JP2010046572A - Method and apparatus for biologically treating organic matter-containing water - Google Patents

Method and apparatus for biologically treating organic matter-containing water Download PDF

Info

Publication number
JP2010046572A
JP2010046572A JP2008210854A JP2008210854A JP2010046572A JP 2010046572 A JP2010046572 A JP 2010046572A JP 2008210854 A JP2008210854 A JP 2008210854A JP 2008210854 A JP2008210854 A JP 2008210854A JP 2010046572 A JP2010046572 A JP 2010046572A
Authority
JP
Japan
Prior art keywords
aeration tank
carrier
aeration
biological treatment
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008210854A
Other languages
Japanese (ja)
Other versions
JP5233498B2 (en
Inventor
Shigeki Fujishima
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008210854A priority Critical patent/JP5233498B2/en
Publication of JP2010046572A publication Critical patent/JP2010046572A/en
Application granted granted Critical
Publication of JP5233498B2 publication Critical patent/JP5233498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain stable treated water quality while performing high-load operation in the biological treatment of organic matter-containing water by effectively improving treatment efficiency without additional carriers, an increase in the quantity of airflow, and remodeling including an extension of an aeration tank and the like. <P>SOLUTION: In a method for introducing the organic matter-containing water into an aeration tank 1 having organism carriers in it and aerating the water with an oxygen-containing gas to biologically treat it, nitric acid (salt) and/or nitrous acid (salt) are added to the aeration tank 1 as an oxygen source to carry out the biological oxidation of an organic matter by the aeration and the decomposition of the organic matter by denitrification reaction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機物含有水の生物処理に利用することができる方法及び装置に関するものであり、特に、既存の設備において、担体の追加や通気量の増大、曝気槽の増設等の改造を行うことなく、簡便な操作で、負荷の増大に対応することが可能な生物処理方法及び生物処理装置に関する。   The present invention relates to a method and an apparatus that can be used for biological treatment of water containing organic matter in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories. The present invention relates to a biological treatment method and a biological treatment apparatus that can cope with an increase in load by a simple operation without remodeling such as adding an additional gas, increasing an aeration amount, or adding an aeration tank.

有機物含有排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、運転に用いられるBOD容積負荷は0.1〜1.0(一般的に0.5〜0.8)kg/m/日程度であるため、広い敷地面積が必要となる。 The activated sludge method used when biologically treating organic matter-containing wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volume load to be used in the operation is 0.1 to 1.0 (generally 0.5~0.8) kg / m 3 / day or so, it is necessary to large site area.

有機物含有排水の高負荷処理に関しては、担体を添加した生物処理(固定床法、流動床法)が知られている。この方法を用いた場合、1kg/m/日以上のBOD容積負荷で運転することが可能となる。また、生物処理水を固液分離する沈殿池からの汚泥の返送が不要となるため、沈殿池での汚泥管理の手間が省け、維持管理が容易となる。 For high-load treatment of organic matter-containing wastewater, biological treatment (fixed bed method, fluidized bed method) with a carrier added is known. When this method is used, it is possible to operate with a BOD volumetric load of 1 kg / m 3 / day or more. Moreover, since it is not necessary to return the sludge from the sedimentation basin that separates the biologically treated water into solid and liquid, the labor of sludge management in the sedimentation basin can be saved, and maintenance can be facilitated.

しかしながら、担体を用いた生物処理では、以下のような問題点がある。   However, biological treatment using a carrier has the following problems.

(1) 高負荷処理を行うためには菌体濃度を高く維持する必要があるが、担体内部にまで細菌を付着させようとすると、DO(溶存酸素)濃度を高くした運転を行う必要がある。また、菌体を高濃度に維持しようとすると担体を多く充填する必要があり、担体コストが上がるだけでなく、DOの溶解効率が下がるため、曝気コストも増大する。   (1) To perform high-load treatment, it is necessary to maintain a high bacterial cell concentration. However, if bacteria are allowed to adhere to the inside of the carrier, it is necessary to perform an operation with a high DO (dissolved oxygen) concentration. . Moreover, if it is going to maintain a high density | concentration of a microbial cell, it will be necessary to fill with many carriers, and not only the carrier cost will go up, but since the dissolution efficiency of DO will fall, aeration cost will also increase.

(2) 低い担体充填率、低いDO濃度で、高い有機物除去率を達成しようとすると、低負荷での運転を行わなければならなくなる。仮に、過負荷での運転が続くと、有機物除去率が低下するだけでなく、粘性の高い糸状性菌が担体に大量に付着し、臭気発生が問題となる上に、これらが剥離すると、流動床では担体を分離するスクリーンを閉塞させてしまう。また、固定床では流路が閉塞してしまう。   (2) In order to achieve a high organic substance removal rate with a low carrier filling rate and a low DO concentration, it is necessary to operate at a low load. If the operation under an overload continues, not only the organic substance removal rate will decrease, but a large amount of highly viscous filamentous fungus will adhere to the carrier, causing odor generation, and if these peel off, In the floor, the screen separating the carrier is blocked. Further, the flow path is blocked on the fixed bed.

このように固定床法、流動床法等を含む担体添加型の生物処理は、有機物含有排水の処理に実用化されており、対象とする排水によっては安定した処理が可能であるが、原水条件に対して、余裕の無い槽容積、担体充填率、曝気量で設計されている装置では、短期間の一時的な水量増加、原水濃度の増大であっても処理が不可能となり、この場合には、担体の追加や曝気槽、ブロワの増設等の改造が必要となる。   Thus, the biological treatment of the carrier addition type including the fixed bed method, the fluidized bed method, etc. has been put into practical use for the treatment of wastewater containing organic matter, and depending on the target wastewater, stable treatment is possible. On the other hand, in the case of a device designed with a sufficient tank volume, carrier filling rate, and aeration volume, it is impossible to process even if the water volume is increased temporarily or the concentration of raw water is increased. Needs to be modified, such as the addition of carriers and the addition of aeration tanks and blowers.

また、処理効率の向上方法、高負荷処理方法として、多段式の担体添加型生物処理の適用もあるが、この場合であっても、一段目の槽負荷が非常に高くなり、場合によっては、前述の糸状性細菌の増加を引き起こし、スクリーンの閉塞、流路の閉塞、臭気の発生等の問題に繋がる。   In addition, as a method for improving treatment efficiency and a high-load treatment method, there is also an application of a multistage carrier-added biological treatment, but even in this case, the first-stage tank load becomes very high. This causes an increase in filamentous bacteria as described above, leading to problems such as screen blockage, flow path blockage, and odor generation.

このような問題を回避するために、担体充填率、槽容積、通気量を決定する際に、最大負荷、夏場のDO低下を想定して装置を設計すると、繁忙期が短期間の工場などでは、繁忙期以外の期間の負荷に対しては、過剰な装置となり、不経済である。   In order to avoid such problems, when determining the carrier filling rate, tank volume, and air flow rate, if the equipment is designed with the assumption of maximum load and summer DO drop, it may be difficult for factories where the busy season is short. For loads during periods other than the busy season, the equipment becomes excessive and uneconomical.

