WO2014002133A1 - Heat-pump type hot water supply/heating system - Google Patents

Heat-pump type hot water supply/heating system Download PDF

Info

Publication number
WO2014002133A1
WO2014002133A1 PCT/JP2012/004111 JP2012004111W WO2014002133A1 WO 2014002133 A1 WO2014002133 A1 WO 2014002133A1 JP 2012004111 W JP2012004111 W JP 2012004111W WO 2014002133 A1 WO2014002133 A1 WO 2014002133A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
heat pump
hot water
heat
combustion
Prior art date
Application number
PCT/JP2012/004111
Other languages
French (fr)
Japanese (ja)
Inventor
博 米谷
川岸 元彦
高橋 佳宏
耕司 松澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/004111 priority Critical patent/WO2014002133A1/en
Publication of WO2014002133A1 publication Critical patent/WO2014002133A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1081Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors

Definitions

  • the present invention relates to a heat pump hot water supply and heating system that heats water by exchanging heat from outside air by a heat pump refrigeration cycle by a heat exchanger and supplies the heated hot water to hot water supply or heating equipment.
  • FIG. 1 is a configuration diagram of a heat pump hot water supply and heating system according to Embodiment 1 of the present invention, as will be described later.
  • a conventional heat pump hot water supply and heating system will be described with reference to FIG.
  • a heat pump device 20 having a heat pump refrigeration cycle for circulating the refrigerant is connected to the water flow path 21 via a first heat exchanger 22 acting as a radiator.
  • the first heat exchanger 22 may be housed inside the housing of the heat pump device 20.
  • the water channel 21 is a channel through which hot water or antifreeze liquid heated by heat exchange with the refrigerant passing through the first heat exchanger 22 circulates.
  • a tank unit 28 having a hot water storage tank 25 and a second heat exchanger 29, a radiator 26 and a floor heating device 27 are connected in parallel to the water flow path 21, and hot water or antifreeze liquid flowing out from the first heat exchanger 22 is connected thereto. Is switched to the tank unit 28 side or to the radiator 26 and floor heating equipment 27 side by the three-way valve 23. In addition, it is good also as a structure which switches a flow path using two two-way valves instead of this three-way valve 23.
  • Heat supply to the hot water supply water stored in the hot water storage tank 25 is performed by supplying hot water or antifreeze liquid heated by the first heat exchanger 22 via the second heat exchanger 29 provided inside or outside the hot water storage tank 25. This is done by exchanging heat with water.
  • the radiator 26 is for heating by heat radiation
  • the floor heating device 27 is for heating from the floor of a living space such as a house, and a plurality of units are installed in each room according to the configuration of the house or the like. Installed.
  • the hot water or antifreeze liquid heated by the first heat exchanger 22 and the hot water supply water in the hot water storage tank 25 are heat-exchanged by the second heat exchanger 29, so
  • the boiling operation is finished.
  • hot water is used, hot water is discharged from the upper part of the hot water storage tank 25, mixed with water and supplied to the user as hot water at a temperature set by the user.
  • new water is supplied from the lower part of the hot water storage tank 25. Accordingly, the interior of the hot water storage tank 25 is always full.
  • the detection value of one or a plurality of room temperature sensors 36 installed in the dwelling, or the detected hot water temperature sensor 33 or the return hot water temperature sensor 34 of the water flow path 21 is a predetermined value.
  • the control of the hot water temperature by the heat pump device 20 is performed. This control of the hot water temperature is performed by changing the frequency of the compressor 20a in the heat pump device 20.
  • the combustion heat source 40 is operated, the detected value of the room temperature sensor 36, or the warm water temperature sensor 33a of the water flow path 21 or the return warm water temperature sensor 34a becomes a predetermined value as in the case of the heat pump device 20.
  • the hot water temperature is controlled by the combustion heat source 40.
  • This combustion heat source 40 is mainly used when the heat pump device 20 fails or when heat supply by the heat pump device 20 cannot be sufficiently performed due to a decrease in the outside air temperature.
  • the above configuration and operation are an example of the configuration and operation of a conventional heat pump hot water supply and heating system.
  • the conventional heat source switching method has been determined based on the lack of capacity of the heat pump device, and there is a problem that the operating cost is not taken into consideration.
  • heat pump devices can supply three or more times the amount of electricity that is normally input, the operating cost of heat pump devices is usually lower than that of combustion heat sources.
  • the efficiency of the heat pump device is significantly reduced, there is a problem that the operation cost is higher in the heat pump device than in the combustion heat source.
  • the operating cost per unit of heat supply may increase compared to when operating with a combustion heat source, such as the peak charge time period when an electricity price contract for each time period is concluded with an energy supply company. There was also a point.
  • the present invention has been made in order to solve the above-described problems.
  • a heat pump hot water supply / heating system including a heat pump device and a combustion heat source as a heat source
  • the heat source is switched so that predetermined determination information is reduced. It is an object of the present invention to provide a heat pump type hot water supply system that can be used.
  • a heat pump hot water supply / heating system includes a heat pump device having a refrigeration cycle circuit in which a compressor, a radiator, an expansion device, and an evaporator are connected by refrigerant piping, and the refrigerant flow path via the radiator.
  • a heat pump type hot water supply and heating system connected in parallel, which detects and acquires an outside air temperature, and a hot water temperature measuring means that detects and acquires a hot water temperature that is the temperature of water flowing through the water flow path.
  • Load amount calculating means for calculating the load amount of the heat pump device and the load amount of the combustion heat source, the outside air temperature, the hot water temperature, the heat pump Heat pump characteristic data storage means that stores heat pump characteristic data that is data relating to the association between the load amount of the apparatus and COP, and a combustion type that stores combustion type heat source characteristic data that is data related to the association between the load quantity and efficiency of the combustion type heat source
  • a heat source characteristic data storage means an energy unit price acquisition means for storing an electricity bill unit price and a fuel charge unit price; the outside air temperature obtained by the outside air temperature measurement means; the hot water temperature obtained by the hot water temperature measurement means; Estimating the COP of the heat pump device based on the load amount of the heat pump device calculated by the load amount calculation unit and the heat pump characteristic data stored in the heat pump characteristic data storage unit, and the combustion heat source
  • the combustion type stored in the characteristic data storage means Heat source performance estimation means for estimating the efficiency of the combustion heat source based on source characteristic data, the COP estimated by the heat source performance estimation
  • the operation cost of the heat pump device and the combustion heat source that are heat sources is estimated, and the estimated operation cost is switched to the heat source with a low operation cost that is the determination information as the determination information for switching the heat source. Therefore, for example, when compared with the case where the heat pump device is always operated independently, the operation cost can be surely reduced.
  • FIG. 1 It is a block diagram of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. It is a figure which shows the structure of the various means for implementing heat source switching of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. It is a flowchart which shows the basic operation
  • FIG. It is a block diagram of the system controller 32 of the heat pump type hot-water supply heating system which concerns on Embodiment 4 of this invention. It is the figure which showed the correlation of the load amount memorize
  • FIG. 1 is a configuration diagram of a heat pump hot water supply / heating system according to Embodiment 1 of the present invention.
  • the heat pump hot water supply and heating system includes a heat pump device 20, a first heat exchanger 22, a combustion heat source 40, a tank unit 28, a radiator 26, and a floor heating device 27. ing.
  • the heat pump device 20 houses a compressor 20a, an expansion device 20b, and an evaporator 20c.
  • the first heat exchanger 22 and the first heat exchanger 22 are connected by a refrigerant pipe, and a refrigeration cycle circuit in which the refrigerant circulates is configured.
  • the compressor 20a can change the operating frequency by an inverter and compresses and discharges the gas refrigerant.
  • the first heat exchanger 22 acts as a radiator, and exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 20a with water or antifreeze liquid (hereinafter simply referred to as “water”) flowing through a water passage 21 described later. Then, heat is dissipated from the refrigerant to the water.
  • water water or antifreeze liquid
  • the first heat exchanger 22 is assumed to be installed outside the heat pump device 20, but may be housed inside the heat pump device 20. Then, the 1st heat exchanger 22 is demonstrated as what is a part of component of the heat pump apparatus 20.
  • FIG. 1st heat exchanger 22 is demonstrated as what is a part of component of the heat pump apparatus 20.
  • the expansion device 20b is configured by an electronic expansion valve or the like, and can adjust the refrigerant flow rate.
  • the evaporator 20c performs heat exchange between the air and the refrigerant, has a variable capacity fan, and evaporates the refrigerant.
  • the heat pump device 20 and the first heat exchanger 22 that are heat supply sources for water, and the combustion heat source 40 are connected in parallel by a water pipe, and further, A tank unit 28, a radiator 26, and a floor heating device 27, which are supply destinations, are also connected in parallel by water pipes, and a water flow path 21 is formed.
  • the water flow path 21 through which the water flowing in and out from the first heat exchanger 22 is provided with a circulation pump 24, and the water is circulated by the circulation pump 24.
  • the water passage 21 through which the water flowing in and out from the combustion heat source 40 circulates is provided with a circulation pump 24a, and water is circulated by the circulation pump 24a.
  • the water flow path 21 is provided with a three-way valve 23, and flows out of the hot water or the warmed antifreeze liquid (hereinafter simply referred to as “hot water”) flowing out from the first heat exchanger 22 or from the combustion heat source 40.
  • the heated water is switched to the tank unit 28 side or to the radiator 26 and the floor heating device 27 side by the three-way valve 23.
  • it is good also as a structure which switches a flow path using two two-way valves instead of this three-way valve 23.
  • the combustion heat source 40 is a hot water heater such as a boiler that burns fuel and supplies heat to the hot water.
  • the tank unit 28 includes a hot water storage tank 25 and a second heat exchanger 29.
  • the hot water storage tank 25 stores hot water supply water. When hot water is used, hot water as hot water supply water is discharged from the upper part thereof, and new hot water supply water is supplied from the lower part thereof.
  • the second heat exchanger 29 is connected to the water flow path 21 and performs heat exchange between the hot water flowing out from the first heat exchanger 22 and the hot water supply water stored in the hot water storage tank 25. is there. That is, the hot water stored in the hot water storage tank 25 is heated by the hot water flowing out from the first heat exchanger 22.
  • the radiator 26 and the floor heating device 27 are connected to the water flow path 21, and the hot water flowing out from the first heat exchanger 22 flows in and heats each.
  • the radiator 26 is for heating by heat radiation
  • the floor heating device 27 is for heating from the floor of a living space such as a house, and a plurality of units are installed in each room according to the configuration of the house or the like. Installed.
  • the heat pump hot water supply / heating system includes a heat source controller 31 and a system controller 32 (hot water supply / heating system control device).
  • the heat source controller 31 is housed in the heat pump device 20 and controls the operation of the fans of the compressor 20a, the expansion device 20b, and the evaporator 20c.
  • the system controller 32 is housed in the tank unit 28, and starts and stops the heat source controller 31, outputs an operation frequency command for the compressor 20a, starts and stops the circulation pumps 24 and 24a, and outputs a rotation speed command.
  • the flow path switching command of the three-way valve 23 is output, and the combustion heat source 40 is started and stopped.
  • the system controller 32 is stored in the tank unit 28, but is not limited to this, and may be stored in the heat pump device 20.
  • the system controller 32 alone may be provided as a separate part.
  • the heat source controller 31 and the system controller 32 are configured as separate controllers.
  • the controller is not limited to this, and is configured as a single controller having both functions. It may be installed inside the heat pump device 20 or inside the tank unit 28.
  • the heat pump hot water supply / heating system includes an outside air temperature sensor 30, an outgoing hot water temperature sensor 33, 33 a, and a return sensor as sensors for grasping the operation state of the system.
  • Hot water temperature sensors 34, 34 a, one or more tank water temperature sensors 35, a room temperature sensor 36, flow rate sensors 37, 37 a, and a hot water temperature sensor 38 are provided, and information detected by each sensor is transmitted to the system controller 32. Is done.
  • the outside air temperature sensor 30 detects the outside air temperature around the heat pump device 20.
  • the outgoing hot water temperature sensor 33 detects the temperature of the hot water flowing out from the first heat exchanger 22.
  • the outgoing hot water temperature sensor 33a detects the temperature of hot water flowing out from the combustion heat source 40.
  • the return hot water temperature sensor 34 detects the temperature of the hot water flowing into the first heat exchanger 22.
  • the return hot water temperature sensor 34 a detects the temperature of the hot water flowing into the combustion heat source 40.
  • the tank water temperature sensor 35 is provided at at least one location in the vertical direction of the hot water storage tank 25 and detects the temperature of hot water stored in the hot water storage tank 25.
  • the room temperature sensor 36 detects the temperature in a room such as a living space where the radiator 26 is installed.
  • the flow rate sensor 37 is arranged to detect the flow rate of the hot water flowing into the first heat exchanger 22, but may detect the flow rate of the hot water flowing out from the first heat exchanger 22.
  • the flow rate sensor 37 a is arranged to detect the flow rate of hot water flowing into the combustion heat source 40, but may detect the flow rate of hot water flowing out from the combustion heat source 40.
  • the hot water temperature sensor 38 is a water flow path 21 in which the hot water flowing out from the first heat exchanger 22 and the hot water flowing out from the combustion heat source 40 are merged because the heat pump device 20 and the combustion heat source 40 are operating simultaneously. The temperature of the hot water at that location is detected.
  • the temperature of hot water detected by each of the above sensors is simply referred to as “warm water temperature”.
  • FIG. 2 is a diagram showing a configuration of various means for performing heat source switching in the heat pump hot water supply / room heating system according to Embodiment 1 of the present invention.
  • the heat pump hot water supply and heating system includes an operating heat source determination unit 11 and a heat source switching control unit 4.
  • the operating heat source determination means 11 is an embodiment of the heat source performance estimation means 1, the determination information estimation means for estimating determination information used for heat source switching determination, the operation cost estimation means 2, the operation heat source selection means 3, and the load amount calculation. It comprises means 5, outside air temperature acquisition means 6, hot water temperature acquisition means 7, heat pump characteristic data storage means 8, combustion type heat source characteristic data storage means 9 and energy unit price acquisition means 10.
  • the heat source switching operation between the heat pump device 20 and the combustion heat source 40 by each means will be described later.
  • Each of these means may be configured such that each function is realized by hardware or software in the system controller 32.
  • the outside air temperature acquisition means 6 and the outside air temperature sensor 30 correspond to the “outside air temperature measurement means” of the present invention, and the hot water temperature acquisition means 7 and the forward hot water temperature sensors 33 and 33a or the return hot water temperature sensors 34 and 34a. Corresponds to “warm water temperature measuring means” of the present invention.
  • the operating cost estimation means 2 corresponds to the “determination information estimation means” of the present invention.
  • FIG. 3 is a flowchart showing the basic operation of the heat pump hot water supply / heating system according to Embodiment 1 of the present invention. Hereinafter, the basic operation of the heat pump hot water supply and heating system will be described with reference to FIG.
  • the user can perform the heating operation of the hot water storage tank 25 in the tank unit 28 or the radiator 26 or the floor heating device by an operation interface of the system controller 32 provided in the tank unit 28 or a remote controller installed in the air-conditioning target space or the like.
  • “Operation command” for manually setting the start or stop of the heating operation by 27, the heating operation of the hot water storage tank 25, or the time at which the automatic start or automatic stop of the heating operation by the radiator 26 or the floor heating device 27 is permitted or prohibited Can be set, or “temperature” required for determining the operating conditions of the heating operation of the hot water storage tank 25 or the heating operation by the radiator 26 or the floor heating device 27.
  • the setting information is transmitted to the system controller 32 by wireless or wired communication.
  • S2 Control cycle determination process
  • the system controller 32 counts the time with a timer and determines whether or not the accumulated time has reached the time of the control cycle.
  • the process proceeds to S3 and subsequent steps.
  • the accumulated time is reset when the process moves to S3. If the accumulated time has not reached the time of the control cycle, the determination process of S2 is repeated until the time of the control cycle is reached.
  • the system controller 32 acquires detection information from various sensors, operation signals from a remote controller and the operation state of the heat pump device 20.
  • the operating state of the heat pump device 20 is acquired from the heat source device controller 31. Then, the process proceeds to step S4.
  • step S4 System stop determination process
  • the system controller 32 When the system controller 32 is operated to stop the system by the operation of the remote controller or the like by the user, the system controller 32 proceeds to step S9 in order to stop the system based on the operation signal. Otherwise, the process proceeds to step S5.
  • step S5 Abnormality detection process
  • the system controller 32 determines whether there is an abnormality in the detection information from each sensor acquired in step S3. For example, when an abnormality is detected such that the temperature of the hot water detected by the return hot water temperature sensor 34 is abnormally high, the process proceeds to step S10. If there is no abnormality, the process proceeds to step S6.
  • the system controller 32 determines the operation mode of the heat pump hot water supply and heating system based on the information acquired from each sensor acquired in step S3 and the information set by the user with the remote controller, and the tank heating operation, the heating operation, and the stop Each operation state such as a defrosting operation of the heat pump device 20, a Legionella sterilization operation of the tank, and an antifreezing operation is determined. Then, the process proceeds to step S7.
  • the system controller 32 determines whether to switch to the heat pump device 20 or the combustion heat source 40 by the processing by the heat source performance estimation unit 1, the operation cost estimation unit 2, and the operation heat source selection unit 3. Do.
  • the system controller 32 performs a heat source switching operation between the heat pump device 20 and the combustion heat source 40 based on the determination result of step S7 by the processing by the heat source switching control unit 4. And the output of each apparatus is controlled according to the detection information from the sensor acquired by step S3, and the target value of a control object.
  • the heat pump device 20 for example, the outgoing hot water temperature 33, the tank water temperature 35 or the room temperature 36 is controlled, and the load amount is controlled by changing the compressor frequency of the heat pump device 20 so that the sensor measurement value becomes the control target value. .
  • the temperature of the incoming hot water, the temperature of the tank water, or the room temperature is controlled, and the amount of fuel input is changed to control the load so that the sensor measurement value becomes the control target value.
  • the circulation pump 24 or 24a for example, the room temperature or the tank water temperature is controlled, and the operation is started if the sensor measurement value is lower than a predetermined temperature with respect to the control target value, and the operation is stopped if the sensor measurement value is higher than the predetermined temperature.
  • step S5 Device control processing (when abnormal)
  • the contents of the abnormality are displayed on the remote controller, and processing according to the contents of the abnormality, such as stopping the operation of the device related to the abnormality, is performed.
  • the system controller 32 may be connected to an external communication network to contact a maintenance or support company.
  • FIG. 4 is a graph and table showing the correlation between the outside air temperature, hot water temperature, capacity, load factor, and COP stored in the heat pump characteristic data storage means 8 of the heat pump hot water supply and heating system according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a procedure for estimating the COP of the heat pump device 20 in the heat pump hot water supply and heating system.
  • the capacity is the amount of heat supplied (kW) of the heat pump device 20, and represents the amount of heat supplied to the heating and tank boiling loads.
  • the capacity, supply heat amount and load amount are treated as the same.
  • the load amount is equal to the amount of heat that the combustion heat source 40 can supply to the hot water in the water flow path 21.
  • efficiency shall show the ratio of the calorie
  • the data stored in the combustion-type heat source characteristic data storage means 9 is not limited to this, and the load factor representing the ratio of each load amount to the outside air temperature, hot water temperature, load amount, and load amount in rated operation. Any one of the above data and the efficiency data may be associated with each other. Moreover, you may give a rated load amount and efficiency as a fixed value.
  • the heat source switching operation between the heat pump device 20 and the combustion heat source 40 will be described with reference to FIGS. 1, 2, 4, 5, and 10.
  • the outside air temperature acquisition means 6 corresponds to an input interface for inputting external information in the system controller 32, and acquires the outside air temperature detected by the outside air temperature sensor 30 for each control cycle described in FIG.
  • the hot water temperature acquisition means 7 corresponds to an input interface for inputting external information in the system controller 32, and the temperature of the hot water detected by the outgoing hot water temperature sensors 33 and 33a (hereinafter referred to as the outgoing hot water temperature) and the return hot water temperature.
  • the temperature of hot water detected by the sensors 34 and 34a (hereinafter referred to as return hot water temperature) is acquired.
  • the forward hot water temperature and the return hot water temperature are performing the defrosting operation of the heat exchanger by the cooling function of the heat pump device 20.
  • the temperature is lower than the original temperature. Furthermore, the outgoing hot water temperature and the return hot water temperature are temporarily higher than the temperatures to be supplied when the boiling operation of the hot water storage tank 25 is finished and switched to the heating operation. Therefore, after the heat pump device 20 or the combustion heat source 40 is started from the stopped state, the heat pump device 20 is switched from the defrosting operation to the heating operation or the boiling operation, and then the heat pump device 20 or the combustion heat source 40 is prevented from freezing.
  • the heat pump device 20 and the combustion type only for a predetermined time. It is assumed that the operation heat source determination process described in FIG. 3 centering on the heat source switching operation with the heat source 40 is not performed, and the heat source that is operating at that time is continuously operated. Thus, in the heat source switching operation between the heat pump device 20 and the combustion heat source 40, it is possible to prevent processing using temperature information that is not the original temperature to be acquired by the hot water temperature acquisition means 7.
  • the hot water temperature immediately before the combustion type heat source 40 stops operation may be used, and the relational data between the outside air temperature and the hot water temperature is stored in the combustion type heat source characteristic data storage means 9 described later. It is good also as what presumes warm water temperature from the relationship data.
