JP2010050291A - 露光方法及び露光装置、並びにデバイス製造方法 - Google Patents

露光方法及び露光装置、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2010050291A
JP2010050291A JP2008213433A JP2008213433A JP2010050291A JP 2010050291 A JP2010050291 A JP 2010050291A JP 2008213433 A JP2008213433 A JP 2008213433A JP 2008213433 A JP2008213433 A JP 2008213433A JP 2010050291 A JP2010050291 A JP 2010050291A
Authority
JP
Japan
Prior art keywords
measurement
intensity
moving body
pattern
exposure method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008213433A
Other languages
English (en)
Inventor
Yuho Kanatani
有歩 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008213433A priority Critical patent/JP2010050291A/ja
Publication of JP2010050291A publication Critical patent/JP2010050291A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】計測面の異常に起因するヘッド(例えばエンコーダ、Zセンサなど)の計測誤差、さらに動作異常の発生を効果的に抑制する。
【解決手段】露光装置の稼働中、エンコーダヘッド64〜68及びZヘッド74,76を用いてウエハステージWSTの位置を計測し、その結果に従ってウエハステージWSTを駆動制御する。これと並行して、各ヘッドの計測ビームのスケール(39Y1,39Y2等)からの戻り光の強度を計測し、該強度の対応する基準強度からのずれを、スケール上の計測ビームの照射点の位置に対して収集する。そして、収集された計測ビームの強度データを用いてスケール上面の状態を診断する。
【選択図】図8

Description

本発明は、露光方法及び露光装置、並びにデバイス製造方法に係り、特に、半導体素子(集積回路等)、液晶表示素子等を製造するリソグラフィ工程で用いられる露光方法及び露光装置、並びに前記露光方法又は露光装置を用いるデバイス製造方法に関する。
従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、あるいはステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが、主として用いられている。
この種の露光装置では、ウエハ又はガラスプレート等の基板(以下、ウエハと総称する)上の複数のショット領域にレチクル(又はマスク)のパターンを転写するために、ウエハを保持するウエハステージが、例えばリニアモータ等により2次元方向に駆動される。ウエハステージの位置は、一般的に、長期に渡って高い安定性を有するレーザ干渉計を用いて、計測されていた。
しかし、近年、半導体素子の高集積化に伴うパターンの微細化により、重ね合わせ精度の要求が厳しくなり、レーザ干渉計のビーム路上の雰囲気の温度変化や温度勾配の影響で発生する空気揺らぎに起因する計測値の短期的な変動がオーバレイバジェット中の大きなウエイトを占めるようになった。
そこで、レーザ干渉計と同程度以上の計測分解能を有し、一般的に干渉計に比べて空気揺らぎの影響を受けにくいエンコーダを、ウエハステージの位置計測装置として採用する露光装置が、先に提案されている(例えば、特許文献1参照)。
しかるに、エンコーダでは、計測部材としてグレーティング(スケール)が用いられるため、使用中にスケール上に異物が付着し、あるいはスケールが損傷するなど、スケールの表面に異常が発生することがある。このような場合、そのスケールの表面の異常によりエンコーダの計測誤差が発生し、さらには動作異常が発生し得る。また、特に、特許文献1に記載の露光装置などでは、ウエハステージ上面に設けられた一部のグレーティングをウエハステージのZ軸方向の位置を計測するZセンサの計測面としても兼用しているので、上記のスケールの表面の異常は、Zセンサの計測誤差等の要因にもなる。
国際公開第2007/097379号パンフレット
本発明は、上述の事情の下でなされたものであり、第1の観点からすると、物体上にパターンを形成する露光方法であって、前記物体を保持して所定平面内を移動する移動体と該移動体の外部との一方に設けられた少なくとも1つのヘッドを用いて、前記移動体と該移動体の外部との他方に設けられた計測面に計測光を照射し、前記計測面からの光を受光して、該光の強度と前記移動体の位置情報とを計測し、該位置情報に従って前記移動体を駆動する工程と;前記駆動する工程において計測された前記光の強度と該強度に対応する基準強度との関係を、前記計測面上の前記計測光の照射点の位置に対して収集する工程と;を含む露光方法である。
これによれば、収集する工程では、駆動する工程において(すなわち移動体の駆動の際に)計測された計測面からの光の強度とこれに対応する基準強度との関係を、計測面上の計測光の照射点の位置に対して収集する。これにより、収集された関係より計測面の状態を診断することができる。従って、計測面の異常に起因するヘッド(例えばエンコーダ、Zセンサなど)の計測誤差の発生、さらには動作異常の発生を効果的に抑制することが可能となる。
本発明は、第2の観点からすると、本発明の露光方法を用いて、物体上にパターンを形成する工程と;前記パターンが形成された前記物体に処理を施す工程と;を含む第1のデバイス製造方法である。
本発明は、第3の観点からすると、物体上にパターンを形成する露光装置であって、前記物体を保持して所定平面内を移動する移動体と;前記移動体と該移動体の外部との一方に設けられ、前記移動体と該移動体の外部との他方に設けられた計測面に計測光を照射し、前記計測面からの光を受光する少なくとも1つのヘッドを有し、該ヘッドを用いて前記計測面からの光の強度と前記移動体の位置情報とを計測する位置計測系と;前記位置情報に従って前記移動体を駆動するとともに、前記光の強度と該強度に対応する基準強度との関係を前記計測面上の前記計測光の照射点の位置に対して収集する制御装置と;前記物体上にパターンを形成するパターン生成装置と;前記物体上に形成されたマークを検出するマーク検出装置と;を備える露光装置である。
これによれば、制御装置により、位置計測系で計測された位置情報に従って移動体が駆動されるとともに、位置計測系のヘッドを用いて計測された計測面からの光の強度と該強度に対応する基準強度との関係が計測面上の計測光の照射点の位置に対して収集される。これにより、収集された関係より計測面の状態を診断することができる。従って、計測面の異常に起因するヘッド(例えばエンコーダ、Zセンサなど)の計測誤差、さらに動作異常の発生を効果的に抑制することが可能となる。
本発明は、第4の観点からすると、本発明の露光装置を用いて、物体上にパターンを形成することと;前記パターンが形成された前記物体に処理を施すことと;を含む第2のデバイス製造方法である。
以下、本発明の一実施形態について、図1〜図9に基づいて説明する。
図1には、一実施形態の露光装置100の構成が概略的に示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。後述するように、本実施形態では投影光学系PLとプライマリアライメント系AL1(図4、図5等参照)が設けられている。以下においては、投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内で光軸AXとプライマリアライメント系AL1の検出中心を結ぶ直線と平行な方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
露光装置100は、照明系10、レチクルステージRST、投影ユニットPU、ウエハステージWSTを有するステージ装置50、及びこれらの制御系等を備えている。図1では、ウエハステージWST上にウエハWが載置されている。
照明系10は、レチクルブラインド(マスキングシステム)で規定されたレチクルR上のスリット状の照明領域IARを、照明光(露光光)ILによりほぼ均一な照度で照明する。照明系10の構成は、例えば米国特許出願公開第2003/0025890号明細書などに開示されている。ここで、照明光ILとして、一例として、ArFエキシマレーザ光(波長193nm)が用いられる。
レチクルステージRST上には、そのパターン面(図1における下面)に回路パターンなどが形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータ等を含むレチクルステージ駆動系11(図1では不図示、図7参照)によって、XY平面内で微小駆動可能であるとともに、走査方向(図1における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。
レチクルステージRSTのXY平面内の位置情報(θz方向の回転情報を含む)は、レチクルレーザ干渉計(以下、「レチクル干渉計」という)116によって、移動鏡15(又はレチクルステージRSTの端面に形成された反射面)を介して、例えば0.25nm程度の分解能で常時検出される。レチクル干渉計116の計測値は、主制御装置20(図1では不図示、図7参照)に送られる。
投影ユニットPUは、レチクルステージRSTの図1における下方に配置されている。投影ユニットPUは、鏡筒40と、鏡筒40内に保持された投影光学系PLと、を含む。投影光学系PLとしては、例えば、Z軸方向と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられる。投影光学系PLは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4倍、1/5倍又は1/8倍など)を有する。このため、照明系10によってレチクルR上の照明領域IARが照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PL(投影ユニットPU)を介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、その第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルのパターンが転写される。すなわち、本実施形態では照明系10、レチクルR及び投影光学系PLによってウエハW上にパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
ステージ装置50は、図1に示されるように、ベース盤12上に配置されたウエハステージWST、ウエハステージWSTの位置情報を計測する計測システム200(図7参照)、及びウエハステージWSTを駆動するステージ駆動系124(図7参照)等を備えている。計測システム200は、図7に示されるように、干渉計システム118、エンコーダシステム150及び面位置計測システム180などを含む。
ウエハステージWSTは、不図示の非接触軸受、例えばエアベアリングなどにより、数μm程度のクリアランスを介して、ベース盤12の上方に支持されている。また、ウエハステージWSTは、リニアモータ等を含むステージ駆動系124(図7参照)によって、X軸方向及びY軸方向に所定ストロークで駆動可能である。
ウエハステージWSTは、ステージ本体91と、該ステージ本体91上に搭載されたウエハテーブルWTBとを含む。このウエハテーブルWTB及びステージ本体91は、リニアモータ及びZ・レベリング機構(ボイスコイルモータなどを含む)を含む駆動系によって、ベース盤12に対し、6自由度方向(X,Y,Z,θx,θy,θz)に駆動可能に構成されている。
ウエハテーブルWTBの上面の中央には、ウエハWを真空吸着等によって保持するウエハホルダ(不図示)が設けられている。図2に示されるように、ウエハテーブルWTB上面のウエハホルダ(ウエハW)の+Y側には、計測プレート30が設けられている。この計測プレート30には、中央に基準マークFMが設けられ、基準マークFMのX軸方向の両側に一対の空間像計測スリットパターン(スリット状の計測用パターン)SLが、設けられている。そして、各空間像計測スリットパターンSLに対応して、ウエハテーブルWTBの内部には、光学系及び受光素子などが配置されている。すなわち、ウエハテーブルWTB上には、空間像計測スリットパターンSLを含む一対の空間像計測装置45A,45B(図7参照)が設けられている。
また、ウエハテーブルWTB上面には、後述するエンコーダシステムで用いられるスケールが形成されている。詳述すると、ウエハテーブルWTB上面のX軸方向(図2における紙面内左右方向)の一側と他側の領域には、それぞれYスケール39Y1,39Y2が形成されている。Yスケール39Y1,39Y2は、例えば、X軸方向を長手方向とする格子線38が所定ピッチでY軸方向に配列された、Y軸方向を周期方向とする反射型の格子(例えば回折格子)によって構成されている。
同様に、ウエハテーブルWTB上面のY軸方向(図2における紙面内上下方向)の一側と他側の領域には、Yスケール39Y1及び39Y2に挟まれた状態で、Xスケール39X1,39X2がそれぞれ形成されている。Xスケール39X1,39X2は、例えば、Y軸方向を長手方向とする格子線37が所定ピッチでX軸方向に配列された、X軸方向を周期方向とする反射型の格子(例えば回折格子)によって構成されている。
なお、格子線37,38のピッチは、例えば1μmと設定される。図2及びその他の図において、図示の便宜のため、格子のピッチを実際のピッチよりも大きく図示している。
また、回折格子を保護するために、低熱膨張率のガラス板でカバーすることも有効である。ここで、ガラス板としては、厚さがウエハと同程度、例えば厚さ1mmのものを用いることができ、そのガラス板の表面がウエハ面と同じ高さ(同一面)になるよう、ウエハテーブルWTB上面に設置される。
また、ウエハテーブルWTBの−Y端面,−X端面には、図2に示されるように、後述する干渉計システムで用いられる反射面17a,反射面17bが形成されている。
また、ウエハテーブルWTBの−Y側の面には、図2に示されるように、国際公開第2007/097379号パンフレットに開示されるCDバーと同様の、X軸方向に延びるフィデューシャルバー(以下、「FDバー」と略述する)46が取り付けられている。FDバー46の長手方向の一側と他側の端部近傍には、センターラインLLに関して対称な配置で、Y軸方向を周期方向とする基準格子(例えば回折格子)52がそれぞれ形成されている。また、FDバー46の上面には、複数の基準マークMが形成されている。各基準マークMとしては、後述するアライメント系によって検出可能な寸法の2次元マークが用いられている。
本実施形態の露光装置100では、図4及び図5に示されるように、投影光学系PLの光軸AXとプライマリアライメント系AL1の検出中心を結ぶY軸に平行な直線(以下、基準軸と呼ぶ)LV上で、光軸AXから−Y側に所定距離隔てた位置に検出中心を有するプライマリアライメント系AL1が配置されている。プライマリアライメント系AL1は、不図示のメインフレームの下面に固定されている。図5に示されるように、プライマリアライメント系AL1を挟んで、X軸方向の一側と他側には、基準軸LVに関してほぼ対称に検出中心が配置されるセカンダリアライメント系AL21,AL22と、AL23,AL24とがそれぞれ設けられている。セカンダリアライメント系AL21〜AL24は、可動式の支持部材を介してメインフレーム(不図示)の下面に固定されており、駆動機構601〜604(図7参照)により、X軸方向に関してそれらの検出領域の相対位置が調整可能となっている。
本実施形態では、アライメント系AL1,AL21〜AL24のそれぞれとして、例えば画像処理方式のFIA(Field Image Alignment)系が用いられている。アライメント系AL1,AL21〜AL24のそれぞれからの撮像信号は、不図示の信号処理系を介して主制御装置20に供給される。
干渉計システム118は、図3に示されるように、反射面17a又は17bにそれぞれ干渉計ビーム(測長ビーム)を照射し、その反射光を受光して、ウエハステージWSTのXY平面内の位置を計測するY干渉計16と、3つのX干渉計126〜128と、一対のZ干渉計43A,43Bとを備えている。詳述すると、Y干渉計16は、基準軸LVに関して対称な一対の測長ビームB41,B42を含む少なくとも3つのY軸に平行な測長ビームを反射面17a、及び後述する移動鏡41に照射する。また、X干渉計126は、図3に示されるように、光軸AXと基準軸LVとに直交するX軸に平行な直線(以下、基準軸と呼ぶ)LHに関して対称な一対の測長ビームB51,B52を含む少なくとも3つのX軸に平行な測長ビームを反射面17bに照射する。また、X干渉計127は、アライメント系AL1の検出中心にて基準軸LVと直交するX軸に平行な直線(以下、基準軸と呼ぶ)LAを測長軸とする測長ビームB6を含む少なくとも2つのY軸に平行な測長ビームを反射面17bに照射する。また、X干渉計128は、Y軸に平行な測長ビームB7を反射面17bに照射する。
干渉計システム118の上記各干渉計からの位置情報は、主制御装置20に供給される。主制御装置20は、Y干渉計16及びX干渉計126又は127の計測結果に基づいて、ウエハテーブルWTB(ウエハステージWST)のX,Y位置に加え、θx方向の回転情報(すなわちピッチング)、θy方向の回転情報(すなわちローリング)、及びθz方向の回転情報(すなわちヨーイング)も算出することができる。
また、図1に示されるように、ステージ本体91の−Y側の側面に、凹形状の反射面を有する移動鏡41が取り付けられている。移動鏡41は、図2からわかるように、X軸方向の長さがウエハテーブルWTBの反射面17aよりも、長く設計されている。
移動鏡41に対向して、干渉計システム118(図7参照)の一部を構成する一対のZ干渉計43A,43Bが設けられている(図1及び図3参照)。Z干渉計43A,43Bは、移動鏡41を介して、例えば投影ユニットPUを支持するフレーム(不図示)に固定された固定鏡47A,47Bにそれぞれ2つのY軸に平行な測長ビームB1,B2を照射する。そして、それぞれの反射光を受光して、測長ビームB1,B2の光路長を計測する。その結果より、主制御装置20は、ウエハステージWSTの4自由度(Y,Z,θy,θz)方向の位置を算出する。
本実施形態では、ウエハステージWST(ウエハテーブルWTB)のXY平面内の位置情報(θz方向の回転情報を含む)は、主として、後述するエンコーダシステム150及び面位置計測システム180を用いて計測される。干渉計システム118は、ウエハステージWSTがエンコーダシステム150及び面位置計測システム180の計測領域外(例えば、アンローディングポジションとローディングポジション付近)に位置する際に、使用される。また、エンコーダシステム150及び面位置計測システム180の計測結果の長期的変動(例えばスケールの経時的な変形などによる)を補正(較正)する場合などに補助的に使用される。勿論、干渉計システム118とエンコーダシステム150及び面位置計測システム180とを併用して、ウエハステージWST(ウエハテーブルWTB)の全位置情報を計測することとしても良い。
本実施形態の露光装置100には、干渉計システム118とは独立に、ウエハステージWSTのXY平面内での位置(X,Y,θz)を計測するために、エンコーダシステム150を構成する複数のヘッドユニットが設けられている。
図4に示されるように、投影ユニットPUの+X側、+Y側、−X側、及びプライマリアライメント系AL1の−Y側に、4つのヘッドユニット62A、62B、62C、及び62Dが、それぞれ配置されている。また、アライメント系AL1、AL21〜AL24のX軸方向の両外側にヘッドユニット62E、62Fが、それぞれ設けられている。ヘッドユニット62A〜62Fは、支持部材を介して、投影ユニットPUを保持するメインフレーム(不図示)に吊り下げ状態で固定されている。なお、図4において、符号UPは、ウエハステージWST上にあるウエハのアンロードが行われるアンローディングポジションを示し、符号LPは、ウエハステージWST上への新たなウエハのロードが行われるローディングポジションを示す。
ヘッドユニット62A及び62Cは、図5に示されるように、前述の基準軸LH上に所定間隔で配置された複数(ここでは5個)のYヘッド651〜655、Yヘッド641〜645を、それぞれ備えている。以下では、必要に応じて、Yヘッド651〜655及びYヘッド641〜645を、それぞれ、Yヘッド65及びYヘッド64とも記述する。
ヘッドユニット62A,62Cは、Yスケール39Y1,39Y2を用いて、ウエハステージWST(ウエハテーブルWTB)のY軸方向の位置(Y位置)を計測する多眼のYリニアエンコーダ70A,70C(図7参照)を構成する。なお、以下では、Yリニアエンコーダを、適宜、「Yエンコーダ」又は「エンコーダ」と略述する。
ヘッドユニット62Bは、図5に示されるように、投影ユニットPUの+Y側に配置され、基準軸LV上に間隔WDで配置された複数(ここでは4個)のXヘッド665〜668を備えている。また、ヘッドユニット62Dは、プライマリアライメント系AL1の−Y側に配置され、基準軸LV上に間隔WDで配置された複数(ここでは4個)のXヘッド661〜664を備えている。以下では、必要に応じて、Xヘッド665〜668及びXヘッド661〜664をXヘッド66とも記述する。
ヘッドユニット62B,62Dは、Xスケール39X1,39X2を用いて、ウエハステージWST(ウエハテーブルWTB)のX軸方向の位置(X位置)を計測する多眼のXリニアエンコーダ70B,70D(図7参照)を構成する。なお、以下では、Xリニアエンコーダを、適宜、「Xエンコーダ」又は「エンコーダ」と略述する。
ここで、ヘッドユニット62A,62Cがそれぞれ備える5個のYヘッド65,64(より正確には、Yヘッド65,64が発する計測ビームのスケール上の照射点)のX軸方向の間隔WDは、露光の際などに、少なくとも1つのヘッドが、常に、対応するYスケール39Y1,39Y2に対向する(計測ビームを照射する)ように定められている。同様に、ヘッドユニット62B,62Dがそれぞれ備える隣接するXヘッド66(より正確には、Xヘッド66が発する計測ビームのスケール上の照射点)のY軸方向の間隔WDは、露光の際などに、少なくとも1つのヘッドが、常に、対応するXスケール39X又は39X2に対向する(計測ビームを照射する)ように定められている。
なお、ヘッドユニット62Bの最も−Y側のXヘッド665とヘッドユニット62Dの最も+Y側のXヘッド664との間隔は、ウエハステージWSTのY軸方向の移動により、その2つのXヘッド間で切り換え(つなぎ)が可能となるように、ウエハテーブルWTBのY軸方向の幅よりも狭く設定されている。
ヘッドユニット62Eは、図5に示されるように、複数(ここでは4個)のYヘッド671〜674を備えている。
ヘッドユニット62Fは、複数(ここでは4個)のYヘッド681〜684を備えている。Yヘッド681〜684は、基準軸LVに関して、Yヘッド674〜671と対称な位置に配置されている。以下では、必要に応じて、Yヘッド674〜671及びYヘッド681〜684を、それぞれYヘッド67及びYヘッド68とも記述する。
アライメント計測の際には、少なくとも各1つのYヘッド67,68が、それぞれYスケール39Y2,39Y1に対向する。このYヘッド67,68(すなわち、これらYヘッド67,68によって構成されるYエンコーダ70E,70F)によってウエハステージWSTのY位置(及びθz回転)が計測される。
また、本実施形態では、セカンダリアライメント系のベースライン計測時などに、セカンダリアライメント系AL21,AL24にX軸方向で隣接するYヘッド673,682が、FDバー46の一対の基準格子52とそれぞれ対向し、その一対の基準格子52と対向するYヘッド673,682によって、FDバー46のY位置が、それぞれの基準格子52の位置で計測される。以下では、一対の基準格子52にそれぞれ対向するYヘッド673,682によって構成されるエンコーダをYリニアエンコーダ70E2,70F2(図7参照)と呼ぶ。また、識別のため、Yスケール39Y2,39Y1に対向するYヘッド67,68によって構成されるYエンコーダを、Yエンコーダ70E1、70F1と呼ぶ。
上述したエンコーダ70A〜70Fの計測値は、主制御装置20に供給される。主制御装置20は、エンコーダ70A〜70Dのうちの3つ、又はエンコーダ70E1,7F1,70B及び70Dのうちの3つの計測値に基づいて、ウエハステージWSTのXY平面内での位置(X,Y,θz)を算出する。
また、主制御装置20は、リニアエンコーダ70E2,70F2の計測値に基づいて、FDバー46(計測ステージMST)のθz方向の回転を制御する。
なお、各エンコーダヘッド(Yヘッド、Xヘッド)として、例えば、国際公開第2007/097379号パンフレットに開示されている干渉型のエンコーダヘッドを用いることができる。この種のエンコーダヘッドでは、2つの計測光を対応するスケールに照射し、それぞれの戻り光を1つの干渉光に合成して受光し、その干渉光の強度を光検出器を用いて計測する。その干渉光の強度変化より、スケールの計測方向(回折格子の周期方向)への変位を計測する。
さらに、本実施形態の露光装置100では、図4及び図6に示されるように、照射系90a及び受光系90bから成る多点焦点位置検出系(以下、「多点AF系」と略述する)が設けられている。多点AF系としては、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成の斜入射方式を採用している。本実施形態では、一例として、前述のヘッドユニット62Eの−X端部の+Y側に照射系90aが配置され、これに対峙する状態で、前述のヘッドユニット62Fの+X端部の+Y側に受光系90bが配置されている。なお、多点AF系(90a,90b)は、投影ユニットPUを保持するメインフレームの下面に固定されている。
図4及び図6では、それぞれ検出ビームが照射される複数の検出点が、個別に図示されず、照射系90a及び受光系90bの間でX軸方向に延びる細長い検出領域(ビーム領域)AFとして示されている。検出領域AFは、X軸方向の長さがウエハWの直径と同程度に設定されているので、ウエハWをY軸方向に1回スキャンするだけで、ウエハWのほぼ全面でZ軸方向の位置情報(面位置情報)を計測できる。
図6に示されるように、多点AF系(90a,90b)の検出領域AFの両端部近傍に、基準軸LVに関して対称な配置で、面位置計測システム180の一部を構成する各一対のZ位置計測用のヘッド(以下、「Zヘッド」と略述する)72a,72b、及び72c,72dが設けられている。これらのZヘッド72a〜72dは、不図示のメインフレームの下面に固定されている。
Zヘッド72a〜72dとしては、例えば、CDドライブ装置などで用いられる光ピックアップと同様の光学式変位センサのヘッドが用いられる。Zヘッド72a〜72dは、ウエハテーブルWTBに対し上方から計測ビームを照射し、その反射光を受光して、照射点におけるウエハテーブルWTBの面位置を計測する。なお、本実施形態では、Zヘッドの計測ビームは、前述のYスケール39Y1,39Y2を構成する反射型回折格子によって反射される構成を採用している。
さらに、前述のヘッドユニット62A,62Cは、図6に示されるように、それぞれが備える5つのYヘッド65j,64i(i,j=1〜5)と同じX位置に、ただしY位置をずらして、それぞれ5つのZヘッド76j,74i(i,j=1〜5)を備えている。そして、ヘッドユニット62A,62Cのそれぞれに属する5つのZヘッド76,74は、互いに基準軸LVに関して対称に配置されている。なお、各Zヘッド76,74としては、前述のZヘッド72a〜72dと同様の光学式変位センサのヘッドが採用される。
上述したZヘッド72a〜72d,741〜745,761〜765は、図7に示されるように、信号処理・選択装置170を介して主制御装置20に接続されており、主制御装置20は、信号処理・選択装置170を介してZヘッド72a〜72d,741〜745,761〜765の中から任意のZヘッドを選択して作動状態とし、その作動状態としたZヘッドで検出した面位置情報を信号処理・選択装置170を介して受け取る。本実施形態では、Zヘッド72a〜72d,741〜745,761〜765と、信号処理・選択装置170とを含んでウエハステージWSTのZ軸方向及びXY平面に対する傾斜方向の位置情報を計測する面位置計測システム180が構成されている。
本実施形態では、主制御装置20は、面位置計測システム180(図7参照)を用いて、ウエハステージWSTの有効ストローク領域、すなわち露光及びアライメント計測のためにウエハステージWSTが移動する領域において、その2自由度方向(Z,θy)の位置座標を計測する。
主制御装置20は、露光の際には面位置計測システム180(図7参照)を構成する各1つのZヘッド74i,76j(i,jは1〜5のいずれか)を用いて、後述するフォーカスマッピング(及びフォーカスキャリブレーション)の際には4つのZヘッド72a〜72dを用いて、ウエハステージWSTの高さZと傾斜(ローリング)θyを計測する。
図7には、露光装置100の制御系の主要な構成が示されている。この制御系は、装置全体を統括的に制御するマイクロコンピュータ(又はワークステーション)から成る主制御装置20を中心として構成されている。
上述のようにして構成された本実施形態の露光装置では、例えば国際公開第2007/097379号パンフレットの実施形態中に開示されている手順と同様の手順に従って、ウエハステージWSTを用いた処理が、主制御装置20によって実行される。なお、これについては後述する。
前述のように、本実施形態のエンコーダシステム150を構成するエンコーダヘッド(以下、適宜、ヘッドとも記述する)64〜68は、計測ビームを、ウエハテーブルWTB上に設けられた対象スケール(Yスケール39Y1,39Y2及びXスケール39X1,39X2のいずれか)に照射し、その対象スケールを構成する回折格子から発生する回折ビームを受光することによって、ウエハテーブルWTB(ウエハステージWST)の位置情報を計測する。また、面位置計測システム180を構成するZヘッド72a〜72d,741〜745,761〜765も、エンコーダヘッドと同様に、計測ビームを計測対象であるYスケール39Y1,39Y2に照射し、Yスケール39Y1,39Y2からの反射光(反射ビーム)を受光することによって、ウエハテーブルWTBの面位置情報(Z軸方向に関する位置情報)を計測する。
ところで、長時間のエンコーダシステム150及び面位置計測システム180の使用において、例えば、スケール上に異物が付着し、その異物によって計測ビームが遮られる、あるいはスケール(を構成する回折格子)が局所的に損傷し、その損傷部分に計測ビームが投射される、などによってエンコーダシステム150及び面位置計測システム180による位置情報の計測結果が異常になることが考えられる。ここで、異常には、エンコーダシステム150及び面位置計測システム180の誤作動などの他、計測誤差の発生をも含む。そこで、上述の計測結果の異常の発生による影響を極力抑制するために、本実施形態の露光装置100では、主制御装置20により、通常のシーケンスの処理を実行中、例えば露光、アライメント計測、フォーカスマッピングなどの動作と並行して、以下のようにして、スケール上面の状態が診断されている。ここでは、一例として、診断に、エンコーダシステム150のヘッド64〜68を使用する場合について説明する。
すなわち、主制御装置20は、露光装置100の通常のシーケンスの処理を実行中(以下、適宜、通常稼働中とも呼ぶ)、エンコーダヘッド64〜68を用いてウエハテーブルWTB(ウエハステージWST)の位置情報を計測するとともに、各エンコーダヘッドが受光するYスケール39Y1,39Y2及びXスケール39X1,39X2からの回折ビーム(すなわち、計測ビームの照射によって各スケールから発生する回折ビーム(特に混乱のない限り計測ビームと呼ぶ))の強度を計測する。そして、主制御装置20は、計測ビームの強度の計測結果(強度データ)を、スケール上の計測ビームの照射点の位置に対して収集する。ただし、主制御装置20は、強度データを用いてスケール上面の状態を診断するために、強度の計測結果の基準強度からのずれを強度データとして収集する。
強度データを収集する際に用いる基準強度としては、露光装置100(すなわちスケール39Y1,39Y2,39X1,39X2)が基準状態にあるときの各ヘッドの計測ビームの強度の計測結果が用いられる。基準状態として、例えば露光装置100の起動時等、スケール上面が理想的な状態にある状態を選ぶことができる。上述の強度データの収集に先立って、主制御装置20は、露光装置100が基準状態にあるときに、ヘッド64〜68を用いて、各ヘッドの計測ビームの強度を、計測ビームが照射されるスケール上の照射点の位置に対して計測する。ここで、計測ビームの強度を、各ヘッドについて、対応するスケール上の全領域又は露光装置の通常稼動中に計測ビームが照射され得る領域に対して計測する。あるいは、共通のスケールに計測ビームを照射する同じヘッドユニットに属するヘッド毎(すなわちヘッドユニット毎)に、対応するスケール上の全領域に対して計測する。ただし、この場合は、同一ヘッドユニット内の全てのヘッドの計測ビームの強度は等しく、得られる強度の計測結果も等しいことを条件とする。
前述のように、スケール上に異物が付着したり、スケール(を構成する回折格子)が局所的に損傷したりすると、計測ビームの強度が変化し得る。そこで、主制御装置20は、収集した強度データ、すなわち、計測ビームの強度の計測結果の基準強度からのずれを用いて、基準強度を計測した基準状態からのスケール上面の状態の変化を診断する。そして、主制御装置20は、露光装置の通常稼働中、ずれが大きくなる場合、スケール上面に異常が発生したと判断することができ、反対にずれが小さくなる場合、スケール上面の状態が回復したと判断することができる。そして、主制御装置20は、スケールの異常が検知された際には、その異常の発生及びその診断内容(異常内容)に応じて必要な処置をとる。主制御装置20は、例えば、スケール上に付着した異物が一定量を超えたと診断した場合には、その診断内容をオペレータに通知するとともに、不図示の清掃装置を用いてスケールの清掃(又は洗浄)を行う。この場合、オペレータが診断内容を見て、露光装置を停止してスケールの清掃(又は洗浄)を自ら行う、あるいはスケールの清掃(又は洗浄)を主制御装置20に指示することとしても良い。また、主制御装置20は、例えば、スケールがある程度以上損傷したと診断した場合には、その診断内容をオペレータに通知する。オペレータは、診断内容を見て、露光装置を停止しスケールを交換する。上記のスケールの清掃(又は洗浄)、スケールの交換などの後、スケール上面の状態の回復が確認された際には、オペレータは、主制御装置20に、再度、基準強度を計測するよう指示する。そして、その後、オペレータの指示に基づき、装置の運転を再開した際には、主制御装置20は、その基準強度からの計測ビームの強度のずれを強度データとして収集する。
なお、露光装置100で実際に用いられるスケールは、歪み、凹凸、及び損傷などが一切ない理想的なスケールだとは限らない。従って、ヘッドの計測ビームの強度が常に一定だとしても、スケールの歪み、凹凸、軽度の損傷等により、ヘッドが受光する計測ビーム(回折ビーム)の強度は照射点の位置によって異なり得る。そのため、本実施形態では、主制御装置20が、計測ビームの強度ではなく、計測ビームの強度の基準強度からのずれを用いることにより、基準強度を計測した基準状態からのスケール上面の状態の変化を診断することとしている。
また、スケール上面の状態が、時間とともに変化することも考えられる。そこで、主制御装置20は、基準強度の計測を、露光装置の起動時、アイドル中に限らず、例えば単位数のウエハに対する露光が終了する毎に、行うこととしても良い。ここで、単位数として、例えば、1あるいは25(1ロット)などを代表的に選択することができる。また、主制御装置20(又はオペレータ)は、収集した強度データを一定時間蓄積し、それを用いてスケール上面の状態の時間変化を診断することとしても良い。
また、ヘッドの計測ビームの強度は、必ずしもすべてのヘッドについて等しいとは限らない。そこで、主制御装置20は、強度データとして、計測ビームの強度の計測結果と基準強度の差に限らず、計測ビームの強度の計測結果と基準強度との比の変化を、採用しても良い。この場合、基準強度は、ヘッド毎に計測されているものとする。
上述のエンコーダヘッド64〜68を用いる場合と同様に、主制御装置20は、面位置計測システム180を構成するZヘッド72a〜72d,741〜745,761〜765を用いて、スケール上面の状態を診断することもできる。ただし、エンコーダヘッドとZヘッドとでは、計測原理が異なるため、主制御装置20は、基準強度を個別に計測し、強度データも個別に収集することが必要である。
主制御装置20は、上述の強度データの収集を、通常のシーケンスの処理を実行中(通常稼働中)、例えば図8(A)に示される露光、図8(B)に示されるアライメント計測、又は、図9に示されるフォーカスマッピング等の動作と並行して実行する。なお、図8(A)に示される露光中の状態では、主制御装置20は、Xヘッド66を用いてXスケール39Xを、Yヘッド65及びZヘッド76を用いてYスケール39Yを、Yヘッド64及びZヘッド74を用いてYスケール39Yを、診断するための強度データを収集している。また、図8(B)に示されるアライメント計測中の状態では、主制御装置20は、Xヘッド66を用いてXスケール39Xを、Yヘッド68を用いてYスケール39Yを、Yヘッド67を用いてYスケール39Yを、診断するための強度データを収集している。また、図9に示されるフォーカスマッピング中の状態では、主制御装置20は、Xヘッド66を用いてXスケール39Xを、Yヘッド68及びZヘッド72c,72dを用いてYスケール39Yを、Yヘッド67及びZヘッド72a,72bを用いてYスケール39Yを、診断するための強度データを収集している。また、主制御装置20は、露光、アライメント計測、及びフォーカスマッピングなどの各動作を実行しているか否かに関わらず、これらの動作の際にウエハステージWSTが移動する領域内にウエハステージWSTが位置する際に、強度データの収集を実行することとしても良い。
なお、上記の説明では、スケール上面の状態を診断するために、エンコーダヘッドとZヘッドとを併用するものとしているが、露光装置100の機能として、スケール上面の状態を診断するために、エンコーダヘッドとZヘッドとを併用するモード、あるいはいずれか一方のみを用いるモードとを用意し、これらのモードを、オペレータが選択できるようにしても良い。
本実施形態の露光装置100では、上述のスケール上面の状態の診断により、異常が検知されない限り、主制御装置20により、エンコーダシステム150及び面位置計測システム180の計測結果に従って、ウエハステージWSTの駆動制御が行われる。
ここで、主制御装置20によって実行されるウエハステージWSTを用いた通常のシーケンスの処理について説明する。
アンローディングポジションUP(図4参照)にウエハステージWSTがあるときに、ウエハWがアンロードされ、ローディングポジションLP(図4参照)に移動したときに、新たなウエハWがウエハテーブルWTB上にロードされる。アンローディングポジションUP、ローディングポジションLP近傍では、ウエハステージWSTの6自由度の位置は、干渉計システム118の計測値に基づいて制御されている。このとき、X干渉計128が用いられる。
ローディング終了後、ウエハステージWSTを移動して、計測プレート30の基準マークFMをプライマリアライメント系AL1で検出するプライメリアライメント系AL1のベースラインチェック前半の処理が行われる。これと前後して、エンコーダシステム及び干渉計システムの原点の再設定(リセット)が行われる。
その後、エンコーダシステム150及びZヘッド72a〜72dを用いてウエハステージWSTの6自由度方向の位置を計測しつつ、アライメント系AL1,AL21〜AL24を用いて、ウエハW上の複数のサンプルショット領域のアライメントマークを検出するアライメント計測が実行され、これと並行して多点AF系(90a、90b)を用いてフォーカスマッピング(Zヘッド72a〜72dの計測値を基準とする、ウエハWの面位置(Z位置)情報の計測)が行われる。そして、これらアライメント計測及びフォーカスマッピングのためのウエハステージWSTの+Y方向への移動中に、計測プレート30が投影光学系PLの直下に達したとき、空間像計測装置45A,45Bを用いてレチクルR上の一対のアライメントマークをスリットスキャン方式で計測する、プライマリアライメント系AL1のベースラインチェック後半の処理が行われる。
その後、アライメント計測及びフォーカスマッピングが続行される。
そして、アライメント計測及びフォーカスマッピングが終了すると、アライメント計測の結果求められるウエハ上の各ショット領域の位置情報と、最新のアライメント系のベースラインとに基づいて、ステップ・アンド・スキャン方式でウエハW上の複数のショット領域が露光され、レチクルのパターンが転写される。露光動作中、フォーカスマッピングにより得られた情報に基づいて、ウエハWのフォーカスレベリング制御が行われる。なお、露光中のウエハのZ、θyは、Zヘッド74,76の計測値に基づいて制御されるが、θxは、Y干渉計16の計測値に基づいて制御される。
なお、セカンダリアライメント系AL21〜AL24のベースライン計測は、適宜なタイミングで、国際公開第2007/097379号パンフレットに開示される方法と同様に、前述のエンコーダ70E2,70F2の計測値に基づいて、FDバー46(ウエハステージWST)のθz回転を調整した状態で、アライメント系AL1、AL21〜AL24を用いて、それぞれの視野内にあるFDバー46上の基準マークMを同時に計測することで行われる。
上述のようにして、ウエハステージWSTを用いた一連の処理が行われる。
以上詳細に説明したように、本実施形態の露光装置100によると、主制御装置20により、露光装置100の通常稼働中、エンコーダシステム150及び面位置計測システム180で計測されたウエハステージWSTの位置情報に従ってウエハステージWSTが駆動される。また、主制御装置20により、ウエハステージWSTの位置情報の計測と並行して、エンコーダシステム150及び面位置計測システム180を構成するヘッドを用いて計測された、そのヘッドの計測ビームのスケールからの戻り光の強度の基準強度からのずれ(計測ビームの強度データ)が、スケール上の計測ビームの照射点の位置に対して収集される。そして、主制御装置20により、収集された計測ビームの強度データを用いてスケール上面の状態が診断される。これにより、スループットを低下させることなく、スケール上面の異常に起因するエンコーダシステム150(エンコーダヘッド)及び面位置計測システム180(Zヘッド)の計測誤差、さらに動作異常の発生を効果的に抑制することが可能となる。
なお、上記実施形態で説明したエンコーダシステムなどの各計測装置の構成は一例に過ぎず、本発明がこれに限定されないことは勿論である。例えば、上記実施形態では、ウエハテーブル(ウエハステージ)上に格子部(Yスケール、Xスケール)を設け、これに対向してXヘッド、Yヘッドをウエハステージの外部に配置する構成のエンコーダシステムを採用した場合について例示したが、これに限らず、例えば米国特許出願公開第2006/0227309号明細書などに開示されているように、ウエハステージにエンコーダヘッドを設け、これに対向してウエハステージの外部に格子部(例えば2次元格子又は2次元に配置された1次元の格子部)を配置する構成のエンコーダシステムを採用しても良い。この場合において、Zヘッドもウエハステージに設け、その格子部の面を、面位置計測システムZヘッドの計測ビームが照射される反射面としても良い。このような構成のエンコーダシステム及び面位置計測システムに対しても上記実施形態で説明した診断方法を好適に適用することができる。
また、上記実施形態では、例えばヘッドユニット62A,62Cの内部にエンコーダヘッドとZヘッドとが、別々に設けられている場合について説明したが、エンコーダヘッドとZヘッドとの機能を備えた単一のヘッドを、エンコーダヘッドとZヘッドの組に代えて用いても良い。
また、上述の実施形態では、本発明が、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置に適用された場合について説明したが、これに限らず、例えば国際公開第99/49504号パンフレット、欧州特許出願公開第1420298号明細書、国際公開第2004/055803号パンフレット、特開2004−289126号公報(対応米国特許第6,952,253号明細書)などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも本発明を適用することができる。また、例えば国際公開第2007/097379号パンフレット(対応米国特許出願公開第2008/08843号明細書)に開示される、液浸露光装置などにも、本発明を適用することができる。この国際公開第2007/097379号パンフレット(対応米国特許出願公開第2008/08843号明細書)に開示される液浸露光装置では、ウエハステージに設けられたグレーティング(スケール)に計測ビームを照射し、その反射光を受光することによって、グレーティングの周期方向に関するヘッドとスケールとの間の相対位置を計測するエンコーダシステムが採用されている。かかる露光装置では、回収されずにスケール上に残った液浸液(液体)が、異物として、計測システムを構成するヘッドの計測ビームを遮ることが頻繁に起こり得るので、上記実施形態の方法は有用である。
また、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、これに限らず、ステッパなどの静止型露光装置に本発明を適用しても良い。ステッパなどであっても、露光対象の物体が搭載されたステージの位置を上記実施形態と同様に、エンコーダを用いて計測することができるので、同様の効果を得ることができる。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも本発明は適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも本発明を適用できる。また、例えば国際公開第2005/074014号パンフレットなどに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも本発明は適用が可能である。
また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、近年、70nm以下のパターンを露光するために、SORやプラズマレーザを光源として、軟X線領域(例えば5〜15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させるとともに、その露光波長(例えば13.5nm)の下で設計されたオール反射縮小光学系、及び反射型マスクを用いたEUV露光装置の開発が行われている。この装置においては、円弧照明を用いてマスクとウエハを同期走査してスキャン露光する構成が考えられるので、かかる装置にも本発明を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、本発明は適用できる。
また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
また、例えば干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用することができる。
さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも本発明を適用することができる。
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
本発明の露光方法及び露光装置は、物体上にパターンを形成するのに適している。また、本発明のデバイス製造方法は、半導体素子又は液晶表示素子などの電子デバイスを製造するのに適している。
一実施形態に係る露光装置の構成を概略的に示す図である。 ウエハステージを示す平面図である。 図1の露光装置が備えるステージ装置及び干渉計の配置を示す平面図である。 図1の露光装置が備えるステージ装置及びセンサユニットの配置を示す平面図である。 エンコーダヘッド(Xヘッド、Yヘッド)とアライメント系の配置を示す平面図である。 Zヘッドと多点AF系の配置を示す平面図である。 一実施形態に係る露光装置の制御系の主要な構成を示すブロック図である。 図8(A)は露光工程中におけるエンコーダを用いたウエハステージの位置計測と強度データの収集、図8(B)はアライメント計測中におけるエンコーダを用いたウエハステージの位置計測と強度データの収集、を説明するための図である。 フォーカスマッピング及びフォーカスキャリブレーション中におけるZヘッドを用いたウエハステージの位置計測と強度データの収集を説明するための図である。
符号の説明
20…主制御装置、39X1,39X2…Xスケール、39Y1,39Y2…Yスケール、50…ステージ装置、62A〜62F…ヘッドユニット、64,65…Yヘッド、66…Xヘッド、67,68…Yヘッド、70A,70C…Yエンコーダ、70B,70D…Xエンコーダ、72a〜72d,74,76…Zヘッド、100…露光装置、124…ステージ駆動系、150…エンコーダシステム、180…面位置計測システム、200…計測システム、W…ウエハ、WST…ウエハステージ、WTB…ウエハテーブル。

Claims (33)

  1. 物体上にパターンを形成する露光方法であって、
    前記物体を保持して所定平面内を移動する移動体と該移動体の外部との一方に設けられた少なくとも1つのヘッドを用いて、前記移動体と該移動体の外部との他方に設けられた計測面に計測光を照射し、前記計測面からの光を受光して、該光の強度と前記移動体の位置情報とを計測し、該位置情報に従って前記移動体を駆動する工程と;
    前記駆動する工程において計測された前記光の強度と該強度に対応する基準強度との関係を、前記計測面上の前記計測光の照射点の位置に対して収集する工程と;を含む露光方法。
  2. 前記収集する工程において収集された前記関係を用いて、前記計測面の状態を診断する工程をさらに含む請求項1に記載の露光方法。
  3. 前記診断する工程では、前記収集する工程において収集された前記関係のうち、収集されてから一定時間内の前記関係のみを用いる請求項2に記載の露光方法。
  4. 前記関係は、前記光の強度の該強度に対応する基準強度からのずれである請求項1〜3のいずれか一項に記載の露光方法。
  5. 前記関係は、前記光の強度と該強度に対応する基準強度との比である請求項1〜3のいずれか一項に記載の露光方法。
  6. 前記収集する工程に先立って、前記基準強度を計測する工程をさらに含む請求項1〜5のいずれか一項に記載の露光方法。
  7. 前記基準強度は、前記計測面上の前記計測光の照射点の位置に対して計測される前記光の強度である請求項6に記載の露光方法。
  8. 前記計測する工程では、前記基準強度を、前記計測面の全面について計測する請求項7に記載の露光方法。
  9. 前記計測する工程を、所定数の前記物体にパターンを形成する毎に実行する請求項6〜8のいずれか一項に記載の露光方法。
  10. 前記計測する工程を、前記計測面の状態の回復を確認した後に実行する請求項6〜9のいずれか一項に記載の露光方法。
  11. 前記駆動する工程では、前記移動体の位置情報を計測するに際し、前記ヘッドを複数用い、
    前記計測する工程では、前記基準強度を、前記複数のヘッドのすべてについて使用する共通の情報として作成する請求項6〜10のいずれか一項に記載の露光方法。
  12. 前記駆動する工程では、前記移動体の位置情報を計測するに際し、前記ヘッドを複数用い、
    前記計測する工程では、前記基準強度を、前記複数のヘッドのそれぞれについて使用する個別の情報として作成する請求項6〜10のいずれか一項に記載の露光方法。
  13. 前記移動体に保持される前記物体上にパターンを形成する工程をさらに含む請求項1〜12のいずれか一項に記載の露光方法。
  14. 前記収集する工程を、前記形成する工程と並行して実行する請求項13に記載の露光方法。
  15. 前記収集する工程を、前記形成する工程中に前記移動体が移動する領域内に前記移動体が位置する際に実行する請求項13又は14に記載の露光方法。
  16. 前記物体上に形成されたマークを検出する工程をさらに含む請求項1〜15のいずれか一項に記載の露光方法。
  17. 前記収集する工程を、前記検出する工程と並行して実行する請求項16に記載の露光方法。
  18. 前記収集する工程を、前記検出する工程中に前記移動体が移動する領域内に前記移動体が位置する際に実行する請求項16又は17に記載の露光方法。
  19. 前記物体が有する感応層にエネルギビームを照射して前記パターンを形成する請求項1〜18のいずれか一項に記載の露光方法。
  20. 前記エネルギビームを、光学系と、該光学系と前記物体の間に供給される液体と、を介して照射する請求項19に記載の露光方法。
  21. 請求項1〜20のいずれか一項に記載の露光方法を用いて、物体上にパターンを形成する工程と;
    前記パターンが形成された前記物体に処理を施す工程と;を含むデバイス製造方法。
  22. 物体上にパターンを形成する露光装置であって、
    前記物体を保持して所定平面内を移動する移動体と;
    前記移動体と該移動体の外部との一方に設けられ、前記移動体と該移動体の外部との他方に設けられた計測面に計測光を照射し、前記計測面からの光を受光する少なくとも1つのヘッドを有し、該ヘッドを用いて前記計測面からの光の強度と前記移動体の位置情報とを計測する位置計測系と;
    前記位置情報に従って前記移動体を駆動するとともに、前記光の強度と該強度に対応する基準強度との関係を前記計測面上の前記計測光の照射点の位置に対して収集する制御装置と;
    前記物体上にパターンを形成するパターン生成装置と;
    前記物体上に形成されたマークを検出するマーク検出装置と;を備える露光装置。
  23. 前記制御装置は、収集した前記関係を用いて、前記計測面の状態を診断する請求項22に記載の露光装置。
  24. 前記制御装置は、前記関係を収集するに先立って、前記基準強度を計測する請求項22又は23に記載の露光装置。
  25. 前記制御装置は、前記パターン生成装置を用いて前記移動体に保持される前記物体上にパターンを形成する際に、前記関係を収集する請求項22〜24のいずれか一項に記載の露光装置。
  26. 前記制御装置は、前記パターン生成装置を用いて前記移動体に保持される前記物体上にパターンを形成する際に前記移動体が移動する領域内に前記移動体が位置する際に、前記関係を収集する請求項22〜25のいずれか一項に記載の露光装置。
  27. 前記制御装置は、前記マーク検出装置を用いて前記物体上に形成されたマークを検出する際に、前記関係を収集する請求項22〜26のいずれか一項に記載の露光装置。
  28. 前記制御装置は、前記マーク検出装置を用いて前記物体上に形成されたマークを検出する際に前記移動体が移動する領域内に前記移動体が位置する際に、前記関係を収集する請求項22〜27のいずれか一項に記載の露光装置。
  29. 前記計測面は、前記所定平面内の少なくとも一軸方向を周期方向とするグレーティングを有し、
    前記ヘッドは、前記周期方向を計測方向とする請求項22〜28のいずれか一項に記載の露光装置。
  30. 前記計測面は、前記所定平面内で互いに直交する第1及び第2方向をそれぞれ周期方向とする第1及び第2グレーティングを有し、
    前記位置計測系は、前記第1及び第2グレーティングの一方に計測光を照射するヘッドを少なくとも各1つ含む複数のヘッドを用いる請求項22〜28のいずれか一項に記載の露光装置。
  31. 前記ヘッドは、前記所定平面に垂直な方向を計測方向とする請求項22〜28のいずれか一項に記載の露光装置。
  32. 前記パターン生成装置は、前記物体が有する感応層にエネルギビームを照射することによって、パターンを形成する請求項22〜31のいずれか一項に記載の露光装置。
  33. 請求項22〜32のいずれか一項に記載の露光装置を用いて、物体上にパターンを形成することと;
    前記パターンが形成された前記物体に処理を施すことと;を含むデバイス製造方法。
JP2008213433A 2008-08-22 2008-08-22 露光方法及び露光装置、並びにデバイス製造方法 Pending JP2010050291A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213433A JP2010050291A (ja) 2008-08-22 2008-08-22 露光方法及び露光装置、並びにデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213433A JP2010050291A (ja) 2008-08-22 2008-08-22 露光方法及び露光装置、並びにデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2010050291A true JP2010050291A (ja) 2010-03-04

Family

ID=42067140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213433A Pending JP2010050291A (ja) 2008-08-22 2008-08-22 露光方法及び露光装置、並びにデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2010050291A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080957A1 (ja) * 2012-11-20 2014-05-30 株式会社ニコン 露光装置、移動体装置、及びデバイス製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080957A1 (ja) * 2012-11-20 2014-05-30 株式会社ニコン 露光装置、移動体装置、及びデバイス製造方法
CN104937696A (zh) * 2012-11-20 2015-09-23 株式会社尼康 曝光装置、移动体装置以及器件制造方法
JPWO2014080957A1 (ja) * 2012-11-20 2017-01-05 株式会社ニコン 露光装置、移動体装置、及びデバイス製造方法

Similar Documents

Publication Publication Date Title
JP5679130B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
US8098362B2 (en) Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
JP5686303B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2009117842A (ja) 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP2009124140A (ja) 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP2009117837A (ja) 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP2009117838A (ja) 移動体装置、パターン形成装置及び露光装置、並びにデバイス製造方法
JP5169492B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2009252988A (ja) 露光装置及びデバイス製造方法、並びに露光装置のメンテナンス方法
JP5151852B2 (ja) 補正情報作成方法、露光方法及び露光装置、並びにデバイス製造方法
JP5057235B2 (ja) 較正方法、露光方法及びデバイス製造方法、並びに露光装置
JP5126594B2 (ja) 較正方法、露光方法及びデバイス製造方法、並びに露光装置
JP5234308B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2013045815A (ja) 露光方法及びデバイス製造方法
JP2009252994A (ja) 露光方法及びデバイス製造方法、並びに露光装置
JP5211690B2 (ja) 較正方法、移動体駆動方法及び装置、露光方法及び装置、パターン形成方法及び装置、並びにデバイス製造方法
JP2010050291A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2010067873A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2012089769A (ja) 露光装置及びデバイス製造方法
JP2010050292A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP5565613B2 (ja) 計測方法、露光方法及び露光装置、並びにデバイス製造方法
JP2009252992A (ja) 移動体駆動方法、露光方法及びデバイス製造方法、並びに露光装置
JP2014143229A (ja) 計測方法及び計測システム、露光方法及び露光装置、並びにデバイス製造方法
JP2009252993A (ja) 較正方法、移動体駆動方法及び装置、露光方法及び装置、パターン形成方法及び装置、並びにデバイス製造方法
JP2010050290A (ja) 露光方法及び露光装置、並びにデバイス製造方法