JP2010047450A - Hexagonal boron nitride and manufacturing method thereof - Google Patents

Hexagonal boron nitride and manufacturing method thereof Download PDF

Info

Publication number
JP2010047450A
JP2010047450A JP2008214011A JP2008214011A JP2010047450A JP 2010047450 A JP2010047450 A JP 2010047450A JP 2008214011 A JP2008214011 A JP 2008214011A JP 2008214011 A JP2008214011 A JP 2008214011A JP 2010047450 A JP2010047450 A JP 2010047450A
Authority
JP
Japan
Prior art keywords
boron nitride
resin
hexagonal boron
nitride powder
borate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008214011A
Other languages
Japanese (ja)
Other versions
JP5038257B2 (en
Inventor
Hidesuke Yoshihara
秀輔 吉原
Kazuaki Matsumoto
一昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008214011A priority Critical patent/JP5038257B2/en
Publication of JP2010047450A publication Critical patent/JP2010047450A/en
Application granted granted Critical
Publication of JP5038257B2 publication Critical patent/JP5038257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron nitride powder composition which can easily be blended in a resin since having a high tap density, hardly deteriorates the resin even if blended in the resin, and can provide a resin composition having an anisotropy in thermal conduction. <P>SOLUTION: The hexagonal boron nitride powder composition has a tap density of ≥0.4 g/cm<SP>3</SP>, a mass fraction of dissolving magnesium into a sulfuric aqueous solution of 0.1 to 60 mg/g with respect to the hexagonal boron nitride, dissolving calcium thereof of ≤60 mg/g, and dissolving boron thereof of ≥0.1 mg/g. Use of a metal borate, which hardly makes a hydrate of magnesium borate or the like and volatilizes at a lower temperature than the baking temperature, at manufacture of boron nitride causes magnesium borate remaining in a minute amount to improve the tap density of the boron nitride powder composition, and hardly causes the deterioration of a resin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微量金属を含有する六方晶窒化ホウ素粉末及びその製造方法ならびに該窒化ホウ素粉末を樹脂に含有させてなる組成物に関する。   The present invention relates to a hexagonal boron nitride powder containing a trace metal, a method for producing the same, and a composition containing the boron nitride powder in a resin.

六方晶窒化ホウ素粉末は、黒鉛類似の層状構造を有し、熱伝導性、絶縁性、化学的安定性、固体潤滑性、耐熱衝撃性などの特性に優れたものであることから、固体潤滑・離型剤、樹脂、ゴム、グリース等の充填材、耐熱性・絶縁性焼結体製造用原料などに応用されている。六方晶窒化ホウ素粉末の工業的な製造方法としては、ホウ酸、酸化ホウ素、ホウ砂、等のホウ素含有化合物と、メラミン、尿素、シジアンジアミド、アンモニア、窒素、等の窒素含有化合物とを加熱雰囲気下に反応させる方法で製造されている。   Hexagonal boron nitride powder has a layered structure similar to graphite and has excellent properties such as thermal conductivity, insulation, chemical stability, solid lubricity, and thermal shock resistance. It is applied to release agents, fillers such as resin, rubber and grease, and raw materials for producing heat-resistant and insulating sintered bodies. As an industrial manufacturing method of hexagonal boron nitride powder, boron-containing compounds such as boric acid, boron oxide, and borax, and nitrogen-containing compounds such as melamine, urea, sididianamide, ammonia, and nitrogen are heated. Manufactured by reacting in an atmosphere.

これら製造方法の中でも、特許文献1にはアルカリ金属のまたはアルカリ土類金属のホウ酸塩と含窒素化合物の粉末とを、650〜1100℃の温度に加熱したのち洗浄して窒化ホウ素を製造する方法が記載されている。   Among these production methods, Patent Document 1 discloses that boron nitride is produced by heating an alkali metal or alkaline earth metal borate and a nitrogen-containing compound powder to a temperature of 650 to 1100 ° C. and then washing. A method is described.

特許文献2にはホウ酸マグネシウム及び/又はホウ酸カルシウムで構成されている粒子と、非晶質窒化ホウ素粒子及び/又は六方晶窒化ホウ素粒子を、ホウ酸塩粒子の含有割合が25〜75%となるように混合し、非酸化性雰囲気下、温度1700〜2200℃で焼成することを特徴とする窒化ホウ素被覆球状ホウ酸塩粒子の製造方法が記載されている。
特開平5−170407 特開2001−122615
Patent Document 2 discloses that particles composed of magnesium borate and / or calcium borate and amorphous boron nitride particles and / or hexagonal boron nitride particles have a borate particle content of 25 to 75%. And a method for producing boron nitride-coated spherical borate particles, characterized in that the mixture is fired at a temperature of 1700 to 2200 ° C. in a non-oxidizing atmosphere.
JP-A-5-170407 JP2001-122615A

特許文献1の方法で窒化ホウ素を製造する場合は使用したアルカリ金属のまたはアルカリ土類金属のホウ酸塩が残存するため、純度が高い窒化ホウ素を得るには洗浄する必要があった。例えばナトリウムやカルシウムのホウ酸塩を使用して窒化ホウ素を製造する場合、洗浄せずに樹脂に配合すると残存するホウ酸塩が水和物をつくるため樹脂の劣化を引き起こす課題があった。   In the case of producing boron nitride by the method of Patent Document 1, since the alkali metal or alkaline earth metal borate used remains, it was necessary to wash to obtain boron nitride having a high purity. For example, when boron nitride is produced using sodium or calcium borates, there is a problem in that if the resin is blended into the resin without washing, the remaining borate forms a hydrate, causing deterioration of the resin.

特許文献2の方法で窒化ホウ素を製造する場合は窒化ホウ素被覆球状ホウ酸塩粒子となり窒化ホウ素の特徴である熱伝導率の異方性がなくなる。そのため熱伝導率の異方性が求められる用途で使用できなかった。   When boron nitride is produced by the method of Patent Document 2, boron nitride-coated spherical borate particles are formed, and the thermal conductivity anisotropy, which is characteristic of boron nitride, is eliminated. Therefore, it could not be used in applications where thermal conductivity anisotropy is required.

本発明は、上記に鑑みてなされたものであり、その目的は、樹脂への配合が容易で、配合したときに樹脂の劣化が少なく、熱伝導率の異方性を発現し、また低いコストで製造可能な、微量金属を含有する六方晶窒化ホウ素粉末、及びそれらの製造方法を提供することである。   The present invention has been made in view of the above, and its purpose is that it can be easily blended into a resin, has little deterioration of the resin when blended, exhibits anisotropy in thermal conductivity, and has a low cost. It is possible to provide hexagonal boron nitride powder containing a trace amount metal and a method for producing them.