  • the combustion heat source 40 is in operation, if the value of the hot water temperature is used for calculation of a load factor described later, the value of the hot water temperature during operation is used.
  • the heat pump device 20 is stopped and the return hot water temperature detected by the return hot water temperature sensor 33 and the return hot water temperature detected by the return hot water temperature sensor 34 are decreased, the calculation of COP described later is performed.
  • the hot water temperature immediately before the heat pump device 20 stops operating may be used.
  • the energy unit price acquisition means 10 stores data on a unit price of electricity and a unit price of fuel per unit input energy [kWh].
  • the electricity unit price and the fuel unit price may be changed according to the time of day, day of the week, weekday or holiday, month, season, or usage amount.
  • the energy unit price acquisition means 10 stores calendar information such as time or date, and the electric charge unit price or fuel charge unit price is associated with the calendar information. As a thing, it is good also as what can obtain
  • each usage can be acquired as if it were equipped with a sensor that measures power usage or fuel usage, and based on the acquired usage data, The unit price of fuel or the unit price of fuel may be obtained.
  • the load amount calculation means 5 is configured as a part of the function of the system controller 32, and calculates the heating load amount or hot water supply load amount during operation. First, calculation of the heating load amount will be described.
  • QL is the load amount [kW] in the heating operation
  • Tr is the set room temperature [° C.]
  • Qmax is the maximum assumed heating load value [kW]
  • Tad is the outside air temperature estimated value [° C.] at the maximum heating load
  • T is the current outside air temperature [° C.]
  • the load amount QL [kW] is calculated by the load amount calculation means 5 according to the following equation (1). It can be calculated.
  • the estimated outside air temperature value Tad [° C.] and the estimated maximum heating load value Qmax [kW], which are the maximum heating load, are set values, and are based on the local climate or the heat insulation performance of the house, It shall be set assuming the maximum heating load at the time of temperature.
  • the current outside air temperature T [° C.] the one detected by the outside air temperature sensor 30 is used.
  • Tout is the warm water temperature [K]
  • Tin is the return warm water temperature [K]
  • Fw is the flow rate of warm water (hereinafter simply referred to as “warm water flow rate”) [L / s]
  • is the density of water [kg / L]
  • Cp is the specific heat of water [kJ / (kg ⁇ K)]
  • the load amount QL [kW] can be calculated by the load amount calculation means 5 according to the following equation (2).
  • the heating operation is performed by the heat pump device 20
  • the incoming hot water temperature Tout [K] is detected by the outgoing hot water temperature sensor 33
  • the return hot water temperature Tin [K] is detected by the return hot water temperature sensor 34.
  • the hot water flow rate Fw [L / s] detected by the flow rate sensor 37 may be used.
  • the heating operation is performed by the combustion heat source 40
  • the forward hot water temperature Tout [K] is detected by the forward hot water temperature sensor 33a
  • the return hot water temperature Tin [K] is detected by the return hot water temperature sensor 34a. What was detected and what was detected by flow sensor 37a should just be used for warm water flow Fw [L / s], respectively.
  • fs is the maximum frequency [Hz] of the compressor 20a in the operation state at the current outside air temperature and hot water temperature
  • Qs is the heat supply amount [kW] during operation at the maximum frequency of the compressor 20a
  • fn is the current compressor 20a. If the operating frequency [Hz] is, the load amount QL [kW] can be calculated by the load amount calculation means 5 by the following equation (3).
  • the heat pump characteristic data storage means 8 needs to store the association between the outside air temperature and the hot water temperature, the maximum frequency of the compressor 20a, and the amount of heat supplied at that time. Further, in the case of the combustion type heat source 40, since the above formula (3) cannot be used, the formula (1) or the formula (2) is used. In addition, when calculating load amount QL [kW] using said Formula (3), when a load factor (it mentions later) changes with outside air temperature and warm water temperature, it is stored in heat pump characteristic data storage means 8. The association between the amount of heat supplied and the load factor must also be stored.
  • This supply load amount is calculated by the heat amount [kW] per unit time necessary for the boiling operation of the hot water storage tank 25.
  • the load amount QL [kW] in the boiling operation is estimated to be equal to the rated supply heat amount [kW] per unit time at the current outside air temperature and hot water temperature.
  • the heat pump characteristic data storage unit 8 stores the association between the outside air temperature and the hot water temperature and the rated supply heat amount of the heat pump device 20, and the combustion heat source characteristic data storage unit 9 stores the outside air temperature and the hot water.
  • the association between the temperature and the rated supply heat amount of the combustion heat source 40 is stored. Therefore, when the load amount calculating means 5 estimates the hot water supply load amount [kW] when the heating operation is performed by the heat pump device 20, the outside air temperature and the forward hot water temperature sensor detected by the outside air temperature sensor 30 are used. Based on the hot water temperature detected by the heat pump 33 and the association stored in the heat pump characteristic data storage means 8, the rated supply heat amount [kW] by the heat pump device 20 is obtained, and this may be set as the load amount QL [kW]. .
  • the load amount calculation means 5 estimates the hot water supply load amount [kW] when the boiling operation is performed by the combustion heat source 40, the outside air temperature and the forward hot water temperature detected by the outside air temperature sensor 30. Based on the hot water temperature detected by the sensor 33a and the association stored in the combustion-type heat source characteristic data storage means 9, the rated supply amount [kW] by the combustion-type heat source 40 is obtained, and this is obtained as the load amount QL [kW]. And it is sufficient. It should be noted that the combustion heat source characteristic data storage means 9 has a rated supply heat quantity [kW] as a fixed value, and the data may be always used.
  • the heat pump characteristic data storage means 8 is a storage device such as a memory arranged in the system controller 32. At least the outside air temperature, the hot water temperature, the capacity [kW] of the heat pump device 20, the load factor, and the COP ( Data related to the association with Coefficient of Performance).
  • a load factor shall show the ratio of the calorie
  • the combustion heat source characteristic data storage means 9 is a storage device such as a memory disposed in the system controller 32 and stores at least efficiency data indicating the ratio of the supplied heat quantity [kW] to the heat quantity [kW] of the input fuel. is doing. Further, the combustion heat source characteristic data storage means 9 stores at least one data among the outside air temperature, the hot water temperature, or the load factor and data relating to the efficiency.
  • the heat source performance estimation unit 1 is configured as a part of the function of the system controller 32, and acquires the load amount QL [kW] obtained by the load amount calculation unit 5, the outside air temperature and the hot water temperature obtained by the outside air temperature obtaining unit 6. Based on the hot water temperature acquired by the means 7 and the data stored in the heat pump characteristic data storage means 8 (hereinafter referred to as “heat pump characteristic data”), the COP of the heat pump device 20 is calculated and estimated.
  • heat pump characteristic data data stored in the heat pump characteristic data storage means 8
  • the heat source performance estimation means 1 stores the current hot water temperature (current hot water temperature Twn) acquired by the hot water temperature acquisition means 7 in the heat pump characteristic data storage means 8 so that it falls within the range of the two hot water temperature data.
  • the hot water temperatures Tw1 and Tw2 are selected and extracted from the stored heat pump characteristic data.
  • the heat source performance estimation unit 1 sets the heat pump so that the current outside temperature (current outside temperature Tan) acquired by the outside temperature acquisition unit 6 falls within the range of the two outside temperature data for the hot water temperature Tw1.
  • the outside air temperatures Ta1 and Ta2 are selected and extracted from the characteristic data.
  • linear interpolation is performed on the data of the ability corresponding to the outside air temperatures Ta1 and Ta2, and the hot water temperature Tw1 and
  • the capacity Q1 at the load factor A corresponding to the current outside air temperature Tan and the capacity Q2 at the load factor B are calculated by the following equations (4) and (5), respectively.
  • QA is data of capacity [kW] at the load factor A
  • QB is data of capacity [kW] at the load factor B.
  • the heat source performance estimating means 1 includes the current load amount QL obtained by the load amount calculating means 5 between the two points of the abilities Q1 and Q2 obtained by the above equations (4) and (5). Based on the capacities Q1 and Q2 at the load factors A and B, the ratio R: (1-R) between Q1-QL and QL-Q2 (when Q2 ⁇ QL ⁇ Q1) is obtained by the following equation (6) (R ⁇ 1).
  • the heat source performance estimating means 1 linearly interpolates the COP data corresponding to the outside air temperatures Ta1 and Ta2 based on the data of the load factors A and B corresponding to the hot water temperature Tw1, and the hot water temperature Tw1 and the current outside air temperature.
  • COP1 that is the value of COP at the load factor A corresponding to Tan and COP2 that is the value of COP at the load factor B are calculated by the following equations (7) and (8), respectively.
  • COP_A is COP data at the load factor A
  • COP_B is COP data at the load factor B.
  • COP1 [Tw1, Tan] COP_A [Tw1, Ta1] + (COP_A [Tw1, Ta2] ⁇ COP_A [Tw1, Ta1]) / (Ta2 ⁇ Ta1) ⁇ (Tan ⁇ Ta1) (7)
  • COP2 [Tw1, Tan] COP_B [Tw1, Ta1] + (COP_B [Tw1, Ta2] ⁇ COP_B [Tw1, Ta1]) / (Ta2 ⁇ Ta1) ⁇ (Tan ⁇ Ta1) (8)
  • the heat source performance estimating means 1 uses the values of COP1 and COP2 obtained by the above formulas (7) and (8) and the value of R obtained by the above formula (6) as follows.
  • COPw1 which is the value of COP in the current outside air temperature Tan, the hot water temperature Tw1, and the current load amount QL, is calculated by Expression (9).
  • FIG. 5 shows an example in which the load factor B having a lower capability has a higher COP than the load factor A.
  • the heat source performance estimating means 1 performs the same calculation for the hot water temperature Tw2 by using the equations (4) to (9), and calculates the current outside air temperature Tan, the hot water temperature Tw2, and the COP value at the current load amount QL. A certain COPw2 is calculated.
  • COPhp [Twn, Tan] COPw1 [Tw1, Tan]-(COPw1 [Tw1, Tan] -COPw2 [Tw2, Tan]) ⁇ (Twn-Tw1) / (Tw2-Tw1) (10)
  • the current detection values of the hot water temperature sensor 33 and the outside air temperature sensor 30 or an average value for a predetermined period are used if the heat pump device is in operation, but the combustion heat source is operated. In this case, since the flow of the water flow path on the heat pump device side is stopped and the measured value of the hot water temperature sensor 33 does not represent the temperature during operation, the operation is switched from the heat pump device to the combustion heat source before. Alternatively, the hot water temperature immediately before or the control target value of the hot water temperature may be used.
  • the heat source performance estimating means 1 obtains the efficiency Eff of the combustion type heat source 40.
  • the efficiency of the combustion type heat source 40 is stored as a fixed value in the data stored in the combustion type heat source characteristic data storage means 9 (hereinafter referred to as “combustion type heat source characteristic data”), the fixed value May be always used as the efficiency Eff.
  • the efficiency of the current measured value may be obtained by linear approximation from the peripheral value data.
  • the heat pump device when the combustion type heat source is stopped, the hot water temperature immediately before the operation is switched from the combustion type heat source to the heat pump device or the control target value of the hot water temperature may be used.
  • the operating cost estimation means 2 is configured as a part of the function of the system controller 32, COPhp which is the COP value of the heat pump device 20 estimated by the heat source performance estimation means 1, the efficiency Eff of the combustion heat source 40, and
  • the estimated operating cost of the heat pump device 20 and the combustion heat source 40 is calculated by the following formula (11) and formula (12) using the current unit price of electricity and the unit price of fuel determined by the energy unit price acquisition means 10.
  • Chp is an estimated operating cost value of the heat pump device 20
  • Cb is an estimated operating cost value of the combustion heat source 40
  • Php is a unit price of electricity per kWh
  • Pb is a unit price of fuel per kWh.
  • the unit of the load amount QL is kW, it is assumed that the operation is performed for 1 hour with the same load amount (that is, kW and kWh have the same value), and the operation cost is calculated.
  • Chp Php ⁇ QL / COPhp (11)
  • Cb Pb ⁇ QL / Eff (12)
  • the operation heat source selection means 3 is configured as a part of the function of the system controller 32, and as a result of comparing the operation cost estimated values Chp and Cb calculated by the above formulas (11) and (12), the heat source being stopped If the estimated operating cost is less than a predetermined percentage of the estimated operating cost of the currently operating heat source, it is determined that the operating heat source is stopped and the operation is started by switching to the stopped heat source. . For example, when the predetermined ratio is set to 95%, the operating heat source selection unit 3 determines that the heat source is switched when the stopped heat source falls to an operating cost estimate value of 95% or less of the operating heat source. To do.
  • the reason why this predetermined ratio is provided is to prevent frequent switching operations of the heat source when the estimated operating cost values of both of them slightly fluctuate at a value close to the same value.
  • the operating cost estimated value of the stopped heat source becomes an operating cost estimated value of 95% of the operating heat source, and after switching the heat source, to operate the stopped heat source again, the operating cost estimated value of the activated heat source is further increased.
  • the estimated operating cost must be reduced to 95%.
  • the predetermined time may be A restart prohibition time for prohibiting startup may be provided, and the heat source may not be switched during the restart prohibition time.
  • the heat source switching control unit 4 is configured as a part of the function of the system controller 32 and switches the heat source between the heat pump device 20 and the combustion heat source 40 and starts operation based on the determination result by the operation heat source selection unit 3.
  • the heat source side circulation pump to be started and the heat source side circulation pump to be stopped are stopped.
  • the operating heat source determination unit 11 and the heat source switching control unit 4 are configured separately, but the present invention is not limited to this, and the operating heat source determination unit 11 and the heat source switching control unit 4 It is good also as an integrated concept.
  • Embodiment 2 The heat pump hot water supply and heating system according to the present embodiment will be described focusing on differences from the heat pump hot water supply and heating system according to the first embodiment.
  • FIG. 6 is a diagram showing the configuration of various means for performing heat source switching in the heat pump hot water supply and heating system according to Embodiment 2 of the present invention.
  • the heat pump hot water supply and heating system according to the present embodiment as another determination criterion for the heat source switching operation between the heat pump device 20 that is a heat source and the combustion heat source 40, per unit power usage or per unit fuel usage.
  • CO 2 emissions Of CO 2 emissions.
  • Heat pump water heating system according to the present embodiment in place of the energy unit price obtaining unit 10 of the first embodiment, the CO 2 emission coefficient storing unit 10a is provided, the CO 2 emission coefficient storing unit 10a, the unit power usage The CO 2 emission coefficient per unit and per unit fuel consumption is stored.
  • the CO 2 emission amount estimation means 2a provided, CO 2 emission amount estimation means 2a, the estimated CO 2 emissions of the heat pump device 20 and the combustion type heat source 40 To do.
  • the calculation method of the CO 2 emission amount is obtained by changing the electricity unit price Php and the fuel unit price Pb in the equations (11) and (12) in Embodiment 1 to the CO 2 emission coefficient of electric power, respectively. , And the CO 2 emission coefficient of the fuel.
  • the operation heat source selecting means 3 instead of comparing the operating cost estimate of the heat pump device 20 and the combustion type heat source 40, using a CO 2 emission amount estimated by the CO 2 emission amount estimation means 2a, suspended When the CO 2 emission amount of the heat source is smaller than the CO 2 emission amount of the operating heat source, it is determined that the operating heat source is stopped and switched to the stopped heat source to start the operation.
  • the CO 2 emission estimation means 2a corresponds to the “determination information estimation means” of the present invention.
  • the CO 2 emission amount in the heat pump device 20 and the combustion heat source 40 that are heat sources is estimated, and the estimated CO 2 emission amount is used as the determination information for switching the heat source. Since CO 2 can be operated by switching the emissions of small heat source is, for example, when compared with a case or the like is continuously operating heat pump device 20 alone, can be reduced reliably CO 2 emissions .
  • Embodiment 3 The heat pump hot water supply and heating system according to the present embodiment will be described focusing on differences from the heat pump hot water supply and heating system according to the first embodiment.
  • FIG. 7 is a diagram showing the configuration of various means for performing heat source switching in the heat pump hot water supply / heating system according to Embodiment 3 of the present invention. As shown in FIG. 7, a three-way valve 23 a that adjusts the ratio of the hot water flowing out from the first heat exchanger 22 of the heat pump device 20 and the hot water flowing out from the combustion heat source 40 to the load side is installed. .
  • the opening degree of the three-way valve 23a is controlled by the system controller 32, so that the amount of heat supplied from the heat pump device 20 among the amount of heat supplied to the hot water storage tank 25, the radiator 26, and the floor heating device 27, and the combustion type The ratio to the amount of heat supplied from the heat source 40 can be adjusted.
  • the three-way valve 23a may have a configuration in which a two-way valve capable of adjusting the flow rate is provided in each flow path.
  • the operation heat source determination means 11 distributes a load at a predetermined rate in addition to the operation costs of the single operation of each of the heat pump device 20 and the combustion heat source 40 and operates the heat pump device 20 and the combustion heat source 40 simultaneously. Calculate the operating cost for the case.
  • the heat source combination creating means 12 is provided in front of the heat source performance estimating means 1, and the load quantity QL obtained by the load quantity calculating means 5 is calculated based on a predetermined load distribution ratio ⁇ between the heat pump device 20 and the combustion heat source 40.
  • the load amount of each heat source is obtained so that the load amount is ⁇ : 1 ⁇ .
  • the combination of the load amount of each heat source may present a plurality of candidates from the range from the minimum to the maximum capability of the heat pump device 20 at the current hot water temperature and the outside air temperature.
  • the load amount calculation means 5 calculates the load amount QLhp and the load amount QLb, which are the load amounts of the heat pump device 20 and the combustion heat source 40, based on the aforementioned equation (2), The load amount QL is obtained by adding them.
  • the heat source performance estimating means 1 is based on the load amount of each heat source (the heat pump apparatus 20 and the combustion heat source 40) calculated by the heat source combination creating means, COPhp which is the value of COP of the heat pump apparatus 20, and the combustion heat source An efficiency Eff of 40 is calculated.
  • the operation cost estimation means 2 is the operation cost estimation value Chp when the heat pump device 20 is operated alone, and the operation cost estimation value when the combustion heat source 40 is operated alone. While calculating Cb, the operating cost estimated value Chb in the case of operating the heat pump apparatus 20 and the combustion heat source 40 simultaneously is calculated by the following equation (13).
  • Chb Php ⁇ (QL ⁇ ⁇ ) / COPhp + Pb ⁇ ⁇ (QL ⁇ (1- ⁇ ) ⁇ / Eff (13)
  • the operating heat source selection means 3 compares the operating cost estimates of the single operation of the heat pump device 20, the single operation of the combustion heat source 40, and the simultaneous operation of the heat sources at a plurality of load distribution ratios obtained by the heat source combination creating means 12. Then, it is determined that the operation is performed by a heat source (single or simultaneous operation) having the lowest operation cost.
  • the heat source switching control means 4 switches to a single operation by the heat pump device 20, a single operation by the combustion heat source 40, or a simultaneous operation of the heat pump device 20 and the combustion heat source 40 based on the determination result by the operation heat source selection means 3. At this time, when switching to simultaneous operation, the heat source switching control means 4 performs opening control of the three-way valve 23a in order to match the load distribution ratio of the heat pump device 20 and the combustion heat source 40.
  • the simultaneous operation is positioned between the case where the operation cost of the single operation of the heat pump device 20 is low and the case where the operation cost of the single operation of the combustion heat source 40 is low,
  • the simultaneous operation is positioned between the case where the operation cost of the single operation of the heat pump device 20 is low and the case where the operation cost of the single operation of the combustion heat source 40 is low,
  • the three-way valve 23a corresponds to the “flow path adjusting means” of the present invention.
  • each operation cost estimation of the single operation of the heat pump device 20, the single operation of the combustion heat source 40, and the simultaneous operation of the heat source at a plurality of load distribution ratios obtained by the heat source combination creating means 12 is performed. Since the values are compared, the amount of heat can be supplied to the load side at the lowest operating cost including simultaneous operation.
  • the configuration considering the simultaneous operation of the heat sources of the heat pump hot water supply / heating system according to the present embodiment is also applicable to the heat pump hot water supply / heating system according to the second embodiment.
  • Embodiment 4 FIG. In the present embodiment, details of the hardware configuration of the system controller 32 of the heat pump hot water supply and heating system according to the first to third embodiments will be described.
  • FIG. 9 is a configuration diagram of the system controller 32 of the heat pump hot water supply / heating system according to Embodiment 4 of the present invention.
  • the heat source device controller 31 has the same configuration as the system controller 32, and the heat source device controller 31 and the system controller 32 may be a single controller as described above.
  • the system controller 32 includes at least a CPU (Central Processing Unit) 51, a bus 52, a ROM (Read Only Memory) 53, a RAM (Random Access Memory) 54, an I / O processing unit 55, a communication.
  • a processing unit 56 is provided. You may provide the communication processing part 58 connected with an external wired or wireless network.
  • the CPU 51 is connected to the ROM 53, the RAM 54, the I / O processing unit 55, the communication processing unit 56, and the communication processing unit 58 via the bus 52, and reads and executes the program stored in the ROM 53.
  • the above hardware devices connected via the network are controlled.
  • the ROM 53 stores a program for executing the processing shown in FIG. 3 by the CPU 51, and is a nonvolatile storage medium.
  • the RAM 54 is a volatile storage medium that temporarily stores detection values from various sensors input via the I / O processing unit 55, operation signals from the remote controller 57, and the like. It is updated as needed.
  • the I / O processing unit 55 inputs detection values from each sensor, converts them to digital and stores them in the RAM 54, and converts the control signal processed by the CPU 51 into a signal form corresponding to the control input of each device. It is converted and output.
  • the communication processing unit 56 communicates with a wireless or wired remote controller 57 and receives data from the remote controller 57 or transmits display data to be displayed on a liquid crystal display unit of the remote controller 57.
  • the communication processing unit 58 is provided separately from the application of remote control communication, and is connected to a communication network such as the Internet or a telephone by wire or wireless.
  • the communication processing unit 58 is connected to an information service company or a maintenance support company via the communication network, so that the energy unit price (electricity unit price and fuel unit price) or / and the CO 2 emission coefficient are obtained. It can be obtained and kept up to date.
  • the communication processing unit 58 corresponds to “communication processing means” of the present invention.