なお、原水を処理水で100倍以上に希釈して反応槽に投入すると共に、反応槽内のpHや水温、NH−N濃度、等の条件を制御して、反応槽内で硝化と脱窒とを同時に行うことにより、処理効率の向上を図る方法が提案されているが(特許文献1)、このように大量の処理水を返送することは、反応槽容量の増大につながる。
特公平1−22039号公報
The raw water is diluted 100 times or more with treated water and charged into the reaction tank, and the conditions such as pH, water temperature and NH 3 -N concentration in the reaction tank are controlled to nitrify and dehydrate in the reaction tank. Although a method for improving the processing efficiency by simultaneously performing nitrogen is proposed (Patent Document 1), returning a large amount of treated water in this way leads to an increase in reaction tank capacity.
Japanese Patent Publication No. 1-222039

本発明は、上記従来の問題点を解決し、有機物含有水の生物処理において、担体の追加や通気量の増大、曝気槽の増設等の改造を行うことなく、処理効率を効果的に向上させて、高負荷運転を行った上で、安定した処理水質を維持することができる有機物含有水の生物処理方法及び装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in the biological treatment of organic matter-containing water, it is possible to effectively improve the treatment efficiency without remodeling such as adding a carrier, increasing the aeration amount, or adding an aeration tank. An object of the present invention is to provide a biological treatment method and apparatus for organic matter-containing water that can maintain a stable treated water quality after performing a high-load operation.

本発明者は、上記課題を解決すべく鋭意検討を行った結果、曝気槽に硝酸(塩)及び/又は亜硝酸(塩)を添加して、酸素が届かない担体内部において、脱窒細菌による有機物分解を行わせることにより、担体充填率や曝気槽容量、曝気量の増大を要することなく、処理効率を高めることができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventor added nitric acid (salt) and / or nitrous acid (salt) to the aeration tank, and caused denitrifying bacteria inside the carrier where oxygen did not reach. The present inventors have found that the treatment efficiency can be improved by performing the organic matter decomposition without increasing the carrier filling rate, the aeration tank capacity, and the aeration amount, thereby completing the present invention.

即ち、本発明は以下を要旨とする。
なお、本明細書において、「硝酸(塩)」とは「硝酸」と「硝酸塩」のいずれか一方又は双方を意味し、「亜硝酸(塩)」とは「亜硝酸」と「亜硝酸塩」のいずれか一方又は双方を意味する。以下において、「「硝酸(塩)及び/又は亜硝酸(塩)」を「NOx」と略記する場合がある。
That is, the gist of the present invention is as follows.
In this specification, “nitric acid (salt)” means one or both of “nitric acid” and “nitrate”, and “nitrous acid (salt)” means “nitrite” and “nitrite”. Means either or both. Hereinafter, ““ nitric acid (salt) and / or nitrous acid (salt) ”may be abbreviated as“ NOx ”.

本発明(請求項1)の有機物含有水の生物処理方法は、生物担体を内蔵する一槽式または多段型の曝気槽に有機物含有水を導入し、酸素含有気体を曝気して生物処理する方法において、酸素源として硝酸(塩)及び/又は亜硝酸(塩)含有液を前記曝気槽に添加し、該曝気槽内で曝気による有機物の生物酸化と、脱窒反応による有機物の分解とを行うことを特徴とする。   The biological treatment method for organic matter-containing water according to the present invention (Claim 1) is a method for conducting biological treatment by introducing organic matter-containing water into a single tank type or multistage aeration tank containing a biological carrier and aeration of oxygen-containing gas. , A liquid containing nitric acid (salt) and / or nitrous acid (salt) as an oxygen source is added to the aeration tank, and the organic oxidation of the organic substance by aeration and the decomposition of the organic substance by a denitrification reaction are performed in the aeration tank. It is characterized by that.

請求項2の有機物含有水の生物処理方法は、請求項1において、前記生物担体は、前記曝気槽内で曝気により流動する担体であることを特徴とする。   The biological treatment method for organic substance-containing water according to claim 2 is characterized in that, in claim 1, the biological carrier is a carrier that flows by aeration in the aeration tank.

請求項3の有機物含有水の生物処理方法は、請求項1又は2において、前記曝気槽が直列多段に設けられ、後段の曝気槽の処理水の一部が1〜3槽目のいずれかまたは複数の曝気槽に返送されることを特徴とする。   The biological treatment method for organic matter-containing water according to claim 3 is the biological treatment method according to claim 1 or 2, wherein the aeration tanks are provided in multiple stages in series, and part of the treated water in the latter aeration tank is one of the first to third tanks or It is returned to a plurality of aeration tanks.

請求項4の有機物含有水の生物処理方法は、請求項1ないし3のいずれか1項において、前記硝酸(塩)及び/又は亜硝酸(塩)含有液を添加する曝気槽の有機物担体負荷(kg−CODCr/m−担体/日)と溶存酸素(mg/L)との比を2.0以上とすることを特徴とする。 The biological treatment method for organic substance-containing water according to claim 4 is the organic carrier load in an aeration tank according to any one of claims 1 to 3, wherein the nitric acid (salt) and / or nitrous acid (salt) -containing liquid is added. The ratio of kg-COD Cr / m 3 -carrier / day) and dissolved oxygen (mg / L) is 2.0 or more.

請求項5の有機物含有水の生物処理方法は、請求項1ないし4のいずれか1項において、前記脱窒反応による有機物の分解を行うべき、分解対象の溶解性CODCrの1/6〜1/2重量倍の硝酸(塩)及び/又は亜硝酸(塩)(NO−N換算)含有液を添加することを特徴とする。 The biological treatment method for organic substance-containing water according to claim 5 is the biological treatment method according to any one of claims 1 to 4, wherein 1/6 to 1 of the soluble COD Cr to be decomposed, which should be decomposed by the denitrification reaction. It is characterized by adding a liquid containing nitric acid (salt) and / or nitrous acid (salt) (NO x -N conversion) in an amount of 2 times by weight.

請求項6の有機物含有水の生物処理方法は、請求項1ないし5のいずれか1項において、前記生物担体の充填率が前記曝気槽容積の5〜50%であることを特徴とする。   The biological treatment method for organic matter-containing water according to claim 6 is characterized in that, in any one of claims 1 to 5, the filling rate of the biological carrier is 5 to 50% of the volume of the aeration tank.

請求項7の有機物含有水の生物処理方法は、請求項1ないし6のいずれか1項において、前記生物担体は、最も短い一辺又は直径が2mm以上であることを特徴とする。   The biological treatment method for organic substance-containing water according to claim 7 is characterized in that, in any one of claims 1 to 6, the biological carrier has the shortest side or diameter of 2 mm or more.

本発明(請求項8)の有機物含有水の生物処理装置は、生物担体を内蔵する曝気槽と、該曝気槽に有機物含有水を導入する手段とを有し、該曝気槽にて酸素含有気体を曝気して生物処理する装置において、酸素源として硝酸(塩)及び/又は亜硝酸(塩)を前記曝気槽に添加する手段を有し、該曝気槽内で曝気による有機物の生物酸化と、脱窒反応による有機物の分解とを行うことを特徴とする。   The biological treatment apparatus for organic matter-containing water according to the present invention (invention 8) has an aeration tank containing a biological carrier and means for introducing organic matter-containing water into the aeration tank, and the oxygen-containing gas in the aeration tank. A means for adding a nitric acid (salt) and / or nitrous acid (salt) as an oxygen source to the aeration tank, and biologically oxidizing organic matter by aeration in the aeration tank; It is characterized by decomposing organic matter by denitrification reaction.

請求項9の有機物含有水の生物処理装置は、請求項8において、前記生物担体は、前記曝気槽内で曝気により流動する担体であることを特徴とする。   The biological treatment apparatus for organic matter-containing water according to claim 9 is characterized in that, in claim 8, the biological carrier is a carrier that flows by aeration in the aeration tank.

請求項10の有機物含有水の生物処理装置は、請求項8又は9において、前記曝気槽が直列多段に設けられ、後段の曝気槽の処理水の一部を最前の曝気槽に返送する手段を有することを特徴とする。   The biological treatment apparatus for organic substance-containing water according to claim 10 is the biological treatment apparatus according to claim 8 or 9, wherein the aeration tanks are provided in series in multiple stages, and means for returning a part of the treated water in the latter aeration tank to the front aeration tank. It is characterized by having.