上記課題を解決するために、本発明者らは鋭意検討した結果、ホウ酸マグネシウムなどの水和物をつくりにくく、焼成温度よりも低温で揮発する金属ホウ酸塩を窒化ホウ素製造時に使用することにより、微量に残存したホウ酸マグネシウムが窒化ホウ素粉末組成物のタップ密度を向上させ、また樹脂に配合しても樹脂の劣化を起こさないことを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have intensively studied. As a result, it is difficult to produce a hydrate such as magnesium borate, and a metal borate that volatilizes at a temperature lower than the firing temperature is used during boron nitride production. As a result, it was found that the magnesium borate remaining in a trace amount improves the tap density of the boron nitride powder composition and does not cause deterioration of the resin even when blended with the resin, thereby completing the present invention.

即ち本発明の第一は、1)タップ密度が0.4g/cm3以上であり、10重量%硝酸水溶液中25℃で3時間撹拌後の溶出マグネシウムが六方晶窒化ホウ素に対する質量分率値として0.1〜60mg/g、溶出カルシウムが60mg/g以下、溶出ホウ素が0.1mg/g以上であることを特徴とする六方晶窒化ホウ素粉末組成物に関する。 That is, the first of the present invention is 1) The tap density is 0.4 g / cm 3 or more, and the eluted magnesium after stirring at 25 ° C. for 3 hours in a 10 wt% nitric acid aqueous solution is a mass fraction value with respect to hexagonal boron nitride. The present invention relates to a hexagonal boron nitride powder composition, wherein 0.1 to 60 mg / g, eluted calcium is 60 mg / g or less, and eluted boron is 0.1 mg / g or more.

本発明の第二は2)リチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素が0.1mg/g以上溶出する1)に記載の六方晶窒化ホウ素粉末組成物に関する。   The second aspect of the present invention is the hexagonal boron nitride powder according to 1) wherein at least one element selected from the group consisting of lithium element, silicon element, aluminum element, and zinc element elutes 0.1 mg / g or more. Relates to the composition.

本発明の第三は3)(A)窒化ホウ素100重量部、(B)ホウ酸マグネシウム0.1〜30重量部、(C)ホウ酸カルシウム0〜20重量部を含有する混合物を加熱して窒化ホウ素を結晶化し、残留触媒を洗浄除去することなく得られる、1)又は2)に記載の六方晶窒化ホウ素粉末組成物の製造方法に関する。   The third of the present invention is to heat a mixture containing 3) (A) 100 parts by weight of boron nitride, (B) 0.1 to 30 parts by weight of magnesium borate, and (C) 0 to 20 parts by weight of calcium borate. The present invention relates to a method for producing a hexagonal boron nitride powder composition according to 1) or 2), which is obtained without crystallizing boron nitride and washing and removing residual catalyst.

本発明の第四は4)前記混合物がさらに、(A)窒化ホウ素100重量部あたり、(D)リチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素のホウ酸塩を0.1〜20重量部含有することを特徴とする、3)に記載の六方晶窒化ホウ素粉末組成物の製造方法に関する。   According to a fourth aspect of the present invention, 4) the mixture further comprises (A) at least one element selected from the group consisting of a lithium element, a silicon element, an aluminum element, and a zinc element per 100 parts by weight of boron nitride. The present invention relates to a method for producing a hexagonal boron nitride powder composition as described in 3), comprising 0.1 to 20 parts by weight of borate.

本発明の第五は5)窒化ホウ素の結晶化時に、前記(B)成分および/または(D)成分を揮発させる3)または4)に記載の製造方法に関する。   A fifth aspect of the present invention relates to 5) the production method according to 3) or 4), wherein the component (B) and / or the component (D) is volatilized during crystallization of boron nitride.

本発明の第六は6)1)又は2)に記載の六方晶窒化ホウ素粉末組成物と樹脂を含有する樹脂組成物に関する。   A sixth aspect of the present invention relates to a resin composition comprising 6) the hexagonal boron nitride powder composition described in 1) or 2) and a resin.

本発明の第七は7)前記樹脂がポリエステル系樹脂、ポリアミド系樹脂、ポリアリーレンスルフィド系樹脂、ポリカーボネート系樹脂、アクリル系樹脂から選ばれる少なくとも1種の樹脂である6)に記載の樹脂組成物に関する。   The seventh of the present invention is 7) The resin composition according to 6), wherein the resin is at least one resin selected from polyester resins, polyamide resins, polyarylene sulfide resins, polycarbonate resins, and acrylic resins. About.

本発明の六方晶窒化ホウ素粉末組成物はタップ密度が高いため樹脂への配合が容易であり、樹脂に配合しても樹脂をほとんど劣化させることなく高熱伝導性樹脂組成物を得ることができる。かつ本発明の六方晶窒化ホウ素粉末組成物は結晶化触媒を酸洗浄除去する工程が省けるため、低コストで製造可能となる。   Since the hexagonal boron nitride powder composition of the present invention has a high tap density, it can be easily blended into a resin, and even when blended in a resin, a highly thermally conductive resin composition can be obtained with almost no deterioration of the resin. In addition, the hexagonal boron nitride powder composition of the present invention can be manufactured at a low cost because the step of removing the crystallization catalyst by acid washing can be omitted.

本発明の六方晶窒化ホウ素粉末組成物は窒化ホウ素粉末の製造時に使用する結晶化触媒を含有している。一般的な結晶化触媒としてはホウ酸カルシウムなどの金属ホウ酸塩が知られているが、本発明においてはホウ酸マグネシウムを使用することを特徴とする。ホウ酸カルシウムは水和物をつくりやすいため、樹脂に配合した際に樹脂の加水分解等の劣化を引き起こすのに対し、ホウ酸マグネシウムは水和物をつくりにくいために樹脂の劣化を引き起こさない。   The hexagonal boron nitride powder composition of the present invention contains a crystallization catalyst used in the production of boron nitride powder. As a general crystallization catalyst, metal borate such as calcium borate is known. In the present invention, magnesium borate is used. Calcium borate tends to form hydrates and causes degradation such as hydrolysis of the resin when blended in the resin, whereas magnesium borate does not cause degradation of the resin because it is difficult to form hydrates.

