JP2008304153A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008304153A
JP2008304153A JP2007153465A JP2007153465A JP2008304153A JP 2008304153 A JP2008304153 A JP 2008304153A JP 2007153465 A JP2007153465 A JP 2007153465A JP 2007153465 A JP2007153465 A JP 2007153465A JP 2008304153 A JP2008304153 A JP 2008304153A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
heat
refrigerant
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007153465A
Other languages
Japanese (ja)
Inventor
Takayuki Fushiki
隆之 伏木
Koichi Fukushima
功一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007153465A priority Critical patent/JP2008304153A/en
Publication of JP2008304153A publication Critical patent/JP2008304153A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multifunctional heat pump water heater for improving a heat loss in bath reheating operation and hot water supply operation, by eliminating a shortage of hot water, while shortening bath reheating time. <P>SOLUTION: This multifunctional heat pump water heater has a first refrigerant circuit, a second refrigerant circuit, a hot water supply water circuit, a bath water circuit and a floor heating water circuit. The refrigerant circuit has a refrigerant switching valve for switching the refrigerant circuit of a hot water supply heat exchanger and a bath heat exchanger, by arranging the refrigerant circuit for making a refrigerant flow in order of the floor heating heat exchanger from the bath heat exchanger in parallel to the hot water supply heat exchanger. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機に関する。   The present invention relates to a heat pump water heater.

ヒートポンプ給湯機は、ヒートポンプサイクルによって加熱した高温水(約65〜85℃)を、約370〜460リットルの内容量を有する貯湯タンクに貯湯水として貯えておき、使用の際、リモコン等で設定した温度になるように、貯湯水に水を混ぜることで温度調整して給湯する。これを、貯湯式ヒートポンプ給湯機と称する。   The heat pump water heater stores hot water (about 65 to 85 ° C.) heated by a heat pump cycle as hot water storage in a hot water storage tank having an internal capacity of about 370 to 460 liters, and is set with a remote controller or the like when used. Adjust the temperature by mixing water with hot water so that the temperature reaches the temperature. This is called a hot water storage type heat pump water heater.

また、貯湯タンクの小形・軽量化のために、ヒートポンプサイクルを2サイクルで構成して、給湯使用時にヒートポンプ運転を行い、リモコン等で設定した温度に合った加熱水を直接給湯する給湯機がある。これを、直接式ヒートポンプ給湯機と称する。   In addition, there are water heaters that make up a hot water storage tank that is composed of two heat pump cycles, operates the heat pump when hot water is used, and directly supplies hot water that matches the temperature set by a remote controller. . This is called a direct heat pump water heater.

近年、ヒートポンプ給湯機の普及に伴い、給湯機能と共に床暖房機能を備えた、いわゆる、多機能型ヒートポンプ給湯機が提案されている。この多機能型ヒートポンプ給湯機について、特許文献1や特許文献2に記載のものがある。   In recent years, with the spread of heat pump water heaters, so-called multi-functional heat pump water heaters having a floor heating function as well as a hot water supply function have been proposed. As for this multifunction heat pump water heater, there are those described in Patent Document 1 and Patent Document 2.

特許文献1の多機能型ヒートポンプ給湯機は貯湯式である。風呂追焚き運転は、貯湯タンク内の貯湯水を加熱源として循環し、水々冷媒熱交換器内で貯湯水と風呂浴槽内の湯とを熱交換させることで行われる。また、床暖房運転は、風呂追焚き運転とは独立しており、膨張タンク内の貯湯水をポンプで循環し、床暖房用水冷媒熱交換器で加熱された温水を床暖房パネルに循環させて行われる。   The multi-functional heat pump water heater of Patent Document 1 is a hot water storage type. The bath reheating operation is performed by circulating hot water in the hot water storage tank as a heating source and exchanging heat between the hot water in the water refrigerant heat exchanger and the hot water in the bath tub. The floor heating operation is independent of the bath reheating operation. The hot water in the expansion tank is circulated by a pump, and the hot water heated by the water refrigerant heat exchanger for floor heating is circulated to the floor heating panel. Done.

特許文献2の多機能型ヒートポンプ給湯機は直接式である。給湯運転は、給湯用熱交換器と風呂追焚用熱交換器を一体化した水冷媒熱交換器であって、リモコン等で設定した温度に合わせて給水を加熱して供給される。風呂追焚き運転は、前記水冷媒熱交換器で、給湯用冷媒配管内の高温冷媒と、風呂追焚き用水管内の風呂の冷めた湯との間で熱交換して行われる。床暖房機能は、独立した床暖房用水冷媒熱交換器で、冷媒管内の高温冷媒と床暖房用温水管内の循環水との間で熱交換することにより行われる。   The multifunctional heat pump water heater of Patent Document 2 is a direct type. The hot-water supply operation is a water-refrigerant heat exchanger in which a hot-water supply heat exchanger and a bath-heating heat exchanger are integrated, and the hot-water supply is heated and supplied in accordance with a temperature set by a remote controller or the like. The bath reheating operation is performed by exchanging heat between the high-temperature refrigerant in the hot water supply refrigerant pipe and the cold water of the bath in the water reheating water pipe in the water refrigerant heat exchanger. The floor heating function is performed by exchanging heat between the high-temperature refrigerant in the refrigerant pipe and the circulating water in the hot water pipe for floor heating by an independent floor-heating water refrigerant heat exchanger.

特開2005−274021号公報JP-A-2005-274021 特開2004−278876号公報JP 2004-278876 A

しかしながら、特許文献1に記載の構成は、割安な料金である深夜電力を利用するために、深夜時間帯の長期間、ヒートポンプ運転を行い、貯湯タンクに貯湯水を貯めておく。すなわち、容量の大きな貯湯タンクを必要とするため、ヒートポンプユニットとタンクユニットとを別個に設けることになる。すなわち、設置面積が増加して、設置強度を高める必要がある。また、風呂追焚きには貯湯タンク内の高温水(65〜85℃)を加熱源として循環使用するため、貯湯温度が低い場合(65℃)は風呂追焚き時間が長期化する。さらに、貯湯タンク内の水温が低下して湯切れを生じるおそれがある。   However, in the configuration described in Patent Document 1, in order to use late-night power, which is a cheaper charge, heat pump operation is performed for a long period of midnight, and hot water is stored in a hot water storage tank. That is, since a hot water storage tank having a large capacity is required, the heat pump unit and the tank unit are provided separately. That is, it is necessary to increase the installation strength by increasing the installation area. In addition, since hot water (65 to 85 ° C.) in the hot water storage tank is circulated and used as a heating source for bath reheating, the bath replenishing time is prolonged when the hot water storage temperature is low (65 ° C.). Furthermore, there is a possibility that the water temperature in the hot water storage tank is lowered and hot water runs out.

また、特許文献2に記載の直接式ヒートポンプ給湯機では、ヒートポンプサイクルを2サイクル有しており、給湯,風呂追焚き、及び床暖房の各運転時にヒートポンプ運転を行うので、風呂追焚き時間を短縮でき、タンク湯切れを解消できる。   In addition, the direct heat pump water heater described in Patent Document 2 has two heat pump cycles, and heat pump operation is performed during each operation of hot water supply, bath reheating, and floor heating, so the bath renewal time is shortened. Yes, it can solve the tank hot water shortage.

しかしながら、使用頻度の高い給湯用熱交換器は、風呂用熱交換器と一体化されているため、給湯使用する度に風呂用熱交換器も加熱されてしまう。これにより、熱損失が大きくなるおそれがある。   However, since the hot water supply heat exchanger that is frequently used is integrated with the bath heat exchanger, the bath heat exchanger is also heated each time hot water is used. Thereby, there exists a possibility that a heat loss may become large.

また、風呂追焚きと床暖房を同時に行う場合には、床暖房運転が安定した後でも、2サイクルの同時運転を続けなければならない。よって、風呂追焚きと床暖房との同時運転における運転効率が低下するおそれがある。   In addition, when performing bath reheating and floor heating at the same time, two cycles of simultaneous operation must be continued even after the floor heating operation is stabilized. Therefore, there is a possibility that the operation efficiency in the simultaneous operation of bathing and floor heating may be reduced.

本発明は、上記従来の課題を解決するものである。本発明の目的は、小型軽量で、かつ、熱損失を低減して運転効率を向上させた多機能型ヒートポンプ給湯機を提供するものである。   The present invention solves the above-described conventional problems. An object of the present invention is to provide a multifunctional heat pump water heater that is small and light and that has improved operating efficiency by reducing heat loss.

上記課題を解決するために、本発明における第一の態様のヒートポンプ給湯機は、圧縮機と蒸発器を有するヒートポンプ給湯機において、給水された水と冷媒とを熱交換させる第一の熱交換器と、前記圧縮機と前記第一の熱交換器と前記蒸発器とを有する第一の冷媒回路と、前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器を有する第二の冷媒回路と、前記第一の熱交換器に接続された給湯水回路と、前記第二の熱交換器に接続された風呂追焚き水回路または床暖房熱媒体回路と、を備えたことを特徴とする。   In order to solve the above-described problem, a heat pump water heater according to a first aspect of the present invention is a heat pump water heater having a compressor and an evaporator. A first refrigerant circuit having the compressor, the first heat exchanger, and the evaporator, the compressor and the evaporator are connected, and in parallel with the first heat exchanger A second refrigerant circuit having a second heat exchanger to be connected; a hot water supply circuit connected to the first heat exchanger; and a bath reheating water circuit connected to the second heat exchanger Or a floor heating heat medium circuit.

また、圧縮機と蒸発器を有するヒートポンプ給湯機において、給水部から給水された水と冷媒とを熱交換させる第一の熱交換器と、風呂浴槽から送られた水と冷媒とを熱交換させる第二の熱交換器と、床暖房パネルから送られた熱媒体と冷媒とを熱交換させる第三の熱交換器と、前記圧縮機と前記第一の熱交換器と前記蒸発器とを有する第一の冷媒回路と、前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器と第三の熱交換器とを有する第二の冷媒回路と、前記第一の熱交換器に接続された給湯水回路と、前記第二の熱交換器に接続された風呂追焚き水回路と、前記第三の熱交換器に接続された床暖房熱媒体回路と、を有することを特徴とする。   Moreover, in the heat pump water heater having a compressor and an evaporator, heat exchange is performed between the first heat exchanger that exchanges heat between the water supplied from the water supply unit and the refrigerant, and the water that is sent from the bath tub and the refrigerant. A second heat exchanger, a third heat exchanger for exchanging heat between the heat medium sent from the floor heating panel and the refrigerant, the compressor, the first heat exchanger, and the evaporator. A first refrigerant circuit, a second heat exchanger connected to the compressor and the evaporator, and connected in parallel with the first heat exchanger; and a third heat exchanger. A second refrigerant circuit, a hot water circuit connected to the first heat exchanger, a bath water supply circuit connected to the second heat exchanger, and a third heat exchanger. And a floor heating heat medium circuit.

また、圧縮機と蒸発器を有するヒートポンプ給湯機において、給水端末から給水される水と冷媒とを熱交換させる第一の熱交換器と、風呂浴槽から送られる水と冷媒とを熱交換させる第二の熱交換器と、床暖房パネルから送られる熱媒体と冷媒とを熱交換させる第三の熱交換器と、前記圧縮機と第一の冷媒分配弁と前記第一の熱交換器と第一の膨張弁と前記蒸発器が順に接続された第一の冷媒回路と、前記圧縮機と第二の冷媒分配弁と前記第二の熱交換器と前記第三の熱交換器と第二の膨張弁と前記蒸発器が順に接続された第二の冷媒回路と、前記第一の熱交換器が接続され第一の循環ポンプを有する給湯水回路と、前記第二の熱交換器が接続され第二の循環ポンプを有する風呂追焚き水回路と、前記第三の熱交換器が接続され第三の循環ポンプを有する床暖房熱媒体回路と、を備えたことを特徴とする。   Further, in a heat pump water heater having a compressor and an evaporator, a first heat exchanger that exchanges heat between water supplied from a water supply terminal and refrigerant and heat exchange between water and refrigerant sent from a bath tub are exchanged. A second heat exchanger, a third heat exchanger for exchanging heat between the heat medium sent from the floor heating panel and the refrigerant, the compressor, the first refrigerant distribution valve, the first heat exchanger, and the first heat exchanger. A first refrigerant circuit in which one expansion valve and the evaporator are sequentially connected, the compressor, the second refrigerant distribution valve, the second heat exchanger, the third heat exchanger, and a second A second refrigerant circuit in which the expansion valve and the evaporator are connected in order, a hot water supply circuit having the first circulation pump connected to the first heat exchanger, and the second heat exchanger are connected. A bath replenishing water circuit having a second circulation pump and the third heat exchanger are connected to connect a third circulation pump. Characterized by comprising a floor heating heat carrier circuit having a flop, a.

また、圧縮機と蒸発器と第一の熱交換器とを有する第一の冷媒回路と、前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器を有する第二の冷媒回路と、前記第一の熱交換器が接続される給湯水回路と、前記第二の熱交換器の上流部分の熱交換器が接続される風呂追焚き水回路と、前記第二の熱交換器の下流部分の熱交換器が接続される床暖房熱媒体回路と、を備えることを特徴とする。   Also, a first refrigerant circuit having a compressor, an evaporator, and a first heat exchanger, the compressor and the evaporator are connected, and are connected in parallel with the first heat exchanger. A second refrigerant circuit having a second heat exchanger, a hot water circuit to which the first heat exchanger is connected, and a bath to which a heat exchanger in an upstream portion of the second heat exchanger is connected A reheating water circuit and a floor heating heat medium circuit to which a heat exchanger in a downstream portion of the second heat exchanger is connected are provided.

また、上記いずれかのヒートポンプ給湯機において、貯湯タンクと給湯混合弁とを有し前記給湯水回路と並列に接続されるタンク給湯回路を備えることを特徴とする。   In any one of the above heat pump water heaters, a tank hot water supply circuit having a hot water storage tank and a hot water supply mixing valve and connected in parallel with the hot water supply water circuit is provided.

また、上記いずれかのヒートポンプ給湯機において、第一の冷媒回路と第二の冷媒回路の分岐部に冷媒を分配する弁を有することを特徴とする。   In any of the above heat pump water heaters, the heat pump water heater has a valve that distributes the refrigerant to a branch portion between the first refrigerant circuit and the second refrigerant circuit.

また、上記いずれかのヒートポンプ給湯機において、前記給湯水回路は給水された水を第一の熱交換器で熱交換して、直接、給湯端末から給湯することを特徴とする。   In any one of the above heat pump water heaters, the hot water supply circuit heat-exchanges the supplied water with a first heat exchanger and directly supplies hot water from a hot water supply terminal.

本発明によれば、小型軽量で、かつ、熱損失を低減して運転効率を向上させた多機能型ヒートポンプ給湯機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the multifunction type heat pump water heater which was small and lightweight, and reduced the heat loss and improved the operation efficiency.

以下、本発明の実施例を図1〜図5によって説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は、本発明の多機能型ヒートポンプ給湯機の全体系統図である。図2は、本発明の多機能型ヒートポンプ給湯機における給湯運転の一実施例を示すフローチャートである。図3は、本発明の多機能型ヒートポンプ給湯機における床暖房運転の一実施例を示すフローチャートである。図4は、本発明の多機能型ヒートポンプ給湯機における風呂湯張り運転と風呂追焚き運転との一実施例を示すフローチャートである。図5は、本発明の多機能型ヒートポンプ給湯機における床暖房運転と風呂追焚き運転との一実施例を示すフローチャートである。   FIG. 1 is an overall system diagram of the multifunction heat pump water heater of the present invention. FIG. 2 is a flowchart showing an embodiment of a hot water supply operation in the multifunction heat pump water heater of the present invention. FIG. 3 is a flowchart showing an embodiment of the floor heating operation in the multifunction heat pump water heater of the present invention. FIG. 4 is a flowchart showing an embodiment of the hot water bathing operation and the bath reheating operation in the multifunction heat pump water heater of the present invention. FIG. 5 is a flowchart showing an embodiment of the floor heating operation and the bath reheating operation in the multifunction heat pump water heater of the present invention.

(全体構成)まず、図1によって、本発明の多機能型ヒートポンプ給湯機の構成を説明する。   (Overall Configuration) First, the configuration of the multifunction heat pump water heater of the present invention will be described with reference to FIG.

多機能型ヒートポンプ給湯機は、大きく分けてヒートポンプ冷媒回路40,水回路45、及び運転制御手段50を有する。さらに、ヒートポンプ冷媒回路40は、第1系統冷媒回路41及び第2系統冷媒回路42の2サイクルを有する。   The multi-function heat pump water heater is roughly divided into a heat pump refrigerant circuit 40, a water circuit 45, and an operation control means 50. Furthermore, the heat pump refrigerant circuit 40 has two cycles of a first system refrigerant circuit 41 and a second system refrigerant circuit 42.

ヒートポンプ冷媒回路40と水回路45とにおけるそれぞれの構成部品は、同一箱体内に一体的に収納される。水回路45は、給湯用水回路46,風呂湯張り用水回路47,風呂追焚き用水回路48、及び床暖房用水回路49により構成される。   Each component in the heat pump refrigerant circuit 40 and the water circuit 45 is integrally stored in the same box. The water circuit 45 includes a hot water supply water circuit 46, a bath water filling water circuit 47, a bath replenishing water circuit 48, and a floor heating water circuit 49.

なお、水回路45の給水源10,台所蛇口等の給湯端末18,風呂浴槽24、及び床暖房パネル28は、多機能型ヒートポンプ給湯機と別個に構成される。すなわち、実際の使用環境において、給水金具11(給水部),給湯出口金具17,風呂往き金具25,風呂戻り金具27,床暖房往き金具29、及び床暖房戻り金具32にそれぞれ接続して使用する構成である。   The water supply source 10 of the water circuit 45, the hot water supply terminal 18 such as a kitchen faucet, the bath tub 24, and the floor heating panel 28 are configured separately from the multifunction heat pump water heater. That is, in an actual use environment, the water supply fitting 11 (water supply section), the hot water supply outlet fitting 17, the bath fitting 25, the bath return fitting 27, the floor heating fitting 29, and the floor heating return fitting 32 are respectively connected and used. It is a configuration.

第1系統冷媒回路41は、台所給湯,洗面所給湯、及びシャワー等の、いわゆる、一般給湯や風呂湯張り運転時の加熱源として働く。一方、第2系統冷媒回路42は、風呂追焚き運転と床暖房運転時の加熱源として働く。   The 1st system refrigerant circuit 41 works as a heating source at the time of what is called general hot water supply or bath hot water operation, such as kitchen hot water supply, washroom hot water supply, and a shower. On the other hand, the second system refrigerant circuit 42 functions as a heating source during the bath reheating operation and the floor heating operation.

第1系統冷媒回路41は、圧縮機1,第1系統冷媒分配弁2,給湯用熱交換器4に配置されている冷媒側伝熱管4a,第1系統膨張弁5,蒸発器6のそれぞれを冷媒配管で順次接続された、給湯用密閉冷媒サイクルで構成される。そして、第1系統冷媒回路41の内部を、冷媒が流動するように封入される。   The first system refrigerant circuit 41 includes a refrigerant, a first system refrigerant distribution valve 2, a hot water supply heat exchanger 4, a refrigerant side heat transfer pipe 4 a, a first system expansion valve 5, and an evaporator 6. It is composed of a closed refrigerant cycle for hot water supply that is sequentially connected by refrigerant piping. And the inside of the 1st system refrigerant circuit 41 is enclosed so that a refrigerant may flow.

また、第2系統冷媒回路42は、圧縮機1,第2系統冷媒分配弁3,風呂用熱交換器7に配置されている冷媒側風呂伝熱管7a,床暖房用熱交換器8に配置される冷媒側床暖房伝熱管8a,第2系統膨張弁9,蒸発器6を、それぞれ冷媒配管で順次接続された、床暖房用密閉冷媒サイクルで構成される。そして、第2系統冷媒回路42の内部を、冷媒が流動するように封入される。   The second system refrigerant circuit 42 is arranged in the compressor 1, the second system refrigerant distribution valve 3, the refrigerant side bath heat transfer tube 7a arranged in the bath heat exchanger 7, and the floor heating heat exchanger 8. The refrigerant side floor heating heat transfer pipe 8a, the second system expansion valve 9, and the evaporator 6 are each composed of a floor heating hermetic refrigerant cycle in which refrigerant pipes are sequentially connected. And the inside of the 2nd system refrigerant circuit 42 is enclosed so that a refrigerant may flow.

ここで、圧縮機1と蒸発器6は、第1系統冷媒回路41及び第2系統冷媒回路42の共用部品として使用される。第1系統冷媒回路(給湯用密閉冷媒サイクル)と、第2系統冷媒回路(床暖房用密閉冷媒サイクル)の切り替えは、第1系統冷媒分配弁2,第2系統冷媒分配弁3の開閉,第1系統膨張弁5,第2系統膨張弁9の開度絞り量の調整によって行われる。また、第1系統冷媒回路41の構成部(風呂用熱交換器7,床暖房用熱交換器8、及び第2系統膨張弁9)と、第2系統冷媒回路42を構成部(給湯用熱交換器4及び第1系統膨張弁5)とは、並列に設けられる。   Here, the compressor 1 and the evaporator 6 are used as common parts for the first system refrigerant circuit 41 and the second system refrigerant circuit 42. Switching between the first system refrigerant circuit (sealed refrigerant cycle for hot water supply) and the second system refrigerant circuit (sealed refrigerant cycle for floor heating) is performed by opening and closing the first system refrigerant distribution valve 2 and the second system refrigerant distribution valve 3. This is performed by adjusting the opening amount of the first system expansion valve 5 and the second system expansion valve 9. The components of the first system refrigerant circuit 41 (the heat exchanger for bath 7, the heat exchanger 8 for floor heating, and the second system expansion valve 9) and the components of the second system refrigerant circuit 42 (heat for hot water supply) The exchanger 4 and the first system expansion valve 5) are provided in parallel.

すなわち、第1系統冷媒回路41と第2系統冷媒回路42は独立して運転できる。一例として、給湯用熱交換器4は、給湯運転時に使用して、風呂追焚き及び床暖房運転時には使用しない。これにより、給湯用熱交換器4からの余分な熱損失が削減でき、使用頻度の高い一般給湯及び風呂給湯における運転効率の向上を図ることができる。   That is, the first system refrigerant circuit 41 and the second system refrigerant circuit 42 can be operated independently. As an example, the heat exchanger 4 for hot water supply is used at the time of hot water supply operation, and is not used at the time of bathing and floor heating operation. Thereby, the excessive heat loss from the heat exchanger 4 for hot water supply can be reduced, and the operation efficiency in the general hot water supply and bath hot water supply with high use frequency can be aimed at.

圧縮機1は、給湯用熱交換器4で加熱された温水を直接給湯する、いわゆる、直接給湯式ヒートポンプ給湯機に適合する容量を有する。また、給湯熱量に応じて回転数を変えられる、回転速度制御型圧縮機である。すなわち、圧縮機1は、PWM制御,電圧制御(例えばPAM制御)あるいはこれらの組合せ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転速度制御できるように構成される。   The compressor 1 has a capacity suitable for a so-called direct hot water heat pump water heater that directly supplies hot water heated by the hot water supply heat exchanger 4. Moreover, it is a rotational speed control type compressor which can change rotation speed according to the amount of hot water supplies. That is, the compressor 1 is configured to be able to control the rotational speed from a low speed (eg, 700 rpm) to a high speed (eg, 7000 rpm) by PWM control, voltage control (eg, PAM control), or a combination control thereof. The

本構成では、圧縮機1を単独で有する構成であるが、これに限らず、圧縮機を複数有する構成であっても良い。これにより、給湯,風呂追焚き,床暖房の同時運転時において、さらに高効率な熱交換ができる。   In this structure, it is the structure which has the compressor 1 independently, However, Not only this but the structure which has two or more compressors may be sufficient. As a result, more efficient heat exchange can be performed during simultaneous operation of hot water supply, bath reheating, and floor heating.

給湯用熱交換器4は、冷媒側伝熱管4a及び給水側伝熱管4bを備えており、冷媒側伝熱管4aと給水側伝熱管4bとの間で熱交換するように構成される。   The hot water supply heat exchanger 4 includes a refrigerant side heat transfer tube 4a and a water supply side heat transfer tube 4b, and is configured to exchange heat between the refrigerant side heat transfer tube 4a and the water supply side heat transfer tube 4b.

同様に、風呂用熱交換器7は、冷媒側風呂伝熱管7a及び水側風呂伝熱管7bを備えており、冷媒側風呂伝熱管7aと水側風呂伝熱管7bとの間で熱交換するように構成される。   Similarly, the bath heat exchanger 7 includes a refrigerant side bath heat transfer tube 7a and a water side bath heat transfer tube 7b, so that heat is exchanged between the refrigerant side bath heat transfer tube 7a and the water side bath heat transfer tube 7b. Configured.

床暖房用熱交換器8も同様に、冷媒側床暖房伝熱管8a及び熱媒体側床暖房伝熱管8bを備えており、冷媒側床暖房伝熱管8aと熱媒体側床暖房伝熱管8bとの間で熱交換するように構成される。   Similarly, the floor heating heat exchanger 8 includes a refrigerant side floor heating heat transfer pipe 8a and a heat medium side floor heating heat transfer pipe 8b, and includes a refrigerant side floor heating heat transfer pipe 8a and a heat medium side floor heating heat transfer pipe 8b. It is configured to exchange heat between them.

給湯用熱交換器4,床暖房用熱交換器8を経て送られた高圧冷媒は、第1系統膨張弁5と第2系統膨張弁9によって減圧され、蒸発し易い低圧冷媒として蒸発器6へ送られる。また、多機能型ヒートポンプ給湯機の場合、第1系統膨張弁5と第2系統膨張弁9は、冷媒流路の開度を変えることで、ヒートポンプ回路内の冷媒循環量を調節する。また、絞り量を全開にすることで、蒸発器6に冷媒を多量に送って霜を溶かす(除霜運転する)。そのため、第1系統膨張弁5と第2系統膨張弁9は、絞り量が可変で、かつ、応答性の良い電動膨張弁であることが好ましい。   The high-pressure refrigerant sent through the hot water supply heat exchanger 4 and the floor heating heat exchanger 8 is depressurized by the first system expansion valve 5 and the second system expansion valve 9 to the evaporator 6 as a low-pressure refrigerant that easily evaporates. Sent. In the case of a multifunction heat pump water heater, the first system expansion valve 5 and the second system expansion valve 9 adjust the refrigerant circulation amount in the heat pump circuit by changing the opening of the refrigerant flow path. Further, by fully opening the throttle amount, a large amount of refrigerant is sent to the evaporator 6 to melt frost (defrosting operation is performed). Therefore, it is preferable that the first system expansion valve 5 and the second system expansion valve 9 are electric expansion valves having a variable throttle amount and good response.

また、蒸発器6はファン(図示せず)の回転によって外気を取り込み、空気と冷媒との熱交換を行う空気冷媒熱交換器で構成される。   Moreover, the evaporator 6 is comprised with the air refrigerant | coolant heat exchanger which takes in external air by rotation of a fan (not shown), and performs heat exchange with air and a refrigerant | coolant.

(給湯運転)次に、給湯使用時のヒートポンプ運転について説明する。   (Hot water supply operation) Next, the heat pump operation when hot water is used will be described.

給湯回路は、台所蛇口や洗面所蛇口からの一般給湯回路と、風呂湯張り,シャワーなどの風呂給湯回路とがある。   The hot water supply circuit includes a general hot water supply circuit from a kitchen faucet and a bathroom faucet, and a bath hot water supply circuit such as a bath hot water bath and a shower.

給湯回路は、直接給湯回路とタンク給湯回路とがある。直接給湯回路は、ヒートポンプを運転して、給湯用熱交換器4で要求温度に合わせて加熱した温水を直接給湯する。タンク給湯回路は、予め貯湯した貯湯タンク19内の高温水に、給水源10からの低温水を混ぜて適温として給湯する。   The hot water supply circuit includes a direct hot water supply circuit and a tank hot water supply circuit. The direct hot water supply circuit operates a heat pump to directly supply hot water heated by the hot water supply heat exchanger 4 according to a required temperature. The tank hot water supply circuit supplies hot water at an appropriate temperature by mixing low temperature water from the water supply source 10 with high temperature water in the hot water storage tank 19 stored in advance.

給湯運転における冷媒は、第1系統冷媒回路を流れる。その経路は、圧縮機1→第1系統冷媒分配弁2→給湯用熱交換器4の冷媒側伝熱管4a→第1系統膨張弁5→蒸発器6→圧縮機1の順である。すなわち、冷媒は、低圧蒸気→高圧蒸気→高圧液→低圧液→低圧蒸気と状態を変化させ、熱を運ぶことによって給湯水の加熱を行う。   The refrigerant in the hot water supply operation flows through the first system refrigerant circuit. The path is in the order of the compressor 1 → the first system refrigerant distribution valve 2 → the refrigerant side heat transfer pipe 4 a of the hot water supply heat exchanger 4 → the first system expansion valve 5 → the evaporator 6 → the compressor 1. That is, the refrigerant changes the state of low-pressure steam → high-pressure steam → high-pressure liquid → low-pressure liquid → low-pressure steam, and heats hot water by carrying heat.

具体的に、圧縮機1で高温高圧ガスにされた冷媒は、冷媒側伝熱管4aにおいて給水側伝熱管4bを流れる給水を加熱する。そして、第1系統膨張弁5で減圧され、蒸発器6で低温低圧ガスとなった冷媒が圧縮機1に戻る。この冷媒循環を繰り返すことにより、給水を連続加熱して給湯することができる。   Specifically, the refrigerant converted into the high-temperature and high-pressure gas by the compressor 1 heats the feed water flowing through the feed water side heat transfer tube 4b in the refrigerant side heat transfer tube 4a. Then, the refrigerant that has been decompressed by the first system expansion valve 5 and has become low-temperature and low-pressure gas by the evaporator 6 returns to the compressor 1. By repeating this refrigerant circulation, hot water can be continuously heated to supply hot water.

この給湯運転において、圧縮機1は、給水温度や給湯温度等の給湯負荷に応じて、回転速度制御を行い運転される。   In this hot water supply operation, the compressor 1 is operated by performing rotational speed control in accordance with a hot water supply load such as a water supply temperature or a hot water supply temperature.

給湯運転における給湯水は、給湯用水回路46を流れる。その経路は、使用端末器18(台所蛇口等)からの一般給湯の場合、給水源10(水道等)→給水金具11→減圧弁12→タンク循環ポンプ13→給湯用熱交換器4の給水側伝熱管4b→給湯混合弁14→湯水混合弁15→流量調整弁16→給湯出口金具17→給湯端末器18の順であり、直接給湯運転が行われる。   Hot water in the hot water supply operation flows through the hot water supply water circuit 46. In the case of general hot water supply from the use terminal 18 (kitchen faucet, etc.), the water supply source 10 (water supply etc.) → water supply fitting 11 → pressure reducing valve 12 → tank circulation pump 13 → water supply side of the hot water supply heat exchanger 4 The heat transfer pipe 4b, the hot water mixing valve 14, the hot water mixing valve 15, the flow rate adjusting valve 16, the hot water outlet fitting 17, and the hot water terminal 18 are arranged in this order.

(タンク給湯運転)次に、タンク給湯運転について説明する。   (Tank Hot Water Supply Operation) Next, the tank hot water supply operation will be described.

ヒートポンプ運転開始直後は、給湯用熱交換器4での加熱に不足が生じ、すぐにリモコン等で設定した温度で給湯が行えないおそれがある。そこで、給湯混合弁14は、ヒートポンプ運転開始直後における給湯用熱交換器4での加熱不足分を、貯湯タンク19内の貯湯高温水で補う、タンク給湯運転を行う。   Immediately after the start of the heat pump operation, there is a shortage of heating in the hot water supply heat exchanger 4, and there is a risk that hot water cannot be supplied immediately at the temperature set by a remote controller or the like. Therefore, the hot water supply mixing valve 14 performs a tank hot water supply operation in which the shortage of heating in the hot water supply heat exchanger 4 immediately after the start of the heat pump operation is compensated with the hot water stored in the hot water storage tank 19.

湯水混合弁15は、給湯混合弁14で混合された温水がリモコン等で設定した温度より高い場合、給水金具11からの水を混合して適温にする。   When the hot water mixed by the hot water supply mixing valve 14 is higher than the temperature set by a remote controller or the like, the hot water mixing valve 15 mixes the water from the water supply fitting 11 to an appropriate temperature.

流量調整弁16は、端末使用状況と運転制御手段50からの給湯温度指令に基づいて、給湯加熱温度を維持するため、流量を調整する。   The flow rate adjustment valve 16 adjusts the flow rate in order to maintain the hot water supply heating temperature based on the terminal usage status and the hot water supply temperature command from the operation control means 50.

タンク給湯運転の給水経路は、給水源10→給水金具11→減圧弁12→貯湯タンク19→給湯混合弁14→湯水混合弁15→流量調整弁16→給湯出口金具17→給湯端末器18の順である。   The water supply path of the tank hot water supply operation is as follows: water supply source 10 → water supply fitting 11 → pressure reducing valve 12 → hot water storage tank 19 → hot water mixing valve 14 → hot water mixing valve 15 → flow rate adjusting valve 16 → hot water outlet fitting 17 → hot water supply terminal 18. It is.

ここで、貯湯タンク19へは下部から給水され、その給水圧力により貯湯タンク19の上部から給水量に相当する貯湯高温水が供給されて給湯を行う。   Here, hot water is supplied to the hot water storage tank 19 from the lower part, and hot water is supplied from the upper part of the hot water storage tank 19 by hot water supply corresponding to the amount of water supplied.

(タンク貯湯運転)次に、タンク貯湯運転について説明する。   (Tank Hot Water Operation) Next, the tank hot water operation will be described.

タンク給湯運転により貯湯タンク19内に給水された水が多くなり、高温水が所定量以下になると、運転制御手段は自動的にタンク貯湯運転を開始する。   When the amount of water supplied into the hot water storage tank 19 by the tank hot water supply operation increases and the high-temperature water falls below a predetermined amount, the operation control means automatically starts the tank hot water storage operation.

タンク貯湯運転における給水経路は、貯湯タンク19→タンク循環ポンプ13→給湯用熱交換器4の給水側伝熱管4b→給湯混合弁14→貯湯タンク19の順である。   The water supply path in the tank hot water storage operation is in the order of the hot water storage tank 19 → the tank circulation pump 13 → the water supply side heat transfer pipe 4 b of the hot water supply heat exchanger 4 → the hot water supply mixing valve 14 → the hot water storage tank 19.

ここで、第1系統ヒートポンプ冷媒回路を運転して、貯湯タンク19から給湯用熱交換器4へ送られた貯湯水は、冷媒側伝熱管4aと給水側伝熱管4bとの間で加熱された後、給湯混合弁14を経て貯湯タンク19に戻る。これを、貯湯タンク19内の高温水が所定量に達するまで循環運転する。   Here, the hot water stored in the first system heat pump refrigerant circuit and sent from the hot water storage tank 19 to the hot water supply heat exchanger 4 was heated between the refrigerant side heat transfer tube 4a and the water supply side heat transfer tube 4b. Then, it returns to the hot water storage tank 19 through the hot water supply mixing valve 14. This is circulated until the hot water in the hot water storage tank 19 reaches a predetermined amount.

なお、タンク循環ポンプ13は、タンク貯湯運転時のみ運転されて水循環を行う。すなわち、それ以外の時は通電されず、開放状態で抵抗なく給水を通過させる。   The tank circulation pump 13 is operated only during the tank hot water storage operation to perform water circulation. That is, it is not energized at other times, and the water supply is allowed to pass without resistance in an open state.

(風呂湯張り運転)次に、風呂湯張り運転について説明する。   (Bath bathing operation) Next, bath bathing operation will be described.

風呂湯張り運転の給水経路は、給水源10→給水金具11→減圧弁12→給湯用熱交換器4の給水側伝熱管4b→給湯混合弁14→湯水調整弁21→風呂注湯弁22→水逆止弁23→風呂戻り金具27→風呂浴槽24の順である。ここで、風呂湯張り運転の場合、第1系統ヒートポンプ冷媒回路を運転し、湯水調整弁21を開度調整することにより、給水温度の調整をする。すなわち、給湯混合弁14側からの温水と、給水源10側からの水との比率を調整すると共に、風呂注湯弁22にて流量調整して風呂給湯出口金具27を介して湯張り給湯を行う。なお、水逆止弁23は風呂浴槽24内の水が台所給湯側に逆流しないよう防止するためのものである。   The water supply path for bath hot water operation is as follows: water supply source 10 → water supply fitting 11 → pressure reducing valve 12 → water supply side heat transfer pipe 4b of hot water supply heat exchanger 4 → hot water mixing valve 14 → hot water adjustment valve 21 → bath pouring valve 22 → In this order, the water check valve 23 → the bath return fitting 27 → the bath tub 24. Here, in the bath hot water operation, the first system heat pump refrigerant circuit is operated and the hot water adjustment valve 21 is adjusted to adjust the water supply temperature. That is, the ratio between the hot water from the hot water supply mixing valve 14 side and the water from the water supply source 10 side is adjusted, the flow rate is adjusted by the bath pouring valve 22, and hot water supply is performed through the bath hot water outlet fitting 27. Do. The water check valve 23 is for preventing water in the bath tub 24 from flowing back to the kitchen hot water supply side.

また、風呂シャワー(図示せず)は、風呂注湯弁22と水逆止弁23との間に接続することにより、風呂湯張り給湯と同様に使用できる。   Moreover, a bath shower (not shown) can be used in the same manner as a bath hot water supply by connecting between the bath pouring valve 22 and the water check valve 23.

(床暖房運転)次に、床暖房運転について説明する。   (Floor heating operation) Next, the floor heating operation will be described.

床暖房運転では第2系統冷媒回路42が運転する。冷媒の経路は、圧縮機1→第2系統冷媒分配弁3→風呂用熱交換器7の冷媒側伝熱管7a→床暖房用熱交換器8の冷媒側伝熱管8a→第2系統膨張弁9→蒸発器6→圧縮機1の順である。   In the floor heating operation, the second system refrigerant circuit 42 operates. The refrigerant path is: compressor 1 → second system refrigerant distribution valve 3 → refrigerant side heat transfer pipe 7a of the heat exchanger 7 for bath → refrigerant side heat transfer pipe 8a of the heat exchanger 8 for floor heating → second system expansion valve 9 → Evaporator 6 → Compressor 1 in this order.

床暖房用の熱媒体の経路は、床暖房パネル28→床暖房往き金具29→熱媒体タンク30→床暖房循環ポンプ31→床暖房用熱交換器8の熱媒体側伝熱管8b→床暖房戻り金具32の順である。   The route of the heating medium for floor heating is: floor heating panel 28 → floor heating forward fitting 29 → heat medium tank 30 → floor heating circulation pump 31 → heat medium side heat transfer pipe 8b of the floor heating heat exchanger 8 → floor heating return. The order of the metal fittings 32.

圧縮機1で圧縮された高温高圧の冷媒は、第2系統冷媒分配弁3から風呂用熱交換器7を経て、床暖房用熱交換器8の冷媒側床暖房用伝熱管8aに流入する。ここで、熱媒体側床暖房用伝熱管8bを流れる熱媒体を加熱する。その後、第2系統膨張弁9で減圧され、蒸発器6で低温低圧ガスとなって圧縮機1に戻る。この冷媒循環を繰り返すことで、床暖房用熱媒体を連続加熱する。   The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows from the second system refrigerant distribution valve 3 through the bath heat exchanger 7 and into the refrigerant-side floor heating heat transfer pipe 8 a of the floor heating heat exchanger 8. Here, the heat medium flowing through the heat transfer pipe 8b for heat medium side floor heating is heated. Thereafter, the pressure is reduced by the second system expansion valve 9, and the low-temperature low-pressure gas is returned to the compressor 1 by the evaporator 6. By repeating this refrigerant circulation, the floor heating heat medium is continuously heated.

第2系統冷媒回路42の運転と並行して、床暖房循環ポンプ31が運転され、上述した熱媒体経路を循環する。すなわち、熱媒体循環サイクルの運転によって、床暖房用熱交換器8内での加熱と床暖房パネル28での放熱が連続して行われる。   In parallel with the operation of the second system refrigerant circuit 42, the floor heating circulation pump 31 is operated to circulate through the above-described heat medium path. That is, by the operation of the heat medium circulation cycle, heating in the floor heating heat exchanger 8 and heat radiation in the floor heating panel 28 are continuously performed.

なお、第2系統冷媒回路42においては、圧縮機1で圧縮された高温高圧の冷媒が、風呂用熱交換器7を経て、床暖房用熱交換器8に送られる構成である。   The second refrigerant circuit 42 is configured such that the high-temperature and high-pressure refrigerant compressed by the compressor 1 is sent to the floor heating heat exchanger 8 via the bath heat exchanger 7.

ここで、風呂追焚きを行わずに床暖房運転のみを行う場合、風呂循環ポンプ26は停止されている。これにより、風呂用熱交換器7の水側伝熱管7b内の水は循環せず滞留しているため、冷媒から水への熱損失を抑制できる。   Here, in the case where only the floor heating operation is performed without performing bath renewal, the bath circulation pump 26 is stopped. Thereby, since the water in the water side heat exchanger tube 7b of the heat exchanger for bath 7 stays without being circulated, heat loss from the refrigerant to the water can be suppressed.

また、冷媒回路の下流側に床暖房用熱交換器8が設置されているが、床暖房は風呂追焚きに比べて低温で長時間使用されるため、冷媒の加熱不足が生じるおそれはない。   Further, although the floor heating heat exchanger 8 is installed on the downstream side of the refrigerant circuit, the floor heating is used at a low temperature for a long time as compared with the reheating of the bath, so there is no possibility of insufficient heating of the refrigerant.

(風呂追焚き運転)次に、風呂追焚き運転について説明する。   (Bath rebirth operation) Next, bath rebirth operation will be described.

風呂追焚き運転では、床暖房運転と同様に、第2系統冷媒回路42が同様の経路で運転する。   In the bath reheating operation, the second system refrigerant circuit 42 operates along the same route as in the floor heating operation.

風呂水の経路は、風呂浴槽24→風呂往き金具25→風呂循環ポンプ26→風呂用熱交換器7の水側伝熱管7b→風呂戻り金具27→風呂浴槽24の順である。   The path of the bath water is in the order of bath tub 24 → bath fitting 25 → bath circulation pump 26 → water heat transfer pipe 7 b of bath heat exchanger 7 → bath return fitting 27 → bath tub 24.

圧縮機1で圧縮された高温高圧の冷媒は、第2系統冷媒分配弁3から風呂用熱交換器7の冷媒側伝熱管7aに流入し、水側伝熱管7bを流れる風呂浴槽24の湯水を加熱する。そして冷媒は、床暖房用熱交換器8を経て、第2系統膨張弁9で減圧された後、蒸発器6で低温低圧ガスとなって圧縮機1に戻る。この冷媒循環を繰り返すことによって、風呂浴槽24内の冷めた湯水を連続加熱する。   The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows into the refrigerant-side heat transfer pipe 7a of the bath heat exchanger 7 from the second system refrigerant distribution valve 3, and the hot water in the bath tub 24 flowing through the water-side heat transfer pipe 7b is used. Heat. The refrigerant passes through the floor heating heat exchanger 8, is decompressed by the second system expansion valve 9, and then returns to the compressor 1 as a low-temperature and low-pressure gas by the evaporator 6. By repeating this refrigerant circulation, the hot and cold water in the bath tub 24 is continuously heated.

すなわち、風呂浴槽24内の冷めた湯水は、風呂用熱交換器7で順次加熱されて風呂浴槽24に戻り、風呂浴槽24の湯水が全量適温に達すると、風呂追焚き運転が終了する。   That is, the cold hot water in the bath tub 24 is sequentially heated by the bath heat exchanger 7 and returned to the bath tub 24. When the hot water in the bath tub 24 reaches the proper temperature, the bath renewal operation ends.

風呂追焚き運転においては、圧縮機1によって高温高圧となった冷媒が、直接、風呂用熱交換器7の冷媒側風呂用伝熱管7aに入り、水側風呂用伝熱管7bを流れる風呂浴槽24の湯水を加熱する。これにより、風呂追焚き時間を短縮できる。また、第2系統冷媒回路42を流れる冷媒は、風呂用熱交換器7での加熱後、床暖房用熱交換器8において、熱媒体側伝熱管8bへ放熱される。これは、蒸発器6の容量アップに相当するものであり、冷媒回路全体にとっては、高効率化に寄与する。   In the bath reheating operation, the refrigerant that has become high temperature and high pressure by the compressor 1 directly enters the refrigerant side bath heat transfer pipe 7a of the bath heat exchanger 7 and flows through the water side bath heat transfer pipe 7b. Heat the hot water. As a result, the bath chase time can be shortened. The refrigerant flowing through the second system refrigerant circuit 42 is radiated to the heat medium side heat transfer tube 8b in the floor heating heat exchanger 8 after being heated in the bath heat exchanger 7. This corresponds to an increase in the capacity of the evaporator 6 and contributes to higher efficiency for the entire refrigerant circuit.

(運転制御)次に、運転制御について説明する。   (Operation Control) Next, operation control will be described.

運転制御手段50は、リモコンの操作設定により、以下の項目の制御を行う。(1)第1系統冷媒回路41及び第2系統冷媒回路42の運転,停止。(2)圧縮機1の回転速度。(3)第1系統冷媒分配弁2及び第2系統冷媒分配弁3の開閉。(4)第1系統膨張弁5及び第2系統膨張弁9の開閉。(5)タンク循環ポンプ13,風呂循環ポンプ26及び床暖房循環ポンプ31の運転,停止。(5)給湯混合弁14,湯水混合弁15,流量調整弁16,湯水調整弁21,風呂注湯弁22の開閉。(1)から(5)についての制御を、運転制御手段50で一括して行うことにより、一般給湯運転,風呂給湯運転,風呂追焚き運転,貯湯運転,床暖房運転等を円滑に行うことができる。   The operation control means 50 controls the following items according to the operation setting of the remote controller. (1) Operation and stop of the first system refrigerant circuit 41 and the second system refrigerant circuit 42. (2) The rotational speed of the compressor 1. (3) Opening and closing of the first system refrigerant distribution valve 2 and the second system refrigerant distribution valve 3. (4) Opening and closing of the first system expansion valve 5 and the second system expansion valve 9. (5) Operation and stop of the tank circulation pump 13, the bath circulation pump 26 and the floor heating circulation pump 31. (5) Opening and closing of the hot water supply mixing valve 14, the hot water mixing valve 15, the flow rate adjustment valve 16, the hot water adjustment valve 21, and the bath pouring valve 22. By performing the control for (1) to (5) in a batch by the operation control means 50, it is possible to smoothly perform general hot water supply operation, bath hot water supply operation, bath reheating operation, hot water storage operation, floor heating operation, etc. it can.

ここで、運転制御手段50は、圧縮機1の回転速度を制御する。すなわち、運転開始直後には加熱立上げ時間を短くするために、所定の高速回転で運転する。比較的熱負荷の軽い安定運転時には、加熱温度に見合った中低速回転で運転する。   Here, the operation control means 50 controls the rotational speed of the compressor 1. That is, immediately after the start of operation, the operation is performed at a predetermined high speed rotation in order to shorten the heating start-up time. During stable operation with a relatively light heat load, operation is performed at a medium to low speed corresponding to the heating temperature.

更に、多機能型ヒートポンプ給湯機には、圧縮機1の吐出圧力を検知する圧力センサ(図示せず),給水温度,一般給湯温度,風呂給湯温度,床暖房温度、等を検知する温度サーミスタ、及び給湯量や風呂湯張り量を検知する流量センサ(図示せず)等の検知手段が設けられる。これら検知手段からの検出信号は、運転制御手段50に入力されるように構成される。運転制御手段50は、この検出信号に基づいて各機器を制御するものである。   Furthermore, the multi-functional heat pump water heater includes a pressure sensor (not shown) for detecting the discharge pressure of the compressor 1, a temperature thermistor for detecting a water supply temperature, a general hot water supply temperature, a bath hot water temperature, a floor heating temperature, and the like. And detection means, such as a flow rate sensor (not shown) which detects the amount of hot water supply and the amount of hot water bathing, are provided. The detection signals from these detection means are configured to be input to the operation control means 50. The operation control means 50 controls each device based on this detection signal.

なお、本実施例の図1においては、風呂用熱交換器7と床暖房用熱交換器8を別体として図示しているが、これを点線Aの如く一体化して構成しても良い。すなわち、風呂・床暖房用の熱交換器を兼用して、上流側を風呂用、下流側を床暖房用とする構成である。   In FIG. 1 of the present embodiment, the bath heat exchanger 7 and the floor heating heat exchanger 8 are illustrated as separate bodies, but they may be integrated as shown by a dotted line A. That is, the heat exchanger for bath / floor heating is also used, and the upstream side is for bath and the downstream side is for floor heating.

これにより、風呂用熱交換器7と床暖房用熱交換器8との全体の小形化及び放熱損失の低減を図ることができる。また、冷媒回路の下流側を床暖房用としているが、床暖房は風呂追焚きに比べて低温で長時間使用されるため、冷媒の加熱不足が生じるおそれはない。   Thereby, size reduction of the whole heat exchanger 7 for baths and the heat exchanger 8 for floor heating and reduction of a heat dissipation loss can be aimed at. Moreover, although the downstream side of the refrigerant circuit is used for floor heating, since floor heating is used for a long time at a lower temperature than bathing, there is no possibility of insufficient heating of the refrigerant.

(一般給湯運転時の動作)次に、本発明の多機能型ヒートポンプ給湯機の一般給湯使用時における運転動作の一実施例について、図1と図2によって説明する。   (Operation during General Hot Water Supply Operation) Next, an embodiment of the operation operation of the multi-function heat pump water heater of the present invention when using general hot water will be described with reference to FIGS.

台所蛇口等の給湯端末器18を開けると、湯水使用が始まる(ステップ60)。運転制御手段50によって、第1系統冷媒分配弁2は開、第2系統冷媒分配弁3は閉とする。さらに、圧縮機1を始動させ、第1系統冷媒回路41の運転を開始する。そして、給水源10,給水金具11,減圧弁12,タンク循環ポンプ13,給水側伝熱管4b,給湯混合弁14,湯水混合弁15,流量調整弁16,給湯出口金具17,給湯端末器18の給湯回路により直接給湯運転を開始する(ステップ61)。   When the hot water supply terminal 18 such as a kitchen faucet is opened, the use of hot water begins (step 60). The operation control means 50 opens the first system refrigerant distribution valve 2 and closes the second system refrigerant distribution valve 3. Furthermore, the compressor 1 is started and the operation of the first system refrigerant circuit 41 is started. The water supply source 10, the water supply fitting 11, the pressure reducing valve 12, the tank circulation pump 13, the water supply side heat transfer pipe 4 b, the hot water supply mixing valve 14, the hot water mixing valve 15, the flow rate adjusting valve 16, the hot water supply outlet fitting 17, and the hot water supply terminal 18 The hot water supply operation is started directly by the hot water supply circuit (step 61).

ここで、運転制御手段50は、圧縮機1を回転速度制御手段により運転し、圧縮した高温高圧冷媒を循環させる。それと同時に、第1系統冷媒分配弁2を開き、第2系統冷媒分配弁3を閉じる。これにより、給湯用熱交換器4には冷媒循環するが、風呂用熱交換器7及び床暖房用熱交換器8には冷媒循環を行わない。また、第1系統膨張弁5を開放調整し、第2系統膨張弁9は閉じる。   Here, the operation control means 50 operates the compressor 1 with the rotation speed control means, and circulates the compressed high-temperature and high-pressure refrigerant. At the same time, the first system refrigerant distribution valve 2 is opened and the second system refrigerant distribution valve 3 is closed. Thus, the refrigerant circulates in the hot water supply heat exchanger 4, but the refrigerant is not circulated in the bath heat exchanger 7 and the floor heating heat exchanger 8. Further, the first system expansion valve 5 is adjusted to be opened, and the second system expansion valve 9 is closed.

すなわち、圧縮機1で圧縮された高温高圧冷媒は、給湯用熱交換器4の冷媒側伝熱管4aに送り込まれ、給水側伝熱管4bを流れる給水を加熱する。加熱された温水は給湯混合弁14から湯水混合弁15側へ流れる。   That is, the high-temperature high-pressure refrigerant compressed by the compressor 1 is sent to the refrigerant-side heat transfer tube 4a of the hot water supply heat exchanger 4 and heats the feed water flowing through the water-supply side heat transfer tube 4b. The heated hot water flows from the hot water supply mixing valve 14 to the hot water mixing valve 15 side.

ここで、運転立ち上がり直後は、給湯用熱交換器4に送り込まれる冷媒が充分に高温高圧となり切らず、温度が低い。また、給湯用熱交換器4全体が冷えているため、水を加熱する加熱能力が充分でない。そのため、直接給湯運転(ステップ62)と並行して、予めタンク貯湯運転により貯湯した高温水(例えば65℃)を給湯するタンク給湯運転(ステップ63)を行う。   Here, immediately after the start of operation, the refrigerant fed into the hot water supply heat exchanger 4 is not sufficiently hot and high in pressure, and the temperature is low. Moreover, since the heat exchanger 4 for hot water supply is entirely cooled, the heating capability for heating water is not sufficient. Therefore, in parallel with the direct hot water supply operation (step 62), a tank hot water supply operation (step 63) for supplying hot water (for example, 65 ° C.) previously stored in the tank hot water storage operation is performed.

貯湯タンク19から給湯される高温水は、給湯用熱交換器4から給湯される湯と給湯混合弁14によって混合される。さらに、適正温度(約42℃)になるよう湯水混合弁15で給水源10側からの冷水を適量混合する。その後、流量調整弁16,給湯出口金具17を通して給湯端末器18へ給湯する。   Hot water supplied from the hot water storage tank 19 is mixed with hot water supplied from the hot water supply heat exchanger 4 by the hot water supply mixing valve 14. Further, an appropriate amount of cold water from the water supply source 10 side is mixed by the hot water / water mixing valve 15 so as to obtain an appropriate temperature (about 42 ° C.). Thereafter, hot water is supplied to the hot water supply terminal 18 through the flow rate adjusting valve 16 and the hot water supply outlet fitting 17.

直接給湯運転開始(ステップ62)後は、時間の経過と共に冷媒は高温高圧となる。それに従って、冷媒からの放熱量は増加するので、水への加熱能力が増加する。ここで随時、給湯温度及び流量を判定(ステップ64)し、規定外であれば給湯温度がリモコン等で設定した温度(一例として約42℃。以下、適正温度。)になるよう圧縮機回転速度及び膨張弁の制御,給湯混合弁14及び湯水混合弁15の調整を行って修正する。   After the start of the direct hot water supply operation (step 62), the refrigerant becomes high temperature and pressure as time passes. Accordingly, the amount of heat released from the refrigerant increases, so that the ability to heat water increases. Here, the hot water supply temperature and flow rate are determined at any time (step 64), and if not specified, the compressor rotation speed is set so that the hot water supply temperature is set to a temperature set by a remote controller or the like (for example, about 42 ° C., hereinafter, appropriate temperature). Then, the control is performed by adjusting the expansion valve and adjusting the hot water supply mixing valve 14 and the hot water mixing valve 15.

また、給湯温度及び流量の判定(ステップ64)と平行して直接給湯温度の判定(ステップ67)を行い、直接給湯温度が適正温度(約42℃)より低ければ(規定値以下)、直接給湯運転とタンク給湯運転の同時運転を継続する(ステップ68)。そして、直接給湯温度が適正温度(約42℃)に達すれば(規定内)、タンク給湯運転を停止(ステップ69)して、直接給湯運転のみ継続(ステップ66)する。その後、給湯端末器18の蛇口を閉じて給湯使用が終了(ステップ70)するまで直接給湯運転を継続する。   Further, the determination of the direct hot water supply temperature (step 67) is performed in parallel with the determination of the hot water supply temperature and flow rate (step 64), and if the direct hot water supply temperature is lower than the appropriate temperature (about 42 ° C.) (the specified value or less), the direct hot water supply The simultaneous operation of the operation and the tank hot water supply operation is continued (step 68). When the direct hot water supply temperature reaches an appropriate temperature (about 42 ° C.) (within the regulation), the tank hot water supply operation is stopped (step 69), and only the direct hot water supply operation is continued (step 66). Thereafter, the hot water supply operation is continued until the faucet of the hot water supply terminal 18 is closed and the use of the hot water supply is completed (step 70).

直接給湯運転においては、図1の第1系統冷媒回路41を運転し、圧縮機1は、運転制御手段50によって回転速度制御を行う。これにより、例えば、給水源10の水道等から供給される給水温度が高い夏期には、小さな加熱量で済むので、回転速度を遅くする。一方、給水温度が低い冬期には、大きな加熱量を必要とするため、回転速度を速くして運転する。また、運転制御手段50は、立ち上がり運転時における膨張弁4の開度を小さく調整するように制御する。これにより、冷媒の循環量を少なくして、冷媒の高温化を図り、ヒートポンプの加熱立ち上がり時間を短縮できる。   In the direct hot water supply operation, the first system refrigerant circuit 41 of FIG. 1 is operated, and the compressor 1 performs rotation speed control by the operation control means 50. Thereby, for example, in summer when the temperature of the water supplied from the water supply of the water supply source 10 is high, a small heating amount is sufficient, so the rotation speed is slowed down. On the other hand, during the winter when the feed water temperature is low, a large amount of heating is required, so operation is performed at a high rotational speed. Further, the operation control means 50 performs control so as to adjust the opening of the expansion valve 4 during the stand-up operation to be small. Thereby, the circulation amount of a refrigerant | coolant can be decreased, the temperature of a refrigerant | coolant can be aimed at, and the heating rise time of a heat pump can be shortened.

給湯端末器18の蛇口が閉じられ湯水使用が終了(ステップ70)すると、運転制御手段50は、第1系統冷媒回路41の運転を停止し、直接給湯運転は終了(ステップ71)する。同時に、貯湯タンク19の貯湯温度及び貯湯量の判定(ステップ72)を行う。これにより、規定未満であればタンク貯湯運転(ステップ73)を行って、再度、貯湯温度及び貯湯量の判定(ステップ74)を行う。規定外であれば、タンク貯湯運転を継続する(ステップ75)。   When the faucet of the hot water supply terminal 18 is closed and the use of hot water is finished (step 70), the operation control means 50 stops the operation of the first system refrigerant circuit 41 and the direct hot water supply operation is finished (step 71). At the same time, the hot water storage temperature and amount of hot water stored in the hot water storage tank 19 are determined (step 72). Accordingly, if it is less than the specified value, the tank hot water storage operation (step 73) is performed, and the determination of the hot water storage temperature and the hot water storage amount is performed again (step 74). If not, the tank hot water storage operation is continued (step 75).

そして、規定内に達してからタンク貯湯運転を終了する(ステップ76)。   Then, after reaching the specified value, the tank hot water storage operation is terminated (step 76).

直接給湯運転とタンク貯湯運転が終了すると、第1系統冷媒分配弁2を閉じ、圧縮機1を停止して(ステップ77)、終了する(ステップ78)。   When the direct hot water supply operation and the tank hot water storage operation are finished, the first system refrigerant distribution valve 2 is closed, the compressor 1 is stopped (step 77), and the process is finished (step 78).

(床暖房運転)次に、図1と図3によって床暖房単独運転について説明する。   (Floor Heating Operation) Next, the floor heating single operation will be described with reference to FIGS.

本実施例における床暖房運転の温度制御は、圧縮機1の回転速度と第2系統膨張弁9の開度を制御して行われる。すなわち、冷媒の温度及び循環量を変えることにより、床暖房パネル28を循環する熱媒体の温度を調整して、床暖房パネル28の加熱量を制御する。   The temperature control of the floor heating operation in the present embodiment is performed by controlling the rotation speed of the compressor 1 and the opening degree of the second system expansion valve 9. That is, by changing the temperature and the circulation amount of the refrigerant, the temperature of the heat medium circulating through the floor heating panel 28 is adjusted to control the heating amount of the floor heating panel 28.

床暖房ボタンをONにして床暖房使用を開始(ステップ80)すると、運転制御手段50は、第1系統冷媒分配弁2を閉じて第2系統冷媒分配弁3を開き、第1系統膨張弁5を閉じて第2系統膨張弁9を開度制御する。それと共に、第2系統冷媒回路42及び床暖房循環ポンプ31の運転を開始する(ステップ81)。   When the floor heating button is turned on and floor heating use is started (step 80), the operation control means 50 closes the first system refrigerant distribution valve 2 and opens the second system refrigerant distribution valve 3, and the first system expansion valve 5 Is closed to control the opening of the second system expansion valve 9. At the same time, the operation of the second system refrigerant circuit 42 and the floor heating circulation pump 31 is started (step 81).

次に、運転制御手段50は、床暖房用熱交換器8において加熱された熱媒体の往き温度の判定(ステップ82)、及び床暖房パネル28において放熱した熱媒体の戻り温度の判定(ステップ82)を行う。   Next, the operation control means 50 determines the forward temperature of the heat medium heated in the floor heating heat exchanger 8 (step 82) and the return temperature of the heat medium radiated in the floor heating panel 28 (step 82). )I do.

そして、床暖房加熱量の過不足を判断し、圧縮機1の回転速度と第2系統膨張弁9の開度を制御して床暖房加熱量を調整(ステップ83)し、床暖房加熱量の適正化を図る。   Then, it is determined whether the floor heating heating amount is excessive or insufficient, and the floor heating heating amount is adjusted by controlling the rotation speed of the compressor 1 and the opening of the second system expansion valve 9 (step 83). To optimize.

さらに、床暖房使用時間の設定時間経過判定(ステップ84)を行い、設定時間以内であれば継続運転し、設定時間を超過すれば第2系統冷媒回路42の運転及び床暖房循環ポンプ31の運転を停止して(ステップ85)、床暖房使用は終了(ステップ86)する。   Further, a set time elapse determination of the floor heating usage time is performed (step 84). If it is within the set time, the operation is continued, and if the set time is exceeded, the operation of the second system refrigerant circuit 42 and the operation of the floor heating circulation pump 31 are performed. Is stopped (step 85), and the use of floor heating is terminated (step 86).

なお、フローチャートにおいては各動作を直列的に記載しているが、これは便宜上であって、必ずしも順序を規定するものではなく、床暖房往き温度判定,床暖房戻り温度判定(ステップ82)及び設定時間経過判定(ステップ84)は常時並行して行われている。   In addition, although each operation | movement is described in the flowchart in series, this is for convenience and does not necessarily prescribe | regulate an order, floor heating going-out temperature determination, floor heating return temperature determination (step 82), and setting Time passage determination (step 84) is always performed in parallel.

また、床暖房の温度調整は、熱媒体を循環させる床暖房循環ポンプ31の開閉制御によっても行われる。すなわち、熱媒体の流量を調整することで行われる。   The temperature adjustment of the floor heating is also performed by opening / closing control of the floor heating circulation pump 31 that circulates the heat medium. That is, it is performed by adjusting the flow rate of the heat medium.

(風呂湯張り運転と風呂追焚き運転)次に、図1と図4によって、風呂湯張り及び風呂追焚きの単独運転について説明する。   (Bath bathing operation and bath bathing operation) Next, referring to FIG. 1 and FIG.

まず、風呂自動又は手動セットにより風呂湯張りが始まる(ステップ90)。すると、運転制御手段50は、第1系統冷媒分配弁2を開、第2系統冷媒分配弁3を閉、第1系統膨張弁5を開度制御、第2系統膨張弁9を閉とする。また、湯水混合弁15の給水源10側を閉、湯水調整弁21を開度調整すると共に、圧縮機1を始動させて第1系統冷媒回路41の運転を開始し、給水源10,給水金具11,減圧弁12,タンク循環ポンプ13,給水側伝熱管4b,給湯混合弁14,湯水調整弁21,風呂注湯弁22,水逆止弁23,風呂給湯出口金具27,風呂浴槽24の風呂湯張り水回路により直接給湯運転を開始する(ステップ91)。   First, bath hot water filling starts automatically or manually (step 90). Then, the operation control means 50 opens the first system refrigerant distribution valve 2, closes the second system refrigerant distribution valve 3, closes the first system expansion valve 5, and closes the second system expansion valve 9. In addition, the hot water mixing valve 15 is closed on the side of the water supply source 10 and the hot water adjustment valve 21 is adjusted in opening, and the compressor 1 is started to start the operation of the first system refrigerant circuit 41. 11, pressure reducing valve 12, tank circulation pump 13, water supply side heat transfer pipe 4 b, hot water supply mixing valve 14, hot water adjustment valve 21, bath pouring valve 22, water check valve 23, bath hot water outlet fitting 27, bath tub 24 bath The hot water supply operation is started directly by the hot water circuit (step 91).

ここで、第1系統冷媒回路41による直接給湯運転(ステップ92)の運転開始直後は、水を加熱する加熱能力が充分でない。そのため、図2で説明した一般給湯運転と同様に、直接給湯運転(ステップ92)と並行してタンク給湯運転(ステップ93)を行い、適温(約42℃)の湯を供給する。   Here, immediately after the start of the direct hot water supply operation (step 92) by the first system refrigerant circuit 41, the heating capacity for heating water is not sufficient. Therefore, similarly to the general hot water supply operation described with reference to FIG. 2, the tank hot water supply operation (step 93) is performed in parallel with the direct hot water supply operation (step 92), and hot water at an appropriate temperature (about 42 ° C.) is supplied.

なお、風呂湯張り時のタンク給湯運転(ステップ93)は、給水源10,給水金具11,減圧弁12,貯湯タンク19,給湯混合弁14,湯水調整弁21,風呂注湯弁22,水逆止弁23,風呂給湯出口金具27,風呂浴槽24の風呂湯張り水回路により給湯される。   In addition, the tank hot water supply operation at the time of bath hot water filling (step 93) includes the water supply source 10, the water supply fitting 11, the pressure reducing valve 12, the hot water storage tank 19, the hot water supply mixing valve 14, the hot water adjustment valve 21, the bath pouring valve 22, and the water reverse. Hot water is supplied by a hot water filling circuit of a stop valve 23, a bath hot water outlet 27, and a bath tub 24.

風呂湯張り運転中は、随時、給湯温度及び流量の判定(ステップ94)を行う。規定外であれば給湯温度が適正温度(約42℃)になるよう圧縮機1の回転速度制御及び第1系統膨張弁5の開度制御,給湯混合弁14及び湯水混合弁15の開度制御を行って給湯温度を調整する(ステップ95)。それと共に、流量調整弁16による流量調整を行う。   During bath bathing operation, determination of hot water supply temperature and flow rate is performed at any time (step 94). If not specified, the rotation speed control of the compressor 1 and the opening control of the first system expansion valve 5 and the opening control of the hot water mixing valve 14 and hot water mixing valve 15 so that the hot water supply temperature becomes an appropriate temperature (about 42 ° C.). To adjust the hot water supply temperature (step 95). At the same time, the flow rate is adjusted by the flow rate adjustment valve 16.

給湯温度及び流量の判定(ステップ94)と平行して、直接給湯温度の判定(ステップ97)を行う。直接給湯温度が適正温度(約42℃)より低く規定値以下であれば、直接給湯運転とタンク給湯運転の同時運転を継続し(ステップ98)、直接給湯温度が適正温度(約42℃)及び必要流量に達し規定内になれば、タンク給湯運転を停止(ステップ99)して直接給湯運転のみ継続する。さらに、風呂湯張り量の判定(ステップ94)を行い、規定湯張り量未満であれば直接給湯運転を継続し、規定の湯張り量に達すれば第1系統冷媒回路41の運転を停止し、風呂湯張り運転は終了(ステップ96)する。   In parallel with the determination of the hot water supply temperature and flow rate (step 94), the determination of the hot water supply temperature is directly performed (step 97). If the direct hot water supply temperature is lower than the appropriate temperature (about 42 ° C.) and below the specified value, the simultaneous operation of the direct hot water supply operation and the tank hot water supply operation is continued (step 98). When the required flow rate is reached and within the specified range, the tank hot water supply operation is stopped (step 99) and only the direct hot water supply operation is continued. Furthermore, the bath hot water amount is determined (step 94). If the hot water amount is less than the specified hot water amount, the hot water supply operation is continued. If the predetermined hot water amount is reached, the operation of the first system refrigerant circuit 41 is stopped. The bath hot water driving operation ends (step 96).

風呂湯張り後は、時間経過と共に風呂浴槽24内の湯温が低下する。そこで、風呂自動又は手動セットにより風呂追焚きを開始(ステップ101)すると、運転制御手段50は、第1系統冷媒分配弁2を閉、第2系統冷媒分配弁3を開、第1系統膨張弁5を閉、第2系統膨張弁9を開度制御し、風呂循環ポンプ26及び圧縮機1を始動させて第2系統冷媒回路42の運転を開始し、風呂浴槽24,風呂循環金具25,風呂循環ポンプ26,風呂用熱交換器7の水側風呂伝熱管7b,風呂給湯出口金具27,風呂浴槽24の水循環回路により風呂追焚き運転を行う。   After bathing, the bath temperature in the bath tub 24 decreases with time. Therefore, when bath renewal is started by bath automatic or manual setting (step 101), the operation control means 50 closes the first system refrigerant distribution valve 2, opens the second system refrigerant distribution valve 3, and opens the first system expansion valve. 5 is closed, the opening degree of the second system expansion valve 9 is controlled, the bath circulation pump 26 and the compressor 1 are started, the operation of the second system refrigerant circuit 42 is started, the bath tub 24, the bath circulation fitting 25, the bath The bath reheating operation is performed by the water circulation circuit of the circulation pump 26, the water-side bath heat transfer tube 7b of the bath heat exchanger 7, the bath hot water outlet fitting 27, and the bath tub 24.

風呂湯温は随時検知されており、風呂追焚き運転開始後の風呂湯温判定(ステップ102)において、風呂湯温が規定温度未満であれば風呂追焚き運転を継続し(ステップ103)、規定温度に達すれば第2系統冷媒回路42の運転及び風呂循環ポンプ26の運転を停止し(ステップ104)、風呂追焚きは終了する(ステップ105)。   The bath water temperature is detected at any time, and if the bath water temperature is lower than the specified temperature in the bath water temperature determination after the start of the bath chasing operation (step 102), the bath chasing operation is continued (step 103). When the temperature is reached, the operation of the second system refrigerant circuit 42 and the operation of the bath circulation pump 26 are stopped (step 104), and the bath replenishment ends (step 105).

また、風呂追焚きの温度調整は、風呂循環ポンプ26の開閉制御によっても行われる。すなわち、水の流量を制御して温度調整する。   The temperature adjustment for bathing is also performed by opening / closing control of the bath circulation pump 26. That is, the temperature is adjusted by controlling the flow rate of water.

(床暖房運転と風呂追焚き運転)次に、図1と図5によって床暖房運転と風呂追焚き運転が同時に行われた場合の運転動作について説明する。   (Floor Heating Operation and Bath Pursuit Operation) Next, the operation when the floor heating operation and the bath follow-up operation are performed simultaneously will be described with reference to FIGS.

なお、床暖房運転,風呂追焚き運転の各単独運転については、図3,図4を用いた説明と同様であるため、床暖房運転,風呂追焚き運転の詳細は省略する。   Note that the individual operations of the floor heating operation and the bath follow-up operation are the same as those described with reference to FIGS. 3 and 4, and therefore details of the floor heating operation and the bath follow-up operation are omitted.

一般的に、床暖房の使用は朝夕、特に夕方から夜にかけて長時間使用される。また、風呂追焚きは短時間で比較的夜遅く使用される場合が多い。従って、床暖房が先に使用されており、床暖房使用中に風呂追焚きが行われた場合の運転動作の一実施例について説明する。   In general, floor heating is used for a long time from morning to evening, particularly from evening to night. In addition, bathing is often used in a short time and relatively late at night. Therefore, an example of the operation when the floor heating is used first and the bath is reheated while the floor heating is used will be described.

自動又は手動セットにより風呂追焚きが開始されると(ステップ110)、床暖房運転中か否かを判定する(ステップ111)。ここで、床暖房運転中でなければ、図4のステップ101に移行して、風呂追焚き運転を行う(ステップ112)。一方、床暖房運転中の場合、運転制御手段50は、第2系統冷媒回路42の運転を開始すると同時に(ステップ114)、ステップ82に移行して、床暖房運転を継続して行う(ステップ117)。   When bath reheating is started automatically or manually (step 110), it is determined whether or not the floor heating operation is being performed (step 111). Here, if it is not under floor heating operation, it will transfer to Step 101 of Drawing 4, and will perform bath rebirth operation (Step 112). On the other hand, when the floor heating operation is being performed, the operation control means 50 starts the operation of the second system refrigerant circuit 42 (step 114), and at the same time, proceeds to step 82 to continue the floor heating operation (step 117). ).

ここで、床暖房中に風呂追焚きが行われると、第2系統冷媒回路42の床暖房用熱交換器8における加熱性能は、風呂用熱交換器7内で風呂循環水に放熱される分不足するので、運転制御手段は風呂湯温判定(ステップ115)を行い風呂追焚きに必要な熱量を算出する。これにより、風呂追焚き及び床暖房に充分、かつ、適切な加熱能力となるよう圧縮機1の回転速度制御及び第2系統膨張弁9の開度制御(ステップ116)を行う。   Here, when bath reheating is performed during floor heating, the heating performance of the second-system refrigerant circuit 42 in the floor heating heat exchanger 8 is the amount of heat radiated to the bath circulating water in the bath heat exchanger 7. Since there is a shortage, the operation control means performs bath temperature determination (step 115) and calculates the amount of heat necessary for bath renewal. Thereby, the rotational speed control of the compressor 1 and the opening degree control of the second system expansion valve 9 are performed (step 116) so that the heating capacity is sufficient and suitable for bathing and floor heating.

また、風呂湯温判定(ステップ115)において、規定温度未満であれば、風呂追焚き運転を継続し(ステップ116)、規定温度に達すると風呂循環ポンプ26を停止して風呂追焚きは終了する(ステップ118)。   Further, in the bath water temperature determination (step 115), if the temperature is lower than the specified temperature, the bath renewal operation is continued (step 116), and when the specified temperature is reached, the bath circulation pump 26 is stopped and the bath renewal is ended. (Step 118).

風呂追焚きが終了(ステップ118)された場合においても、床暖房が適切な温度になるよう圧縮機1の回転速度制御及び第2系統膨張弁9の開度制御(ステップ84)を行い、床暖房運転は継続される。   Even when the bath reheating is finished (step 118), the rotation speed control of the compressor 1 and the opening degree control of the second system expansion valve 9 (step 84) are performed so that the floor heating becomes an appropriate temperature. Heating operation is continued.

さらに、床暖房設定時間経過判定(ステップ84)において、設定時間に達すれば、第2系統冷媒回路42の運転及び床暖房循環ポンプ31の運転を停止して(ステップ85)、床暖房使用は終了(ステップ86)する。   Further, in the floor heating set time elapse determination (step 84), when the set time is reached, the operation of the second system refrigerant circuit 42 and the operation of the floor heating circulation pump 31 are stopped (step 85), and the use of the floor heating is ended. (Step 86).

床暖房と風呂追焚きとの同時運転の場合において、床暖房は比較的長時間(例えば1〜2時間)使用されるのに対し、風呂追焚きは一般に風呂給湯温度(約42℃)から5〜6℃低下した程度で運転され、数分間で終了する。また、入浴中又は入浴直前の場合が多く、短時間で適温(約42℃)に達することが必要である。   In the case of simultaneous operation of floor heating and bath reheating, floor heating is used for a relatively long time (for example, 1 to 2 hours), while bath reheating is generally performed from a bath hot water temperature (about 42 ° C.) to 5 ° C. It is operated at a level of ˜6 ° C. and ends in a few minutes. In many cases, just before bathing or just before bathing, it is necessary to reach an appropriate temperature (about 42 ° C.) in a short time.

本構成は、短時間で高温の熱交換が必要な風呂用熱交換器7を冷媒流路の上流側に設置して、長時間、低温で使用される床暖房用熱交換器8を冷媒の下流側に直列に設置する。これにより、高温冷媒が風呂用熱交換器7を流れ、風呂用熱交換器7で熱交換した後の低温冷媒が、床暖房用熱交換器8を流れるので、熱損失を低くすることができる。   In this configuration, a bath heat exchanger 7 that requires high-temperature heat exchange in a short time is installed on the upstream side of the refrigerant flow path, and the floor heating heat exchanger 8 that is used for a long time at low temperature is used as a refrigerant. Install in series downstream. Thereby, since the high-temperature refrigerant flows through the heat exchanger for bath 7 and the low-temperature refrigerant after heat exchange in the heat exchanger for bath 7 flows through the heat exchanger for floor heating 8, heat loss can be reduced. .

なお、風呂水は風呂循環ポンプ26で流量調整され、熱媒体は床暖房循環ポンプ31で流量調整される。これにより、風呂追焚きと床暖房が夫々異なる適正温度に設定されていても、循環ポンプの開閉制御によって夫々の適正温度にできるので、熱損失を低減した運転ができる。   The flow rate of the bath water is adjusted by the bath circulation pump 26, and the flow rate of the heat medium is adjusted by the floor heating circulation pump 31. As a result, even if the bath reheating and floor heating are set to different proper temperatures, the proper temperature can be set by the open / close control of the circulation pump, so that operation with reduced heat loss can be performed.

また、本発明の実施例においては、圧縮機1及び蒸発器6をそれぞれ1つとした1サイクル2系統の冷媒サイクル回路としたが、これに限るものではなく、圧縮機及び蒸発器を2つとした2サイクル方式としても同様の効果を有するものである。   Further, in the embodiment of the present invention, the refrigerant cycle circuit has one cycle and two systems each having one compressor 1 and one evaporator 6, but the invention is not limited to this, and there are two compressors and evaporators. The two-cycle method has the same effect.

本発明の多機能型ヒートポンプ給湯機の全体系統図。1 is an overall system diagram of a multifunction heat pump water heater of the present invention. 本発明の多機能型ヒートポンプ給湯機における給湯運転の一実施例を示すフロー図。The flowchart which shows one Example of the hot_water | molten_metal supply driving | operation in the multifunctional type heat pump water heater of this invention. 本発明の多機能型ヒートポンプ給湯機における床暖房運転の一実施例を示すフロー図。The flowchart which shows one Example of the floor heating driving | operation in the multifunctional heat pump water heater of this invention. 本発明の多機能型ヒートポンプ給湯機における風呂湯張り運転と風呂追焚き運転との一実施例を示すフロー図。The flowchart which shows one Example of the bath hot water filling operation and the bath reheating operation in the multifunctional type heat pump water heater of the present invention. 本発明の多機能型ヒートポンプ給湯機における床暖房運転と風呂追焚き運転との一実施例を示すフロー図。The flowchart which shows one Example of the floor heating operation in the multifunctional heat pump water heater of this invention, and a bath reheating operation.

符号の説明Explanation of symbols

1 圧縮機
2 第1系統冷媒分配弁
3 第2系統冷媒分配弁
4 給湯用熱交換器
5 第1系統膨張弁
6 蒸発器
7 風呂用熱交換器
8 床暖房用熱交換器
9 第2系統膨張弁
12 減圧弁
13 タンク循環ポンプ
14 給湯混合弁
15 湯水混合弁
16 流量調整弁
19 貯湯タンク
21 湯水調整弁
22 風呂注湯弁
23 水逆止弁
24 風呂浴槽
26 風呂循環ポンプ
28 床暖房パネル
30 熱媒体タンク
31 床暖房循環ポンプ
40 ヒートポンプ冷媒回路
41 第1系統冷媒回路
42 第2系統冷媒回路
45 水回路
50 運転制御手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 1st system refrigerant | coolant distribution valve 3 2nd system refrigerant | coolant distribution valve 4 Hot water supply heat exchanger 5 1st system expansion valve 6 Evaporator 7 Bath heat exchanger 8 Floor heating heat exchanger 9 2nd system expansion Valve 12 Pressure reducing valve 13 Tank circulation pump 14 Hot water mixing valve 15 Hot water mixing valve 16 Flow rate adjustment valve 19 Hot water storage tank 21 Hot water adjustment valve 22 Bath pouring valve 23 Water check valve 24 Bathtub 26 Bath circulation pump 28 Floor heating panel 30 Heat Medium tank 31 Floor heating circulation pump 40 Heat pump refrigerant circuit 41 First system refrigerant circuit 42 Second system refrigerant circuit 45 Water circuit 50 Operation control means

Claims (7)

圧縮機と蒸発器を有するヒートポンプ給湯機において、
給水された水と冷媒とを熱交換させる第一の熱交換器と、
前記圧縮機と前記第一の熱交換器と前記蒸発器とを有する第一の冷媒回路と、
前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器を有する第二の冷媒回路と、
前記第一の熱交換器に接続された給湯水回路と、
前記第二の熱交換器に接続された風呂追焚き水回路または床暖房熱媒体回路と、
を備えたことを特徴とするヒートポンプ給湯機。
In a heat pump water heater having a compressor and an evaporator,
A first heat exchanger that exchanges heat between the supplied water and the refrigerant;
A first refrigerant circuit having the compressor, the first heat exchanger, and the evaporator;
A second refrigerant circuit having a second heat exchanger connected to the compressor and the evaporator and connected in parallel to the first heat exchanger;
A hot water supply circuit connected to the first heat exchanger;
A bath reheating water circuit or a floor heating heat medium circuit connected to the second heat exchanger;
A heat pump water heater characterized by comprising:
圧縮機と蒸発器を有するヒートポンプ給湯機において、
給水部から給水された水と冷媒とを熱交換させる第一の熱交換器と、
風呂浴槽から送られた水と冷媒とを熱交換させる第二の熱交換器と、
床暖房パネルから送られた熱媒体と冷媒とを熱交換させる第三の熱交換器と、
前記圧縮機と前記第一の熱交換器と前記蒸発器とを有する第一の冷媒回路と、
前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器と第三の熱交換器とを有する第二の冷媒回路と、
前記第一の熱交換器に接続された給湯水回路と、
前記第二の熱交換器に接続された風呂追焚き水回路と、
前記第三の熱交換器に接続された床暖房熱媒体回路と、
を有することを特徴とするヒートポンプ給湯機。
In a heat pump water heater having a compressor and an evaporator,
A first heat exchanger for exchanging heat between the water supplied from the water supply unit and the refrigerant;
A second heat exchanger that exchanges heat between the water sent from the bath tub and the refrigerant;
A third heat exchanger for exchanging heat between the heat medium sent from the floor heating panel and the refrigerant;
A first refrigerant circuit having the compressor, the first heat exchanger, and the evaporator;
A second refrigerant circuit having a second heat exchanger and a third heat exchanger connected to the compressor and the evaporator and connected in parallel to the first heat exchanger;
A hot water supply circuit connected to the first heat exchanger;
A bath reheating water circuit connected to the second heat exchanger;
A floor heating heat medium circuit connected to the third heat exchanger;
The heat pump water heater characterized by having.
圧縮機と蒸発器を有するヒートポンプ給湯機において、
給水端末から給水される水と冷媒とを熱交換させる第一の熱交換器と、
風呂浴槽から送られる水と冷媒とを熱交換させる第二の熱交換器と、
床暖房パネルから送られる熱媒体と冷媒とを熱交換させる第三の熱交換器と、
前記圧縮機と第一の冷媒分配弁と前記第一の熱交換器と第一の膨張弁と前記蒸発器が順に接続された第一の冷媒回路と、
前記圧縮機と第二の冷媒分配弁と前記第二の熱交換器と前記第三の熱交換器と第二の膨張弁と前記蒸発器が順に接続された第二の冷媒回路と、
前記第一の熱交換器に接続され第一の循環ポンプを有する給湯水回路と、
前記第二の熱交換器に接続され第二の循環ポンプを有する風呂追焚き水回路と、
前記第三の熱交換器に接続され第三の循環ポンプを有する床暖房熱媒体回路と、
を備えたことを特徴とするヒートポンプ給湯機。
In a heat pump water heater having a compressor and an evaporator,
A first heat exchanger that exchanges heat between the water supplied from the water supply terminal and the refrigerant;
A second heat exchanger that exchanges heat between the water sent from the bath tub and the refrigerant;
A third heat exchanger that exchanges heat between the heat medium sent from the floor heating panel and the refrigerant;
A first refrigerant circuit in which the compressor, the first refrigerant distribution valve, the first heat exchanger, the first expansion valve, and the evaporator are sequentially connected;
A second refrigerant circuit in which the compressor, the second refrigerant distribution valve, the second heat exchanger, the third heat exchanger, a second expansion valve, and the evaporator are sequentially connected;
A hot water supply circuit connected to the first heat exchanger and having a first circulation pump;
A bath reheating water circuit having a second circulation pump connected to the second heat exchanger;
A floor heating heat medium circuit connected to the third heat exchanger and having a third circulation pump;
A heat pump water heater characterized by comprising:
圧縮機と蒸発器と第一の熱交換器とを有する第一の冷媒回路と、
前記圧縮機と前記蒸発器が接続され、かつ、前記第一の熱交換器と並列に接続される第二の熱交換器を有する第二の冷媒回路と、
前記第一の熱交換器に接続される給湯水回路と、
前記第二の熱交換器の上流部分の熱交換器に接続される風呂追焚き水回路と、
前記第二の熱交換器の下流部分の熱交換器に接続される床暖房熱媒体回路と、
を備えることを特徴とするヒートポンプ給湯機。
A first refrigerant circuit having a compressor, an evaporator, and a first heat exchanger;
A second refrigerant circuit having a second heat exchanger connected to the compressor and the evaporator and connected in parallel to the first heat exchanger;
A hot water supply circuit connected to the first heat exchanger;
A bath water supply circuit connected to the heat exchanger in the upstream portion of the second heat exchanger;
A floor heating heat medium circuit connected to a heat exchanger in a downstream portion of the second heat exchanger;
A heat pump water heater characterized by comprising.
請求項1乃至4のいずれかに記載のヒートポンプ給湯機において、
貯湯タンクと給湯混合弁とを有し前記給湯水回路と並列に接続されるタンク給湯回路を備えることを特徴とするヒートポンプ給湯機。
In the heat pump water heater according to any one of claims 1 to 4,
A heat pump water heater comprising a tank hot water supply circuit having a hot water storage tank and a hot water supply mixing valve and connected in parallel with the hot water supply water circuit.
請求項2に記載のヒートポンプ給湯機において、
第一の冷媒回路と第二の冷媒回路の分岐部に冷媒を分配する弁を有することを特徴とするヒートポンプ給湯機。
In the heat pump water heater according to claim 2,
A heat pump water heater having a valve for distributing the refrigerant to a branch portion between the first refrigerant circuit and the second refrigerant circuit.
請求項1乃至4に記載のヒートポンプ給湯機において、
前記給湯水回路は給水された水を第一の熱交換器で熱交換して、直接、給湯端末から給湯することを特徴とするヒートポンプ給湯機。
In the heat pump water heater according to claim 1 to 4,
The hot water supply water circuit is characterized in that the supplied water is heat-exchanged by a first heat exchanger and directly supplied from a hot water supply terminal.
JP2007153465A 2007-06-11 2007-06-11 Heat pump water heater Withdrawn JP2008304153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153465A JP2008304153A (en) 2007-06-11 2007-06-11 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153465A JP2008304153A (en) 2007-06-11 2007-06-11 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2008304153A true JP2008304153A (en) 2008-12-18

Family

ID=40233025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153465A Withdrawn JP2008304153A (en) 2007-06-11 2007-06-11 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2008304153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225544A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Storage water heater
JP2013257091A (en) * 2012-06-13 2013-12-26 Gastar Corp Heat source device
JP2019027749A (en) * 2017-08-03 2019-02-21 リンナイ株式会社 Hot water heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225544A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Storage water heater
JP2013257091A (en) * 2012-06-13 2013-12-26 Gastar Corp Heat source device
JP2019027749A (en) * 2017-08-03 2019-02-21 リンナイ株式会社 Hot water heating system

Similar Documents

Publication Publication Date Title
JP5073970B2 (en) Heat pump hot water floor heater
JP5078421B2 (en) Heat pump hot water floor heater
JP4215735B2 (en) Heat pump water heater
TWI377325B (en)
JP2007263517A (en) Heat pump water heater
JP6107958B2 (en) Heat storage system
JP5589943B2 (en) Hot water storage water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP2003240342A (en) Heat pump type hot water supply system
JP4030394B2 (en) Hot water storage water heater
JP3887781B2 (en) Heat pump water heater
JP2008304153A (en) Heat pump water heater
JP2006125722A (en) Heat pump hot water supply heating system
JP6095749B1 (en) Hot water system
JP5081050B2 (en) Heat pump water heater
WO2018066037A1 (en) Storage type hot water supplying device, hot water supplying method, and program
JP5021385B2 (en) Heat pump water heater and operating method thereof
JP2010054145A (en) Heat pump water heater
JP2004293837A (en) Hot-water storage type hot-water supply device
JP2006162101A (en) Heat pump water heater
JP4988521B2 (en) Heat pump water heater
JP2006118752A (en) Storage type water heater
JP5094217B2 (en) Heat pump water heater
JP2005241216A (en) Heat pump type hot water supply heating system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907