請求項11の有機物含有水の生物処理装置は、請求項8ないし10のいずれか1項において、前記硝酸(塩)及び/又は亜硝酸(塩)を添加する曝気槽の有機物担体負荷(kg−CODCr/m−担体/日)と溶存酸素(mg/L)との比を2.0以上とすることを特徴とする。 The biological treatment apparatus for organic matter-containing water according to claim 11 is the organic carrier load (kg--) according to any one of claims 8 to 10, wherein the nitric acid (salt) and / or nitrous acid (salt) is added. The ratio of COD Cr / m 3 -carrier / day) and dissolved oxygen (mg / L) is 2.0 or more.

請求項12の有機物含有水の生物処理装置は、請求項8ないし11のいずれか1項において、前記脱窒反応による有機物の分解を行うべき、分解対象の溶解性CODCrの1/6〜1/2重量倍の硝酸(塩)及び/又は亜硝酸(塩)を添加することを特徴とする。 The biological treatment apparatus for organic substance-containing water according to claim 12 is the biological treatment apparatus according to any one of claims 8 to 11, wherein the organic substance is to be decomposed by the denitrification reaction and is 1/6 to 1 of the soluble COD Cr to be decomposed. / 2 weight times nitric acid (salt) and / or nitrous acid (salt) is added.

請求項13の有機物含有水の生物処理装置は、請求項8ないし12のいずれか1項において、前記生物担体の充填率が前記曝気槽容積の5〜50%であることを特徴とする。   The biological treatment apparatus for organic matter-containing water according to claim 13 is characterized in that, in any one of claims 8 to 12, the filling rate of the biological carrier is 5 to 50% of the volume of the aeration tank.

請求項14の有機物含有水の生物処理装置は、請求項8ないし13のいずれか1項において、前記生物担体は、最も短い一辺又は直径が2mm以上であることを特徴とする。   The biological treatment apparatus for organic matter-containing water according to claim 14 is characterized in that, in any one of claims 8 to 13, the biological carrier has the shortest side or diameter of 2 mm or more.

本発明によれば、曝気槽に、酸素の代りに、硝酸(塩)及び/又は亜硝酸(塩)を添加して、酸素が届かない担体内部で脱窒細菌による脱窒反応で、有機物を分解することにより、担体表面近くの細菌では除去し切れなかった残存有機物を除去することができる。   According to the present invention, nitric acid (salt) and / or nitrous acid (salt) is added to the aeration tank instead of oxygen, and the organic matter is removed by denitrification reaction by denitrifying bacteria inside the carrier where oxygen does not reach. By decomposing, it is possible to remove residual organic substances that could not be removed by bacteria near the carrier surface.

このため、有機物含有水の生物処理において、処理効率を効果的に向上させて、高負荷運転を行った上で、安定した処理水質を維持することができる。   For this reason, in the biological treatment of organic matter-containing water, it is possible to effectively improve the treatment efficiency and maintain a stable treated water quality after performing a high load operation.

本発明では、既存の設備において、高負荷時に、硝酸(塩)及び/又は亜硝酸(塩)を添加するという簡便な操作で、担体の追加や通気量の増大、曝気槽の増設等の改造を行うことなく、負荷の増大に対応することができる。   In the present invention, in an existing facility, a simple operation of adding nitric acid (salt) and / or nitrous acid (salt) at high load makes it possible to add a carrier, increase the air flow rate, or add an aeration tank. It is possible to cope with an increase in load without performing the above.

このような本発明の有機物含有水の生物処理方法及び装置は、曝気のみの処理では、溶解性CODCr濃度が30mg/L以上残留するような、処理能力に限界のある設備であって、敷地の制約により、曝気槽を増設したり、ブロワを増設することが困難な設備において、高負荷の増大に工業的に有利に対応することを可能とするものである。 Such a biological treatment method and apparatus for organic matter-containing water according to the present invention is a facility with limited processing capacity such that a soluble COD Cr concentration remains at 30 mg / L or more in the case of only aeration treatment. This makes it possible to cope with an industrially advantageous increase in high load in facilities where it is difficult to add aeration tanks or blowers.

以下に、図面を参照して本発明の有機物含有水の生物処理方法及び装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of a biological treatment method and apparatus for organic matter-containing water according to the present invention will be described in detail with reference to the drawings.

図1〜3は、本発明の有機物含有水の生物処理装置の実施の形態を示す系統図である。図1〜3において、同一機能を奏する部材には同一符号を付してある。   1-3 is a systematic diagram showing an embodiment of a biological treatment apparatus for organic matter-containing water according to the present invention. 1-3, the same code | symbol is attached | subjected to the member which show | plays the same function.

図1の装置は、担体2を投入した一過式曝気槽(汚泥返送なし)1を1槽設けて、原水(有機物含有水)の生物処理を行うものであり、原水は配管11より曝気槽1に導入され、原水中の有機物が曝気槽1内の浮遊細菌と担体付着細菌により、曝気下酸化分解され、生物処理水は曝気槽1内のスクリーン3を透過して配管12より取り出される。   The apparatus shown in FIG. 1 is provided with one transient aeration tank (without sludge return) 1 into which a carrier 2 is introduced, and performs biological treatment of raw water (organic matter-containing water). 1, the organic matter in the raw water is oxidized and decomposed under aeration by floating bacteria and carrier-attached bacteria in the aeration tank 1, and the biologically treated water passes through the screen 3 in the aeration tank 1 and is taken out from the pipe 12.

図1においては、この曝気槽1に配管13より硝酸(塩)及び/又は亜硝酸(塩)(NOx)を添加して生物処理効率の向上を図る。   In FIG. 1, nitric acid (salt) and / or nitrous acid (salt) (NOx) is added to the aeration tank 1 from a pipe 13 to improve biological treatment efficiency.

図2,3は、曝気槽を2槽の曝気槽1A,1Bに分割し、多段処理方式としたものであり、図2,3の装置では、原水は、配管11より第1曝気槽1Aに導入されて原水中の有機物が曝気槽1A内の浮遊細菌と担体付着細菌により、曝気下酸化分解され、生物処理水は曝気槽1A内のスクリーン3を透過して配管14より第2曝気槽1Bに導入され、この第1曝気槽1Aの処理水中の残留有機物が曝気槽1B内の浮遊細菌と担体付着細菌により、曝気下酸化分解され、生物処理水は曝気槽1B内のスクリーン3を透過して配管12より取り出される。   2 and 3 divide the aeration tank into two aeration tanks 1A and 1B and adopt a multi-stage treatment system. In the apparatus of FIGS. 2 and 3, the raw water is supplied from the pipe 11 to the first aeration tank 1A. The introduced organic matter in the raw water is oxidatively decomposed under aeration by floating bacteria and carrier-attached bacteria in the aeration tank 1A, and the biologically treated water passes through the screen 3 in the aeration tank 1A and passes through the pipe 14 to the second aeration tank 1B. The residual organic matter in the treated water of the first aeration tank 1A is oxidized and decomposed under aeration by floating bacteria and carrier-attached bacteria in the aeration tank 1B, and the biologically treated water passes through the screen 3 in the aeration tank 1B. And taken out from the pipe 12.

このような、多段処理方式では、最前(1段目)の曝気槽1Aが高負荷となり、前述のような弊害を発生することがある。   In such a multi-stage processing method, the foremost (first stage) aeration tank 1A is heavily loaded, which may cause the above-described adverse effects.

そこで、図2の装置では、第1段目の曝気槽1Aに配管13よりNOxを添加して、図1の装置と同様に担体内での脱窒反応により残留有機物の分解除去を促進する。   Therefore, in the apparatus of FIG. 2, NOx is added to the first-stage aeration tank 1A from the pipe 13, and the decomposition and removal of the residual organic matter is promoted by the denitrification reaction in the carrier as in the apparatus of FIG.

また、図3の装置では、後段の曝気槽1Bの処理水の一部を配管15より前段の曝気槽1Aに返送する。即ち、このような多段処理を適用すると、後段の曝気槽1Bでの自己消化が促進され、汚泥発生量は低減するが、処理水中に流出する窒素濃度(硝酸、亜硝酸濃度)が増大する。このような場合には、NOx−Nを含む後段の曝気槽1Bの処理水をNOx源として前段の曝気槽1Aに返送することが好ましい。この場合には、配管13より系外から添加するNOxの添加量を削減することができるか、或いは、NOxの添加を不要とすることができる。図3の装置では、処理の安定性向上に加え、処理水のNOx−N濃度の低減を図ることができ、より一層効率的な処理を行える。   Further, in the apparatus of FIG. 3, a part of the treated water in the subsequent aeration tank 1 </ b> B is returned from the pipe 15 to the preceding aeration tank 1 </ b> A. That is, when such multi-stage treatment is applied, self-digestion in the aeration tank 1B in the subsequent stage is promoted, and the amount of sludge generated is reduced, but the concentration of nitrogen flowing out into the treated water (nitric acid, nitrous acid concentration) increases. In such a case, it is preferable to return the treated water in the subsequent aeration tank 1B containing NOx-N to the preceding aeration tank 1A as a NOx source. In this case, the amount of NOx added from outside the system through the pipe 13 can be reduced, or the addition of NOx can be made unnecessary. In the apparatus of FIG. 3, in addition to improving the stability of the treatment, it is possible to reduce the NOx-N concentration of the treated water, and a more efficient treatment can be performed.

このように後段の曝気槽の処理水を前段の曝気槽に返送する場合、後段の曝気槽の更に後段に凝集沈殿や加圧浮上といった固液分離手段がある場合は、その固液分離前の生物処理水を返送する方が、固液分離装置を小型化することができる点で有利である。   In this way, when the treated water in the subsequent aeration tank is returned to the previous aeration tank, if there is a solid-liquid separation means such as coagulation sedimentation or pressure flotation in the further subsequent stage of the subsequent aeration tank, before the solid-liquid separation Returning the biologically treated water is advantageous in that the solid-liquid separation device can be reduced in size.

本発明において、多段処理を行う場合、曝気槽は2段に限らず、3段以上に直列に設けても良いが、NOxを添加する場合、NOxの添加は、最も負荷の高い第1段目の曝気槽に添加することが好ましく、1〜3槽目の曝気槽のいずれか、または複数の曝気槽に添加しても良い。また、処理水の返送は最も処理水のNOx−N濃度の高い最後段の曝気槽の処理水を、最も負荷の高い第1段目の曝気槽に返送することが好ましく、1〜3槽目の曝気槽のいずれか、または複数の曝気槽に返送してもよい。この返送により、添加するNOx含有液の補助または代替とすることができる。   In the present invention, when performing multi-stage treatment, the aeration tank is not limited to two stages, but may be provided in series in three or more stages. However, when NOx is added, the addition of NOx is the first stage with the highest load. The aeration tank is preferably added, and may be added to any one of the first to third aeration tanks or to a plurality of aeration tanks. In addition, it is preferable to return the treated water in the last stage aeration tank having the highest NOx-N concentration of the treated water to the first stage aeration tank having the highest load. It may be returned to any one or a plurality of aeration tanks. This return can be used as an auxiliary or substitute for the added NOx-containing liquid.

このように後段の曝気槽の処理水の一部を前段の曝気槽に返送する場合、装置全体の処理水量を過度に大きくすることなく、また装置当たりの処理水量を低減することなく、返送による上記効果を十分に得る上で、例えば、後段の曝気槽の処理水のうちの原水流入量の25〜200%量程度を前段の曝気槽に返送することが好ましい。   In this way, when a part of the treated water in the subsequent aeration tank is returned to the previous aeration tank, the amount of treated water in the entire apparatus is not excessively increased, and the amount of treated water per apparatus is not reduced. In order to sufficiently obtain the above effect, for example, it is preferable to return about 25 to 200% of the raw water inflow amount of the treated water in the subsequent aeration tank to the previous aeration tank.

以下に、本発明における曝気槽へのNOx添加による生物処理効率の向上機構を図4を参照して説明する。   Hereinafter, a mechanism for improving biological treatment efficiency by adding NOx to the aeration tank in the present invention will be described with reference to FIG.

図4において、10は多孔質担体であり、一般的な曝気量では、この担体10の内部10A(ドットを付した部分)には酸素が届かず、無酸素状態となっている。曝気槽にNOxを添加すると、このような担体10の無酸素領域10AにNOxが浸透する。また、この無酸素領域10A内に有機物が侵入すると、無酸素領域10Aに存在するNOxを利用して嫌気性の脱窒細菌による脱窒反応が起こり、有機物が分解される。そして、NOxは窒素ガスに分解され、有機物はCOと水に分解される。この結果、担体充填率を高めたり、曝気量を増やしたり、曝気槽容量を増大させたりすることなく、NOxの添加のみで曝気槽内の生物処理で担体表面では除去し得なかった残留有機物を担体内での脱窒反応で効果的に分解除去して、曝気槽全体での生物処理効率を高めることができる。 In FIG. 4, reference numeral 10 denotes a porous carrier. With a general aeration amount, oxygen does not reach the inside 10 </ b> A (portion with a dot) of the carrier 10 and is in an oxygen-free state. When NOx is added to the aeration tank, NOx penetrates into the oxygen-free region 10A of the carrier 10 as described above. Further, when an organic substance enters the oxygen-free region 10A, a denitrification reaction by anaerobic denitrifying bacteria occurs using NOx present in the oxygen-free region 10A, and the organic material is decomposed. NOx is decomposed into nitrogen gas, and organic matter is decomposed into CO 2 and water. As a result, without increasing the carrier filling rate, increasing the aeration volume, or increasing the aeration tank capacity, residual organic substances that could not be removed on the support surface by biological treatment in the aeration tank only by adding NOx. The biological treatment efficiency in the entire aeration tank can be increased by effectively decomposing and removing by the denitrification reaction in the carrier.

本発明において、曝気槽内に保有される担体の形状については任意であり、球状、ペレット状、中空筒状、立方体又は直方体形状、棒状、その他の異形形状のいずれでも良い。   In the present invention, the shape of the carrier held in the aeration tank is arbitrary, and may be any of a spherical shape, a pellet shape, a hollow cylindrical shape, a cubic or rectangular parallelepiped shape, a rod shape, and other irregular shapes.

また、担体の素材についても任意であり、天然素材、無機素材、高分子素材などを用いることができ、更にゲル状物質であっても良いが、望ましくは、多孔質のポリウレタン製流動担体(スポンジ担体)のような曝気槽内の曝気により流動する担体である。流動性担体であれば、曝気下での流動で、担体内部の無酸素領域へのNOx及び有機物の取り込み、脱窒分解生成物である窒素ガスや水、COの無酸素領域からの排出を効率的に行うことができる。この場合、多孔質担体の孔径は、担体の流動性、担体内外へのガスや液の流入出の効率の面から0.01〜0.5mm程度であることが好ましい。 Further, the material of the carrier is arbitrary, and natural materials, inorganic materials, polymer materials, etc. can be used. Further, it may be a gel material, but preferably it is a porous polyurethane fluid carrier (sponge). A carrier that flows by aeration in an aeration tank such as a carrier. In the case of a fluid carrier, NOx and organic substances are taken into the oxygen-free region inside the carrier by flowing under aeration, and nitrogen gas and water, which are denitrification decomposition products, and CO 2 are discharged from the oxygen-free region. Can be done efficiently. In this case, the pore diameter of the porous carrier is preferably about 0.01 to 0.5 mm from the viewpoint of the fluidity of the carrier and the efficiency of inflow and outflow of gas and liquid into and out of the carrier.

また、担体の大きさについては、小さいと、図4に示す無酸素領域を形成し得ないため、担体内に酸素が届く表層領域と、酸素が届かない内部領域(無酸素領域)との両方を確保することができるように、ある程度大きい方が好ましい。このような観点から、担体は、その形状にもよるが、最も短い一辺の長さないしは直径が2mm以上、特に3mm以上であることが好ましい。ただし、担体の大きさが過度に大きいと、流動性、取り扱い性、細菌が付着するための比表面積の確保の面で好ましくないことから、最も長い一辺の長さないしは直径が10mm以下であることが好ましい。   In addition, if the size of the carrier is small, the oxygen-free region shown in FIG. 4 cannot be formed. Therefore, both the surface layer region in which oxygen can reach in the carrier and the inner region (oxygen-free region) in which oxygen cannot reach It is preferable that it is large to some extent so that it can be secured. From this point of view, although the carrier depends on its shape, the length of the shortest side or the diameter is preferably 2 mm or more, particularly 3 mm or more. However, if the size of the carrier is excessively large, it is not preferable in terms of fluidity, handling properties, and securing a specific surface area for bacteria to adhere, so the longest side or the diameter should be 10 mm or less. Is preferred.

また、曝気槽への担体の充填率は、曝気槽の負荷に応じて適宜決定されるが、曝気槽容積の5〜50%(体積%)とすることが好ましい。担体充填率が5%未満でも50%を超えても生物処理効率が低下する傾向にある。担体内の無酸素領域での脱窒活性の面からは担体充填率は特に5〜20%とすることが好ましい。   The filling rate of the carrier into the aeration tank is appropriately determined according to the load of the aeration tank, but is preferably 5 to 50% (volume%) of the aeration tank volume. When the carrier filling rate is less than 5% or more than 50%, the biological treatment efficiency tends to decrease. From the viewpoint of denitrification activity in the oxygen-free region in the carrier, the carrier filling rate is particularly preferably 5 to 20%.

また、曝気槽に添加するNOxとしては、硝酸、硝酸塩、亜硝酸、亜硝酸塩のうちのいずれか1種又は2種以上を用いることができるが、例えば硝酸ナトリウム等の水溶液の形態で添加することが、操作上好ましい。   Moreover, as NOx added to the aeration tank, any one or more of nitric acid, nitrate, nitrous acid, and nitrite can be used. For example, it is added in the form of an aqueous solution such as sodium nitrate. Is preferable in terms of operation.

曝気槽へのNOxの添加は、NOxの添加により、担体内部の無酸素領域での脱窒反応により除去すべき有機物の量に応じて適宜決定される。通常、曝気槽内の担体添加型生物処理では除去し得ずに残留する。従って、NOx−N換算(NO−N換算及び/又はNO−N換算)重量で、担体内部の脱窒反応で除去する必要がある、有機物に基く溶解性CODCr重量の1/6〜1/2倍、好ましくは1/4〜1/3倍のNOxを添加することが好ましく、このような添加量であれば、担体添加型生物処理では除去し得ない残留溶解性CODCrを、担体内部の無酸素領域での脱窒反応により効果的に分解除去することができる。 The addition of NOx to the aeration tank is appropriately determined according to the amount of organic matter to be removed by the denitrification reaction in the oxygen-free region inside the support by adding NOx. Usually, the carrier-added biological treatment in the aeration tank cannot be removed and remains. Therefore, it is necessary to remove by NOx-N conversion (NO 3 -N conversion and / or NO 2 -N conversion) weight by denitrification inside the carrier, and 1/6 to the weight of soluble COD Cr based on organic matter It is preferable to add 1/2 times, preferably 1/4 to 1/3 times of NOx. With such an addition amount, residual soluble COD Cr that cannot be removed by the carrier-added biological treatment, It can be effectively decomposed and removed by denitrification reaction in an oxygen-free region inside the carrier.

ところで、本発明により、曝気槽にNOxを添加して担体内部で脱窒反応を起こさせるには、担体内部に無酸素領域を形成し、かつ、NOxだけでなく有機物も担体内に浸透させる必要がある。この条件は、曝気槽の容積負荷、担体充填率、DOに依存し、脱窒を起こさせようとする槽の担体負荷とDOの関係で表すことができる。   By the way, according to the present invention, in order to add NOx to the aeration tank and cause the denitrification reaction inside the carrier, it is necessary to form an oxygen-free region inside the carrier and to allow not only NOx but also organic matter to permeate into the carrier. There is. This condition depends on the volume load of the aeration tank, the carrier filling rate, and the DO, and can be expressed by the relationship between the carrier load of the tank to cause denitrification and DO.

図5は、この関係を示すものであり、ここでは、0.05kg−N/m/日以上の窒素除去活性が得られる場合を、「担体内での脱窒が起こる」とし、黒マルで示してある。グラフの白マルは脱窒の起こらない条件である。 FIG. 5 shows this relationship. Here, when nitrogen removal activity of 0.05 kg-N / m 3 / day or more is obtained, it is assumed that “denitrification occurs in the carrier” and It is shown by. The white circle in the graph is a condition where denitrification does not occur.

図5より、NOxを添加して、担体内で脱窒を起こさせようとする曝気槽の有機物担体負荷(kg−CODCr/m−担体/日)とDO(mg/L)との比を2.0以上とすれば、脱窒を起こさせることができることができることが分かる。 From FIG. 5, the ratio of the organic carrier load (kg-COD Cr / m 3 -carrier / day) and DO (mg / L) in the aeration tank in which NOx is added to cause denitrification in the carrier. It can be seen that denitrification can be caused by setting the ratio to 2.0 or more.

例えば、5mm角スポンジ担体を担体充填率40%で用いた場合の脱型の可否と曝気槽の有機物容積負荷とDOとの関係を示すグラフである図6から明らかなように、担体充填率40%、DO=4mg/Lで運転する場合は、容積負荷3.2kg−CODCr/m−担体/日以上で運転する必要がある。 For example, as can be seen from FIG. 6, which is a graph showing the relationship between the possibility of demolding when a 5 mm square sponge carrier is used at a carrier filling rate of 40%, the organic substance volume load in the aeration tank, and DO, the carrier filling rate is 40. %, DO = 4 mg / L, it is necessary to operate at a volume load of 3.2 kg-COD Cr / m 3 -carrier / day or more.

また、脱窒反応を起こさせようとする曝気槽のバルク中に、脱窒反応の炭素源としての溶解性CODCrが30mg−CODCr/L以上、例えば30〜100mg−CODCr/L程度残存するような運転条件に制御して、前述のNOx添加量でNOxを添加することが、脱窒反応をより一層確実に起こさせる上で好ましい。 Further, in the bulk of the aeration tank which attempts to cause the denitrification, solubility COD Cr as a carbon source for the denitrification is 30mg-COD Cr / L or more, for example 30~100mg-COD Cr / L about remaining It is preferable to control the operating conditions so that NOx is added in the above-described amount of NOx added in order to cause the denitrification reaction more reliably.

また、担体反応を安定して起こさせるために、脱窒反応を起こさせようとする曝気槽のバルク中のDOが4.0mg/L以下となり、担体内に酸素が浸透せず、担体内に広い無酸素領域が形成されるような条件で曝気槽の曝気を行うことが好ましい。   In addition, in order to cause the carrier reaction to occur stably, DO in the bulk of the aeration tank to cause the denitrification reaction is 4.0 mg / L or less, oxygen does not penetrate into the carrier, and the carrier does not penetrate into the carrier. It is preferable to perform aeration in the aeration tank under such a condition that a wide oxygen-free region is formed.

なお、このように、曝気槽の運転条件を、脱窒細菌の増殖に適したものに設定しても、原水中に細菌の増殖に必須な成分が含まれていなければ、脱窒細菌が増殖せず、脱窒による有機物除去効率も向上しない。そこで、曝気槽に栄養剤を添加し、担体内での脱窒を安定して維持することで有機物除去率を安定させるようにすることもできる。図2,3に示すような多段処理において、脱窒細菌の栄養剤を添加する場合、脱窒が最も進行する最前(第1段目)の曝気槽に添加することが望ましい。   In this way, even if the operating conditions of the aeration tank are set to those suitable for the growth of denitrifying bacteria, the denitrifying bacteria will grow if the raw water does not contain any essential components for bacterial growth. The organic matter removal efficiency by denitrification is not improved. Therefore, it is possible to stabilize the organic matter removal rate by adding a nutrient to the aeration tank and stably maintaining denitrification in the carrier. In the multistage treatment as shown in FIGS. 2 and 3, when adding a nutrient for denitrifying bacteria, it is desirable to add it to the aeration tank at the forefront (first stage) where denitrification is most advanced.

栄養剤としては、鉄、銅、モリブデン、マグネシウム、カリウム、カルシウム等の脱窒に必須な無機物を1種単独で又は2種以上混合して用いることができる。   As a nutrient, inorganic substances essential for denitrification such as iron, copper, molybdenum, magnesium, potassium, and calcium can be used singly or in combination of two or more.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

(実施例1)
図1に示す、容量が2.86Lの一過式曝気槽(汚泥返送なし)を用いて、原水の処理を行った。担体は、5mm角(一辺が5mmの立方体)のポリウレタンフォーム製のものを用い、曝気槽容積に対し担体充填率20%となるように添加した。槽内DOは1mg/Lとし、曝気槽に対するCODCr容積負荷は5.6kg−CODCr/m/日、HRT2.4時間で運転した。原水CODCr濃度は560mg/Lとし、野菜エキス、魚肉エキス、及び液糖を混合した人工排水を基質として用いた。
Example 1
The raw water was treated using a transient aeration tank (without sludge return) having a capacity of 2.86 L shown in FIG. A carrier made of polyurethane foam of 5 mm square (cube with a side of 5 mm) was used and added so that the carrier filling rate was 20% with respect to the volume of the aeration tank. The tank DO was 1 mg / L, the COD Cr volumetric load on the aeration tank was 5.6 kg-COD Cr / m 3 / day, and HRT was operated for 2.4 hours. The raw water COD Cr concentration was 560 mg / L, and artificial drainage mixed with vegetable extract, fish meat extract, and liquid sugar was used as a substrate.

この条件で一ヶ月間運転したところ、処理水中の溶解性CODCrは57〜80mg−CODCr/Lで安定していた。 When operated for one month under these conditions, the soluble COD Cr in the treated water was stable at 57-80 mg-COD Cr / L.

運転開始から一ヵ月後、10重量%硝酸ナトリウム水溶液を、原水に対し、20mg−N/Lとなるように添加したところ、処理水中の溶解性CODCr濃度は25〜34mg−CODCr/Lまで低下した。 One month after the start of operation, a 10% by weight aqueous sodium nitrate solution was added to the raw water so that the concentration was 20 mg-N / L. The soluble COD Cr concentration in the treated water was 25 to 34 mg-COD Cr / L. Declined.

(比較例1)
実施例1と同じ条件で、硝酸ナトリウムを添加せずに運転を継続したところ、処理水中の溶解性CODCr濃度は57〜80mg−CODCr/Lのままであり、低下することはなかった。
(Comparative Example 1)
When the operation was continued without adding sodium nitrate under the same conditions as in Example 1, the soluble COD Cr concentration in the treated water remained 57-80 mg-COD Cr / L and did not decrease.

(比較例2)
実施例1の条件で、担体充填率を30%まで上げ、DO>2mg/Lで運転すると、処理水中の溶解性CODCr濃度は28〜42mg−CODCr/Lまで低下したが、この場合には担体コスト、曝気コストが高くつく。
(Comparative Example 2)
Under the conditions of Example 1, when the carrier filling rate was increased to 30% and operated at DO> 2 mg / L, the soluble COD Cr concentration in the treated water decreased to 28-42 mg-COD Cr / L. The carrier cost and aeration cost are high.

実施例1及び比較例1,2における処理水の溶解性CODCr濃度の経時変化を図7に示す。 FIG. 7 shows the change over time in the soluble COD Cr concentration of the treated water in Example 1 and Comparative Examples 1 and 2.

実施例1及び比較例1,2より、本発明によれば、担体充填率、曝気量を抑えた上で、処理効率の向上を図ることができることが分かる。   From Example 1 and Comparative Examples 1 and 2, it can be seen that according to the present invention, it is possible to improve the processing efficiency while suppressing the carrier filling rate and the amount of aeration.

(実施例2)
図2に示す、容量が2.86Lの一過式曝気槽(汚泥返送なし)を2槽直列につないだ2段生物処理にて、原水の処理を行った。担体は、実施例1で用いたと同様の5mm角のポリウレタンフォーム製のものを用い、各曝気槽の容積に対し20%となるように添加した。DOは前段曝気槽で1mg/L、後段曝気槽で3mg/Lとし、装置全体に対するCODCr容積負荷は5.6kg−CODCr/m/日、HRT2.4時間で運転した。原水CODCr濃度は560mg/Lとし、野菜エキス、魚肉エキス、及び液糖を混合した人工排水を基質として用いた。
(Example 2)
The raw water was treated by a two-stage biological treatment in which two tanks with a capacity of 2.86 L (no sludge return) were connected in series as shown in FIG. The carrier used was a 5 mm square polyurethane foam similar to that used in Example 1, and was added so as to be 20% of the volume of each aeration tank. DO was 1 mg / L in the front aeration tank, 3 mg / L in the rear aeration tank, and the COD Cr volumetric load for the entire apparatus was 5.6 kg-COD Cr / m 3 / day, and the operation was performed at HRT of 2.4 hours. The raw water COD Cr concentration was 560 mg / L, and artificial drainage mixed with vegetable extract, fish extract, and liquid sugar was used as a substrate.

この条件で一ヶ月間運転したところ、処理水中の溶解性CODCrは28〜37mg−CODCr/Lで安定していたが、前段の曝気槽のスクリーンがスライムで閉塞するため、毎日洗浄する必要があった。 When operated under this condition for one month, the soluble COD Cr in the treated water was stable at 28-37 mg-COD Cr / L, but the screen of the previous aeration tank was clogged with slime, so it must be cleaned daily. was there.

そこで、10重量%硝酸ナトリウム水溶液を、原水に対し、10mg−N/Lとなるように添加したところ、スライムによる閉塞は解消し、処理水中の溶解性CODCrは28〜33mg−CODCr/Lまで低下した。 Therefore, when a 10% by weight sodium nitrate aqueous solution was added to the raw water so as to be 10 mg-N / L, clogging by slime was resolved, and soluble COD Cr in the treated water was 28 to 33 mg-COD Cr / L. It dropped to.

処理水中の硝酸性窒素濃度は20mg−N/Lで安定していた。   The nitrate nitrogen concentration in the treated water was stable at 20 mg-N / L.

(実施例3)
図3に示す、容量が2.86Lの一過式生物処理槽(汚泥返送なし)を2槽直列につないだ2段生物処理にて、原水の処理を行った。担体は、実施例1で用いたと同様の5mm角のポリウレタンフォーム製のものを用い、各曝気槽の容積に対し20%となるように添加した。DOは前段曝気槽で1mg/L、後段曝気槽で3mg/Lとし、装置全体に対するCODCr容積負荷は5.6kg−CODCr/m/日、HRT2.4時間で運転した。原水CODCr濃度は560mg/Lとし、野菜エキス、魚肉エキス、及び液糖を混合した人工排水を基質として用いた。また、後段の曝気槽の処理水の50%(原水流量の100%)に相当する40ml/分をポンプで引き抜き、前段へ返送した。
(Example 3)
The raw water was treated in a two-stage biological treatment in which two tanks with a capacity of 2.86 L (no sludge return) were connected in series as shown in FIG. The carrier used was a 5 mm square polyurethane foam similar to that used in Example 1, and was added so as to be 20% of the volume of each aeration tank. DO was 1 mg / L in the front aeration tank, 3 mg / L in the rear aeration tank, and the COD Cr volumetric load on the entire apparatus was 5.6 kg-COD Cr / m 3 / day, and the operation was performed at HRT of 2.4 hours. The raw water COD Cr concentration was 560 mg / L, and artificial drainage mixed with vegetable extract, fish meat extract, and liquid sugar was used as a substrate. In addition, 40 ml / min corresponding to 50% of the treated water in the latter stage aeration tank (100% of the raw water flow rate) was extracted with a pump and returned to the former stage.

この条件で、一ヶ月間運転したところ、スライムによる閉塞は発生せず、処理水中の溶解性CODCrは25〜35mg−CODCr/Lで安定していた。さらに処理水の硝酸性窒素濃度は10mg−N/Lまで低下した。 When operated for one month under these conditions, clogging with slime did not occur, and the soluble COD Cr in the treated water was stable at 25 to 35 mg-COD Cr / L. Furthermore, the nitrate nitrogen concentration of the treated water decreased to 10 mg-N / L.

本発明の有機物含有水の生物処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment apparatus of the organic substance containing water of this invention. 本発明の有機物含有水の生物処理装置の別の実施の形態を示す系統図である。It is a systematic diagram which shows another embodiment of the biological treatment apparatus of the organic substance containing water of this invention. 本発明の有機物含有水の生物処理装置の異なる実施の形態を示す系統図である。It is a systematic diagram which shows different embodiment of the biological treatment apparatus of the organic substance containing water of this invention. 本発明に係る担体内部での脱窒反応機構の説明図である。It is explanatory drawing of the denitrification reaction mechanism inside the support | carrier which concerns on this invention. 脱窒反応の可否と、有機物担体負荷及びDOとの関係を示すグラフである(図中、ドットを付した領域が、脱窒の起きる領域である。)。It is a graph which shows the relationship between the possibility of denitrification reaction, organic substance support load, and DO (In the figure, the area | region which attached | subjected the dot is an area | region where denitrification occurs.). 脱窒反応の可否と、曝気槽の有機物容積負荷及びDOとの関係を示すグラフである(図中、ドットを付した領域が、脱窒の起きる領域である。)。It is a graph which shows the relationship between the propriety of denitrification reaction, the organic substance volume load of an aeration tank, and DO (In the figure, the area | region which attached | subjected the dot is an area | region where denitrification occurs.). 実施例1及び比較例1,2における処理水の溶解性CODCrの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the solubility COD Cr of the treated water in Example 1 and Comparative Examples 1 and 2.

符号の説明Explanation of symbols

1,1A,1B 曝気槽
2 担体
3 スクリーン
10 多孔質担体
1, 1A, 1B Aeration tank 2 Carrier 3 Screen 10 Porous carrier

Claims (14)

生物担体を内蔵する一槽式または多段型の曝気槽に有機物含有水を導入し、酸素含有気体を曝気して生物処理する方法において、酸素源として硝酸(塩)及び/又は亜硝酸(塩)含有液を前記曝気槽に添加し、該曝気槽内で曝気による有機物の生物酸化と、脱窒反応による有機物の分解とを行うことを特徴とする有機物含有水の生物処理方法。   Nitric acid (salt) and / or nitrous acid (salt) as an oxygen source in a method of biological treatment by introducing organic substance-containing water into a single tank or multi-stage aeration tank containing a biological carrier and aeration of oxygen-containing gas A biological treatment method for organic matter-containing water, which comprises adding a contained liquid to the aeration tank, and performing biological oxidation of the organic substance by aeration in the aeration tank and decomposition of the organic substance by a denitrification reaction. 請求項1において、前記生物担体は、前記曝気槽内で曝気により流動する担体であることを特徴とする有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 1, wherein the biological carrier is a carrier that flows by aeration in the aeration tank. 請求項1又は2において、前記曝気槽が直列多段に設けられ、後段の曝気槽の処理水の一部が1〜3槽目のいずれか、または複数の曝気槽に返送されることを特徴とする有機物含有水の生物処理方法。   The aeration tank according to claim 1 or 2, wherein a plurality of aeration tanks are provided in series, and a part of the treated water in the latter aeration tank is returned to one of the first to third tanks or a plurality of aeration tanks. A method for biological treatment of organic-containing water. 請求項1ないし3のいずれか1項において、前記硝酸(塩)及び/又は亜硝酸(塩)含有液を添加する曝気槽の有機物担体負荷(kg−CODCr/m−担体/日)と溶存酸素(mg/L)との比を2.0以上とすることを特徴とする有機物含有水の生物処理方法。 The organic carrier load (kg-COD Cr / m 3 -carrier / day) of the aeration tank to which the nitric acid (salt) and / or nitrous acid (salt) -containing liquid is added according to any one of claims 1 to 3. The biological treatment method of organic substance containing water characterized by making ratio with dissolved oxygen (mg / L) 2.0 or more. 請求項1ないし4のいずれか1項において、前記脱窒反応による有機物の分解を行うべき、分解対象の溶解性CODCrの1/6〜1/2重量倍の硝酸(塩)及び/又は亜硝酸(塩)(NO−N換算)含有液を添加することを特徴とする有機物含有水の生物処理方法。 5. The nitric acid (salt) and / or the sub-oxide in any one of claims 1 to 4, wherein the organic matter should be decomposed by the denitrification reaction, and is 1/6 to 1/2 times by weight the soluble COD Cr to be decomposed. biological treatment method of organic-containing water, which comprises adding nitric acid (salt) (NO x -N equivalent) containing liquid. 請求項1ないし5のいずれか1項において、前記生物担体の充填率が前記曝気槽容積の5〜50%であることを特徴とする有機物含有水の生物処理方法。   6. The biological treatment method for organic substance-containing water according to claim 1, wherein a filling rate of the biological carrier is 5 to 50% of the volume of the aeration tank. 請求項1ないし6のいずれか1項において、前記生物担体は、最も短い一辺又は直径が2mm以上であることを特徴とする有機物含有水の生物処理方法。   The biological treatment method for organic substance-containing water according to any one of claims 1 to 6, wherein the biological carrier has a shortest side or diameter of 2 mm or more. 生物担体を内蔵する曝気槽と、該曝気槽に有機物含有水を導入する手段とを有し、該曝気槽にて酸素含有気体を曝気して生物処理する装置において、酸素源として硝酸(塩)及び/又は亜硝酸(塩)を前記曝気槽に添加する手段を有し、該曝気槽内で曝気による有機物の生物酸化と、脱窒反応による有機物の分解とを行うことを特徴とする有機物含有水の生物処理装置。   Nitric acid (salt) as an oxygen source in an apparatus having an aeration tank containing a biological carrier and means for introducing organic substance-containing water into the aeration tank and aspirating oxygen-containing gas in the aeration tank And / or a means for adding nitrous acid (salt) to the aeration tank, wherein organic oxidation is carried out in the aeration tank by organic oxidation of the organic substance and decomposition of the organic substance by denitrification reaction. Water biological treatment equipment. 請求項8において、前記生物担体は、前記曝気槽内で曝気により流動する担体であることを特徴とする有機物含有水の生物処理装置。   9. The biological treatment apparatus for organic matter-containing water according to claim 8, wherein the biological carrier is a carrier that flows by aeration in the aeration tank. 請求項8又は9において、前記曝気槽が直列多段に設けられ、後段の曝気槽の処理水の一部を最前の曝気槽に返送する手段を有することを特徴とする有機物含有水の生物処理装置。   10. The biological treatment apparatus for organic matter-containing water according to claim 8, wherein the aeration tanks are provided in series in multiple stages, and have means for returning a part of the treated water in the subsequent aeration tank to the front aeration tank. . 請求項8ないし10のいずれか1項において、前記硝酸(塩)及び/又は亜硝酸(塩)を添加する曝気槽の有機物担体負荷(kg−CODCr/m−担体/日)と溶存酸素(mg/L)との比を2.0以上とすることを特徴とする有機物含有水の生物処理装置。 The organic carrier load (kg-COD Cr / m 3 -carrier / day) and dissolved oxygen in the aeration tank to which the nitric acid (salt) and / or nitrous acid (salt) are added according to any one of claims 8 to 10. A biological treatment apparatus for organic matter-containing water, wherein the ratio of (mg / L) to 2.0 or more. 請求項8ないし11のいずれか1項において、前記脱窒反応による有機物の分解を行うべき、分解対象の溶解性CODCrの1/6〜1/2重量倍の硝酸(塩)及び/又は亜硝酸(塩)を添加することを特徴とする有機物含有水の生物処理装置。 12. The nitric acid (salt) and / or the sub-oxide of any one of claims 8 to 11, wherein the organic matter should be decomposed by the denitrification reaction, the soluble COD Cr to be decomposed is 1/6 to 1/2 times by weight. A biological treatment apparatus for water containing organic matter, characterized by adding nitric acid (salt). 請求項8ないし12のいずれか1項において、前記生物担体の充填率が前記曝気槽容積の5〜50%であることを特徴とする有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to any one of claims 8 to 12, wherein a filling rate of the biological carrier is 5 to 50% of the volume of the aeration tank. 請求項8ないし13のいずれか1項において、前記生物担体は、最も短い一辺又は直径が2mm以上であることを特徴とする有機物含有水の生物処理装置。   14. The biological treatment apparatus for organic matter-containing water according to claim 8, wherein the biological carrier has a shortest side or diameter of 2 mm or more.
JP2008210854A 2008-08-19 2008-08-19 Biological treatment method and apparatus for water containing organic matter Active JP5233498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210854A JP5233498B2 (en) 2008-08-19 2008-08-19 Biological treatment method and apparatus for water containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210854A JP5233498B2 (en) 2008-08-19 2008-08-19 Biological treatment method and apparatus for water containing organic matter

Publications (2)

Publication Number Publication Date
JP2010046572A true JP2010046572A (en) 2010-03-04
JP5233498B2 JP5233498B2 (en) 2013-07-10

Family

ID=42064134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210854A Active JP5233498B2 (en) 2008-08-19 2008-08-19 Biological treatment method and apparatus for water containing organic matter

Country Status (1)

Country Link
JP (1) JP5233498B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232243A (en) * 2011-04-28 2012-11-29 Japan Organo Co Ltd Treatment method and treatment apparatus of wastewater containing ethanolamine and hydrazine
JP2014509940A (en) * 2011-04-04 2014-04-24 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Improved biological wastewater purification reactor and method
KR101793979B1 (en) 2013-07-09 2017-11-06 쿠리타 고교 가부시키가이샤 Slime control method
CN109851181A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage-treatment plant, system and application method comprising it
CN115490328A (en) * 2022-10-27 2022-12-20 恩格拜(武汉)生态科技有限公司 Built-in denitrification fluidizing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656293A (en) * 1979-10-11 1981-05-18 Unitika Ltd Treatment of organic waste water and equipment therefor
JPH04219199A (en) * 1990-02-14 1992-08-10 Schering Ag Biological purification method of waste water
JPH05177197A (en) * 1991-12-27 1993-07-20 Fuji Photo Film Co Ltd Treatment process for waste water
JPH11319871A (en) * 1998-05-08 1999-11-24 Kankyo Eng Co Ltd Treatment of organic waste water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656293A (en) * 1979-10-11 1981-05-18 Unitika Ltd Treatment of organic waste water and equipment therefor
JPH04219199A (en) * 1990-02-14 1992-08-10 Schering Ag Biological purification method of waste water
JPH05177197A (en) * 1991-12-27 1993-07-20 Fuji Photo Film Co Ltd Treatment process for waste water
JPH11319871A (en) * 1998-05-08 1999-11-24 Kankyo Eng Co Ltd Treatment of organic waste water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509940A (en) * 2011-04-04 2014-04-24 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Improved biological wastewater purification reactor and method
JP2012232243A (en) * 2011-04-28 2012-11-29 Japan Organo Co Ltd Treatment method and treatment apparatus of wastewater containing ethanolamine and hydrazine
KR101793979B1 (en) 2013-07-09 2017-11-06 쿠리타 고교 가부시키가이샤 Slime control method
CN109851181A (en) * 2019-04-11 2019-06-07 信开水环境投资有限公司 Sewage-treatment plant, system and application method comprising it
CN109851181B (en) * 2019-04-11 2024-05-03 信开环境投资有限公司 Sewage treatment device, system comprising same and use method
CN115490328A (en) * 2022-10-27 2022-12-20 恩格拜(武汉)生态科技有限公司 Built-in denitrification fluidizing device
CN115490328B (en) * 2022-10-27 2023-11-03 恩格拜(武汉)生态科技有限公司 Built-in denitrification fluidization device

Also Published As

Publication number Publication date
JP5233498B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US6423229B1 (en) Bioreactor systems for biological nutrient removal
JP5233498B2 (en) Biological treatment method and apparatus for water containing organic matter
CN1318324C (en) Sewage treatment appts. using self-granulating active sludge and sewage treatment process
JP2008284427A (en) Apparatus and method for treating waste water
JP2008272625A (en) Wastewater treatment system
JP2005211879A (en) Biological treatment method for organic waste water
CN105102379B (en) The bioremediation and device of organic wastewater
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP2024026729A (en) Water treatment device
JP3841394B2 (en) High concentration organic wastewater treatment method and equipment
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JP2006122865A (en) Water treatment and carrier acclimatization method and its device
JP2005349252A (en) Biological treatment of organic wastewater
JP4608771B2 (en) Biological denitrification equipment
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JP2016123920A (en) Wastewater treatment apparatus and method
JP2016049512A (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP6899104B2 (en) Wastewater treatment method and wastewater treatment equipment
JP2015020150A (en) Method for treating organic waste water biologically
IL155193A (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
JP2006239612A (en) Biological treatment method of oils- and fats-containing wastewater
KR20190053833A (en) Biological treatment of organic wastewater
JP5021902B2 (en) Organic wastewater treatment facility and treatment method
JP7181251B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP4865997B2 (en) Operation method of sewage treatment apparatus and sewage treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250