本発明の窒化ホウ素粉末組成物のタップ密度は、パウダーテスターPT−E型(ホソカワミクロン社)測定器を用い、窒化ホウ素粉末組成物を密度測定用100cm3容器に入れ、タッピングリフト18mmにて180秒で180回タッピングさせ、衝撃で固めた後、容器上部の余分なBN粉をブレードで擦りきり、次式により求めたものである。
タップ密度(g/cm3)={(BN粉末重量+容器風袋)−容器風袋}/100
The tap density of the boron nitride powder composition of the present invention, a powder tester PT-E type used (Hosokawa Micron) instrument, placed boron nitride powder composition 100 cm 3 vessel density measurements, 180 seconds at tapping lift 18mm After tapping 180 times and solidifying by impact, excess BN powder at the top of the container was scraped off with a blade and determined by the following formula.
Tap density (g / cm 3 ) = {(BN powder weight + container tare) −container tare} / 100

本発明の六方晶窒化ホウ素粉末組成物は、大部分は粒径5〜30μmの鱗片状となるが、微量に残存したホウ酸マグネシウムを接着剤にして一部30〜50μm程度の非球状の凝集体をつくるためタップ密度が高くなる。樹脂への配合を容易にするためには窒化ホウ素粉末組成物のタップ密度が0.4g/cm3以上であることが好ましく、さらには0.5g/cm3以上であることが好ましい。ここで六方晶窒化ホウ素粉末組成物中の金属ホウ酸塩の定量は、六方晶窒化ホウ素粉末組成物を10重量%の硝酸水溶液にて25℃で3時間撹拌して洗浄し、その洗浄液中の溶出マグネシウム、カルシウムおよびホウ素量をICP−MSにて測定した。タップ密度を高めるためには、溶出マグネシウムが六方晶窒化ホウ素に対する質量分率値として0.1mg/g以上であり、かつ溶出ホウ素が0.1mg/g以上であることが必須である。窒化ホウ素の比率を高め、充分な熱伝導率と熱伝導率の異方性を確保するためには溶出マグネシウムが60mg/g以下であることが好ましく、さらには40mg/g以下であることが好ましい。加水分解性の樹脂劣化を防ぐためには溶出カルシウムが60mg/g以下であることが必須であり、40mg/g以下であることが好ましい。 The hexagonal boron nitride powder composition of the present invention is mostly in the form of scaly particles having a particle size of 5 to 30 μm, but a non-spherical aggregate of about 30 to 50 μm in part with a small amount of remaining magnesium borate as an adhesive. Tap density is increased to create a collection. In order to facilitate blending with the resin, the tap density of the boron nitride powder composition is preferably 0.4 g / cm 3 or more, and more preferably 0.5 g / cm 3 or more. Here, the determination of the metal borate in the hexagonal boron nitride powder composition was carried out by washing the hexagonal boron nitride powder composition with stirring at 25 ° C. for 3 hours in a 10 wt% nitric acid aqueous solution, The amount of eluted magnesium, calcium and boron was measured by ICP-MS. In order to increase the tap density, it is essential that the eluted magnesium is 0.1 mg / g or more as a mass fraction value with respect to hexagonal boron nitride and the eluted boron is 0.1 mg / g or more. In order to increase the ratio of boron nitride and ensure sufficient thermal conductivity and thermal conductivity anisotropy, the eluted magnesium is preferably 60 mg / g or less, more preferably 40 mg / g or less. . In order to prevent degradation of the hydrolyzable resin, it is essential that the eluted calcium is 60 mg / g or less, preferably 40 mg / g or less.

本発明の効果を損なわない範囲でリチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素が0.1mg/g以上含まれていてもよい。窒化ホウ素の比率を高め、充分な熱伝導率と熱伝導率の異方性を確保するためにはリチウム元素、珪素元素、アルミニウム元素、および亜鉛元素の含有量は合計で60mg/g以下とすることが好ましい。   As long as the effects of the present invention are not impaired, at least one element selected from the group consisting of lithium element, silicon element, aluminum element, and zinc element may be contained in an amount of 0.1 mg / g or more. In order to increase the ratio of boron nitride and ensure sufficient thermal conductivity and anisotropy of thermal conductivity, the total content of lithium element, silicon element, aluminum element, and zinc element should be 60 mg / g or less. It is preferable.

六方晶窒化ホウ素粉末組成物中に含まれるマグネシウム、カルシウム、リチウム、珪素、アルミニウム、亜鉛などの金属の合計は、60mg/g以下とすることが好ましく、50mg/g以下がより好ましい。含有量が多すぎると、窒化ホウ素が球形に凝集し、熱伝導の異方性が損なわれることがある。下限は0.1mg/g以上であり、少なすぎると、タップ密度が低くなることがある。   The total of metals such as magnesium, calcium, lithium, silicon, aluminum, and zinc contained in the hexagonal boron nitride powder composition is preferably 60 mg / g or less, and more preferably 50 mg / g or less. If the content is too large, boron nitride aggregates into a spherical shape, and the anisotropy of heat conduction may be impaired. The lower limit is 0.1 mg / g or more, and if it is too small, the tap density may be lowered.

本発明の六方晶窒化ホウ素粉末組成物は、(A)窒化ホウ素100重量部、(B)ホウ酸マグネシウム0.1〜30重量部、(C)ホウ酸カルシウム0〜20重量部を含有する混合物を加熱して窒化ホウ素を結晶化し、残留触媒を洗浄除去しない製造方法により得ることができる。(B)ホウ酸マグネシウムと(C)ホウ酸カルシウムは、(A)窒化ホウ素の結晶化を促進する結晶化触媒として作用する。該結晶化触媒としてはホウ酸マグネシウム以外にさらに(D)リチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素のホウ酸塩を合計で0.1〜20重量部使用しても良い。   The hexagonal boron nitride powder composition of the present invention comprises (A) 100 parts by weight of boron nitride, (B) 0.1 to 30 parts by weight of magnesium borate, and (C) 0 to 20 parts by weight of calcium borate. Is heated to crystallize boron nitride, and the residual catalyst can be obtained by a manufacturing method that does not wash away. (B) Magnesium borate and (C) Calcium borate act as a crystallization catalyst that promotes crystallization of (A) boron nitride. As the crystallization catalyst, in addition to magnesium borate, (D) a borate of at least one element selected from the group consisting of a lithium element, a silicon element, an aluminum element, and a zinc element is added in a total amount of 0.1-20. Part by weight may be used.