Abstract

Provided is a heat-pump type hot water supply system which is capable of switching between heat sources so as to minimize operating cost for a heat-pump type hot water supply/heating system provided with a heat pump device and a combustion heat source as heat sources. An operating heat source selection means (3) is configured as part of the function of a system controller (32), and through results obtained from comparing estimated values Chp and Cb for calculated operating costs, if the estimated value for the operating cost of the heat source that is stopped becomes smaller than a predetermined percentage of the estimated value for the operating cost of the heat source that is currently running, then makes a determination to stop the heat source that is currently running and switch to and start the operation of the heat source that is stopped.

Description

ヒートポンプ式給湯暖房システムHeat pump hot water supply / heating system
 本発明は、ヒートポンプ式冷凍サイクルによって外気から得た熱量を、熱交換器によって熱交換することによって水を加熱し、加熱された温水を給湯又は暖房設備に供給するヒートポンプ式給湯暖房システムに関する。 The present invention relates to a heat pump hot water supply and heating system that heats water by exchanging heat from outside air by a heat pump refrigeration cycle by a heat exchanger and supplies the heated hot water to hot water supply or heating equipment.
 図1は、後述するように、本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの構成図であるが、この図1を参照しながら、従来のヒートポンプ式給湯暖房システムについて説明する。冷媒を循環させるヒートポンプ式冷凍サイクルを備えたヒートポンプ装置20が、放熱器として作用する第1熱交換器22を介して、水流路21と接続されている。なお、この第1熱交換器22は、ヒートポンプ装置20の筐体内部に収められているものとしてもよい。水流路21は、第1熱交換器22を通過する冷媒により熱交換されて加熱された温水又は不凍液が循環する流路である。この水流路21には、貯湯タンク25及び第2熱交換器29を有するタンクユニット28、ラジエーター26及び床暖房機器27がそれぞれ並列接続されており、第1熱交換器22から流出した温水又は不凍液が、タンクユニット28側に流れるか、ラジエーター26及び床暖房機器27側に流れるか三方弁23によって切り替えられる。なお、この三方弁23の代わりに、2つの二方弁を用いて流路を切り替える構成としてもよい。 FIG. 1 is a configuration diagram of a heat pump hot water supply and heating system according to Embodiment 1 of the present invention, as will be described later. A conventional heat pump hot water supply and heating system will be described with reference to FIG. A heat pump device 20 having a heat pump refrigeration cycle for circulating the refrigerant is connected to the water flow path 21 via a first heat exchanger 22 acting as a radiator. The first heat exchanger 22 may be housed inside the housing of the heat pump device 20. The water channel 21 is a channel through which hot water or antifreeze liquid heated by heat exchange with the refrigerant passing through the first heat exchanger 22 circulates. A tank unit 28 having a hot water storage tank 25 and a second heat exchanger 29, a radiator 26 and a floor heating device 27 are connected in parallel to the water flow path 21, and hot water or antifreeze liquid flowing out from the first heat exchanger 22 is connected thereto. Is switched to the tank unit 28 side or to the radiator 26 and floor heating equipment 27 side by the three-way valve 23. In addition, it is good also as a structure which switches a flow path using two two-way valves instead of this three-way valve 23. FIG.
 貯湯タンク25に貯留した給湯用水への熱供給は、第1熱交換器22で加熱された温水又は不凍液が、貯湯タンク25の内部又は外部に設けられた第2熱交換器29を介して給湯用水と熱交換することによって行われる。ラジエーター26は、熱輻射によって暖房を行うものであり、床暖房機器27は、住宅等の居住空間の床面から暖房を行うものであり、住宅等の構成に応じて、複数台が各部屋に設置される。 Heat supply to the hot water supply water stored in the hot water storage tank 25 is performed by supplying hot water or antifreeze liquid heated by the first heat exchanger 22 via the second heat exchanger 29 provided inside or outside the hot water storage tank 25. This is done by exchanging heat with water. The radiator 26 is for heating by heat radiation, and the floor heating device 27 is for heating from the floor of a living space such as a house, and a plurality of units are installed in each room according to the configuration of the house or the like. Installed.
 貯湯タンク25における給湯用水の沸き上げ運転は、第1熱交換器22によって加熱された温水又は不凍液と、貯湯タンク25内の給湯用水とが第2熱交換器29によって熱交換されて、給湯用水の水温が上昇し、貯湯タンク25の内部又は壁面に設置されたタンク水温センサー35の検出値が沸き上げ温度設定値に達した場合、沸き上げ運転が終了する。給湯利用がされると、貯湯タンク25の上部から温水が排出され、水と混合してユーザーが設定した温度の温水としてユーザーに供給される。一方、新しい水は貯湯タンク25の下部から供給される。したがって、貯湯タンク25の内部は常に満水状態となっている。 In the hot water supply water boiling operation in the hot water storage tank 25, the hot water or antifreeze liquid heated by the first heat exchanger 22 and the hot water supply water in the hot water storage tank 25 are heat-exchanged by the second heat exchanger 29, so When the water temperature rises and the detected value of the tank water temperature sensor 35 installed in the hot water storage tank 25 or on the wall surface reaches the boiling temperature set value, the boiling operation is finished. When hot water is used, hot water is discharged from the upper part of the hot water storage tank 25, mixed with water and supplied to the user as hot water at a temperature set by the user. On the other hand, new water is supplied from the lower part of the hot water storage tank 25. Accordingly, the interior of the hot water storage tank 25 is always full.
 ラジエーター26及び床暖房機器27による暖房運転においては、住居内に1つ又は複数設置された室温センサー36、又は、水流路21の往き温水温度センサー33若しくは戻り温水温度センサー34の検出値が所定値となるように、ヒートポンプ装置20による温水温度の制御が実施される。この温水温度の制御は、ヒートポンプ装置20における圧縮機20aの周波数を変化させることによって実施される。また、燃焼式熱源40を運転する場合は、ヒートポンプ装置20の場合と同様に室温センサー36、又は、水流路21の往き温水温度センサー33a若しくは戻り温水温度センサー34aの検出値が所定値となるように、燃焼式熱源40による温水温度の制御が実施される。この燃焼式熱源40は、主に、ヒートポンプ装置20が故障した場合、又は、外気温度の低下によりヒートポンプ装置20による熱供給が十分に行えない場合等に用いられる。 In the heating operation by the radiator 26 and the floor heating device 27, the detection value of one or a plurality of room temperature sensors 36 installed in the dwelling, or the detected hot water temperature sensor 33 or the return hot water temperature sensor 34 of the water flow path 21 is a predetermined value. Thus, the control of the hot water temperature by the heat pump device 20 is performed. This control of the hot water temperature is performed by changing the frequency of the compressor 20a in the heat pump device 20. Further, when the combustion heat source 40 is operated, the detected value of the room temperature sensor 36, or the warm water temperature sensor 33a of the water flow path 21 or the return warm water temperature sensor 34a becomes a predetermined value as in the case of the heat pump device 20. In addition, the hot water temperature is controlled by the combustion heat source 40. This combustion heat source 40 is mainly used when the heat pump device 20 fails or when heat supply by the heat pump device 20 cannot be sufficiently performed due to a decrease in the outside air temperature.
 以上の構成及び動作が、従来のヒートポンプ式給湯暖房システムの構成及び動作の一例である。 The above configuration and operation are an example of the configuration and operation of a conventional heat pump hot water supply and heating system.
 また、従来のヒートポンプ式給湯暖房システムとして、燃焼式熱源を、ヒートポンプ装置の熱供給不足時の補助を目的として運用する場合、環境条件として外気温度、そして、運転条件として温水温度を想定した場合のヒートポンプ装置の供給熱量データを制御装置に記憶しておき、運転時に現在の外気温度及び温水温度に基づいて、必要な熱量を供給できないと判断した場合に、ヒートポンプ装置から加熱能力の高い燃焼式熱源に運転を切り替えることによって熱供給不足を解消するというものが提案されている(例えば、特許文献1参照)。 In addition, as a conventional heat pump hot water supply and heating system, when operating a combustion heat source for the purpose of assisting when the heat supply of a heat pump device is insufficient, the outside air temperature is assumed as an environmental condition, and the hot water temperature is assumed as an operating condition. Combustion heat source with high heating capacity from the heat pump device when the heat heat supply data of the heat pump device is stored in the control device, and it is determined that the required heat amount cannot be supplied based on the current outside air temperature and hot water temperature during operation. In order to solve the shortage of heat supply by switching the operation, the method has been proposed (for example, see Patent Document 1).
特開2011-12940号公報(第4頁、図1)JP 2011-12940 A (page 4, FIG. 1)
 しかしながら、従来の熱源切替方式は、ヒートポンプ装置の能力不足に基づいて判断しており、運転コストについては考慮されていないという問題点があった。 However, the conventional heat source switching method has been determined based on the lack of capacity of the heat pump device, and there is a problem that the operating cost is not taken into consideration.
 また、ヒートポンプ装置は、通常投入した電力に対し、3倍又はそれ以上の熱量を供給できるため、通常、燃焼式熱源に比べてヒートポンプ装置の運転コストが少なく済むが、例えば、著しく外気温度が低下してヒートポンプ装置の効率が大幅に低下した場合等は、運転コストが燃焼式熱源よりもヒートポンプ装置の方が大きくなるという問題点もあった。また、時間帯別の電気料金契約をエネルギー供給会社と結んでいる場合のピーク料金時間帯等、単位供給熱量あたりの運転コストが燃焼式熱源で運転した場合に比べて増加する場合が生じるという問題点もあった。 In addition, since heat pump devices can supply three or more times the amount of electricity that is normally input, the operating cost of heat pump devices is usually lower than that of combustion heat sources. When the efficiency of the heat pump device is significantly reduced, there is a problem that the operation cost is higher in the heat pump device than in the combustion heat source. In addition, there is a problem that the operating cost per unit of heat supply may increase compared to when operating with a combustion heat source, such as the peak charge time period when an electricity price contract for each time period is concluded with an energy supply company. There was also a point.
 本発明は、上述のような課題を解決するためになされたものであり、熱源としてヒートポンプ装置及び燃焼式熱源を備えたヒートポンプ式給湯暖房システムにおいて、所定の判定情報が小さくなるように熱源を切り替えることが可能なヒートポンプ式給湯システムを提供することを目的とする。 The present invention has been made in order to solve the above-described problems. In a heat pump hot water supply / heating system including a heat pump device and a combustion heat source as a heat source, the heat source is switched so that predetermined determination information is reduced. It is an object of the present invention to provide a heat pump type hot water supply system that can be used.
 本発明に係るヒートポンプ式給湯暖房システムは、圧縮機、放熱器、膨張装置及び蒸発器を冷媒配管によって接続してなる冷凍サイクル回路を有するヒートポンプ装置と、前記放熱器を介して前記冷媒流路を流れる冷媒と熱交換する水が流れる水流路と、燃料を燃焼させて、前記水流路に流れる水を加熱する燃焼式熱源と、を備え、前記ヒートポンプ装置と前記燃焼式熱源とは前記水流路によって並列に接続されたヒートポンプ式給湯暖房システムであって、外気温度を検出して取得する外気温度測定手段と、前記水流路を流れる水の温度である温水温度を検出して取得する温水温度測定手段と、前記ヒートポンプ装置の負荷量、及び、前記燃焼式熱源の負荷量を算出する負荷量計算手段と、前記外気温度、前記温水温度、前記ヒートポンプ装置の負荷量及びCOPの関連付けに関するデータであるヒートポンプ特性データを記憶したヒートポンプ特性データ記憶手段と、前記燃焼式熱源の負荷量及び効率の関連付けに関するデータである燃焼式熱源特性データを記憶した燃焼式熱源特性データ記憶手段と、電気料金単価及び燃料料金単価を記憶したエネルギー単価取得手段と、前記外気温度測定手段によって取得された前記外気温度、前記温水温度測定手段によって取得された前記温水温度、前記負荷量計算手段によって算出された前記ヒートポンプ装置の前記負荷量、及び、前記ヒートポンプ特性データ記憶手段に記憶された前記ヒートポンプ特性データに基づいて前記ヒートポンプ装置のCOPを推定し、かつ、前記燃焼式熱源特性データ記憶手段に記憶された前記燃焼式熱源特性データに基づいて前記燃焼式熱源の効率を推定する熱源性能推定手段と、該熱源性能推定手段によって推定された前記COP、前記ヒートポンプ装置の前記負荷量、及び、前記エネルギー単価取得手段に記憶された前記電気料金単価に基づいて前記ヒートポンプ装置の運転コストを推定し、かつ、前記熱源性能推定手段によって推定された前記効率、前記燃焼式熱源の前記負荷量、及び、前記エネルギー単価取得手段に記憶された前記燃料料金単価に基づいて前記燃焼式熱源の運転コストを推定する判定情報推定手段と、該判定情報推定手段によって推定された前記運転コストを判定情報とし、該判定情報である前記ヒートポンプ装置の前記運転コストと、前記燃焼式熱源の前記運転コストとを比較し、前記運転コストが小さい方を運転対象の熱源として選択する運転熱源選択手段と、該運転熱源選択手段によって選択された前記熱源に運転を切り替えて、他方の前記熱源を停止させる熱源切替制御手段と、を備えたものである。 A heat pump hot water supply / heating system according to the present invention includes a heat pump device having a refrigeration cycle circuit in which a compressor, a radiator, an expansion device, and an evaporator are connected by refrigerant piping, and the refrigerant flow path via the radiator. A water flow path through which water that exchanges heat with the flowing refrigerant flows, and a combustion heat source that burns fuel and heats the water that flows through the water flow path, the heat pump device and the combustion heat source being separated by the water flow path A heat pump type hot water supply and heating system connected in parallel, which detects and acquires an outside air temperature, and a hot water temperature measuring means that detects and acquires a hot water temperature that is the temperature of water flowing through the water flow path. Load amount calculating means for calculating the load amount of the heat pump device and the load amount of the combustion heat source, the outside air temperature, the hot water temperature, the heat pump Heat pump characteristic data storage means that stores heat pump characteristic data that is data relating to the association between the load amount of the apparatus and COP, and a combustion type that stores combustion type heat source characteristic data that is data related to the association between the load quantity and efficiency of the combustion type heat source A heat source characteristic data storage means; an energy unit price acquisition means for storing an electricity bill unit price and a fuel charge unit price; the outside air temperature obtained by the outside air temperature measurement means; the hot water temperature obtained by the hot water temperature measurement means; Estimating the COP of the heat pump device based on the load amount of the heat pump device calculated by the load amount calculation unit and the heat pump characteristic data stored in the heat pump characteristic data storage unit, and the combustion heat source The combustion type stored in the characteristic data storage means Heat source performance estimation means for estimating the efficiency of the combustion heat source based on source characteristic data, the COP estimated by the heat source performance estimation means, the load amount of the heat pump device, and the energy unit price acquisition means The operation cost of the heat pump device is estimated based on the unit price of the electricity price, and the efficiency estimated by the heat source performance estimation unit, the load amount of the combustion heat source, and the energy unit price acquisition unit Determination information estimation means for estimating the operating cost of the combustion heat source based on the stored fuel unit price, and the operation cost estimated by the determination information estimation means as the determination information, the heat pump being the determination information Compare the operating cost of the device with the operating cost of the combustion heat source, and run the one with the lower operating cost. Operation heat source selection means for selecting as a heat source to be converted, and heat source switching control means for switching operation to the heat source selected by the operation heat source selection means and stopping the other heat source.
 本発明によれば、熱源であるヒートポンプ装置及び燃焼式熱源における運転コストを推定し、この推定した運転コストを熱源の切り替えの判定情報として、その判定情報である運転コストの小さい熱源に切り替えて動作させることができるので、例えば、ヒートポンプ装置を単独で常時運転させた場合等と比較した場合、運転コストを確実に減少させることができる。 According to the present invention, the operation cost of the heat pump device and the combustion heat source that are heat sources is estimated, and the estimated operation cost is switched to the heat source with a low operation cost that is the determination information as the determination information for switching the heat source. Therefore, for example, when compared with the case where the heat pump device is always operated independently, the operation cost can be surely reduced.
本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの構成図である。It is a block diagram of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。It is a figure which shows the structure of the various means for implementing heat source switching of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの基本動作を示すフローチャートである。It is a flowchart which shows the basic operation | movement of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯暖房システムのヒートポンプ特性データ記憶手段8に記憶された外気温度、温水温度、能力、負荷率及びCOPとの相関をグラフ及びテーブルによって示した図である。It is the figure which showed the correlation with the external temperature stored in the heat pump characteristic data storage means 8 of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention, warm water temperature, capability, a load factor, and a COP with the graph and the table. . 本発明の実施の形態1に係るヒートポンプ式給湯暖房システムにおいて、ヒートポンプ装置20のCOPを推定する手順を示す図である。It is a figure which shows the procedure which estimates COP of the heat pump apparatus 20 in the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。It is a figure which shows the structure of the various means for implementing heat source switching of the heat pump type hot-water supply heating system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。It is a figure which shows the structure of the various means for implementing heat source switching of the heat pump type hot-water supply heating system which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るヒートポンプ式給湯暖房システムのヒートポンプ装置20の単体運転、同時運転及び燃焼式熱源40の単体運転に切り替えた場合の運転コストの状態を示す図である。It is a figure which shows the state of the operating cost at the time of switching to the single operation of the heat pump apparatus 20 of the heat pump type hot water supply and heating system which concerns on Embodiment 3 of this invention, simultaneous operation, and the single operation of the combustion type heat source 40. FIG. 本発明の実施の形態4に係るヒートポンプ式給湯暖房システムのシステムコントローラー32の構成図である。It is a block diagram of the system controller 32 of the heat pump type hot-water supply heating system which concerns on Embodiment 4 of this invention. 本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの燃焼式熱源記憶手段9に記憶された負荷量と効率の相関をテーブルによって示した図である。It is the figure which showed the correlation of the load amount memorize | stored in the combustion type heat source memory | storage means 9 of the heat pump type hot-water supply heating system which concerns on Embodiment 1 of this invention, and a table with a table.
実施の形態1.
(ヒートポンプ式給湯暖房システムの構成)
 図1は、本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの構成図である。
Embodiment 1 FIG.
(Configuration of heat pump hot water supply / heating system)
FIG. 1 is a configuration diagram of a heat pump hot water supply / heating system according to Embodiment 1 of the present invention.
 図1で示されるように、本実施の形態に係るヒートポンプ式給湯暖房システムは、ヒートポンプ装置20、第1熱交換器22、燃焼式熱源40、タンクユニット28、ラジエーター26及び床暖房機器27を備えている。 As shown in FIG. 1, the heat pump hot water supply and heating system according to the present embodiment includes a heat pump device 20, a first heat exchanger 22, a combustion heat source 40, a tank unit 28, a radiator 26, and a floor heating device 27. ing.
 ヒートポンプ装置20は、圧縮機20a、膨張装置20b及び蒸発器20cを収納しており、これらと第1熱交換器22が冷媒配管によって接続され、冷媒が循環する冷凍サイクル回路が構成される。 The heat pump device 20 houses a compressor 20a, an expansion device 20b, and an evaporator 20c. The first heat exchanger 22 and the first heat exchanger 22 are connected by a refrigerant pipe, and a refrigeration cycle circuit in which the refrigerant circulates is configured.
 圧縮機20aは、インバーターによって運転周波数を変更可能とし、ガス冷媒を圧縮して吐出するものである。 The compressor 20a can change the operating frequency by an inverter and compresses and discharges the gas refrigerant.
 第1熱交換器22は、放熱器として作用し、圧縮機20aから吐出された高温高圧の冷媒を、後述する水流路21を流れる水又は不凍液(以下、単に「水」という)と熱交換させ、冷媒から水に放熱させる。
 なお、図1で示されるように、第1熱交換器22は、ヒートポンプ装置20の外部に設置されているものとしているが、ヒートポンプ装置20の内部に収納されるものとしてもよく、以降の説明では、第1熱交換器22は、ヒートポンプ装置20の構成要素の一部であるものとして説明する。
The first heat exchanger 22 acts as a radiator, and exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 20a with water or antifreeze liquid (hereinafter simply referred to as “water”) flowing through a water passage 21 described later. Then, heat is dissipated from the refrigerant to the water.
As shown in FIG. 1, the first heat exchanger 22 is assumed to be installed outside the heat pump device 20, but may be housed inside the heat pump device 20. Then, the 1st heat exchanger 22 is demonstrated as what is a part of component of the heat pump apparatus 20. FIG.
 膨張装置20bは、電子膨張弁等によって構成され、冷媒流量を調整可能とするものである。 The expansion device 20b is configured by an electronic expansion valve or the like, and can adjust the refrigerant flow rate.
 蒸発器20cは、空気と冷媒との熱交換を実施するものであり、能力可変のファンを有し、冷媒を蒸発させる。 The evaporator 20c performs heat exchange between the air and the refrigerant, has a variable capacity fan, and evaporates the refrigerant.
 また、図1で示されるように、水に対する熱の供給源であるヒートポンプ装置20及び第1熱交換器22と、燃焼式熱源40とは水配管によって並列に接続されており、さらに、熱の供給先であるタンクユニット28、ラジエーター26及び床暖房機器27も水配管によってそれぞれ並列に接続されており、水流路21が形成されている。このうち、第1熱交換器22から流出入する水が流通する水流路21には、循環ポンプ24が備えられており、この循環ポンプ24によって水が循環される。また、燃焼式熱源40から流出入する水が流通する水流路21には、循環ポンプ24aが備えられており、この循環ポンプ24aによって水が循環される。また、水流路21には、三方弁23が備えられており、第1熱交換器22から流出した温水又は温められた不凍液(以下、単に「温水」という)、又は、燃焼式熱源40から流出した温水が、タンクユニット28側に流れるか、ラジエーター26及び床暖房機器27側に流れるか三方弁23によって切り替えられる。
 なお、この三方弁23の代わりに、2つの二方弁を用いて流路を切り替える構成としてもよい。
Moreover, as shown in FIG. 1, the heat pump device 20 and the first heat exchanger 22 that are heat supply sources for water, and the combustion heat source 40 are connected in parallel by a water pipe, and further, A tank unit 28, a radiator 26, and a floor heating device 27, which are supply destinations, are also connected in parallel by water pipes, and a water flow path 21 is formed. Among these, the water flow path 21 through which the water flowing in and out from the first heat exchanger 22 is provided with a circulation pump 24, and the water is circulated by the circulation pump 24. The water passage 21 through which the water flowing in and out from the combustion heat source 40 circulates is provided with a circulation pump 24a, and water is circulated by the circulation pump 24a. Further, the water flow path 21 is provided with a three-way valve 23, and flows out of the hot water or the warmed antifreeze liquid (hereinafter simply referred to as “hot water”) flowing out from the first heat exchanger 22 or from the combustion heat source 40. The heated water is switched to the tank unit 28 side or to the radiator 26 and the floor heating device 27 side by the three-way valve 23.
In addition, it is good also as a structure which switches a flow path using two two-way valves instead of this three-way valve 23. FIG.
 燃焼式熱源40は、ボイラー等による給湯器であり、燃料を燃焼させて温水に熱量を供給するものである。 The combustion heat source 40 is a hot water heater such as a boiler that burns fuel and supplies heat to the hot water.
 タンクユニット28は、貯湯タンク25及び第2熱交換器29を備えている。 The tank unit 28 includes a hot water storage tank 25 and a second heat exchanger 29.
 貯湯タンク25は、給湯用水を貯留するものであり、給湯利用する場合、その上部から給湯用水である温水が排出され、新しい給湯用水はその下部から供給される。 The hot water storage tank 25 stores hot water supply water. When hot water is used, hot water as hot water supply water is discharged from the upper part thereof, and new hot water supply water is supplied from the lower part thereof.
 第2熱交換器29は、水流路21に接続されており、第1熱交換器22から流出した温水と、貯湯タンク25内に貯留された給湯用水との間で熱交換を実施するものである。すなわち、第1熱交換器22から流出した温水によって、貯湯タンク25内に貯留された給湯用水が加熱される。 The second heat exchanger 29 is connected to the water flow path 21 and performs heat exchange between the hot water flowing out from the first heat exchanger 22 and the hot water supply water stored in the hot water storage tank 25. is there. That is, the hot water stored in the hot water storage tank 25 is heated by the hot water flowing out from the first heat exchanger 22.
 ラジエーター26及び床暖房機器27は、水流路21に接続されており、第1熱交換器22から流出した温水が流れ込み、それぞれ暖房を行う。ラジエーター26は、熱輻射によって暖房を行うものであり、床暖房機器27は、住宅等の居住空間の床面から暖房を行うものであり、住宅等の構成に応じて、複数台が各部屋に設置される。 The radiator 26 and the floor heating device 27 are connected to the water flow path 21, and the hot water flowing out from the first heat exchanger 22 flows in and heats each. The radiator 26 is for heating by heat radiation, and the floor heating device 27 is for heating from the floor of a living space such as a house, and a plurality of units are installed in each room according to the configuration of the house or the like. Installed.
 また、図1で示されるように、本実施の形態に係るヒートポンプ式給湯暖房システムは、熱源機コントローラー31及びシステムコントローラー32(給湯・暖房システム制御装置)を備えている。 Further, as shown in FIG. 1, the heat pump hot water supply / heating system according to the present embodiment includes a heat source controller 31 and a system controller 32 (hot water supply / heating system control device).
 熱源機コントローラー31は、ヒートポンプ装置20内に収納されており、圧縮機20a、膨張装置20b及び蒸発器20cのファンの運転を制御する。 The heat source controller 31 is housed in the heat pump device 20 and controls the operation of the fans of the compressor 20a, the expansion device 20b, and the evaporator 20c.
 システムコントローラー32は、タンクユニット28内に収納されており、熱源機コントローラー31の起動及び停止、圧縮機20aの運転周波数の指令の出力、循環ポンプ24、24aの起動、停止及び回転数指令の出力、三方弁23の流路切り替え指令の出力、並びに、燃焼式熱源40の起動及び停止等を行う。 The system controller 32 is housed in the tank unit 28, and starts and stops the heat source controller 31, outputs an operation frequency command for the compressor 20a, starts and stops the circulation pumps 24 and 24a, and outputs a rotation speed command. The flow path switching command of the three-way valve 23 is output, and the combustion heat source 40 is started and stopped.
 なお、図1で示されるように、システムコントローラー32は、タンクユニット28内に収納されているものとしているが、これに限定されるものではなく、ヒートポンプ装置20内に収納されているものとしても、システムコントローラー32単体で別部品として備えられているものとしてもよい。
 また、図1で示されるように、熱源機コントローラー31とシステムコントローラー32とは別個のコントローラーとして構成されているが、これに限定されるものではなく、双方の機能を有する1つのコントローラーとして構成し、ヒートポンプ装置20の内部、又は、タンクユニット28の内部に設置するものとしてもよい。
As shown in FIG. 1, the system controller 32 is stored in the tank unit 28, but is not limited to this, and may be stored in the heat pump device 20. The system controller 32 alone may be provided as a separate part.
In addition, as shown in FIG. 1, the heat source controller 31 and the system controller 32 are configured as separate controllers. However, the controller is not limited to this, and is configured as a single controller having both functions. It may be installed inside the heat pump device 20 or inside the tank unit 28.
 さらに、図1で示されるように、本実施の形態に係るヒートポンプ式給湯暖房システムは、当該システムの運転状態を把握するためのセンサーとして、外気温度センサー30、往き温水温度センサー33、33a、戻り温水温度センサー34、34a、1つ又は複数のタンク水温センサー35、室温センサー36、流量センサー37、37a、及び、温水温度センサー38を備えており、各センサーが検出した情報はシステムコントローラー32に送信される。 Further, as shown in FIG. 1, the heat pump hot water supply / heating system according to the present embodiment includes an outside air temperature sensor 30, an outgoing hot water temperature sensor 33, 33 a, and a return sensor as sensors for grasping the operation state of the system. Hot water temperature sensors 34, 34 a, one or more tank water temperature sensors 35, a room temperature sensor 36, flow rate sensors 37, 37 a, and a hot water temperature sensor 38 are provided, and information detected by each sensor is transmitted to the system controller 32. Is done.
 外気温度センサー30は、ヒートポンプ装置20の周辺の外気温度を検出するものである。
 往き温水温度センサー33は、第1熱交換器22から流出する温水の温度を検出するものである。往き温水温度センサー33aは、燃焼式熱源40から流出する温水の温度を検出するものである。
 戻り温水温度センサー34は、第1熱交換器22に流入する温水の温度を検出するものである。戻り温水温度センサー34aは、燃焼式熱源40に流入する温水の温度を検出するものである。
 タンク水温センサー35は、貯湯タンク25の鉛直方向に少なくとも1つ以上の箇所に備えられ、貯湯タンク25に貯留した給湯用水の温度を検出するものである。
 室温センサー36は、ラジエーター26が設置された居住空間等の室内の温度を検出するものである。
 流量センサー37は、第1熱交換器22に流入する温水の流量を検出するように配置されているが、第1熱交換器22から流出する温水の流量を検出するものとしてもよい。流量センサー37aは、燃焼式熱源40に流入する温水の流量を検出するように配置されているが、燃焼式熱源40から流出する温水の流量を検出するものとしてもよい。
 温水温度センサー38は、ヒートポンプ装置20及び燃焼式熱源40が同時に運転している場合のために、第1熱交換器22から流出した温水と燃焼式熱源40から流出した温水が合流する水流路21の箇所に設置され、その箇所の温水の温度を検出する。
 以下、上記の各センサーによって検出される温水の温度を、単に「温水温度」というものとする。
The outside air temperature sensor 30 detects the outside air temperature around the heat pump device 20.
The outgoing hot water temperature sensor 33 detects the temperature of the hot water flowing out from the first heat exchanger 22. The outgoing hot water temperature sensor 33a detects the temperature of hot water flowing out from the combustion heat source 40.
The return hot water temperature sensor 34 detects the temperature of the hot water flowing into the first heat exchanger 22. The return hot water temperature sensor 34 a detects the temperature of the hot water flowing into the combustion heat source 40.
The tank water temperature sensor 35 is provided at at least one location in the vertical direction of the hot water storage tank 25 and detects the temperature of hot water stored in the hot water storage tank 25.
The room temperature sensor 36 detects the temperature in a room such as a living space where the radiator 26 is installed.
The flow rate sensor 37 is arranged to detect the flow rate of the hot water flowing into the first heat exchanger 22, but may detect the flow rate of the hot water flowing out from the first heat exchanger 22. The flow rate sensor 37 a is arranged to detect the flow rate of hot water flowing into the combustion heat source 40, but may detect the flow rate of hot water flowing out from the combustion heat source 40.
The hot water temperature sensor 38 is a water flow path 21 in which the hot water flowing out from the first heat exchanger 22 and the hot water flowing out from the combustion heat source 40 are merged because the heat pump device 20 and the combustion heat source 40 are operating simultaneously. The temperature of the hot water at that location is detected.
Hereinafter, the temperature of hot water detected by each of the above sensors is simply referred to as “warm water temperature”.
 なお、必ずしも、これらのセンサーの全てを設置する必要はないが、少なくとも、往き温水温度センサー33、33aの設置は必須である。 Note that it is not always necessary to install all of these sensors, but at least the outgoing hot water temperature sensors 33 and 33a are indispensable.
 図2は、本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。
 図2で示されるように、本実施の形態に係るヒートポンプ式給湯暖房システムは、運転熱源判定手段11及び熱源切替制御手段4を備えている。このうち運転熱源判定手段11は、熱源性能推定手段1、熱源切替判定に用いる判定情報を推定する判定情報推定手段の一実施形態である運転コスト推定手段2、運転熱源選択手段3、負荷量計算手段5、外気温度取得手段6、温水温度取得手段7、ヒートポンプ特性データ記憶手段8、燃焼式熱源特性データ記憶手段9及びエネルギー単価取得手段10によって構成されている。各手段によるヒートポンプ装置20と燃焼式熱源40との熱源切替動作については、後述する。これらの各手段は、システムコントローラー32においてハードウェア又はソフトウェアによってそれぞれの機能が実現される構成とすればよい。
FIG. 2 is a diagram showing a configuration of various means for performing heat source switching in the heat pump hot water supply / room heating system according to Embodiment 1 of the present invention.
As shown in FIG. 2, the heat pump hot water supply and heating system according to the present embodiment includes an operating heat source determination unit 11 and a heat source switching control unit 4. Among them, the operating heat source determination means 11 is an embodiment of the heat source performance estimation means 1, the determination information estimation means for estimating determination information used for heat source switching determination, the operation cost estimation means 2, the operation heat source selection means 3, and the load amount calculation. It comprises means 5, outside air temperature acquisition means 6, hot water temperature acquisition means 7, heat pump characteristic data storage means 8, combustion type heat source characteristic data storage means 9 and energy unit price acquisition means 10. The heat source switching operation between the heat pump device 20 and the combustion heat source 40 by each means will be described later. Each of these means may be configured such that each function is realized by hardware or software in the system controller 32.
 なお、外気温度取得手段6及び外気温度センサー30は、本発明の「外気温度測定手段」に相当し、温水温度取得手段7、及び、往き温水温度センサー33、33a又は戻り温水温度センサー34、34aは、本発明の「温水温度測定手段」に相当する。
 また、運転コスト推定手段2は、本発明の「判定情報推定手段」に相当する。
The outside air temperature acquisition means 6 and the outside air temperature sensor 30 correspond to the “outside air temperature measurement means” of the present invention, and the hot water temperature acquisition means 7 and the forward hot water temperature sensors 33 and 33a or the return hot water temperature sensors 34 and 34a. Corresponds to “warm water temperature measuring means” of the present invention.
The operating cost estimation means 2 corresponds to the “determination information estimation means” of the present invention.
(ヒートポンプ式給湯暖房システムの基本動作)
 図3は、本発明の実施の形態1に係るヒートポンプ式給湯暖房システムの基本動作を示すフローチャートである。以下、図3を参照しながら、ヒートポンプ式給湯暖房システムの基本動作について説明する。
(Basic operation of heat pump hot water supply and heating system)
FIG. 3 is a flowchart showing the basic operation of the heat pump hot water supply / heating system according to Embodiment 1 of the present invention. Hereinafter, the basic operation of the heat pump hot water supply and heating system will be described with reference to FIG.
 ユーザーは、タンクユニット28に備え付けられたシステムコントローラー32の操作インターフェース、又は、空調対象空間等に設置されたリモコンによって、タンクユニット28における貯湯タンク25の沸き上げ運転、若しくは、ラジエーター26若しくは床暖房機器27による暖房運転の開始若しくは停止を手動で設定する「運転指令」、貯湯タンク25の沸き上げ運転、若しくは、ラジエーター26若しくは床暖房機器27による暖房運転の自動開始若しくは自動停止を許可若しくは禁止する時刻を指定する「運転スケジュール」、又は、貯湯タンク25の沸き上げ運転、若しくは、ラジエーター26若しくは床暖房機器27による暖房運転の運転条件の判定に必要な「温度」を設定できる。ユーザーによりリモコンで運転指令、運転スケジュール又は運転条件の判定に必要な温度が設定された場合、これらの設定情報は、無線又は有線の通信によって、システムコントローラー32へ送信される。 The user can perform the heating operation of the hot water storage tank 25 in the tank unit 28 or the radiator 26 or the floor heating device by an operation interface of the system controller 32 provided in the tank unit 28 or a remote controller installed in the air-conditioning target space or the like. “Operation command” for manually setting the start or stop of the heating operation by 27, the heating operation of the hot water storage tank 25, or the time at which the automatic start or automatic stop of the heating operation by the radiator 26 or the floor heating device 27 is permitted or prohibited Can be set, or “temperature” required for determining the operating conditions of the heating operation of the hot water storage tank 25 or the heating operation by the radiator 26 or the floor heating device 27. When a user sets a temperature necessary for determination of an operation command, an operation schedule, or an operation condition with a remote controller, the setting information is transmitted to the system controller 32 by wireless or wired communication.
(S1:初期化処理)
 ユーザーによるリモコン等の操作によって、ヒートポンプ式給湯暖房システムが起動すると、まず、システムコントローラー32においての初期化処理が実施される。この初期化処理においては、制御プログラムの起動、及び、記憶装置(図示せず)に記憶された設定情報の読み込み等の処理が実施される。そして、ステップS2へ進む。
(S1: Initialization process)
When the heat pump hot water supply / heating system is activated by the operation of the remote controller or the like by the user, first, initialization processing in the system controller 32 is performed. In this initialization processing, processing such as activation of a control program and reading of setting information stored in a storage device (not shown) is performed. Then, the process proceeds to step S2.
(S2:制御周期判定処理)
 システムコントローラー32は、初期化処理S1が完了すると、タイマーにて時間をカウントし、その積算時間が制御周期の時間に到達したか否かを判定する。制御周期に到達すると、S3以降の処理に移る。S3に処理が移った時点で積算時間をリセットする。積算時間が制御周期の時間に達していない場合は、制御周期の時間に到達するまで繰返しS2の判定処理を行う。
(S2: Control cycle determination process)
When the initialization process S1 is completed, the system controller 32 counts the time with a timer and determines whether or not the accumulated time has reached the time of the control cycle. When the control period is reached, the process proceeds to S3 and subsequent steps. The accumulated time is reset when the process moves to S3. If the accumulated time has not reached the time of the control cycle, the determination process of S2 is repeated until the time of the control cycle is reached.
(S3:入力処理)
 システムコントローラー32は、各種センサーからの検出情報、リモコン等からの操作信号及びヒートポンプ装置20の運転状態を取得する。ヒートポンプ装置20の運転状態は、熱源機コントローラー31から取得する。そしてステップS4へ進む。
(S3: Input processing)
The system controller 32 acquires detection information from various sensors, operation signals from a remote controller and the operation state of the heat pump device 20. The operating state of the heat pump device 20 is acquired from the heat source device controller 31. Then, the process proceeds to step S4.
(S4:システム停止判定処理)
 システムコントローラー32は、ユーザーによるリモコン等の操作によって、システム停止の操作がなされた場合、その操作信号に基づき、システムを停止するため、ステップS9へ進む。それ以外の場合は、ステップS5へ進む。
(S4: System stop determination process)
When the system controller 32 is operated to stop the system by the operation of the remote controller or the like by the user, the system controller 32 proceeds to step S9 in order to stop the system based on the operation signal. Otherwise, the process proceeds to step S5.
(S5:異常検出処理)
 システムコントローラー32は、ステップS3において取得した各センサーからの検出情報について異常の有無を判定する。例えば、戻り温水温度センサー34によって検出された温水の温度が異常に高温になる等の異常を検出した場合、ステップS10に進む。そして、異常がない場合、ステップS6へ進む。
(S5: Abnormality detection process)
The system controller 32 determines whether there is an abnormality in the detection information from each sensor acquired in step S3. For example, when an abnormality is detected such that the temperature of the hot water detected by the return hot water temperature sensor 34 is abnormally high, the process proceeds to step S10. If there is no abnormality, the process proceeds to step S6.
(S6:運転モード判定処理)
 システムコントローラー32は、ヒートポンプ式給湯暖房システムの運転モードを、ステップS3において取得した各センサーから取得した情報や、リモコンによってユーザーが設定した情報に基づいて判定し、タンク沸き上げ運転、暖房運転、停止、ヒートポンプ装置20の除霜運転、タンクのレジオネラ殺菌運転、凍結防止運転などの各運転状態を決定する。そして、ステップS7へ進む。
(S6: Operation mode determination process)
The system controller 32 determines the operation mode of the heat pump hot water supply and heating system based on the information acquired from each sensor acquired in step S3 and the information set by the user with the remote controller, and the tank heating operation, the heating operation, and the stop Each operation state such as a defrosting operation of the heat pump device 20, a Legionella sterilization operation of the tank, and an antifreezing operation is determined. Then, the process proceeds to step S7.
(S7:運転熱源判定処理)
 システムコントローラー32は、後述するように、熱源性能推定手段1、運転コスト推定手段2及び運転熱源選択手段3による処理によって、ヒートポンプ装置20又は燃焼式熱源40のいずれに切り替えて運転させるかの判定を行う。
(S7: Operating heat source determination process)
As will be described later, the system controller 32 determines whether to switch to the heat pump device 20 or the combustion heat source 40 by the processing by the heat source performance estimation unit 1, the operation cost estimation unit 2, and the operation heat source selection unit 3. Do.
(S8:機器制御処理)
 システムコントローラー32は、後述するように、熱源切替制御手段4による処理によって、ステップS7の判定結果に基づいて、ヒートポンプ装置20と燃焼式熱源40との熱源切替動作を実施する。そして、ステップS3で取得したセンサーからの検出情報と、制御対象の目標値に応じて、各機器の出力を制御する。ヒートポンプ装置20の場合、例えば往き温水温度33、タンク水温35又は室温36を制御対象として、センサー計測値が制御目標値になるようにヒートポンプ装置20の圧縮機周波数を変更して負荷量を制御する。燃焼式熱源40の場合、例えば往き温水温度、タンク水温又は室温を制御対象として、センサー計測値が制御目標値になるように燃料投入量を変更して負荷量を制御する。循環ポンプ24又は24aの場合、例えば室温又はタンク水温を制御対象として、センサー計測値が制御目標値に対して所定の温度より低ければ運転を開始し、所定の温度以上高ければ運転を停止する。三方弁23の場合、運転モードがタンク沸き上げ運転であり、タンク水温センサー35が所定の下限温度より低下した場合に暖房側からタンク側に切り替え、所定の上限温度までタンク水温が沸き上がれば、タンク側から暖房側に切り替える。
(S8: Device control process)
As will be described later, the system controller 32 performs a heat source switching operation between the heat pump device 20 and the combustion heat source 40 based on the determination result of step S7 by the processing by the heat source switching control unit 4. And the output of each apparatus is controlled according to the detection information from the sensor acquired by step S3, and the target value of a control object. In the case of the heat pump device 20, for example, the outgoing hot water temperature 33, the tank water temperature 35 or the room temperature 36 is controlled, and the load amount is controlled by changing the compressor frequency of the heat pump device 20 so that the sensor measurement value becomes the control target value. . In the case of the combustion-type heat source 40, for example, the temperature of the incoming hot water, the temperature of the tank water, or the room temperature is controlled, and the amount of fuel input is changed to control the load so that the sensor measurement value becomes the control target value. In the case of the circulation pump 24 or 24a, for example, the room temperature or the tank water temperature is controlled, and the operation is started if the sensor measurement value is lower than a predetermined temperature with respect to the control target value, and the operation is stopped if the sensor measurement value is higher than the predetermined temperature. In the case of the three-way valve 23, when the operation mode is a tank boiling operation and the tank water temperature sensor 35 falls below a predetermined lower limit temperature, switching from the heating side to the tank side and if the tank water temperature rises to the predetermined upper limit temperature, Switch from tank side to heating side.
(S9:システム停止)
 各機器の運転を停止したのち、リモコン、熱源コントローラー31、システムコントローラー32を停止する。
(S9: System stop)
After stopping the operation of each device, the remote controller, the heat source controller 31, and the system controller 32 are stopped.
(S10:機器制御処理(異常時))
 ステップS5の異常検出処理にて異常と判定した場合、異常の内容をリモコンに表示し、異常に関する機器の動作を停止させる等、異常の内容に応じた処理を実施する。システムコントローラー32が外部の通信ネットワークと接続し、メンテナンスやサポート会社などに連絡がいく構成としてもよい。
(S10: Device control processing (when abnormal))
When it is determined that there is an abnormality in the abnormality detection process in step S5, the contents of the abnormality are displayed on the remote controller, and processing according to the contents of the abnormality, such as stopping the operation of the device related to the abnormality, is performed. The system controller 32 may be connected to an external communication network to contact a maintenance or support company.
(ヒートポンプ装置20と燃焼式熱源40との熱源切替動作)
 図4は、本発明の実施の形態1に係るヒートポンプ式給湯暖房システムのヒートポンプ特性データ記憶手段8に記憶された外気温度、温水温度、能力、負荷率及びCOPとの相関をグラフ及びテーブルによって示した図であり、図5は、同ヒートポンプ式給湯暖房システムにおいて、ヒートポンプ装置20のCOPを推定する手順を示す図である。ここで、能力とはヒートポンプ装置20の供給熱量(kW)であり、暖房及びタンク沸き上げの負荷に供給する熱量を表す。以下、能力、供給熱量及び負荷量は同じものとして扱う。
 図10は、燃焼式熱源特性データ記憶手段9に記憶された、燃焼式熱源の負荷量と効率との相関をテーブルによって示した図である。ここで、負荷量は、燃焼式熱源40が水流路21の温水に供給することができる熱量に等しい。また、効率とは、投入した燃料がもつ熱量のうち、水流路21の温水に供給することができる熱量の割合を示すものとする。なお、燃焼式熱源特性データ記憶手段9に記憶されたデータはこれに限定するものではなく、外気温度、温水温度、負荷量、及び定格運転での負荷量に対する各負荷量の比率を表す負荷率のいずれかのデータと、効率のデータを関連付けるものであればよい。また、定格負荷量や効率を固定値として与えるものであってもよい。
 以下、図1、図2、図4、図5及び図10を参照しながら、ヒートポンプ装置20と燃焼式熱源40との熱源切替動作について説明する。
(Heat source switching operation between the heat pump device 20 and the combustion heat source 40)
FIG. 4 is a graph and table showing the correlation between the outside air temperature, hot water temperature, capacity, load factor, and COP stored in the heat pump characteristic data storage means 8 of the heat pump hot water supply and heating system according to Embodiment 1 of the present invention. FIG. 5 is a diagram showing a procedure for estimating the COP of the heat pump device 20 in the heat pump hot water supply and heating system. Here, the capacity is the amount of heat supplied (kW) of the heat pump device 20, and represents the amount of heat supplied to the heating and tank boiling loads. Hereinafter, the capacity, supply heat amount and load amount are treated as the same.
FIG. 10 is a table showing the correlation between the load amount of the combustion heat source and the efficiency stored in the combustion heat source characteristic data storage means 9 in a table. Here, the load amount is equal to the amount of heat that the combustion heat source 40 can supply to the hot water in the water flow path 21. Moreover, efficiency shall show the ratio of the calorie | heat amount which can be supplied to the warm water of the water flow path 21 among the calorie | heat amount which the injected fuel has. The data stored in the combustion-type heat source characteristic data storage means 9 is not limited to this, and the load factor representing the ratio of each load amount to the outside air temperature, hot water temperature, load amount, and load amount in rated operation. Any one of the above data and the efficiency data may be associated with each other. Moreover, you may give a rated load amount and efficiency as a fixed value.
Hereinafter, the heat source switching operation between the heat pump device 20 and the combustion heat source 40 will be described with reference to FIGS. 1, 2, 4, 5, and 10.
 外気温度取得手段6は、システムコントローラー32における外部情報を入力する入力インターフェースに相当し、外気温度センサー30によって検出される外気温度を、図3において説明した、制御周期毎に取得する。 The outside air temperature acquisition means 6 corresponds to an input interface for inputting external information in the system controller 32, and acquires the outside air temperature detected by the outside air temperature sensor 30 for each control cycle described in FIG.
 温水温度取得手段7は、システムコントローラー32における外部情報を入力する入力インターフェースに相当し、往き温水温度センサー33、33aによって検出される温水の温度(以下、往き温水温度という)、及び、戻り温水温度センサー34、34aによって検出される温水の温度(以下、戻り温水温度という)を取得する。ここで、往き温水温度及び戻り温水温度は、ヒートポンプ装置20又は燃焼式熱源40が停止状態から起動して間もない場合、ヒートポンプ装置20の冷房機能によって熱交換器の除霜運転を実施していた場合、及び、循環ポンプ24又は循環ポンプ24aを起動して水流路21の凍結防止のための運転を実施していた場合等は、本来の温度よりも低下している。さらに、往き温水温度及び戻り温水温度は、貯湯タンク25の沸き上げ運転を終了し、暖房運転に切り替えた場合には、供給すべき温度よりも一時的に高くなっている。したがって、ヒートポンプ装置20又は燃焼式熱源40が停止状態から起動した後、ヒートポンプ装置20が除霜運転から暖房運転又は沸き上げ運転に切り替えられた後、ヒートポンプ装置20又は燃焼式熱源40が凍結防止のための運転等から暖房運転又は沸き上げ運転に切り替えられた後、及び、ヒートポンプ装置20又は燃焼式熱源40が沸き上げ運転から暖房運転に切り替えられた後、所定時間だけ、ヒートポンプ装置20と燃焼式熱源40との熱源切替動作を中心とする図3において説明した運転熱源判定処理を行わず、その時点で運転している熱源を引き続き運転するものとする。これによって、ヒートポンプ装置20と燃焼式熱源40との熱源切替動作において、温水温度取得手段7により取得すべき本来の温度ではない温度情報を用いて処理するのを防止することができる。 The hot water temperature acquisition means 7 corresponds to an input interface for inputting external information in the system controller 32, and the temperature of the hot water detected by the outgoing hot water temperature sensors 33 and 33a (hereinafter referred to as the outgoing hot water temperature) and the return hot water temperature. The temperature of hot water detected by the sensors 34 and 34a (hereinafter referred to as return hot water temperature) is acquired. Here, when the heat pump device 20 or the combustion-type heat source 40 has just started from the stopped state, the forward hot water temperature and the return hot water temperature are performing the defrosting operation of the heat exchanger by the cooling function of the heat pump device 20. In such a case, and when the circulation pump 24 or the circulation pump 24a is started and the operation for preventing freezing of the water flow path 21 is performed, the temperature is lower than the original temperature. Furthermore, the outgoing hot water temperature and the return hot water temperature are temporarily higher than the temperatures to be supplied when the boiling operation of the hot water storage tank 25 is finished and switched to the heating operation. Therefore, after the heat pump device 20 or the combustion heat source 40 is started from the stopped state, the heat pump device 20 is switched from the defrosting operation to the heating operation or the boiling operation, and then the heat pump device 20 or the combustion heat source 40 is prevented from freezing. After switching from the operation for heating to the heating operation or the boiling operation, and after the heat pump device 20 or the combustion heat source 40 is switched from the heating operation to the heating operation, the heat pump device 20 and the combustion type only for a predetermined time. It is assumed that the operation heat source determination process described in FIG. 3 centering on the heat source switching operation with the heat source 40 is not performed, and the heat source that is operating at that time is continuously operated. Thus, in the heat source switching operation between the heat pump device 20 and the combustion heat source 40, it is possible to prevent processing using temperature information that is not the original temperature to be acquired by the hot water temperature acquisition means 7.
 なお、後述する負荷量、ヒートポンプ装置20のCOP又は燃焼式熱源40の効率の算出のために使用する必要がなければ、上記の往き温水温度及び戻り温水温度のすべてを取得する必要はない。ヒートポンプ装置20が運転している間は、後述するCOPの計算に、運転中の温水温度の値を用いる。なお、この温水温度の値は、所定の期間の平均値を用いてもよい。一方、燃焼式熱源40は停止して、往き温水温度33aによって検出される往き温水温度、及び戻り温水温度センサー34aによって検出される戻り温水温度は低下しているので、後述する効率の計算に温水温度を用いるのであれば、燃焼式熱源40が運転を停止する直前の温水温度を用いてもよく、また、後述する燃焼式熱源特性データ記憶手段9に外気温度と温水温度の関係データを記憶させているものとして、その関係データから温水温度を推定するものとしてもよい。 Note that it is not necessary to acquire all of the above-mentioned forward hot water temperature and return hot water temperature unless there is a need to use for calculating the load amount, COP of the heat pump device 20 or the efficiency of the combustion heat source 40 described later. While the heat pump device 20 is in operation, the value of the hot water temperature during operation is used for the calculation of COP, which will be described later. In addition, you may use the average value of a predetermined period for the value of this warm water temperature. On the other hand, the combustion type heat source 40 is stopped, and the return warm water temperature detected by the return warm water temperature 33a and the return warm water temperature detected by the return warm water temperature sensor 34a are lowered. If the temperature is used, the hot water temperature immediately before the combustion type heat source 40 stops operation may be used, and the relational data between the outside air temperature and the hot water temperature is stored in the combustion type heat source characteristic data storage means 9 described later. It is good also as what presumes warm water temperature from the relationship data.
 同様に、燃焼式熱源40が運転している間は、後述する負荷率の計算に温水温度の値を用いているのであれば、運転中の温水温度の値を用いる。一方、ヒートポンプ装置20が停止して、往き温水温度センサー33によって検出される往き温水温度、及び、戻り温水温度センサー34によって検出される戻り温水温度は、低下しているので、後述するCOPの計算に往き温水温度センサー33又は戻り温水温度センサー34によって検出されるデータを用いるのではなく、例えば、ヒートポンプ装置20が運転を停止する直前の温水温度を用いてもよい。また、後述するヒートポンプ特性データ記憶手段8に外気温度と温水温度との関係データを記憶させているものとして、その関係データから、温水温度を推定するものとしてもよい。 Similarly, while the combustion heat source 40 is in operation, if the value of the hot water temperature is used for calculation of a load factor described later, the value of the hot water temperature during operation is used. On the other hand, since the heat pump device 20 is stopped and the return hot water temperature detected by the return hot water temperature sensor 33 and the return hot water temperature detected by the return hot water temperature sensor 34 are decreased, the calculation of COP described later is performed. Instead of using the data detected by the incoming hot water temperature sensor 33 or the return hot water temperature sensor 34, for example, the hot water temperature immediately before the heat pump device 20 stops operating may be used. Moreover, it is good also as what presumes warm water temperature from the relationship data as the thing which has memorize | stored the relationship data of external temperature and warm water temperature in the heat pump characteristic data storage means 8 mentioned later.
 エネルギー単価取得手段10は、単位投入エネルギー[kWh]あたりの電気料金単価及び燃料料金単価のデータを記憶しているものである。電気料金単価及び燃料料金単価は、時間帯、曜日、平日又は休日、月、季節、又は、使用量等によって変化させる構成であってもよい。また、日や時間で料金単価が変化する場合は、エネルギー単価取得手段10は、時刻又は日付等のカレンダー情報を記憶し、電気料金単価又は燃料料金単価と、カレンダー情報との関連付けがなされているものとして、その関連付けに基づいて、現在の電気料金単価又は燃料料金単価を求めることができるものとしてもよい。また、使用量で料金単価が変化する場合は、電力使用量又は燃料使用量を計測するセンサーを備えるものとして各使用量を取得できるものとし、取得した使用量のデータに基づいて、現在の電気料金単価又は燃料料金単価を求めることができるものとしてもよい。 The energy unit price acquisition means 10 stores data on a unit price of electricity and a unit price of fuel per unit input energy [kWh]. The electricity unit price and the fuel unit price may be changed according to the time of day, day of the week, weekday or holiday, month, season, or usage amount. In addition, when the unit price of the charge changes depending on the day or time, the energy unit price acquisition means 10 stores calendar information such as time or date, and the electric charge unit price or fuel charge unit price is associated with the calendar information. As a thing, it is good also as what can obtain | require the present electricity rate unit price or fuel rate unit price based on the association. In addition, when the unit price of charges changes depending on the usage, each usage can be acquired as if it were equipped with a sensor that measures power usage or fuel usage, and based on the acquired usage data, The unit price of fuel or the unit price of fuel may be obtained.
 負荷量計算手段5は、システムコントローラー32の機能の一部として構成され、運転中の暖房負荷量又は給湯負荷量を算出するものである。まず、暖房負荷量の算出について説明する。 The load amount calculation means 5 is configured as a part of the function of the system controller 32, and calculates the heating load amount or hot water supply load amount during operation. First, calculation of the heating load amount will be described.
 ヒートポンプ装置20又は燃焼式熱源40によって、暖房運転が実施されている場合において、QLを暖房運転における負荷量[kW]、Trを設定室温[℃]、Qmaxを最大暖房負荷想定値[kW]、Tadを最大暖房負荷時の外気温度想定値[℃]、そして、Tを現在の外気温度[℃]とすると、負荷量QL[kW]は、負荷量計算手段5により下記の式(1)によって算出できる。 When the heating operation is performed by the heat pump device 20 or the combustion heat source 40, QL is the load amount [kW] in the heating operation, Tr is the set room temperature [° C.], Qmax is the maximum assumed heating load value [kW], Assuming that Tad is the outside air temperature estimated value [° C.] at the maximum heating load and T is the current outside air temperature [° C.], the load amount QL [kW] is calculated by the load amount calculation means 5 according to the following equation (1). It can be calculated.
 QL=Qmax-Qmax/(Tr-Tad)×(T-Tad)(1) QL = Qmax−Qmax / (Tr−Tad) × (T−Tad) (1)
 ここで、最大暖房負荷となる外気温度想定値Tad[℃]、及び、最大暖房負荷想定値Qmax[kW]は、設定値であり、地域の気候又は住宅の断熱性能に基づいて、最低の外気温度時の最大暖房負荷量を想定して設定するものとする。現在の外気温度T[℃]については、外気温度センサー30によって検出されたものを使用する。 Here, the estimated outside air temperature value Tad [° C.] and the estimated maximum heating load value Qmax [kW], which are the maximum heating load, are set values, and are based on the local climate or the heat insulation performance of the house, It shall be set assuming the maximum heating load at the time of temperature. For the current outside air temperature T [° C.], the one detected by the outside air temperature sensor 30 is used.
 また、ヒートポンプ装置20又は燃焼式熱源40によって、暖房運転が実施されている場合において、別の方法によって負荷量QL[kW]を算出する方法を以下に述べる。Toutを往き温水温度[K]、Tinを戻り温水温度[K]、Fwを温水の流量(以下、単に「温水流量」という)[L/s]、ρを水の密度[kg/L]、そして、Cpを水の比熱[kJ/(kg・K)]とすると、負荷量QL[kW]は、負荷量計算手段5により下記の式(2)によって算出できる。 Further, a method for calculating the load amount QL [kW] by another method when the heating operation is performed by the heat pump device 20 or the combustion heat source 40 will be described below. Tout is the warm water temperature [K], Tin is the return warm water temperature [K], Fw is the flow rate of warm water (hereinafter simply referred to as “warm water flow rate”) [L / s], ρ is the density of water [kg / L], When Cp is the specific heat of water [kJ / (kg · K)], the load amount QL [kW] can be calculated by the load amount calculation means 5 according to the following equation (2).
 QL=ρ・Cp・Fw・(Tout-Tin)(2) QL = ρ ・ Cp ・ Fw ・ (Tout-Tin) (2)
 ここで、ヒートポンプ装置20によって暖房運転が実施されている場合、往き温水温度Tout[K]は往き温水温度センサー33によって検出されたもの、戻り温水温度Tin[K]は戻り温水温度センサー34によって検出されたもの、そして、温水流量Fw[L/s]は流量センサー37によって検出されたものをそれぞれ使用すればよい。また、燃焼式熱源40によって暖房運転が実施されている場合、往き温水温度Tout[K]は往き温水温度センサー33aによって検出されたもの、戻り温水温度Tin[K]は戻り温水温度センサー34aによって検出されたもの、そして、温水流量Fw[L/s]は流量センサー37aによって検出されたものをそれぞれ使用すればよい。 Here, when the heating operation is performed by the heat pump device 20, the incoming hot water temperature Tout [K] is detected by the outgoing hot water temperature sensor 33, and the return hot water temperature Tin [K] is detected by the return hot water temperature sensor 34. And the hot water flow rate Fw [L / s] detected by the flow rate sensor 37 may be used. When the heating operation is performed by the combustion heat source 40, the forward hot water temperature Tout [K] is detected by the forward hot water temperature sensor 33a, and the return hot water temperature Tin [K] is detected by the return hot water temperature sensor 34a. What was detected and what was detected by flow sensor 37a should just be used for warm water flow Fw [L / s], respectively.
 また、ヒートポンプ装置20によって、暖房運転が実施されている場合、圧縮機20aの運転周波数から負荷量QL[kW]を推定する方法もある。fsを現在の外気温度及び温水温度における運転状態における圧縮機20aの最高周波数[Hz]、Qsを圧縮機20aの最高周波数における運転時の供給熱量[kW]、そして、fnを現在の圧縮機20aの運転周波数[Hz]とすると、負荷量QL[kW]は、負荷量計算手段5により下記の式(3)によって算出できる。 Further, when the heating operation is performed by the heat pump device 20, there is also a method for estimating the load amount QL [kW] from the operation frequency of the compressor 20a. fs is the maximum frequency [Hz] of the compressor 20a in the operation state at the current outside air temperature and hot water temperature, Qs is the heat supply amount [kW] during operation at the maximum frequency of the compressor 20a, and fn is the current compressor 20a. If the operating frequency [Hz] is, the load amount QL [kW] can be calculated by the load amount calculation means 5 by the following equation (3).
 QL=Qs×fn/fs  (3) QL = Qs × fn / fs (3)
 この式(3)を用いる場合には、ヒートポンプ特性データ記憶手段8に、外気温度及び温水温度と、圧縮機20aの最高周波数及びその時の供給熱量との関連付けが記憶されている必要がある。また、燃焼式熱源40の場合においては、上記の式(3)を用いることはできないため、式(1)又は式(2)を用いることになる。
 なお、上記の式(3)を用いて負荷量QL[kW]を算出する場合において、外気温度及び温水温度によって負荷率(定義については後述)が変動する場合は、ヒートポンプ特性データ記憶手段8に、供給熱量と負荷率との関連付けも記憶されている必要がある。
When this equation (3) is used, the heat pump characteristic data storage means 8 needs to store the association between the outside air temperature and the hot water temperature, the maximum frequency of the compressor 20a, and the amount of heat supplied at that time. Further, in the case of the combustion type heat source 40, since the above formula (3) cannot be used, the formula (1) or the formula (2) is used.
In addition, when calculating load amount QL [kW] using said Formula (3), when a load factor (it mentions later) changes with outside air temperature and warm water temperature, it is stored in heat pump characteristic data storage means 8. The association between the amount of heat supplied and the load factor must also be stored.
 次に、負荷量計算手段5による給湯負荷量の算出について説明する。
 この供給負荷量は、貯湯タンク25の沸き上げ運転に必要な単位時間当たりの熱量[kW]によって算出する。この貯湯タンク25の沸き上げ運転を実施する場合、短時間での沸き上げを行うために、ヒートポンプ装置20又は燃焼式熱源40によって定格能力により運転を実施するものとする。したがって、沸き上げ運転における負荷量QL[kW]は、現在の外気温度及び温水温度における単位時間当たりの定格供給熱量[kW]と等しいものとして推定する。ここで、ヒートポンプ特性データ記憶手段8には、外気温度及び温水温度と、ヒートポンプ装置20の定格供給熱量との関連付けが記憶されており、燃焼式熱源特性データ記憶手段9には、外気温度と温水温度と、燃焼式熱源40の定格供給熱量との関連付けが記憶されている。したがって、負荷量計算手段5がヒートポンプ装置20によって沸き上げ運転が実施されている場合の給湯負荷量[kW]を推定する場合においては、外気温度センサー30によって検出された外気温度、往き温水温度センサー33によって検出された温水温度、及び、ヒートポンプ特性データ記憶手段8に記憶された関連付けに基づいて、ヒートポンプ装置20による定格供給熱量[kW]が求まり、これを負荷量QL[kW]とすればよい。また、負荷量計算手段5が燃焼式熱源40によって沸き上げ運転が実施されている場合の給湯負荷量[kW]を推定する場合においては、外気温度センサー30によって検出された外気温度、往き温水温度センサー33aによって検出された温水温度、及び、燃焼式熱源特性データ記憶手段9に記憶された関連付けに基づいて、燃焼式熱源40による定格供給量[kW]が求まり、これを負荷量QL[kW]とすればよい。なお、燃焼式熱源特性データ記憶手段9に定格供給熱量[kW]を固定値としてもっており、常にそのデータを用いるようにしてもよい。
Next, calculation of the hot water supply load amount by the load amount calculation means 5 will be described.
This supply load amount is calculated by the heat amount [kW] per unit time necessary for the boiling operation of the hot water storage tank 25. When the boiling operation of the hot water storage tank 25 is performed, the operation is performed with the rated capacity by the heat pump device 20 or the combustion heat source 40 in order to perform the boiling in a short time. Therefore, the load amount QL [kW] in the boiling operation is estimated to be equal to the rated supply heat amount [kW] per unit time at the current outside air temperature and hot water temperature. Here, the heat pump characteristic data storage unit 8 stores the association between the outside air temperature and the hot water temperature and the rated supply heat amount of the heat pump device 20, and the combustion heat source characteristic data storage unit 9 stores the outside air temperature and the hot water. The association between the temperature and the rated supply heat amount of the combustion heat source 40 is stored. Therefore, when the load amount calculating means 5 estimates the hot water supply load amount [kW] when the heating operation is performed by the heat pump device 20, the outside air temperature and the forward hot water temperature sensor detected by the outside air temperature sensor 30 are used. Based on the hot water temperature detected by the heat pump 33 and the association stored in the heat pump characteristic data storage means 8, the rated supply heat amount [kW] by the heat pump device 20 is obtained, and this may be set as the load amount QL [kW]. . When the load amount calculation means 5 estimates the hot water supply load amount [kW] when the boiling operation is performed by the combustion heat source 40, the outside air temperature and the forward hot water temperature detected by the outside air temperature sensor 30. Based on the hot water temperature detected by the sensor 33a and the association stored in the combustion-type heat source characteristic data storage means 9, the rated supply amount [kW] by the combustion-type heat source 40 is obtained, and this is obtained as the load amount QL [kW]. And it is sufficient. It should be noted that the combustion heat source characteristic data storage means 9 has a rated supply heat quantity [kW] as a fixed value, and the data may be always used.
 ヒートポンプ特性データ記憶手段8は、システムコントローラー32内に配置されたメモリー等の記憶装置であり、少なくとも、外気温度と、温水温度と、ヒートポンプ装置20の能力[kW]と、負荷率と、COP(Coefficient Of Performance、成績係数)との関連付けに関するデータを記憶している。ここで、負荷率とは、熱源(ヒートポンプ装置20及び燃焼式熱源40)が定格運転で供給できる熱量のうち、水流路21の温水に供給することができる熱量の割合を示すものとする。また、例えば能力ステップNのように、負荷率の大小を比較できる別の名称あるいは指標のデータとしてもよい。これらのデータの相関関係の例は、図4で示されている。 The heat pump characteristic data storage means 8 is a storage device such as a memory arranged in the system controller 32. At least the outside air temperature, the hot water temperature, the capacity [kW] of the heat pump device 20, the load factor, and the COP ( Data related to the association with Coefficient of Performance). Here, a load factor shall show the ratio of the calorie | heat amount which can be supplied to the warm water of the water flow path 21 among the calorie | heat amount which a heat source (heat pump apparatus 20 and the combustion type heat source 40) can supply by rated operation. Moreover, it is good also as another name or index data which can compare the magnitude of a load factor like the capability step N, for example. An example of the correlation of these data is shown in FIG.
 燃焼式熱源特性データ記憶手段9は、システムコントローラー32内に配置されたメモリー等の記憶装置であり、少なくとも、投入燃料の熱量[kW]に対する供給熱量[kW]の割合を示す効率のデータを記憶している。また、燃焼式熱源特性データ記憶手段9は、外気温度、温水温度又は負荷率のうち少なくとも1つ以上のデータと、効率との関連付けのデータを記憶している。 The combustion heat source characteristic data storage means 9 is a storage device such as a memory disposed in the system controller 32 and stores at least efficiency data indicating the ratio of the supplied heat quantity [kW] to the heat quantity [kW] of the input fuel. is doing. Further, the combustion heat source characteristic data storage means 9 stores at least one data among the outside air temperature, the hot water temperature, or the load factor and data relating to the efficiency.
 熱源性能推定手段1は、システムコントローラー32の機能の一部として構成され、負荷量計算手段5によって求められた負荷量QL[kW]、外気温度取得手段6によって取得された外気温度、温水温度取得手段7によって取得された温水温度、及び、ヒートポンプ特性データ記憶手段8に記憶されたデータ(以下、「ヒートポンプ特性データ」という)に基づいて、ヒートポンプ装置20のCOPを算出して推定する。以下、このCOPの推定する手順について、図5を参照しながら説明する。 The heat source performance estimation unit 1 is configured as a part of the function of the system controller 32, and acquires the load amount QL [kW] obtained by the load amount calculation unit 5, the outside air temperature and the hot water temperature obtained by the outside air temperature obtaining unit 6. Based on the hot water temperature acquired by the means 7 and the data stored in the heat pump characteristic data storage means 8 (hereinafter referred to as “heat pump characteristic data”), the COP of the heat pump device 20 is calculated and estimated. Hereinafter, a procedure for estimating the COP will be described with reference to FIG.
 まず、熱源性能推定手段1は、温水温度取得手段7によって取得された現在の温水温度(現在温水温度Twn)が、2つの温水温度データの範囲内に入るように、ヒートポンプ特性データ記憶手段8に記憶されたヒートポンプ特性データから温水温度Tw1、Tw2を選択して抽出する。 First, the heat source performance estimation means 1 stores the current hot water temperature (current hot water temperature Twn) acquired by the hot water temperature acquisition means 7 in the heat pump characteristic data storage means 8 so that it falls within the range of the two hot water temperature data. The hot water temperatures Tw1 and Tw2 are selected and extracted from the stored heat pump characteristic data.
 次に、熱源性能推定手段1は、温水温度Tw1について、外気温度取得手段6によって取得された現在の外気温度(現在外気温度Tan)が、2つの外気温度データの範囲内に入るように、ヒートポンプ特性データから外気温度Ta1、Ta2を選択して抽出する。そして、この温水温度Tw1に対応する各負荷率(図5においては、負荷率A、B)のデータに基づいて、外気温度Ta1、Ta2に対応する能力のデータについて線形補間し、温水温度Tw1及び現在外気温度Tanに対応する負荷率Aにおける能力Q1、及び、負荷率Bにおける能力Q2を、それぞれ下記の式(4)及び式(5)によって算出する。ここで、QAは負荷率Aにおける能力[kW]のデータであり、QBは負荷率Bにおける能力[kW]のデータである。 Next, the heat source performance estimation unit 1 sets the heat pump so that the current outside temperature (current outside temperature Tan) acquired by the outside temperature acquisition unit 6 falls within the range of the two outside temperature data for the hot water temperature Tw1. The outside air temperatures Ta1 and Ta2 are selected and extracted from the characteristic data. Then, based on the data of each load factor (load factors A and B in FIG. 5) corresponding to the hot water temperature Tw1, linear interpolation is performed on the data of the ability corresponding to the outside air temperatures Ta1 and Ta2, and the hot water temperature Tw1 and The capacity Q1 at the load factor A corresponding to the current outside air temperature Tan and the capacity Q2 at the load factor B are calculated by the following equations (4) and (5), respectively. Here, QA is data of capacity [kW] at the load factor A, and QB is data of capacity [kW] at the load factor B.
 Q1[Tw1,Tan]=QA[Tw1,Ta1]+(QA[Tw1,Ta2]-QA[Tw1,Ta1])/(Ta2-Ta1)×(Tan-Ta1)(4)
 Q2[Tw1,Tan]=QB[Tw1,Ta1]+(QB[Tw1,Ta2]-QB[Tw1,Ta1])/(Ta2-Ta1)×(Tan-Ta1)(5)
Q1 [Tw1, Tan] = QA [Tw1, Ta1] + (QA [Tw1, Ta2] −QA [Tw1, Ta1]) / (Ta2−Ta1) × (Tan−Ta1) (4)
Q2 [Tw1, Tan] = QB [Tw1, Ta1] + (QB [Tw1, Ta2] −QB [Tw1, Ta1]) / (Ta2−Ta1) × (Tan−Ta1) (5)
 次に、熱源性能推定手段1は、上記の式(4)及び式(5)で求めた能力Q1、Q2の2点間に、負荷量計算手段5によって求められた現在の負荷量QLが入る負荷率A、Bにおける能力Q1、Q2に基づいて、Q1-QLと、QL-Q2(Q2<QL<Q1の場合)の比R:(1-R)を、下記の式(6)によって求める(R<1)。 Next, the heat source performance estimating means 1 includes the current load amount QL obtained by the load amount calculating means 5 between the two points of the abilities Q1 and Q2 obtained by the above equations (4) and (5). Based on the capacities Q1 and Q2 at the load factors A and B, the ratio R: (1-R) between Q1-QL and QL-Q2 (when Q2 <QL <Q1) is obtained by the following equation (6) (R <1).
 R[Tw1,Tan]=(Q1[Tw1,Tan]-QL)/(Q1[Tw1,Tan]-Q2[Tw1,Tan])(6) R [Tw1, Tan] = (Q1 [Tw1, Tan] -QL) / (Q1 [Tw1, Tan] -Q2 [Tw1, Tan]) (6)
 次に、熱源性能推定手段1は、温水温度Tw1に対応する負荷率A、Bのデータに基づいて、外気温度Ta1、Ta2に対応するCOPのデータについて線形補間し、温水温度Tw1及び現在外気温度Tanに対応する負荷率AにおけるCOPの値であるCOP1、及び、負荷率BにおけるCOPの値であるCOP2を、それぞれ下記の式(7)及び式(8)によって算出する。ここで、COP_Aは負荷率AにおけるCOPのデータであり、COP_Bは負荷率BにおけるCOPのデータである。 Next, the heat source performance estimating means 1 linearly interpolates the COP data corresponding to the outside air temperatures Ta1 and Ta2 based on the data of the load factors A and B corresponding to the hot water temperature Tw1, and the hot water temperature Tw1 and the current outside air temperature. COP1 that is the value of COP at the load factor A corresponding to Tan and COP2 that is the value of COP at the load factor B are calculated by the following equations (7) and (8), respectively. Here, COP_A is COP data at the load factor A, and COP_B is COP data at the load factor B.
 COP1[Tw1,Tan]=COP_A[Tw1,Ta1]+(COP_A[Tw1,Ta2]-COP_A[Tw1,Ta1])/(Ta2-Ta1)×(Tan-Ta1)(7)
 COP2[Tw1,Tan]=COP_B[Tw1,Ta1]+(COP_B[Tw1,Ta2]-COP_B[Tw1,Ta1])/(Ta2-Ta1)×(Tan-Ta1)(8)
COP1 [Tw1, Tan] = COP_A [Tw1, Ta1] + (COP_A [Tw1, Ta2] −COP_A [Tw1, Ta1]) / (Ta2−Ta1) × (Tan−Ta1) (7)
COP2 [Tw1, Tan] = COP_B [Tw1, Ta1] + (COP_B [Tw1, Ta2] −COP_B [Tw1, Ta1]) / (Ta2−Ta1) × (Tan−Ta1) (8)
 次に、熱源性能推定手段1は、上記の式(7)及び式(8)で求めたCOP1及びCOP2の値、及び、上記の式(6)で求めたRの値を用いて、下記の式(9)によって、現在外気温度Tan、温水温度Tw1、及び、現在の負荷量QLにおけるCOPの値であるCOPw1を算出する。なお、図5においては、能力の低い負荷率Bの方が、負荷率AよりもCOPが高い例を示している。 Next, the heat source performance estimating means 1 uses the values of COP1 and COP2 obtained by the above formulas (7) and (8) and the value of R obtained by the above formula (6) as follows. COPw1, which is the value of COP in the current outside air temperature Tan, the hot water temperature Tw1, and the current load amount QL, is calculated by Expression (9). FIG. 5 shows an example in which the load factor B having a lower capability has a higher COP than the load factor A.
 COPw1[Tw1,Tan]=COP1[Tw1,Tan]+R[Tw1,Tan]×(COP2[Tw1,Tan]-COP1[Tw1,Tan])(9) COPw1 [Tw1, Tan] = COP1 [Tw1, Tan] + R [Tw1, Tan] × (COP2 [Tw1, Tan] −COP1 [Tw1, Tan]) (9)
 熱源性能推定手段1は、温水温度Tw2についても式(4)~式(9)によって同様の演算を実施し、現在外気温度Tan、温水温度Tw2、及び、現在の負荷量QLにおけるCOPの値であるCOPw2を算出する。 The heat source performance estimating means 1 performs the same calculation for the hot water temperature Tw2 by using the equations (4) to (9), and calculates the current outside air temperature Tan, the hot water temperature Tw2, and the COP value at the current load amount QL. A certain COPw2 is calculated.
 現在温水温度TwnでのCOPの値であるCOPhpと、COPw1の差分およびCOPw2との差分の比である(COPw1-COPhp):(COPhp-COPw2)(前述したように、Tw1<Twn<Tw2である)が、(Twn-Tw1):(Tw2-Twn)となるようなCOPhpが、現在外気温度Tan、現在温水温度Twn、及び、現在の負荷量QLにおけるヒートポンプ装置のCOPとなる。そして、熱源性能推定手段1は、このCOPhpを下記の式(10)によって算出する。 (COPw1-COPhp) :( COPhp-COPw2) (Tw1 <Twn <Tw2 as described above) (COPw1-COPhp): (COPw1-COPhp): the difference between COPhp, which is the value of COP at the current hot water temperature Twn, and the difference between COPw1 and COPw2. ) Becomes (Twn−Tw1) :( Tw2−Twn) becomes the COP of the heat pump device at the current outside air temperature Tan, the current hot water temperature Twn, and the current load amount QL. And the heat source performance estimation means 1 calculates this COPhp by the following formula (10).
 COPhp[Twn,Tan]=COPw1[Tw1,Tan]-(COPw1[Tw1,Tan]-COPw2[Tw2,Tan])×(Twn-Tw1)/(Tw2-Tw1)(10) COPhp [Twn, Tan] = COPw1 [Tw1, Tan]-(COPw1 [Tw1, Tan] -COPw2 [Tw2, Tan]) × (Twn-Tw1) / (Tw2-Tw1) (10)
 なお、現在温水温度Twnと現在外気温度Tanは、ヒートポンプ装置が運転中であれば温水温度センサー33及び外気温度センサー30の現在の検出値又は所定期間の平均値を用いるが、燃焼式熱源が運転している場合は、ヒートポンプ装置側の水流路の流動は停止しており温水温度センサー33の計測値は運転時の温度を表すものではないため、前にヒートポンプ装置から燃焼式熱源に運転が切り替わった直前の温水温度又は温水温度の制御目標値を用いてもよい。 As the current hot water temperature Twn and the current outside air temperature Tan, the current detection values of the hot water temperature sensor 33 and the outside air temperature sensor 30 or an average value for a predetermined period are used if the heat pump device is in operation, but the combustion heat source is operated. In this case, since the flow of the water flow path on the heat pump device side is stopped and the measured value of the hot water temperature sensor 33 does not represent the temperature during operation, the operation is switched from the heat pump device to the combustion heat source before. Alternatively, the hot water temperature immediately before or the control target value of the hot water temperature may be used.
 さらに、熱源性能推定手段1は、燃焼式熱源40の効率Effを求める。燃焼式熱源40の効率が、燃焼式熱源特性データ記憶手段9に記憶されたデータ(以下、「燃焼式熱源特性データ」という)の中で固定値として記憶されている場合には、その固定値を効率Effとして常時使用するものとすればよい。また、効率が、外気温度、温水温度又は負荷率と関連付けられている場合、現在の計測値から、その関連付けられたものを効率Effとして求めるものとすればよい。現在の計測値が燃焼式熱源データ記憶手段9に記憶されたデータの値と一致していない場合、その周辺値のデータから線形近似によって現在の計測値の効率を求めればよい。ヒートポンプ装置の場合と同様、燃焼式熱源が停止している場合、前に燃焼式熱源からヒートポンプ装置に運転が切り替わった直前の温水温度又は温水温度の制御目標値を用いてもよい。 Furthermore, the heat source performance estimating means 1 obtains the efficiency Eff of the combustion type heat source 40. If the efficiency of the combustion type heat source 40 is stored as a fixed value in the data stored in the combustion type heat source characteristic data storage means 9 (hereinafter referred to as “combustion type heat source characteristic data”), the fixed value May be always used as the efficiency Eff. Moreover, what is necessary is just to obtain | require the thing linked | related as efficiency Eff from the present measurement value, when efficiency is linked | related with external temperature, warm water temperature, or a load factor. If the current measured value does not match the value of the data stored in the combustion heat source data storage means 9, the efficiency of the current measured value may be obtained by linear approximation from the peripheral value data. As in the case of the heat pump device, when the combustion type heat source is stopped, the hot water temperature immediately before the operation is switched from the combustion type heat source to the heat pump device or the control target value of the hot water temperature may be used.
 運転コスト推定手段2は、システムコントローラー32の機能の一部として構成され、熱源性能推定手段1で推定したヒートポンプ装置20のCOPの値であるCOPhp、及び、燃焼式熱源40の効率Eff、並びに、エネルギー単価取得手段10において求められた現在の電気料金単価及び燃料料金単価に用いて、ヒートポンプ装置20及び燃焼式熱源40の運転コスト推定値を、下記の式(11)及び式(12)によって算出する。ここで、Chpはヒートポンプ装置20の運転コスト推定値、Cbは燃焼式熱源40の運転コスト推定値、PhpはkWhあたりの電気料金単価、そして、PbはkWhあたりの燃料料金単価である。なお、負荷量QLの単位はkWであるが、同じ負荷量で1時間運転したと仮定した(即ちkWとkWhは同じ値となる)運転コストを計算する。 The operating cost estimation means 2 is configured as a part of the function of the system controller 32, COPhp which is the COP value of the heat pump device 20 estimated by the heat source performance estimation means 1, the efficiency Eff of the combustion heat source 40, and The estimated operating cost of the heat pump device 20 and the combustion heat source 40 is calculated by the following formula (11) and formula (12) using the current unit price of electricity and the unit price of fuel determined by the energy unit price acquisition means 10. To do. Here, Chp is an estimated operating cost value of the heat pump device 20, Cb is an estimated operating cost value of the combustion heat source 40, Php is a unit price of electricity per kWh, and Pb is a unit price of fuel per kWh. Although the unit of the load amount QL is kW, it is assumed that the operation is performed for 1 hour with the same load amount (that is, kW and kWh have the same value), and the operation cost is calculated.
 Chp=Php×QL/COPhp (11)
 Cb=Pb×QL/Eff(12)
Chp = Php × QL / COPhp (11)
Cb = Pb × QL / Eff (12)
 運転熱源選択手段3は、システムコントローラー32の機能の一部として構成され、上記の式(11)及び式(12)で算出した運転コスト推定値ChpとCbとを比較した結果、停止中の熱源の運転コスト推定値が、現在運転中の熱源の運転コスト推定値の所定の割合よりも小さくなれば、運転中の熱源を停止し、停止中の熱源に切り替えて運転を開始させるものと判定する。例えば、その所定の割合を95%と設定した場合、運転熱源選択手段3は、停止中の熱源が運転中の熱源の95%以下の運転コスト推定値に下がったときに熱源を切り替えるものと判定する。この所定の割合を設けたのは、ほぼ両者の運転コスト推定値が同等に近い値でわずかに変動する場合、頻繁に熱源の切替動作が発生することを防ぐためである。停止中の熱源の運転コスト推定値が運転中の熱源の95%の運転コスト推定値となり、熱源を切り替えた後に、停止した熱源を再度運転するには、起動した熱源の運転コスト推定値よりさらに95%まで運転コスト推定値が下がらなければならないことになる。 The operation heat source selection means 3 is configured as a part of the function of the system controller 32, and as a result of comparing the operation cost estimated values Chp and Cb calculated by the above formulas (11) and (12), the heat source being stopped If the estimated operating cost is less than a predetermined percentage of the estimated operating cost of the currently operating heat source, it is determined that the operating heat source is stopped and the operation is started by switching to the stopped heat source. . For example, when the predetermined ratio is set to 95%, the operating heat source selection unit 3 determines that the heat source is switched when the stopped heat source falls to an operating cost estimate value of 95% or less of the operating heat source. To do. The reason why this predetermined ratio is provided is to prevent frequent switching operations of the heat source when the estimated operating cost values of both of them slightly fluctuate at a value close to the same value. The operating cost estimated value of the stopped heat source becomes an operating cost estimated value of 95% of the operating heat source, and after switching the heat source, to operate the stopped heat source again, the operating cost estimated value of the activated heat source is further increased. The estimated operating cost must be reduced to 95%.
 なお、それでもコスト推定値が頻繁に変動し、短時間での起動及び停止の繰り返しが余儀なくされる可能性を想定した場合、熱源の安定運転の観点から、熱源を停止した後、所定時間は再起動を禁止する再起動禁止時間を設け、再起動禁止時間内は熱源を切り替えないこととしてもよい。 However, if it is assumed that the cost estimate value frequently fluctuates and it may be necessary to repeatedly start and stop in a short time, from the viewpoint of stable operation of the heat source, the predetermined time may be A restart prohibition time for prohibiting startup may be provided, and the heat source may not be switched during the restart prohibition time.
 熱源切替制御手段4は、システムコントローラー32の機能の一部として構成され、運転熱源選択手段3による判定結果に基づいて、ヒートポンプ装置20と燃焼式熱源40との熱源の切り替え、及び、運転を開始する熱源側の循環ポンプの起動、及び、運転を停止する熱源側の循環ポンプの停止を実施する。 The heat source switching control unit 4 is configured as a part of the function of the system controller 32 and switches the heat source between the heat pump device 20 and the combustion heat source 40 and starts operation based on the determination result by the operation heat source selection unit 3. The heat source side circulation pump to be started and the heat source side circulation pump to be stopped are stopped.
 なお、図2で示されるように、運転熱源判定手段11と熱源切替制御手段4とを別構成としているが、これに限定されるものではなく、運転熱源判定手段11と熱源切替制御手段4とを一体とした概念としてもよい。 As shown in FIG. 2, the operating heat source determination unit 11 and the heat source switching control unit 4 are configured separately, but the present invention is not limited to this, and the operating heat source determination unit 11 and the heat source switching control unit 4 It is good also as an integrated concept.
(実施の形態1の効果)
 以上のような構成及び動作のように、熱源であるヒートポンプ装置20及び燃焼式熱源40における運転コストを推定し、この推定した運転コストを熱源の切り替えの判定情報として、その判定情報である運転コストの小さい熱源に切り替えて動作させることができるので、例えば、ヒートポンプ装置20を単独で常時運転させた場合等と比較した場合、運転コストを確実に減少させることができる。
(Effect of Embodiment 1)
As in the configuration and operation as described above, the operation cost in the heat pump device 20 and the combustion heat source 40 that are heat sources is estimated, and the estimated operation cost is used as determination information for switching the heat source, and the operation cost that is the determination information is Therefore, for example, when compared with a case where the heat pump device 20 is always operated independently, the operating cost can be surely reduced.
実施の形態2.
 本実施の形態に係るヒートポンプ式給湯暖房システムについて、実施の形態1に係るヒートポンプ式給湯暖房システムと相違する点を中心に説明する。
Embodiment 2. FIG.
The heat pump hot water supply and heating system according to the present embodiment will be described focusing on differences from the heat pump hot water supply and heating system according to the first embodiment.
(ヒートポンプ式給湯暖房システムの構成及び熱源切替動作)
 図6は、本発明の実施の形態2に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。
 本実施の形態に係るヒートポンプ式給湯暖房システムにおいては、熱源であるヒートポンプ装置20と燃焼式熱源40との熱源切替動作の別の判定基準として、単位電力使用量当たり、又は、単位燃料使用量当たりのCO排出量を用いるものである。本実施の形態に係るヒートポンプ式給湯暖房システムは、実施の形態1のエネルギー単価取得手段10の代わりに、CO排出係数記憶手段10aを設け、このCO排出係数記憶手段10aは、単位電力使用量当たり、及び、単位燃料使用量当たりのCO排出係数を記憶している。また、実施の形態1の運転コスト推定手段2の代わりに、CO排出量推定手段2aを設け、CO排出量推定手段2aは、ヒートポンプ装置20及び燃焼式熱源40のCO排出量を推定する。具体的には、CO排出量の算出方法は、実施の形態1における式(11)及び式(12)において、電気料金単価Php、及び、燃料料金単価Pbを、それぞれ電力のCO排出係数、及び、燃料のCO排出係数に置き換えて算出する。
(Configuration of heat pump hot water supply and heating system and heat source switching operation)
FIG. 6 is a diagram showing the configuration of various means for performing heat source switching in the heat pump hot water supply and heating system according to Embodiment 2 of the present invention.
In the heat pump hot water supply and heating system according to the present embodiment, as another determination criterion for the heat source switching operation between the heat pump device 20 that is a heat source and the combustion heat source 40, per unit power usage or per unit fuel usage. Of CO 2 emissions. Heat pump water heating system according to the present embodiment, in place of the energy unit price obtaining unit 10 of the first embodiment, the CO 2 emission coefficient storing unit 10a is provided, the CO 2 emission coefficient storing unit 10a, the unit power usage The CO 2 emission coefficient per unit and per unit fuel consumption is stored. Further, instead of the operation cost prediction unit 2 of the first embodiment, the CO 2 emission amount estimation means 2a provided, CO 2 emission amount estimation means 2a, the estimated CO 2 emissions of the heat pump device 20 and the combustion type heat source 40 To do. Specifically, the calculation method of the CO 2 emission amount is obtained by changing the electricity unit price Php and the fuel unit price Pb in the equations (11) and (12) in Embodiment 1 to the CO 2 emission coefficient of electric power, respectively. , And the CO 2 emission coefficient of the fuel.
 さらに、運転熱源選択手段3は、ヒートポンプ装置20及び燃焼式熱源40の運転コスト推定値を比較する代わりに、CO排出量推定手段2aによって推定されたCO排出量を用いて、停止中の熱源のCO排出量が、運転中の熱源のCO排出量より少ない場合に、運転中の熱源を停止し、停止中の熱源に切り替えて運転を開始させるものと判定する。 Furthermore, the operation heat source selecting means 3, instead of comparing the operating cost estimate of the heat pump device 20 and the combustion type heat source 40, using a CO 2 emission amount estimated by the CO 2 emission amount estimation means 2a, suspended When the CO 2 emission amount of the heat source is smaller than the CO 2 emission amount of the operating heat source, it is determined that the operating heat source is stopped and switched to the stopped heat source to start the operation.
 なお、CO排出量推定手段2aは、本発明の「判定情報推定手段」に相当する。 The CO 2 emission estimation means 2a corresponds to the “determination information estimation means” of the present invention.
(実施の形態2の効果)
 以上のような構成及び動作のように、熱源であるヒートポンプ装置20及び燃焼式熱源40におけるCO排出量を推定し、この推定したCO排出量を熱源の切り替えの判定情報として、その判定情報であるCO排出量の小さい熱源に切り替えて動作させることができるので、例えば、ヒートポンプ装置20を単独で常時運転させた場合等と比較した場合、CO排出量を確実に減少させることができる。
(Effect of Embodiment 2)
As described above, the CO 2 emission amount in the heat pump device 20 and the combustion heat source 40 that are heat sources is estimated, and the estimated CO 2 emission amount is used as the determination information for switching the heat source. since CO 2 can be operated by switching the emissions of small heat source is, for example, when compared with a case or the like is continuously operating heat pump device 20 alone, can be reduced reliably CO 2 emissions .
実施の形態3.
 本実施の形態に係るヒートポンプ式給湯暖房システムについて、実施の形態1に係るヒートポンプ式給湯暖房システムと相違する点を中心に説明する。
Embodiment 3 FIG.
The heat pump hot water supply and heating system according to the present embodiment will be described focusing on differences from the heat pump hot water supply and heating system according to the first embodiment.
(ヒートポンプ式給湯暖房システムの構成及び熱源切替動作)
 図7は、本発明の実施の形態3に係るヒートポンプ式給湯暖房システムの熱源切り替えを実施するための各種手段の構成を示す図である。
 図7で示されるように、ヒートポンプ装置20の第1熱交換器22から流出した温水と、燃焼式熱源40から流出する温水との負荷側へ流れる比率を調整する三方弁23aが設置されている。すなわち、三方弁23aは、システムコントローラー32によって開度制御がなされることによって、貯湯タンク25、ラジエーター26及び床暖房機器27に供給される熱量のうち、ヒートポンプ装置20からの供給熱量と、燃焼式熱源40からの供給熱量との割合を調整可能とするものである。なお、三方弁23aは、それぞれの流路に流量調整可能な二方弁を設ける構成でもよい。
(Configuration of heat pump hot water supply and heating system and heat source switching operation)
FIG. 7 is a diagram showing the configuration of various means for performing heat source switching in the heat pump hot water supply / heating system according to Embodiment 3 of the present invention.
As shown in FIG. 7, a three-way valve 23 a that adjusts the ratio of the hot water flowing out from the first heat exchanger 22 of the heat pump device 20 and the hot water flowing out from the combustion heat source 40 to the load side is installed. . That is, the opening degree of the three-way valve 23a is controlled by the system controller 32, so that the amount of heat supplied from the heat pump device 20 among the amount of heat supplied to the hot water storage tank 25, the radiator 26, and the floor heating device 27, and the combustion type The ratio to the amount of heat supplied from the heat source 40 can be adjusted. The three-way valve 23a may have a configuration in which a two-way valve capable of adjusting the flow rate is provided in each flow path.
 また、運転熱源判定手段11は、ヒートポンプ装置20及び燃焼式熱源40のそれぞれの単体運転による運転コストの他に、所定割合で負荷を分配して、ヒートポンプ装置20及び燃焼式熱源40を同時運転する場合についての運転コストを算出する。ここで、熱源性能推定手段1の前段に、熱源組み合わせ作成手段12を設け、負荷量計算手段5が求めた負荷量QLを、所定の負荷分配比αに基づきヒートポンプ装置20と燃焼式熱源40の負荷量がα:1-αとなるように各熱源の負荷量を求める。なお、各熱源の負荷量の組み合わせは、現在の温水温度及び外気温度におけるヒートポンプ装置20の能力の最小から最大までの範囲の中から、複数の候補を提示してもよい。 The operation heat source determination means 11 distributes a load at a predetermined rate in addition to the operation costs of the single operation of each of the heat pump device 20 and the combustion heat source 40 and operates the heat pump device 20 and the combustion heat source 40 simultaneously. Calculate the operating cost for the case. Here, the heat source combination creating means 12 is provided in front of the heat source performance estimating means 1, and the load quantity QL obtained by the load quantity calculating means 5 is calculated based on a predetermined load distribution ratio α between the heat pump device 20 and the combustion heat source 40. The load amount of each heat source is obtained so that the load amount is α: 1−α. In addition, the combination of the load amount of each heat source may present a plurality of candidates from the range from the minimum to the maximum capability of the heat pump device 20 at the current hot water temperature and the outside air temperature.
 ヒートポンプ装置20及び燃焼式熱源40を同時運転する場合は、それぞれの負荷量を正しく把握する必要があるため、往き温水温度センサー33、33a、戻り温水温度センサー34、34a、及び、流量センサー37、37aの設置が必須であり、負荷量計算手段5は、ヒートポンプ装置20及び燃焼式熱源40のそれぞれの負荷量である負荷量QLhp及び負荷量QLbを前述の式(2)に基づいて算出し、それらを合算して負荷量QLを求める。 When the heat pump device 20 and the combustion heat source 40 are operated simultaneously, it is necessary to correctly grasp the respective load amounts, so the forward hot water temperature sensors 33 and 33a, the return hot water temperature sensors 34 and 34a, and the flow rate sensor 37, 37a is indispensable, and the load amount calculation means 5 calculates the load amount QLhp and the load amount QLb, which are the load amounts of the heat pump device 20 and the combustion heat source 40, based on the aforementioned equation (2), The load amount QL is obtained by adding them.
 熱源性能推定手段1は、熱源組合せ作成手段によって算出された各熱源(ヒートポンプ装置20及び燃焼式熱源40)の負荷量に基づいて、ヒートポンプ装置20のCOPの値であるCOPhp、及び、燃焼式熱源40の効率Effを算出する。 The heat source performance estimating means 1 is based on the load amount of each heat source (the heat pump apparatus 20 and the combustion heat source 40) calculated by the heat source combination creating means, COPhp which is the value of COP of the heat pump apparatus 20, and the combustion heat source An efficiency Eff of 40 is calculated.
 運転コスト推定手段2は、実施の形態1で前述したように、ヒートポンプ装置20を単体で運転した場合の運転コスト推定値Chp、及び、燃焼式熱源40を単体で運転した場合の運転コスト推定値Cbを算出すると共に、ヒートポンプ装置20及び燃焼式熱源40を同時運転する場合の運転コスト推定値Chbを下記の式(13)によって算出する。 As described above in the first embodiment, the operation cost estimation means 2 is the operation cost estimation value Chp when the heat pump device 20 is operated alone, and the operation cost estimation value when the combustion heat source 40 is operated alone. While calculating Cb, the operating cost estimated value Chb in the case of operating the heat pump apparatus 20 and the combustion heat source 40 simultaneously is calculated by the following equation (13).
 Chb=Php×(QL×α)/COPhp +Pb×{(QL×(1-α)}/Eff(13) Chb = Php × (QL × α) / COPhp + Pb × {(QL × (1-α)} / Eff (13)
 運転熱源選択手段3は、ヒートポンプ装置20の単体運転、燃焼式熱源40の単体運転、及び、熱源組み合わせ作成手段12で求めた複数の負荷分配比における熱源同時運転の各運転コスト推定値を比較し、最も運転コストが少ない熱源(単体又は同時運転)によって運転させることを判定する。 The operating heat source selection means 3 compares the operating cost estimates of the single operation of the heat pump device 20, the single operation of the combustion heat source 40, and the simultaneous operation of the heat sources at a plurality of load distribution ratios obtained by the heat source combination creating means 12. Then, it is determined that the operation is performed by a heat source (single or simultaneous operation) having the lowest operation cost.
 熱源切替制御手段4は、運転熱源選択手段3による判定結果に基づいて、ヒートポンプ装置20による単体運転、燃焼式熱源40による単体運転、又は、ヒートポンプ装置20及び燃焼式熱源40の同時運転に切り替える。この際、熱源切替制御手段4は、同時運転に切り替える場合、ヒートポンプ装置20及び燃焼式熱源40の負荷分配比に合わせるために、三方弁23aの開度制御を実施する。 The heat source switching control means 4 switches to a single operation by the heat pump device 20, a single operation by the combustion heat source 40, or a simultaneous operation of the heat pump device 20 and the combustion heat source 40 based on the determination result by the operation heat source selection means 3. At this time, when switching to simultaneous operation, the heat source switching control means 4 performs opening control of the three-way valve 23a in order to match the load distribution ratio of the heat pump device 20 and the combustion heat source 40.
 ヒートポンプ装置20の単体運転において、燃焼式熱源40の単体運転より運転コストが高くなる場合でも、同時運転時には負荷率が下がるので、ヒートポンプ装置20のCOPは単体運転よりも高くなる。したがって、トータルではヒートポンプ装置20の単体運転より運転コストが低減する。一方で、ヒートポンプ装置20の運転コストが更に上昇する場合には、同時運転よりも燃焼式熱源40の単体運転の方が運転コストが低減する。したがって、同時運転は、図8で示されるように、ヒートポンプ装置20の単体運転の運転コストが少ない場合と、燃焼式熱源40の単体運転の運転コストが少ない場合との中間での位置づけとなり、この部分で運転する場合には燃焼式熱源40の単体運転より少ない運転コストで運転することができる。以上の構成によって、ヒートポンプ装置20と燃焼式熱源40とをそれぞれ単体運転のみで切り替える場合に比べ、運転コストの低減が可能である。 In the single operation of the heat pump device 20, even when the operation cost is higher than that of the single operation of the combustion heat source 40, the load factor is reduced during the simultaneous operation, so the COP of the heat pump device 20 is higher than that of the single operation. Therefore, the operation cost is lower than the single operation of the heat pump device 20 in total. On the other hand, when the operating cost of the heat pump device 20 further increases, the operating cost of the single operation of the combustion heat source 40 is lower than that of the simultaneous operation. Therefore, as shown in FIG. 8, the simultaneous operation is positioned between the case where the operation cost of the single operation of the heat pump device 20 is low and the case where the operation cost of the single operation of the combustion heat source 40 is low, When operating partly, it is possible to operate at a lower operating cost than the single operation of the combustion heat source 40. With the above configuration, it is possible to reduce the operating cost as compared with the case where the heat pump device 20 and the combustion heat source 40 are respectively switched only by single operation.
 なお、三方弁23aは、本発明の「流路調整手段」に相当する。 The three-way valve 23a corresponds to the “flow path adjusting means” of the present invention.
(実施の形態3の効果)
 以上のような構成及び動作のように、ヒートポンプ装置20の単体運転、燃焼式熱源40の単体運転、及び、熱源組み合わせ作成手段12で求めた複数の負荷分配比における熱源同時運転の各運転コスト推定値を比較するので、同時運転を含めて、最も少ない運転コストによって負荷側に熱量を供給することができる。
(Effect of Embodiment 3)
As in the configuration and operation as described above, each operation cost estimation of the single operation of the heat pump device 20, the single operation of the combustion heat source 40, and the simultaneous operation of the heat source at a plurality of load distribution ratios obtained by the heat source combination creating means 12 is performed. Since the values are compared, the amount of heat can be supplied to the load side at the lowest operating cost including simultaneous operation.
 なお、本実施の形態に係るヒートポンプ式給湯暖房システムの熱源の同時運転を考慮した構成は、実施の形態2に係るヒートポンプ式給湯暖房システムにも適用可能である。 The configuration considering the simultaneous operation of the heat sources of the heat pump hot water supply / heating system according to the present embodiment is also applicable to the heat pump hot water supply / heating system according to the second embodiment.
実施の形態4.
 本実施の形態においては、実施の形態1~実施の形態3に係るヒートポンプ式給湯暖房システムのシステムコントローラー32のハードウェア構成の詳細を説明するものである。
Embodiment 4 FIG.
In the present embodiment, details of the hardware configuration of the system controller 32 of the heat pump hot water supply and heating system according to the first to third embodiments will be described.
(ヒートポンプ式給湯暖房システムのシステムコントローラー32の構成)
 図9は、本発明の実施の形態4に係るヒートポンプ式給湯暖房システムのシステムコントローラー32の構成図である。なお、熱源機コントローラー31についても、システムコントローラー32と同様の構成であり、また、前述のように熱源機コントローラー31及びシステムコントローラー32を一つのコントローラーとしてもよい。
(Configuration of the system controller 32 of the heat pump hot water supply / heating system)
FIG. 9 is a configuration diagram of the system controller 32 of the heat pump hot water supply / heating system according to Embodiment 4 of the present invention. The heat source device controller 31 has the same configuration as the system controller 32, and the heat source device controller 31 and the system controller 32 may be a single controller as described above.
 図9で示されるように、システムコントローラー32は、少なくとも、CPU(Central Processing Unit)51、バス52、ROM(Read Only Memory)53、RAM(Random Access Memory)54、I/O処理部55、通信処理部56を備えている。外部の有線又は無線のネットワークと接続する通信処理部58を備えてもよい。 As shown in FIG. 9, the system controller 32 includes at least a CPU (Central Processing Unit) 51, a bus 52, a ROM (Read Only Memory) 53, a RAM (Random Access Memory) 54, an I / O processing unit 55, a communication. A processing unit 56 is provided. You may provide the communication processing part 58 connected with an external wired or wireless network.
 CPU51は、バス52を介して、ROM53、RAM54、I/O処理部55、通信処理部56及び通信処理部58に接続されており、ROM53に記憶されたプログラムを読みだして実行し、バス52を介して接続された上記のハードウェアデバイスを制御するものである。 The CPU 51 is connected to the ROM 53, the RAM 54, the I / O processing unit 55, the communication processing unit 56, and the communication processing unit 58 via the bus 52, and reads and executes the program stored in the ROM 53. The above hardware devices connected via the network are controlled.
 ROM53は、CPU51によって図3で示される処理を実行するためのプログラムを記憶しているものであり、不揮発性の記憶媒体である。 The ROM 53 stores a program for executing the processing shown in FIG. 3 by the CPU 51, and is a nonvolatile storage medium.
 RAM54は、I/O処理部55を介して入力された各種センサーからの検出値、及び、リモコン57からの操作信号等を一時的に記憶する揮発性の記憶媒体であり、システムコントローラー32の処理に応じて、随時更新される。 The RAM 54 is a volatile storage medium that temporarily stores detection values from various sensors input via the I / O processing unit 55, operation signals from the remote controller 57, and the like. It is updated as needed.
 I/O処理部55は、各センサーからの検出値を入力して、デジタル変換してRAM54に記憶させ、また、CPU51によって処理された制御信号を、各機器の制御入力に応じた信号形態に変換して出力するものである。 The I / O processing unit 55 inputs detection values from each sensor, converts them to digital and stores them in the RAM 54, and converts the control signal processed by the CPU 51 into a signal form corresponding to the control input of each device. It is converted and output.
 通信処理部56は、無線又は有線のリモコン57と通信するものであり、リモコン57からのデータを受信、又は、リモコン57の液晶表示部等に表示する表示データ等を送信する。 The communication processing unit 56 communicates with a wireless or wired remote controller 57 and receives data from the remote controller 57 or transmits display data to be displayed on a liquid crystal display unit of the remote controller 57.
 通信処理部58は、リモコン通信の用途とは別に設けられたものであり、有線又は無線によってインターネットや電話などの通信ネットワークに接続されるものである。この通信処理部58は、前記通信ネットワークを経由して、情報サービス会社又はメンテナンスサポート会社等に接続していることによって、エネルギー単価(電気料金単価及び燃料料金単価)又は/及びCO排出係数を入手し、常に最新の状態に維持することが可能となる。 The communication processing unit 58 is provided separately from the application of remote control communication, and is connected to a communication network such as the Internet or a telephone by wire or wireless. The communication processing unit 58 is connected to an information service company or a maintenance support company via the communication network, so that the energy unit price (electricity unit price and fuel unit price) or / and the CO 2 emission coefficient are obtained. It can be obtained and kept up to date.
 なお、通信処理部58は、本発明の「通信処理手段」に相当する。 The communication processing unit 58 corresponds to “communication processing means” of the present invention.
 1 熱源性能推定手段、2 運転コスト推定手段、2a CO排出量推定手段、3 運転熱源選択手段、4 熱源切替制御手段、5 負荷量計算手段、6 外気温度取得手段、7 温水温度取得手段、8 ヒートポンプ特性データ記憶手段、9 燃焼式熱源特性データ記憶手段、10 エネルギー単価記憶手段、10a CO排出係数記憶手段、11 運転熱源判定手段、12 熱源組み合わせ作成手段、20 ヒートポンプ装置、20a 圧縮機、20b 膨張装置、20c 蒸発器、21 水流路、22 第1熱交換器、23、23a 三方弁、24、24a 循環ポンプ、25 貯湯タンク、26 ラジエーター、27 床暖房機器、28 タンクユニット、29 第2熱交換器、30 外気温度センサー、31 熱源機コントローラー、32 システムコントローラー、33、33a 往き温水温度センサー、34、34a 戻り温水温度センサー、35 タンク水温センサー、36 室温センサー、37、37a 流量センサー、38 温水温度センサー、40 燃焼式熱源、51 CPU、52 バス、53 ROM、54 RAM、55 I/O処理部、56 通信処理部、57 リモコン、58 通信処理部。 1 heat source performance estimating means, 2 operating cost estimating means, 2a CO 2 emission amount estimating means, 3 operating heat source selecting means, 4 heat source switching control means, 5 load amount calculating means, 6 outside air temperature acquiring means, 7 hot water temperature acquiring means, 8 heat pump characteristic data storage means, 9 combustion type heat source characteristic data storage means, 10 energy unit price storage means, 10a CO 2 emission coefficient storage means, 11 operating heat source determination means, 12 heat source combination creation means, 20 heat pump device, 20a compressor, 20b Expansion device, 20c Evaporator, 21 Water flow path, 22 First heat exchanger, 23, 23a Three-way valve, 24, 24a Circulation pump, 25 Hot water storage tank, 26 Radiator, 27 Floor heating equipment, 28 Tank unit, 29 Second Heat exchanger, 30 outside temperature sensor, 31 heat source machine controller, 32 system controller, 3, 33a Outward hot water temperature sensor, 34, 34a Return hot water temperature sensor, 35 Tank water temperature sensor, 36 Room temperature sensor, 37, 37a Flow rate sensor, 38 Hot water temperature sensor, 40 Combustion heat source, 51 CPU, 52 bus, 53 ROM, 54 RAM, 55 I / O processing unit, 56 communication processing unit, 57 remote control, 58 communication processing unit.

Claims (11)

  1.  圧縮機、放熱器、膨張装置及び蒸発器を冷媒配管によって接続してなる冷凍サイクル回路を有するヒートポンプ装置と、前記放熱器を介して前記冷媒流路を流れる冷媒と熱交換する水が流れる水流路と、燃料を燃焼させて、前記水流路に流れる水を加熱する燃焼式熱源と、を備え、前記ヒートポンプ装置と前記燃焼式熱源とは前記水流路によって並列に接続されたヒートポンプ式給湯暖房システムであって、
     外気温度を検出して取得する外気温度測定手段と、
     前記水流路を流れる水の温度である温水温度を検出して取得する温水温度測定手段と、
     前記ヒートポンプ装置の負荷量、及び、前記燃焼式熱源の負荷量を算出する負荷量計算手段と、
     前記外気温度、前記温水温度、前記ヒートポンプ装置の負荷量及びCOPの関連付けに関するデータであるヒートポンプ特性データを記憶したヒートポンプ特性データ記憶手段と、
     前記燃焼式熱源の効率及び負荷量に関するデータである燃焼式熱源特性データを記憶した燃焼式熱源特性データ記憶手段と、
     電気料金単価及び燃料料金単価を記憶したエネルギー単価取得手段と、
     前記外気温度測定手段によって取得された前記外気温度、前記温水温度測定手段によって取得された前記温水温度、前記負荷量計算手段によって算出された前記ヒートポンプ装置の前記負荷量、及び、前記ヒートポンプ特性データ記憶手段に記憶された前記ヒートポンプ特性データに基づいて前記ヒートポンプ装置のCOPを推定し、かつ、前記燃焼式熱源特性データ記憶手段に記憶された前記燃焼式熱源特性データに基づいて前記燃焼式熱源の効率を推定する熱源性能推定手段と、
     該熱源性能推定手段によって推定された前記COP、前記ヒートポンプ装置の前記負荷量、及び、前記エネルギー単価取得手段に記憶された前記電気料金単価に基づいて前記ヒートポンプ装置の運転コストを推定し、かつ、前記熱源性能推定手段によって推定された前記効率、前記燃焼式熱源の前記負荷量、及び、前記エネルギー単価取得手段に記憶された前記燃料料金単価に基づいて前記燃焼式熱源の運転コストを推定する判定情報推定手段と、
     該判定情報推定手段によって推定された前記運転コストを判定情報とし、該判定情報である前記ヒートポンプ装置の前記運転コストと、前記燃焼式熱源の前記運転コストとを比較し、前記運転コストが小さい方を運転対象の熱源として選択する運転熱源選択手段と、
     該運転熱源選択手段によって選択された前記熱源に運転を切り替えて、他方の前記熱源を停止させる熱源切替制御手段と、
     を備えたヒートポンプ式給湯暖房システム。
    A heat pump device having a refrigeration cycle circuit in which a compressor, a radiator, an expansion device, and an evaporator are connected by a refrigerant pipe, and a water channel through which water that exchanges heat with the refrigerant that flows through the refrigerant channel via the radiator A combustion heat source that burns fuel and heats water flowing in the water flow path, and the heat pump device and the combustion heat source are connected in parallel by the water flow path in a heat pump hot water supply and heating system. There,
    Outside temperature measuring means for detecting and obtaining outside temperature;
    Hot water temperature measuring means for detecting and acquiring a hot water temperature that is a temperature of water flowing through the water flow path;
    A load amount calculating means for calculating a load amount of the heat pump device and a load amount of the combustion heat source;
    Heat pump characteristic data storage means for storing heat pump characteristic data, which is data relating to the association between the outside air temperature, the hot water temperature, the load amount of the heat pump device and the COP;
    Combustion-type heat source characteristic data storage means for storing combustion-type heat source characteristic data which is data relating to the efficiency and load amount of the combustion-type heat source;
    Energy unit price acquisition means storing the electricity unit price and fuel unit price,
    The outside air temperature acquired by the outside air temperature measuring means, the hot water temperature acquired by the hot water temperature measuring means, the load amount of the heat pump device calculated by the load amount calculating means, and the heat pump characteristic data storage The COP of the heat pump device is estimated based on the heat pump characteristic data stored in the means, and the efficiency of the combustion heat source based on the combustion heat source characteristic data stored in the combustion heat source characteristic data storage means Heat source performance estimating means for estimating
    Estimating the operating cost of the heat pump device based on the COP estimated by the heat source performance estimating means, the load amount of the heat pump device, and the unit price of electricity stored in the energy unit price acquisition means, and Determination of estimating the operating cost of the combustion type heat source based on the efficiency estimated by the heat source performance estimation unit, the load amount of the combustion type heat source, and the fuel unit price stored in the energy unit price acquisition unit Information estimation means;
    The operation cost estimated by the determination information estimation means is used as determination information, and the operation cost of the heat pump device, which is the determination information, is compared with the operation cost of the combustion heat source, and the operation cost is smaller. Operating heat source selection means for selecting as a heat source to be operated,
    Heat source switching control means for switching the operation to the heat source selected by the operating heat source selection means and stopping the other heat source;
    A heat pump type hot water supply and heating system equipped with.
  2.  圧縮機、放熱器、膨張装置及び蒸発器を冷媒配管によって接続してなる冷凍サイクル回路を有するヒートポンプ装置と、前記放熱器を介して前記冷媒流路を流れる冷媒と熱交換する水が流れる水流路と、燃料を燃焼させて、前記水流路に流れる水を加熱する燃焼式熱源と、を備え、前記ヒートポンプ装置と前記燃焼式熱源とは前記水流路によって並列に接続されたヒートポンプ式給湯暖房システムであって、
     外気温度を検出して取得する外気温度測定手段と、
     前記水流路を流れる水の温度である温水温度を検出して取得する温水温度測定手段と、
     前記ヒートポンプ装置の負荷量、及び、前記燃焼式熱源の負荷量を算出する負荷量計算手段と、
     前記外気温度、前記温水温度、前記ヒートポンプ装置の負荷量及びCOPの関連付けに関するデータであるヒートポンプ特性データを記憶したヒートポンプ特性データ記憶手段と、
     前記燃焼式熱源の効率及び負荷量に関するデータである燃焼式熱源特性データを記憶した燃焼式熱源特性データ記憶手段と、
     前記ヒートポンプ装置の単位電力使用量当たりのCO排出係数、及び、前記燃焼式熱源の単位燃料使用量当たりのCO排出係数を記憶したCO排出係数記憶手段と、
     前記外気温度測定手段によって取得された前記外気温度、前記温水温度測定手段によって取得された前記温水温度、前記負荷量計算手段によって算出された前記ヒートポンプ装置の前記負荷量、及び、前記ヒートポンプ特性データ記憶手段に記憶された前記ヒートポンプ特性データに基づいて前記ヒートポンプ装置のCOPを推定し、かつ、前記燃焼式熱源特性データ記憶手段に記憶された前記燃焼式熱源特性データに基づいて前記燃焼式熱源の効率を推定する熱源性能推定手段と、
     該熱源性能推定手段によって推定された前記COP、前記ヒートポンプ装置の前記負荷量、及び、前記CO排出係数記憶手段に記憶された前記ヒートポンプ装置の前記CO排出係数に基づいて前記ヒートポンプ装置のCO排出量を推定し、かつ、前記熱源性能推定手段によって推定された前記効率、前記燃焼式熱源の前記負荷量、及び、前記CO排出係数記憶手段に記憶された前記燃焼式熱源の前記CO排出係数に基づいて前記燃焼式熱源のCO排出量を推定する判定情報推定手段と、
     該判定情報推定手段によって推定された前記CO排出量を判定情報とし、該判定情報である前記ヒートポンプ装置の前記CO排出量と、前記燃焼式熱源の前記CO排出量とを比較し、前記CO排出量が小さい方を運転対象の熱源として選択する運転熱源選択手段と、
     該運転熱源選択手段によって選択された前記熱源に運転を切り替えて、他方の前記熱源を停止させる熱源切替制御手段と、
     を備えたヒートポンプ式給湯暖房システム。
    A heat pump device having a refrigeration cycle circuit in which a compressor, a radiator, an expansion device, and an evaporator are connected by a refrigerant pipe, and a water channel through which water that exchanges heat with the refrigerant that flows through the refrigerant channel via the radiator A combustion heat source that burns fuel and heats water flowing in the water flow path, and the heat pump device and the combustion heat source are connected in parallel by the water flow path in a heat pump hot water supply and heating system. There,
    Outside temperature measuring means for detecting and obtaining outside temperature;
    Hot water temperature measuring means for detecting and acquiring a hot water temperature that is a temperature of water flowing through the water flow path;
    A load amount calculating means for calculating a load amount of the heat pump device and a load amount of the combustion heat source;
    Heat pump characteristic data storage means for storing heat pump characteristic data, which is data relating to the association between the outside air temperature, the hot water temperature, the load amount of the heat pump device and the COP;
    Combustion-type heat source characteristic data storage means for storing combustion-type heat source characteristic data which is data relating to the efficiency and load amount of the combustion-type heat source;
    CO 2 emission coefficient per unit power consumption of the heat pump apparatus, and a CO 2 emission coefficient storing means for storing CO 2 emission coefficient per unit fuel consumption of the combustion heat,
    The outside air temperature acquired by the outside air temperature measuring means, the hot water temperature acquired by the hot water temperature measuring means, the load amount of the heat pump device calculated by the load amount calculating means, and the heat pump characteristic data storage The COP of the heat pump device is estimated based on the heat pump characteristic data stored in the means, and the efficiency of the combustion heat source based on the combustion heat source characteristic data stored in the combustion heat source characteristic data storage means Heat source performance estimating means for estimating
    The COP estimated by the heat source performance estimating means, the load of the heat pump apparatus, and, CO of the CO 2 heat pump device based on the emission factor stored in the CO 2 emission coefficient storing means and the heat pump apparatus 2 , and the efficiency estimated by the heat source performance estimating means, the load amount of the combustion heat source, and the CO of the combustion heat source stored in the CO 2 emission coefficient storage means Determination information estimating means for estimating the CO 2 emission amount of the combustion-type heat source based on two emission coefficients;
    The CO 2 emissions estimated by the determination information estimating means and the determination information, compared with the CO 2 emissions of the heat pump device is the determination information, and the CO 2 emissions of the combustion heat, An operation heat source selection means for selecting the one with the smaller CO 2 emission amount as a heat source to be operated;
    Heat source switching control means for switching the operation to the heat source selected by the operating heat source selection means and stopping the other heat source;
    A heat pump type hot water supply and heating system equipped with.
  3.  無線又は有線によりネットワークに接続した通信処理手段を備え、
     該通信処理手段は、前記ネットワークを介して最新の前記電気料金単価及び前記燃料料金単価を取得して、前記エネルギー単価取得手段に記憶された前記電気料金単価及び前記燃料料金単価を、それぞれ前記最新の前記電気料金単価及び前記燃料料金単価によって更新することを特徴とする請求項1記載のヒートポンプ式給湯暖房システム。
    Comprising communication processing means connected to the network by wireless or wired;
    The communication processing means obtains the latest electricity unit price and the fuel unit price through the network, and sets the electricity unit price and the fuel unit price stored in the energy unit obtaining means respectively to the latest unit price. The heat pump hot water supply and heating system according to claim 1, wherein the system is updated with the unit price of electricity and the unit price of fuel.
  4.  無線又は有線によりネットワークに接続した通信処理手段を備え、
     該通信処理手段は、前記ネットワークを介して最新の前記ヒートポンプ装置の単位電力使用量当たりの前記CO排出係数、及び、前記燃焼式熱源の単位燃料使用量当たりの前記CO排出係数を取得して、前記CO排出係数記憶手段に記憶された前記ヒートポンプ装置の前記CO排出係数、及び、前記燃焼式熱源の前記CO排出係数を、それぞれ前記最新の前記ヒートポンプ装置の前記CO排出係数、及び、前記燃焼式熱源の前記CO排出係数によって更新することを特徴とする請求項2記載のヒートポンプ式給湯暖房システム。
    Comprising communication processing means connected to the network by wireless or wired;
    The communication processing unit, the CO 2 emission coefficient per unit power consumption of the latest of the heat pump device via the network, and acquires the CO 2 emission coefficient per unit fuel consumption of the combustion heat source Te, the CO 2 emission coefficient stored in the CO 2 emission coefficient storing means and said heat pump device, and the CO 2 emission factor of the said CO 2 emission factor of the combustion heat, the respective date of the heat pump apparatus The heat pump hot water supply / heating system according to claim 2, wherein the heat pump hot water supply / heating system is updated by the CO 2 emission coefficient of the combustion heat source.
  5.  前記運転熱源選択手段は、停止中の前記熱源の前記判定情報が、運転中の前記熱源の前記判定情報の所定の割合よりも小さくなった場合に、前記停止中の前記熱源を運転対象として選択する請求項1~請求項4のいずれか一項に記載のヒートポンプ式給湯暖房システム。 The operating heat source selection unit selects the stopped heat source as an operation target when the determination information of the stopped heat source is smaller than a predetermined ratio of the determination information of the operating heat source. The heat pump hot water supply / heating system according to any one of claims 1 to 4.
  6.  前記ヒートポンプ装置から流出した水が負荷に向かう量と、前記燃焼式熱源から流出した水が該負荷に向かう量とを調整する流路調整手段と、
     複数の所定の負荷分配比に基づく、前記ヒートポンプ装置及び前記燃焼式熱源の負荷量の組み合わせのデータを作成する熱源組み合わせ作成手段と、
     を備え、
     前記負荷量計算手段は、前記ヒートポンプ装置と前記燃焼式熱源が同時運転している場合は個別の前記負荷量を求めてそれらを合算した値を負荷量として求め、
     前記判定情報推定手段は、前記ヒートポンプ装置を単体運転させた場合の前記判定情報、前記燃焼式熱源を単体運転させた場合の前記判定情報、及び、前記複数の所定の負荷分配比に基づいて前記ヒートポンプ装置及び前記燃焼式熱源を同時運転させた場合の前記判定情報を推定し、
     前記運転熱源選択手段は、前記判定情報推定手段によって推定された前記ヒートポンプ装置を単体運転させた場合の前記判定情報、前記燃焼式熱源を単体運転させた場合の前記判定情報、及び、前記複数の所定の負荷分配比に基づいて前記ヒートポンプ装置及び前記燃焼式熱源を同時運転させた場合の前記判定情報を比較し、該判定情報が最も小さい前記熱源、又は、前記ヒートポンプ装置及び前記燃焼式熱源の組み合わせに係る前記熱源を運転対象として選択し、
     前記熱源切替制御手段は、
     前記運転熱源選択手段によって選択された前記熱源を単体運転させ、あるいは、前記ヒートポンプ装置及び前記燃焼式熱源の組み合わせに係る前記熱源を同時運転させ、
     前記ヒートポンプ装置及び前記燃焼式熱源の組み合わせに係る前記熱源を同時運転させる場合、対応する前記負荷分配比に基づいて、前記流路調整手段の開度を制御することを特徴とする請求項1~請求項5のいずれか一項に記載のヒートポンプ式給湯暖房システム。
    Channel adjusting means for adjusting the amount of water flowing out of the heat pump device toward the load and the amount of water flowing out of the combustion heat source toward the load;
    A heat source combination creating means for creating data of a combination of load amounts of the heat pump device and the combustion heat source based on a plurality of predetermined load distribution ratios;
    With
    When the heat pump device and the combustion heat source are operating simultaneously, the load amount calculation means determines the individual load amounts and calculates a sum of them as a load amount,
    The determination information estimation means is based on the determination information when the heat pump device is operated alone, the determination information when the combustion heat source is operated alone, and the plurality of predetermined load distribution ratios. Estimating the determination information when the heat pump device and the combustion heat source are operated simultaneously,
    The operating heat source selection means includes the determination information when the heat pump device estimated by the determination information estimation means is operated alone, the determination information when the combustion heat source is operated alone, and the plurality of The determination information when the heat pump device and the combustion heat source are operated simultaneously based on a predetermined load distribution ratio is compared, and the heat source with the smallest determination information or the heat pump device and the combustion heat source is compared. Select the heat source related to the combination as the operation target,
    The heat source switching control means includes
    The heat source selected by the operating heat source selection means is operated alone, or the heat sources related to the combination of the heat pump device and the combustion heat source are operated simultaneously,
    The opening degree of the flow path adjusting means is controlled based on the corresponding load distribution ratio when the heat sources related to the combination of the heat pump device and the combustion heat source are operated simultaneously. The heat pump type hot water supply and heating system according to claim 5.
  7.  前記熱源切替制御手段は、前記運転熱源選択手段によって選択されなかった前記熱源を停止させた後、所定時間後に、選択された前記熱源の運転を開始することを特徴とする請求項1~請求項6のいずれか一項に記載のヒートポンプ式給湯暖房システム。 The heat source switching control unit starts the operation of the selected heat source after a predetermined time after stopping the heat source not selected by the operation heat source selecting unit. The heat pump hot water supply / heating system according to claim 6.
  8.  前記ヒートポンプ特性データ記憶手段に記憶された前記ヒートポンプ特性データは、前記外気温度、前記温水温度、前記ヒートポンプ装置の前記負荷量及び前記COPとを対応付ける関連データについて、複数の負荷率のそれぞれについて有するものとして構成された請求項1~請求項7のいずれか一項に記載のヒートポンプ式給湯暖房システム。 The heat pump characteristic data stored in the heat pump characteristic data storage means has for each of a plurality of load factors with respect to the associated data associating the outside air temperature, the hot water temperature, the load amount of the heat pump device and the COP. The heat pump hot water supply / heating system according to any one of claims 1 to 7, configured as:
  9.  前記燃焼式熱源特性データ記憶手段に記憶された前記燃焼式熱源特性データは、前記外気温度、前記温水温度、前期負荷量又は前記負荷率のうち少なくとも1つ以上のデータと、前記効率との関連付けのデータによって構成され、
     前記熱源性能推定手段は、現在の前記外気温度、前記温水温度、前期負荷量又は前記負荷率の少なくとも1つ以上のデータ、及び、前記燃焼式熱源特性データの前記関連付けのデータに基づいて前記燃焼式熱源の前記効率を推定することを特徴とする請求項1~請求項8のいずれか一項に記載のヒートポンプ式給湯暖房システム。
    The combustion-type heat source characteristic data stored in the combustion-type heat source characteristic data storage means associates at least one of the outside air temperature, the hot water temperature, the previous load amount or the load factor with the efficiency. Composed of data
    The heat source performance estimating means is configured to generate the combustion based on at least one data of the current outside air temperature, the hot water temperature, a previous load amount or the load factor, and the association data of the combustion heat source characteristic data. The heat pump hot water supply / heating system according to any one of claims 1 to 8, wherein the efficiency of the heat source is estimated.
  10.  前記水流路を流れて前記熱源に流出入する水の流量である温水流量を検出する流量検出手段を備え、
     前記温水温度測定手段は、前記熱源から流出する水の温度である往き温水温度、該熱源に流入する水の温度である戻り温水温度を検出して取得し、
     前記負荷量計算手段は、前記流量検出手段によって検出された前記温水流量、並びに、前記温水温度測定手段によって測定された前記往き温水温度及び前記戻り温水温度に基づいて、前記熱源の前記負荷量を算出する請求項1~請求項9のいずれか一項に記載のヒートポンプ式給湯暖房システム。
    A flow rate detecting means for detecting a hot water flow rate that is a flow rate of water flowing into and out of the heat source through the water flow path;
    The hot water temperature measuring means detects and obtains a forward hot water temperature which is a temperature of water flowing out from the heat source, a return hot water temperature which is a temperature of water flowing into the heat source,
    The load amount calculation means calculates the load amount of the heat source based on the hot water flow rate detected by the flow rate detection means and the forward hot water temperature and the return hot water temperature measured by the hot water temperature measurement means. 10. The heat pump hot water supply / heating system according to claim 1, wherein the heat pump hot water supply / heating system is calculated.
  11.  前記負荷量計算手段は、前記圧縮機の運転周波数に基づいて、前記ヒートポンプ装置の前記負荷量を算出する請求項1~請求項9のいずれか一項に記載のヒートポンプ式給湯暖房システム。 The heat pump hot water supply and heating system according to any one of claims 1 to 9, wherein the load amount calculation means calculates the load amount of the heat pump device based on an operating frequency of the compressor.
PCT/JP2012/004111 2012-06-26 2012-06-26 Heat-pump type hot water supply/heating system WO2014002133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004111 WO2014002133A1 (en) 2012-06-26 2012-06-26 Heat-pump type hot water supply/heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004111 WO2014002133A1 (en) 2012-06-26 2012-06-26 Heat-pump type hot water supply/heating system

Publications (1)

Publication Number Publication Date
WO2014002133A1 true WO2014002133A1 (en) 2014-01-03

Family

ID=49782376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004111 WO2014002133A1 (en) 2012-06-26 2012-06-26 Heat-pump type hot water supply/heating system

Country Status (1)

Country Link
WO (1) WO2014002133A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173797A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Heat pump system
JP2016170714A (en) * 2015-03-13 2016-09-23 株式会社東芝 Energy management system, energy management method and program
EP3115699A1 (en) * 2015-07-08 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Heat pump hot water apparatus
CN108603669A (en) * 2016-01-25 2018-09-28 苏伊士集团 The detection and quantization that domestic hot water uses
JP2019095147A (en) * 2017-11-27 2019-06-20 株式会社ノーリツ Storage-type hot water supply device
JP2019116987A (en) * 2017-12-26 2019-07-18 リンナイ株式会社 Hot water supply heating system
CN110312900A (en) * 2017-02-27 2019-10-08 三菱电机株式会社 Air conditioner
IT201800009760A1 (en) * 2018-10-24 2020-04-24 Adsum Srl System and method for heating a fluid using a heat pump and a boiler
CN112232980A (en) * 2020-09-14 2021-01-15 浙江大学 Regulation and control method for heat pump unit of regional energy heat supply system
EP3845824A1 (en) * 2019-12-30 2021-07-07 LG Electronics Inc. Water heater controlled by frequency regulation of inverter and method for controlling a water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121907A (en) * 2006-11-08 2008-05-29 Misawa Homes Co Ltd Heating/cooling system
JP2009275957A (en) * 2008-05-13 2009-11-26 Denso Corp Hot water supply apparatus
JP2011232004A (en) * 2010-04-28 2011-11-17 Osaka Gas Co Ltd Heat supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121907A (en) * 2006-11-08 2008-05-29 Misawa Homes Co Ltd Heating/cooling system
JP2009275957A (en) * 2008-05-13 2009-11-26 Denso Corp Hot water supply apparatus
JP2011232004A (en) * 2010-04-28 2011-11-17 Osaka Gas Co Ltd Heat supply system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173797A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Heat pump system
JP2016170714A (en) * 2015-03-13 2016-09-23 株式会社東芝 Energy management system, energy management method and program
EP3115699A1 (en) * 2015-07-08 2017-01-11 Panasonic Intellectual Property Management Co., Ltd. Heat pump hot water apparatus
CN108603669A (en) * 2016-01-25 2018-09-28 苏伊士集团 The detection and quantization that domestic hot water uses
CN110312900A (en) * 2017-02-27 2019-10-08 三菱电机株式会社 Air conditioner
EP3587946A4 (en) * 2017-02-27 2020-05-27 Mitsubishi Electric Corporation Air conditioner
CN110312900B (en) * 2017-02-27 2020-12-11 三菱电机株式会社 Air conditioner
JP2019095147A (en) * 2017-11-27 2019-06-20 株式会社ノーリツ Storage-type hot water supply device
JP2019116987A (en) * 2017-12-26 2019-07-18 リンナイ株式会社 Hot water supply heating system
IT201800009760A1 (en) * 2018-10-24 2020-04-24 Adsum Srl System and method for heating a fluid using a heat pump and a boiler
EP3845824A1 (en) * 2019-12-30 2021-07-07 LG Electronics Inc. Water heater controlled by frequency regulation of inverter and method for controlling a water heater
CN113124562A (en) * 2019-12-30 2021-07-16 Lg电子株式会社 Water heater
CN112232980A (en) * 2020-09-14 2021-01-15 浙江大学 Regulation and control method for heat pump unit of regional energy heat supply system
CN112232980B (en) * 2020-09-14 2022-08-26 浙江大学 Regulation and control method for heat pump unit of regional energy heat supply system

Similar Documents

Publication Publication Date Title
WO2014002133A1 (en) Heat-pump type hot water supply/heating system
US9562696B2 (en) Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
KR101222331B1 (en) Heat-pump hot water apparatus
EP3163176A1 (en) Heating and hot water supply system
US20100083950A1 (en) Solar energy water heating system
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
KR101621168B1 (en) Hot water supply system
JP5481942B2 (en) Heating system
KR20140083892A (en) Storage type hot water supply device
JP4389378B2 (en) Hot water storage type heat pump water heater
KR101471309B1 (en) Storage type hot water supply device
JP2019039577A (en) Storage type water heater, home system, and control method
JP5192406B2 (en) Method for determining boiling target temperature of heat pump water heater
EP3258185B1 (en) Heat supply system
JP2007078200A (en) Heat pump water heater
JP6672982B2 (en) Hot water storage system
US20240102670A1 (en) Method for operating a heat pump
JP5584163B2 (en) Hot water storage water heater
JP6712505B2 (en) Heat medium heating device
JP2015227766A (en) Heat pump water heater
JP7035969B2 (en) Hot water storage type hot water supply device
JP2018136103A (en) Hot water storage type water heater
WO2017134763A1 (en) Heating device
JP6057867B2 (en) Hot water storage water heater
JP2009162415A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP