controlling the flow rate adjusting means;
A heat source device comprising:
請求項1の熱源装置において、
前記制御部は、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御することを特徴とする熱源装置。
The heat source device according to claim 1,
The control unit includes a detected flow rate of the heated fluid, a detected temperature of the heated fluid before and after heat exchange by the first temperature detecting unit, and the heating medium before and after heat exchange by the second temperature detecting unit. The detected heat amount is used to obtain the exchange heat amount, the current heat medium flow rate is obtained from the exchange heat amount, the differential pressure of the heat medium corresponding to the reference differential pressure is obtained, and the differential pressure and the heated fluid A heat source device characterized in that a target heat medium flow rate is obtained from a required heat amount on the side, an adjustment amount of the flow rate adjusting means for the target heat medium flow rate is obtained, and the flow rate adjusting means is controlled to this adjustment amount.
請求項1の熱源装置において、
前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記流量検出手段による前記被加熱流体の検出流量と、前記第2の温度検出手段による熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と前記第1の温度検出手段による熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記流量調整手段の調整量を制御することを特徴とする熱源装置。
The heat source device according to claim 1,
The detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, the detected flow rate of the heated fluid by the flow rate detecting means, and the heating medium before the heat exchange by the second temperature detecting means The target temperature of the heat medium after heat exchange is calculated from the detected temperature of the heat medium and the heat medium flow rate corresponding to the required heat amount of the fluid to be heated, and the target temperature of the heat medium and the heat by the first temperature detecting means The heat source device, wherein the adjustment amount of the flow rate adjusting means is controlled so that a temperature difference from the detected temperature of the heat medium after replacement is within a predetermined range.
供給される熱媒を熱源に用いる熱源装置の熱媒流量制御方法であって、
前記熱媒と加熱すべき被加熱流体との間で熱交換手段により熱交換させる処理と、
前記被加熱流体の温度を第1の温度検出手段で検出する処理と、
前記熱媒の温度を第2の温度検出手段で検出する処理と、
前記被加熱流体の流量を検出する処理と、
前記熱交換手段に供給される前記熱媒の流量を流量調整手段で調整する処理と、
前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量調整手段の調整量を記憶する処理と、
前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度と、前記記憶手段にある前記熱媒流量及び前記調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御する処理と、
を含むことを特徴とする熱源装置の熱媒流量制御方法。
A heat medium flow rate control method of a heat source device using a supplied heat medium as a heat source,
Heat exchange between the heat medium and the fluid to be heated by heat exchange means;
A process of detecting the temperature of the heated fluid by a first temperature detecting means;
A process of detecting the temperature of the heat medium by a second temperature detecting means;
Processing for detecting the flow rate of the heated fluid;
A process of adjusting the flow rate of the heat medium supplied to the heat exchange means by a flow rate adjusting means;
A heat medium flow rate at a reference differential pressure between the inlet side and the outlet side of the heat exchange means, a process of storing the adjustment amount of the flow rate adjustment means,
A detected flow rate of the heated fluid, a detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, a detected temperature of the heat medium before and after heat exchange by the second temperature detecting means, Based on the heat medium flow rate and the adjustment amount in the storage means, the adjustment amount of the flow rate adjustment means corresponding to the required heat amount of the fluid to be heated is obtained without measuring the flow rate of the heating medium. A process for controlling the flow rate adjusting means;
A heat medium flow rate control method for a heat source device, comprising:
請求項4の熱源装置の熱媒流量制御方法において、
前記制御処理は、前記被加熱流体の検出流量と、前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記第2の温度検出手段による熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記流量調整手段の調整量を求め、この調整量に前記流量調整手段を制御することを特徴とする熱源装置の熱媒流量制御方法。
In the heat-medium flow rate control method of the heat-source apparatus of Claim 4,
The control process includes: a detected flow rate of the heated fluid; a detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means; and the heating medium before and after heat exchange by the second temperature detecting means. The detected heat amount is used to obtain the exchange heat amount, the current heat medium flow rate is obtained from the exchange heat amount, the differential pressure of the heat medium corresponding to the reference differential pressure is obtained, and the differential pressure and the heated fluid The target heat medium flow rate is obtained from the required heat amount on the side, the adjustment amount of the flow rate adjusting means for the target heat medium flow rate is obtained, and the flow rate adjusting means is controlled to this adjustment amount. Flow rate control method.
請求項4の熱源装置の熱媒流量制御方法において、
前記第1の温度検出手段による熱交換前後の前記被加熱流体の検出温度と、前記被加熱流体の検出流量と、前記第2の温度検出手段による熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と前記第1の温度検出手段による熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記流量調整手段の調整量を制御することを特徴とする熱源装置の熱媒流量制御方法。
In the heat-medium flow rate control method of the heat-source apparatus of Claim 4,
The detected temperature of the heated fluid before and after heat exchange by the first temperature detecting means, the detected flow rate of the heated fluid, the detected temperature of the heat medium before the heat exchange by the second temperature detecting means, The target temperature of the heat medium after heat exchange is calculated from the heat medium flow rate according to the required heat quantity of the fluid to be heated, and the heat temperature after heat exchange by the target temperature of the heat medium and the first temperature detection means. A heat medium flow rate control method for a heat source device, wherein an adjustment amount of the flow rate adjusting means is controlled so that a temperature difference with a detected temperature of the medium is within a predetermined range.
コンピュータにより実行され、供給される熱媒と加熱すべき被加熱流体との間で熱交換手段により熱交換させる熱源装置の熱媒流量制御プログラムであって、
前記被加熱流体の温度を取り込むステップと、
前記熱媒の温度を取り込むステップと、
前記被加熱流体の流量を取り込むステップと、
前記熱交換手段に供給される前記熱媒の流量を調整するステップと、
前記熱交換手段の入側と出側との間の基準差圧における熱媒流量、前記流量の調整量を記憶するステップと、
前記被加熱流体の検出流量と、熱交換前後の前記被加熱流体の検出温度と、熱交換前後の前記熱媒の検出温度と、基準差圧における前記熱媒流量及び前記流量の調整量とにより、前記熱媒の流量を測定することなく、前記被加熱流体の要求熱量に対応する前記流量の調整量を求め、この調整量に前記流量調整手段を制御するステップと、
を含むことを特徴とする、熱源装置の熱媒流量制御プログラム。
A heat medium flow rate control program for a heat source device, which is executed by a computer and exchanges heat between a supplied heat medium and a fluid to be heated by heat exchange means,
Capturing the temperature of the heated fluid;
Capturing the temperature of the heating medium;
Capturing the flow rate of the heated fluid;
Adjusting the flow rate of the heat medium supplied to the heat exchange means;
Storing a heat medium flow rate at a reference differential pressure between an inlet side and an outlet side of the heat exchange means, and an adjustment amount of the flow rate;
According to the detected flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange, the detected temperature of the heating medium before and after heat exchange, and the heat medium flow rate and the adjustment amount of the flow rate at a reference differential pressure Determining the flow rate adjustment amount corresponding to the required heat amount of the fluid to be heated without measuring the flow rate of the heating medium, and controlling the flow rate adjusting means to this adjustment amount;
A heat medium flow rate control program for a heat source device.
請求項7の熱源装置の熱媒流量制御プログラムにおいて、
前記制御ステップは、前記被加熱流体の検出流量と、熱交換前後の前記被加熱流体の検出温度と、熱交換前後の前記熱媒の検出温度とを用いて交換熱量を求め、この交換熱量から現在の熱媒流量を求め、かつ、前記基準差圧に対応する前記熱媒の差圧を求め、この差圧と前記被加熱流体側の要求熱量とにより目標熱媒流量を求め、この目標熱媒流量に対する前記熱媒の調整量を求め、この調整量に前記熱媒の流量を制御することを特徴とする熱源装置の熱媒流量制御プログラム。
In the heat medium flow control program of the heat source device according to claim 7,
The control step obtains the exchange heat amount using the detected flow rate of the heated fluid, the detected temperature of the heated fluid before and after heat exchange, and the detected temperature of the heat medium before and after heat exchange, and from this exchange heat amount A current heat medium flow rate is obtained, a differential pressure of the heat medium corresponding to the reference differential pressure is obtained, a target heat medium flow rate is obtained from the differential pressure and a required heat amount on the heated fluid side, and the target heat flow is obtained. A heat medium flow rate control program for a heat source device, wherein an adjustment amount of the heat medium with respect to the medium flow rate is obtained and the flow rate of the heating medium is controlled to the adjustment amount.
請求項7の熱源装置の熱媒流量制御プログラムにおいて、
熱交換前後の前記被加熱流体の検出温度と、前記被加熱流体の検出流量と、熱交換前の前記熱媒の検出温度と、前記被加熱流体の要求熱量に応じた熱媒流量とから熱交換後の前記熱媒の目標温度を算出し、その熱媒の目標温度と熱交換後の前記熱媒の検出温度との温度差が所定の範囲内になるように前記熱媒の流量を制御することを特徴とする熱源装置の熱媒流量制御プログラム。

In the heat medium flow control program of the heat source device according to claim 7,
Heat is detected from the detected temperature of the heated fluid before and after heat exchange, the detected flow rate of the heated fluid, the detected temperature of the heating medium before heat exchange, and the heating medium flow rate according to the required amount of heat of the heated fluid. Calculate the target temperature of the heat medium after replacement, and control the flow rate of the heat medium so that the temperature difference between the target temperature of the heat medium and the detected temperature of the heat medium after heat exchange is within a predetermined range A heat medium flow rate control program for a heat source device.

JP2006077880A 2006-03-21 2006-03-21 Heat source device, control method and control program for flow rate of heat medium Active JP5038641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077880A JP5038641B2 (en) 2006-03-21 2006-03-21 Heat source device, control method and control program for flow rate of heat medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077880A JP5038641B2 (en) 2006-03-21 2006-03-21 Heat source device, control method and control program for flow rate of heat medium

Publications (2)

Publication Number Publication Date
JP2007255745A true JP2007255745A (en) 2007-10-04
JP5038641B2 JP5038641B2 (en) 2012-10-03

Family

ID=38630168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077880A Active JP5038641B2 (en) 2006-03-21 2006-03-21 Heat source device, control method and control program for flow rate of heat medium

Country Status (1)

Country Link
JP (1) JP5038641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215328A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Heat supply system
JP2014194317A (en) * 2013-03-29 2014-10-09 Hitachi Appliances Inc Hot water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8335021B2 (en) 2006-03-22 2012-12-18 Canon Denshi Kabushiki Kaisha Image reading apparatus, shading correction method therefor, and program for implementing the method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332772A (en) * 1994-06-06 1995-12-22 Toshiba Corp Air conditioner
JPH10292942A (en) * 1997-04-18 1998-11-04 Sanken Setsubi Kogyo Kk Automatic control method for air conditioning installation
JP2003256002A (en) * 2002-02-28 2003-09-10 Tomoe Shokai:Kk Temperature control device and temperature control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332772A (en) * 1994-06-06 1995-12-22 Toshiba Corp Air conditioner
JPH10292942A (en) * 1997-04-18 1998-11-04 Sanken Setsubi Kogyo Kk Automatic control method for air conditioning installation
JP2003256002A (en) * 2002-02-28 2003-09-10 Tomoe Shokai:Kk Temperature control device and temperature control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215328A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Heat supply system
JP2014194317A (en) * 2013-03-29 2014-10-09 Hitachi Appliances Inc Hot water supply system

Also Published As

Publication number Publication date
JP5038641B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
EP1564616A2 (en) System for independently regulating temperatures in different spaces and temperatures of one or more hot-water suplies
JP4839141B2 (en) Heat pump water heater
JP5971149B2 (en) Water heater
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP2013170753A (en) Refrigerator system
US11226135B2 (en) Control apparatus and method for combination space and water heating
JP4525820B2 (en) Water heater
AU2014246775B2 (en) In-line heated solar thermal storage collector
WO2015033435A1 (en) Heat storage system
JP5038641B2 (en) Heat source device, control method and control program for flow rate of heat medium
JP2012107832A (en) Storage type hot water supply system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP4752347B2 (en) Hot water storage water heater
JP2006132918A (en) Air conditioner and its control method
RU2719170C2 (en) Heating and hot water supply device used for district and central heating, and method of controlling it
JP2018136103A (en) Hot water storage type water heater
JP4154363B2 (en) Hot water supply system
JP2013036708A (en) Water heater
JP2008304153A (en) Heat pump water heater
JP2005195185A (en) Hot water storage tank distributed type hot water supply system and distributed type hot water storage unit using the same
JP4148909B2 (en) Heat pump water heater / heater
JP2007024466A (en) Hot water type heating system, and operation method therefor
JP2004245560A (en) Heat source system, control method of heat source system, heat source and control method of heat source
JP7339646B2 (en) Heat source device and its control method
JP2009047369A (en) Heat consumption calculating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250