窒化ホウ素とホウ酸マグネシウム、ホウ酸カルシウム等の金属ホウ酸塩との混合物の作成方法としては、予め製造した金属ホウ酸塩を窒化ホウ素に所定量添加してもよいし、ホウ素化合物および金属化合物を窒化ホウ素に添加した後、加熱し系中で反応させて所定量の金属ホウ酸塩を生じさせてもよい。本発明で使用されるホウ素化合物は、オルトホウ酸(H3BO3)、メタホウ酸(HBO2)、テトラホウ酸(H247)、無水ホウ酸(B23)など、一般式(B23)・(H2O)X〔但し、X=0〜3〕で示される化合物の一種又は二種以上であるが、なかでも金属のホウ酸塩を形成するのに容易な無水ホウ酸が本発明には好適である。マグネシウム化合物は、固体のホウ酸マグネシウムでもよいが、無水ホウ酸と反応してホウ酸マグネシウムを生成し得る化合物、特に安価で入手が容易な炭酸マグネシウム(MgCO3)または水酸化マグネシウム(Mg(OH)2)が好ましい。カルシウム化合物は、固体のホウ酸カルシウムでもよいが、ホウ酸と反応してホウ酸カルシウムを生成し得る化合物、特に安価で入手が容易な炭酸カルシウム(CaCO3)が好ましい。 As a method for preparing a mixture of boron nitride and a metal borate such as magnesium borate or calcium borate, a predetermined amount of a metal borate prepared in advance may be added to boron nitride, or a boron compound and a metal compound May be added to boron nitride and heated to react in the system to produce a predetermined amount of metal borate. The boron compound used in the present invention has a general formula such as orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), tetraboric acid (H 2 B 4 O 7 ), and boric anhydride (B 2 O 3 ). (B 2 O 3 ) · (H 2 O) X [where X = 0 to 3] is one or two or more compounds, but it is easy to form a metal borate. Boric anhydride is suitable for the present invention. The magnesium compound may be solid magnesium borate, but is a compound that can react with anhydrous boric acid to form magnesium borate, particularly magnesium carbonate (MgCO 3 ) or magnesium hydroxide (Mg (OH 2 ) is preferred. The calcium compound may be solid calcium borate, but is preferably a compound that can react with boric acid to produce calcium borate, particularly calcium carbonate (CaCO 3 ) that is inexpensive and easily available.

出発原料の混合は、ボールミル、リボンブレンダー、ヘンシェルミキサーのような適当な装置で乾燥状態で互いに混合又はブレンドすることができる。   The starting materials can be mixed or blended together in a dry state in a suitable apparatus such as a ball mill, ribbon blender, Henschel mixer.

混合/ブレンド工程後の乾燥は150〜250℃の温度で任意に実施される。乾燥操作は、空気中で実施してもよいし、或いは窒素又はアンモニア雰囲気中で実施してもよい。乾燥時間は、乾燥温度に依存するとともに、乾燥工程を静的雰囲気中で実施するか或いは循環空気又はガス気流中で実施するかに依存する。   Drying after the mixing / blending step is optionally performed at a temperature of 150-250 ° C. The drying operation may be performed in air or in a nitrogen or ammonia atmosphere. The drying time depends on the drying temperature and on whether the drying process is carried out in a static atmosphere or in a circulating air or gas stream.

高結晶化は、非酸化性ガス雰囲気下、温度1800〜2200℃で行われる。1800℃未満では六方晶窒化ホウ素の結晶化が充分に進行せず、高結晶性、高配向性の粉末を得ることができない。また、2200℃を超えると六方晶窒化ホウ素が分解する。さらに純度の高い窒化ホウ素を得るためには窒化ホウ素を高結晶化する工程にて、結晶化触媒として用いた金属ホウ酸塩の沸点以上かつ窒化ホウ素の分解温度以下の温度で加熱して結晶化触媒を揮発させることが好ましい。とくに、ホウ酸マグネシウムの沸点以上の温度で加熱してホウ酸マグネシウムを揮発させることが好ましい。ホウ酸マグネシウムを揮発させるときの温度は1950℃以上が好ましい。結晶化触媒としてホウ酸マグネシウム以外の金属ホウ酸塩を併用する場合は、沸点が2200℃未満のものを選ぶことが好ましい。ホウ酸カルシウムは、沸点が窒化ホウ素の分解温度より高く、揮発させることが困難である。   High crystallization is performed at a temperature of 1800 to 2200 ° C. in a non-oxidizing gas atmosphere. If it is less than 1800 ° C., crystallization of hexagonal boron nitride does not proceed sufficiently, and powder with high crystallinity and high orientation cannot be obtained. Moreover, when it exceeds 2200 degreeC, a hexagonal boron nitride will decompose | disassemble. In order to obtain boron nitride with higher purity, in the process of highly crystallizing boron nitride, it is crystallized by heating at a temperature not lower than the boiling point of the metal borate used as the crystallization catalyst and not higher than the decomposition temperature of boron nitride. It is preferable to volatilize the catalyst. In particular, it is preferable to volatilize magnesium borate by heating at a temperature equal to or higher than the boiling point of magnesium borate. The temperature when volatilizing magnesium borate is preferably 1950 ° C. or higher. When using a metal borate other than magnesium borate as the crystallization catalyst, it is preferable to select one having a boiling point of less than 2200 ° C. Calcium borate has a boiling point higher than the decomposition temperature of boron nitride and is difficult to volatilize.

非酸化性ガス雰囲気を形成するガスとしては、窒素ガス、アンモニアガス、水素ガス、メタン、プロパンなどの炭化水素ガス、ヘリウム、アルゴンなどの希ガスが使用される。これらのうち、入手しやすく安価でありしかも2000〜2200℃の高温域においては六方晶窒化ホウ素の分解を抑制する効果の大きい窒素ガスが最適である。   As the gas forming the non-oxidizing gas atmosphere, nitrogen gas, ammonia gas, hydrogen gas, hydrocarbon gas such as methane and propane, and rare gas such as helium and argon are used. Among these, nitrogen gas that is easily available, inexpensive, and has a large effect of suppressing the decomposition of hexagonal boron nitride is optimal in the high temperature range of 2000 to 2200 ° C.

焼成炉としては、マッフル炉、管状炉、雰囲気炉などのバッチ式炉や、ロータリーキルン、スクリューコンベヤ炉、トンネル炉、ベルト炉、プッシャー炉、竪型連続炉などの連続式炉が用いられる。これらは目的に応じて使い分けられ、例えば多くの品種の六方晶窒化ホウ素を少量ずつ製造するときはバッチ式炉が、一定の品種を多量製造するときは連続式炉が採用される。   As the firing furnace, a batch furnace such as a muffle furnace, a tubular furnace, an atmosphere furnace, or a continuous furnace such as a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, or a vertical continuous furnace is used. These are properly used according to the purpose. For example, a batch type furnace is used when producing many kinds of hexagonal boron nitride in small quantities, and a continuous type furnace is adopted when producing a certain quantity in large quantities.

以上のようにして製造された六方晶窒化ホウ素粉末組成物は、必要に応じて粉砕、分級、乾燥などの後処理工程を経た後、実用に供される。具体的な用途としては、焼結体原料、離型剤、固体潤滑剤、フィラーなどが挙げられる。本発明の六方晶窒化ホウ素粉末組成物は、タップ密度が高く樹脂への配合が容易なので、樹脂用のフィラーとして特に好適である。   The hexagonal boron nitride powder composition produced as described above is put to practical use after undergoing post-treatment steps such as pulverization, classification, and drying as necessary. Specific applications include sintered raw materials, mold release agents, solid lubricants, fillers, and the like. The hexagonal boron nitride powder composition of the present invention is particularly suitable as a filler for a resin because of its high tap density and easy compounding into the resin.

本発明では結晶化触媒としてホウ酸マグネシウムを使用するが、ホウ酸マグネシウムは水和物をつくりにくいために樹脂の劣化を引き起こしにくい。これによって窒化ホウ素生成物から結晶化触媒を除去する最終的洗浄/浸出工程を省くことができ、低コストで六方晶窒化ホウ素粉末組成物を製造することができる。   In the present invention, magnesium borate is used as a crystallization catalyst. However, magnesium borate hardly forms a hydrate, and therefore hardly causes deterioration of the resin. This eliminates the final cleaning / leaching step of removing the crystallization catalyst from the boron nitride product, and can produce a hexagonal boron nitride powder composition at low cost.

本発明の六方晶窒化ホウ素粉末組成物は熱伝導性フィラーとして樹脂に配合することができる。樹脂としては熱硬化性樹脂、熱可塑性樹脂、いずれにも効果的に使用可能である。射出成形などにより成形が容易であるという点からは、熱可塑性樹脂が好ましい。熱硬化性樹脂としては、エポキシ系樹脂、ウレタン系樹脂、硬化性シリコーン系樹脂、硬化性アクリル系樹脂、などが好ましく使用可能である。熱可塑性樹脂としては、ポリスチレンなどの芳香族ビニル系樹脂、ポリアクリロニトリルなどのシアン化ビニル系樹脂、ポリ塩化ビニルなどの塩素系樹脂、ポリメチルメタクリレート等のポリメタアクリル酸エステル系樹脂やポリアクリル酸エステル系樹脂、ポリエチレンやポリプロピレンや環状ポリオレフィン樹脂等のポリオレフィン系樹脂、ポリ酢酸ビニルなどのポリビニルエステル系樹脂、ポリビニルアルコール系樹脂及びこれらの誘導体樹脂、ポリメタクリル酸系樹脂やポリアクリル酸系樹脂及びこれらの金属塩系樹脂、ポリ共役ジエン系樹脂、マレイン酸やフマル酸及びこれらの誘導体を重合して得られるポリマー、マレイミド系化合物を重合して得られるポリマー、非晶性半芳香族ポリエステルや非晶性全芳香族ポリエステルなどの非晶性ポリエステル系樹脂、結晶性半芳香族ポリエステルや結晶性全芳香族ポリエステルなどの結晶性ポリエステル系樹脂、脂肪族ポリアミドや脂肪族−芳香族ポリアミドや全芳香族ポリアミドなどのポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、ポリアルキレンオキシド系樹脂、セルロース系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂、ポリケトン樹脂、ポリイミド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリビニルエーテル系樹脂、フェノキシ系樹脂、フッ素系樹脂、シリコーン系樹脂、液晶ポリマー、およびこれら例示されたポリマーのランダム・ブロック・グラフト共重合体、等が挙げられる。これらの樹脂は、それぞれ単独で、あるいは2種以上の複数を組み合わせて用いることができる。2種以上の樹脂を組み合わせて用いる場合には、必要に応じて相溶化剤等を添加して用いることもできる。これら樹脂は、目的に応じて適宜使い分ければよい。本発明の六方晶窒化ホウ素粉末組成物は微量にホウ酸マグネシウムを含有するが、水和物をつくりにくいために、熱硬化性樹脂、熱可塑性樹脂に関わらず特に加水分解性の樹脂であるポリエステル系樹脂、ポリカーボネート系樹脂、アクリル系樹脂の劣化を起こしにくいほか、吸水の影響を受けやすいポリアミド系樹脂やポリアリーレンスルフィド系樹脂に対しても好ましく使用可能である。   The hexagonal boron nitride powder composition of the present invention can be blended in a resin as a heat conductive filler. As the resin, any of thermosetting resins and thermoplastic resins can be effectively used. From the viewpoint of easy molding by injection molding or the like, a thermoplastic resin is preferable. As the thermosetting resin, an epoxy resin, a urethane resin, a curable silicone resin, a curable acrylic resin, or the like can be preferably used. Thermoplastic resins include aromatic vinyl resins such as polystyrene, vinyl cyanide resins such as polyacrylonitrile, chlorine resins such as polyvinyl chloride, polymethacrylate resins such as polymethyl methacrylate, and polyacrylic acid. Ester resins, polyolefin resins such as polyethylene, polypropylene and cyclic polyolefin resins, polyvinyl ester resins such as polyvinyl acetate, polyvinyl alcohol resins and their derivative resins, polymethacrylic acid resins and polyacrylic acid resins and these Metal salt resins, polyconjugated diene resins, polymers obtained by polymerizing maleic acid and fumaric acid and their derivatives, polymers obtained by polymerizing maleimide compounds, amorphous semi-aromatic polyesters and amorphous Fully aromatic polyester Amorphous polyester resins, crystalline polyester resins such as crystalline semi-aromatic polyesters and crystalline wholly aromatic polyesters, polyamide resins such as aliphatic polyamides, aliphatic-aromatic polyamides and wholly aromatic polyamides, Polycarbonate resin, polyurethane resin, polysulfone resin, polyalkylene oxide resin, cellulose resin, polyphenylene ether resin, polyphenylene sulfide resin, polyketone resin, polyimide resin, polyether ether ketone resin, polyvinyl ether resin , Phenoxy resins, fluorine resins, silicone resins, liquid crystal polymers, and random block / graft copolymers of these exemplified polymers. These resins can be used alone or in combination of two or more. When two or more resins are used in combination, a compatibilizer or the like can be added as necessary. These resins may be properly used according to the purpose. Although the hexagonal boron nitride powder composition of the present invention contains a small amount of magnesium borate, it is difficult to form a hydrate, so that it is a polyester that is a hydrolyzable resin regardless of whether it is a thermosetting resin or a thermoplastic resin. The resin can be preferably used for polyamide resins and polyarylene sulfide resins that are less susceptible to deterioration of water-based resins, polycarbonate resins, and acrylic resins.

本発明の熱可塑性樹脂組成物の製造方法としては特に限定されるものではない。例えば、上述した成分や添加剤等を乾燥させた後、単軸、2軸等の押出機のような溶融混練機にて溶融混練することにより製造することができる。   It does not specifically limit as a manufacturing method of the thermoplastic resin composition of this invention. For example, it can be produced by drying the above-described components, additives and the like and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder.

本発明の熱可塑性樹脂組成物の成形加工法としては特に限定されず、例えば、熱可塑性樹脂について一般に用いられている成形法、例えば、射出成形、ブロー成形、押出成形、真空成形、プレス成形、カレンダー成形等が利用できる。これらの中でも成形サイクルが短く生産効率に優れること、本組成物が射出成形時の流動性が良好であるという特性を有していること、などから、射出成形法により射出成形することが好ましい。   The method for molding the thermoplastic resin composition of the present invention is not particularly limited. For example, a molding method generally used for thermoplastic resins, such as injection molding, blow molding, extrusion molding, vacuum molding, press molding, Calendar molding can be used. Among these, it is preferable to perform injection molding by an injection molding method because the molding cycle is short, the production efficiency is excellent, and the composition has good fluidity at the time of injection molding.

次に、本発明の六方晶窒化ホウ素粉末組成物について、実施例に基づいて、さらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。   Next, although the hexagonal boron nitride powder composition of the present invention will be described in more detail based on examples, the present invention is not limited to such examples.

実施例1:
非晶質窒化ホウ素粉末100重量部、無水ホウ酸10重量部、炭酸マグネシウム7.5重量部、重質炭酸カルシウム7.5重量部をヘンシェルミキサーで混合した後、窒化ホウ素製ルツボに仕込み、窒素雰囲気下300℃まで10℃/分、2050℃まで5℃/分の昇温速度で加熱し、2050℃で2時間焼成・結晶化させた。得られた焼成物を粉砕して鱗片形状六方晶窒化ホウ素粉末を得た。硝酸洗浄はしなかった。
Example 1:
After mixing 100 parts by weight of amorphous boron nitride powder, 10 parts by weight of anhydrous boric acid, 7.5 parts by weight of magnesium carbonate, and 7.5 parts by weight of heavy calcium carbonate with a Henschel mixer, the mixture is charged into a boron nitride crucible, and nitrogen is added. Under an atmosphere, it was heated to 300 ° C. at a rate of 10 ° C./min, to 2050 ° C. at a rate of 5 ° C./min, and baked and crystallized at 2050 ° C. for 2 hours. The obtained fired product was pulverized to obtain a scale-shaped hexagonal boron nitride powder. Nitric acid was not washed.

実施例2、3および比較例1〜4
非晶質窒化ホウ素粉末100重量部とし表1に示す条件にしたこと以外は、実施例1に準じて六方晶窒化ホウ素粉末組成物を製造した。
Examples 2, 3 and Comparative Examples 1-4
A hexagonal boron nitride powder composition was produced according to Example 1 except that the amorphous boron nitride powder was 100 parts by weight and the conditions shown in Table 1 were used.

Figure 2010047450
Figure 2010047450

表2に窒化ホウ素粉末組成物から溶出した元素の溶出量を六方晶窒化ホウ素に対する質量分率値として示す。またタップ密度、押出配合の可否、およびこれら窒化ホウ素粉末組成物を樹脂に配合した樹脂組成物成形体の熱拡散率の異方性について示す。   Table 2 shows the amount of element eluted from the boron nitride powder composition as a mass fraction value with respect to hexagonal boron nitride. Moreover, it shows about the anisotropy of the thermal diffusivity of the resin composition molded object which mix | blended the tap density, the extrusion compounding possibility, and these boron nitride powder compositions with resin.

[溶出元素の定量]
試料3gを六方晶窒化ホウ素粉末1モルに対して0.02〜0.5化学当量の10重量%硝酸水溶液中で3時間撹拌した後ろ過し、ろ液中の溶出元素量を測定した。溶出量はICP−MS(アジレントテクノロジー製 7500C型)にて測定し、六方晶窒化ホウ素粉末に対する質量分率値とした。
[Quantification of eluted elements]
3 g of the sample was stirred for 3 hours in 0.02 to 0.5 chemical equivalent of 10 wt% nitric acid aqueous solution with respect to 1 mol of hexagonal boron nitride powder, filtered, and the amount of eluted element in the filtrate was measured. The amount of elution was measured by ICP-MS (7500C type manufactured by Agilent Technologies), and was defined as a mass fraction value with respect to hexagonal boron nitride powder.

[配合例]
ポリエチレンテレフタレート樹脂((株)ベルポリエステルプロダクツ製ベルペットEFG−70)100重量部に、フェノール系安定剤であるAO−60((株)ADEKA製)0.2重量部、を混合したものを準備した(原料1)。別途、鱗片形状六方晶窒化ホウ素粉末100重量部、信越化学製エポキシシランであるKBM−303を1重量部、エタノール5重量部、をスーパーフローターにて混合し、5分間撹拌した後、80℃にて4時間乾燥したものを準備した。(原料2)。
[Composition example]
Prepared by mixing 100 parts by weight of polyethylene terephthalate resin (Bell Polyester Products Belpet EFG-70) with 0.2 parts by weight of phenolic stabilizer AO-60 (made by ADEKA). (Raw material 1). Separately, 100 parts by weight of scale-shaped hexagonal boron nitride powder, 1 part by weight of KBM-303, which is an epoxy silane manufactured by Shin-Etsu Chemical, and 5 parts by weight of ethanol were mixed with a super floater and stirred for 5 minutes. And dried for 4 hours. (Raw material 2).

原料1、原料2、を別々の重量式フィーダーにセットし、(A)/(B)の体積比が50/50となるよう混合した後、日本製鋼所製TEX44XCT同方向噛み合い型二軸押出機のスクリュー根本付近に設けられたホッパーより投入した。設定温度は供給口近傍が250℃で、順次設定温度を上昇させ、押出機スクリュー先端部温度を280℃に設定した。本条件にて押出の可否から樹脂劣化を評価した。   Raw material 1 and raw material 2 are set in separate weight type feeders and mixed so that the volume ratio of (A) / (B) is 50/50, and then TEX44XCT co-directional meshing twin screw extruder manufactured by Nippon Steel Works Was introduced from a hopper provided near the screw root. The set temperature was 250 ° C. in the vicinity of the supply port, and the set temperature was successively increased, and the extruder screw tip temperature was set at 280 ° C. Resin degradation was evaluated from the possibility of extrusion under these conditions.

[熱拡散率]
押出配合にてペレット化できたものに対し、厚み0.7mm、25.4mmφの円板状サンプルを射出成形にて作成した。サンプル表面にレーザー光吸収用スプレー(ファインケミカルジャパン(株)製ブラックガードスプレーFC−153)を塗布し乾燥させた後、XeフラッシュアナライザーであるNETZSCH製LFA447Nanoflashを用い、厚み方向及び面方向の熱拡散率から異方性を確認した。
[Thermal diffusivity]
A disk-like sample having a thickness of 0.7 mm and 25.4 mmφ was prepared by injection molding for what could be pelletized by extrusion blending. After applying and drying a laser light absorbing spray (Black Guard Spray FC-153 manufactured by Fine Chemical Japan Co., Ltd.) on the sample surface, the thermal diffusivity in the thickness direction and in the surface direction using an Xe flash analyzer NETZSCH LFA447 Nanoflash As a result, anisotropy was confirmed.

Figure 2010047450
Figure 2010047450

Claims (7)

タップ密度が0.4g/cm3以上であり、10重量%硝酸水溶液中25℃で3時間撹拌後の溶出マグネシウムが六方晶窒化ホウ素に対する質量分率値として0.1〜60mg/g、溶出カルシウムが60mg/g以下、溶出ホウ素が0.1mg/g以上であることを特徴とする六方晶窒化ホウ素粉末組成物。 The tap density is 0.4 g / cm 3 or more, and the eluted magnesium after stirring for 3 hours at 25 ° C. in a 10 wt% aqueous nitric acid solution is 0.1 to 60 mg / g as a mass fraction with respect to hexagonal boron nitride, and the eluted calcium The hexagonal boron nitride powder composition is characterized by having an elution boron of 60 mg / g or less and an eluted boron of 0.1 mg / g or more. さらにはリチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素が0.1mg/g以上溶出する請求項1に記載の六方晶窒化ホウ素粉末組成物。 Furthermore, the hexagonal boron nitride powder composition according to claim 1, wherein at least one element selected from the group consisting of lithium element, silicon element, aluminum element, and zinc element elutes 0.1 mg / g or more. (A)窒化ホウ素100重量部、(B)ホウ酸マグネシウム0.1〜30重量部、(C)ホウ酸カルシウム0〜20重量部を含有する混合物を加熱して窒化ホウ素を結晶化し、残留触媒を洗浄除去することなく得られる、請求項1又は2に記載の六方晶窒化ホウ素粉末組成物の製造方法。 (A) Boron nitride 100 parts by weight, (B) Magnesium borate 0.1-30 parts by weight, (C) Calcium borate 0-20 parts by weight is heated to crystallize boron nitride, and residual catalyst The method for producing a hexagonal boron nitride powder composition according to claim 1 or 2, which is obtained without washing and removing. 前記混合物がさらに、(A)窒化ホウ素100重量部あたり、(D)リチウム元素、珪素元素、アルミニウム元素、および亜鉛元素からなる群より選ばれる少なくとも1種の元素のホウ酸塩を0.1〜20重量部含有することを特徴とする、請求項3に記載の六方晶窒化ホウ素粉末組成物の製造方法。 The mixture further contains (D) borate of at least one element selected from the group consisting of (D) lithium element, silicon element, aluminum element, and zinc element per 100 parts by weight of boron nitride. It contains 20 weight part, The manufacturing method of the hexagonal boron nitride powder composition of Claim 3 characterized by the above-mentioned. 窒化ホウ素の結晶化時に、前記(B)成分および/または(D)成分を揮発させる請求項3または4に記載の製造方法。 The manufacturing method according to claim 3 or 4, wherein the component (B) and / or the component (D) is volatilized during crystallization of boron nitride. 請求項1又は2に記載の六方晶窒化ホウ素粉末組成物と樹脂を含有する樹脂組成物。 A resin composition comprising the hexagonal boron nitride powder composition according to claim 1 or 2 and a resin. 前記樹脂がポリエステル系樹脂、ポリアミド系樹脂、ポリアリーレンスルフィド系樹脂、ポリカーボネート系樹脂、アクリル系樹脂から選ばれる少なくとも1種の樹脂である請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the resin is at least one resin selected from a polyester resin, a polyamide resin, a polyarylene sulfide resin, a polycarbonate resin, and an acrylic resin.
JP2008214011A 2008-08-22 2008-08-22 Hexagonal boron nitride and method for producing the same Expired - Fee Related JP5038257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214011A JP5038257B2 (en) 2008-08-22 2008-08-22 Hexagonal boron nitride and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214011A JP5038257B2 (en) 2008-08-22 2008-08-22 Hexagonal boron nitride and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010047450A true JP2010047450A (en) 2010-03-04
JP5038257B2 JP5038257B2 (en) 2012-10-03

Family

ID=42064877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214011A Expired - Fee Related JP5038257B2 (en) 2008-08-22 2008-08-22 Hexagonal boron nitride and method for producing the same

Country Status (1)

Country Link
JP (1) JP5038257B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059025A (en) * 2008-09-05 2010-03-18 Kaneka Corp Method for producing hexagonal boron nitride powder
WO2012121224A1 (en) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
WO2013073496A1 (en) * 2011-11-14 2013-05-23 三菱電機株式会社 Electromagnetic coil, method for manufacturing same, and insulating tape
JP2016522299A (en) * 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP2017068225A (en) * 2015-09-30 2017-04-06 株式会社リコー Image carrier protective agent, protective layer forming apparatus, image forming method, image forming apparatus, and process cartridge
WO2021100617A1 (en) * 2019-11-19 2021-05-27 デンカ株式会社 Hexagonal boron nitride powder
WO2023048149A1 (en) * 2021-09-27 2023-03-30 Jfeミネラル株式会社 Hexagonal boron nitride filler powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297848B2 (en) * 2014-01-30 2018-03-20 水島合金鉄株式会社 Hexagonal boron nitride powder for cosmetics and cosmetics
KR101927406B1 (en) * 2016-08-22 2018-12-10 한국과학기술원 Hierarchical hexagonal zinc particle and method for preparing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217608A (en) * 1983-05-25 1984-12-07 Showa Denko Kk Method for synthesizing cubic boron nitride
JPH10194711A (en) * 1997-01-13 1998-07-28 Shin Etsu Chem Co Ltd Highly filling boron nitride powder and its production
JPH1129309A (en) * 1997-07-11 1999-02-02 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder
JPH11277515A (en) * 1998-02-27 1999-10-12 Advanced Ceramics Corp High density boron nitride and manufacture of high density boron nitride particle
JP2000007310A (en) * 1998-06-19 2000-01-11 Denki Kagaku Kogyo Kk Highly filling boron nitride powder
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
JP2007502770A (en) * 2003-08-21 2007-02-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Boron nitride agglomerated powder
WO2008042446A2 (en) * 2006-10-07 2008-04-10 Momentive Performance Materials, Inc. Mixed boron nitride composition and method for making thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217608A (en) * 1983-05-25 1984-12-07 Showa Denko Kk Method for synthesizing cubic boron nitride
JPH10194711A (en) * 1997-01-13 1998-07-28 Shin Etsu Chem Co Ltd Highly filling boron nitride powder and its production
JPH1129309A (en) * 1997-07-11 1999-02-02 Denki Kagaku Kogyo Kk Hexagonal boron nitride powder
JPH11277515A (en) * 1998-02-27 1999-10-12 Advanced Ceramics Corp High density boron nitride and manufacture of high density boron nitride particle
JP2000007310A (en) * 1998-06-19 2000-01-11 Denki Kagaku Kogyo Kk Highly filling boron nitride powder
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
JP2007502770A (en) * 2003-08-21 2007-02-15 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Boron nitride agglomerated powder
WO2008042446A2 (en) * 2006-10-07 2008-04-10 Momentive Performance Materials, Inc. Mixed boron nitride composition and method for making thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059025A (en) * 2008-09-05 2010-03-18 Kaneka Corp Method for producing hexagonal boron nitride powder
US9629239B2 (en) 2011-03-07 2017-04-18 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg as well as laminate using the same
WO2012121224A1 (en) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
JPWO2012121224A1 (en) * 2011-03-07 2014-07-17 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
JP5999369B2 (en) * 2011-03-07 2016-09-28 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
WO2013073496A1 (en) * 2011-11-14 2013-05-23 三菱電機株式会社 Electromagnetic coil, method for manufacturing same, and insulating tape
CN103930957A (en) * 2011-11-14 2014-07-16 三菱电机株式会社 Electromagnetic coil, method for manufacturing same, and insulating tape
JPWO2013073496A1 (en) * 2011-11-14 2015-04-02 三菱電機株式会社 Electromagnetic coil, manufacturing method thereof, and insulating tape
CN103930957B (en) * 2011-11-14 2016-10-26 三菱电机株式会社 Solenoid and manufacture method thereof and insulating tape
JP2016522299A (en) * 2013-06-19 2016-07-28 スリーエム イノベイティブ プロパティズ カンパニー Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds to produce such components, and uses thereof
JP2017068225A (en) * 2015-09-30 2017-04-06 株式会社リコー Image carrier protective agent, protective layer forming apparatus, image forming method, image forming apparatus, and process cartridge
WO2021100617A1 (en) * 2019-11-19 2021-05-27 デンカ株式会社 Hexagonal boron nitride powder
WO2023048149A1 (en) * 2021-09-27 2023-03-30 Jfeミネラル株式会社 Hexagonal boron nitride filler powder

Also Published As

Publication number Publication date
JP5038257B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5038257B2 (en) Hexagonal boron nitride and method for producing the same
JP6483508B2 (en) Hexagonal boron nitride powder and method for producing the same
JP5065198B2 (en) Method for producing hexagonal boron nitride
JP7334763B2 (en) Aluminum nitride-boron nitride composite aggregate particles and method for producing the same
JP5618734B2 (en) Spherical aluminum nitride powder
TW201111282A (en) Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
WO2013065556A1 (en) Process for continuous production of boron nitride powder
US20110046267A1 (en) Alumina powder, process for its production and resin composition employing it
WO2011074552A1 (en) Thermoplastic resin composition with high heat dissipation function, and molded products thereof
TWI818901B (en) Hexagonal boron nitride powder and manufacturing method thereof
JP6676479B2 (en) Hexagonal boron nitride powder and method for producing the same
JP6356025B2 (en) Boron nitride powder and method for producing the same
JP2016160134A (en) Hexagonal boron nitride powder and method for producing the same
JP2010001402A (en) High thermal conductivity resin molded article
JP2019189525A (en) Hexagonal crystal boron nitride single crystal, composite material composition blended with hexagonal crystal boron nitride single crystal, and heat radiation member formed by molding composite material composition
JP5109882B2 (en) Method for producing hexagonal boron nitride powder
JP4973114B2 (en) RESIN COMPOSITION, METHOD FOR PRODUCING TABLET COMPRISING THE SAME, AND MOLDED ARTICLE
JP2015209521A (en) Component for onboard camera
WO2014109134A1 (en) Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same
JP4875793B2 (en) Plastic magnet composition
JP6410675B2 (en) Thermally conductive filler and method for producing the same
JP5987322B2 (en) Method for producing metal oxide-containing boron nitride
WO2022186191A1 (en) Hexagonal boron nitride agglomerated particles, hexagonal boron nitride powder, resin composition, and resin sheet
CN112592582B (en) Polyamide resin composition, molded article comprising same, and in-vehicle camera component
JP7233657B2 (en) A hexagonal boron nitride single crystal, a composite material composition containing the hexagonal boron nitride single crystal, and a heat dissipating member formed by molding the composite material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees