JP2010040963A - Chip electrolytic capacitor - Google Patents

Chip electrolytic capacitor Download PDF

Info

Publication number
JP2010040963A
JP2010040963A JP2008205162A JP2008205162A JP2010040963A JP 2010040963 A JP2010040963 A JP 2010040963A JP 2008205162 A JP2008205162 A JP 2008205162A JP 2008205162 A JP2008205162 A JP 2008205162A JP 2010040963 A JP2010040963 A JP 2010040963A
Authority
JP
Japan
Prior art keywords
sealing material
protrusion
elastic sealing
chip
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205162A
Other languages
Japanese (ja)
Other versions
JP5119083B2 (en
Inventor
Akira Iwazawa
晃 岩澤
Jun Nozawa
順 野澤
Yuki Sasazaki
祐樹 笹崎
Yasushi Yamamoto
康司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008205162A priority Critical patent/JP5119083B2/en
Publication of JP2010040963A publication Critical patent/JP2010040963A/en
Application granted granted Critical
Publication of JP5119083B2 publication Critical patent/JP5119083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip electrolytic capacitor which prevents deformation to the insulation plate side of an elastic sealing material and improves a vibration-resistant property. <P>SOLUTION: A chip electrolytic capacitor 1 is constituted by a capacitor body 2 and an insulation plate 3. The capacitor body 2 includes a capacitor element 4 from which a pair of lead wires 5 is derived, a cylindrical-bottom encapsulating case 6 for housing the capacitor element 4, and an elastic sealing material 7 which seals the opening edge of the encapsulating case 6 and in which a pair of through-holes 7b penetrated by the pair of lead wires 5 is formed. The insulation plate 3 is disposed while opposing the elastic sealing material 7 and penetrated by the pair of lead wires 5. With the face 7a of the insulation plate 3 side of the elastic sealing material 7, a first protrusion 8 which extends along the face 7a and whose tip is a bifurcated shape extending in the same direction as the extending direction, and second protrusions 9 and 10 connected with both edges of the first protrusion 8 are formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板に面実装されるチップ形電解コンデンサに関するものである。   The present invention relates to a chip-type electrolytic capacitor that is surface-mounted on a substrate.

従来から基板に面実装されるチップ形電解コンデンサには、図3に示すような縦型のものがある(例えば、特許文献1参照)。
このような縦型のチップ形電解コンデンサ91は、コンデンサ本体92と、絶縁板93とから構成されており、コンデンサ本体92は、一対のリード線95が導出されたコンデンサ素子94と、このコンデンサ素子94を収納する有底筒状の外装ケース96と、外装ケース(主としてアルミニウム製)96の開口端を封口すると共に、一対のリード線95が貫通される一対の貫通孔97bが形成された弾性封口材97とを有する。また、絶縁板93は、弾性封口材97に対向して配置されると共に、一対のリード線95が貫通されている。
Conventionally, chip type electrolytic capacitors surface-mounted on a substrate include a vertical type as shown in FIG. 3 (see, for example, Patent Document 1).
Such a vertical chip-type electrolytic capacitor 91 includes a capacitor body 92 and an insulating plate 93. The capacitor body 92 includes a capacitor element 94 from which a pair of lead wires 95 is led out, and the capacitor element. A bottomed cylindrical outer case 96 that accommodates 94 and an elastic sealing member that seals the open ends of the outer case (mainly made of aluminum) 96 and has a pair of through-holes 97b through which the pair of lead wires 95 penetrate. Material 97. The insulating plate 93 is disposed so as to face the elastic sealing member 97 and the pair of lead wires 95 are penetrated.

上記のようなチップ形電解コンデンサ91を基板実装する際には、リフローはんだ付けによる面実装が行われる。このはんだ面実装は、スクリーンマスクを用いて基板ランドパターンにクリーム状のはんだを塗布し、その上にチップ形電解コンデンサを含む部品を搭載した後、基板自体をはんだ溶融温度以上の高温雰囲気により加熱してはんだ付けを行う。   When the chip-type electrolytic capacitor 91 as described above is mounted on the board, surface mounting is performed by reflow soldering. In this solder surface mounting, cream solder is applied to a board land pattern using a screen mask, and a component including a chip-type electrolytic capacitor is mounted thereon, and then the board itself is heated in a high-temperature atmosphere higher than the solder melting temperature. And soldering.

近年では、環境対応を配慮して、実装に使用されるはんだは、従来の有鉛はんだ(例えば、Sn−37Pb:融点約183℃)から、鉛を含まない無鉛はんだ(例えばSn−3.0Ag−0.5Cu:融点約217℃)への切り替えが進んでおり、リフロー実装時に部品がさらされる温度が上昇している。
また、基板実装技術の進化により、部品をより高密度に実装することが可能となったことも、はんだ溶融に至る雰囲気温度の上昇に拍車をかけている。
In recent years, in consideration of environmental considerations, solder used for mounting has been changed from conventional leaded solder (for example, Sn-37Pb: melting point of about 183 ° C.) to lead-free solder (for example, Sn-3.0Ag) that does not contain lead. -0.5Cu: Melting point is about 217 ° C), and the temperature at which components are exposed during reflow mounting is increasing.
In addition, the evolution of board mounting technology has made it possible to mount components at higher density, which has spurred an increase in ambient temperature that leads to solder melting.

このようなリフローはんだ付けによる表面実装では、基板に搭載されるチップ形電解コンデンサ91が高温下にさらされることにより、外装ケース96内の空気が膨張し、また電解質が液状の場合には電解液の蒸散が起こり、コンデンサ本体92の内部圧力(外装ケース96内の圧力)が上昇する。
このコンデンサ本体92の内部圧力の上昇により、図4に示すように、弾性封口材97が絶縁板93側に変形する。これに起因して、リード線95が屈曲変形したり、絶縁板93が弾性封口材97から押圧されて変形するため、リード線95が基板から浮き上がり、はんだ付け不良を起こしてしまう可能性がある。
In such surface mounting by reflow soldering, the chip-type electrolytic capacitor 91 mounted on the substrate is exposed to a high temperature, whereby the air in the outer case 96 expands, and when the electrolyte is liquid, the electrolytic solution As a result, the internal pressure of the capacitor main body 92 (pressure in the outer case 96) increases.
Due to the increase in the internal pressure of the capacitor main body 92, the elastic sealing material 97 is deformed toward the insulating plate 93 as shown in FIG. As a result, the lead wire 95 is bent and deformed, or the insulating plate 93 is pressed and deformed from the elastic sealing material 97, so that the lead wire 95 is lifted from the substrate and may cause poor soldering. .

また、近年では、チップ形電解コンデンサの用途は、家電等の半不動品に留まらず、車載用途など、振動が生じる用途に用いられることがある。
チップ形電解コンデンサ91に振動が加わると、上述したように、弾性封口材97と絶縁板93との間に隙間が生じているため、絶縁板93がコンデンサ本体92に対して、横方向、上下方向、またはリード線95を回転中心とした回転方向に振動する。また、コンデンサ本体92も、基板に対して横方向、または回転方向に振動する。これにより、振動による負荷がリード線95に集中し、リード線95が破断して動作不良が生じる可能性がある。
In recent years, the use of chip-type electrolytic capacitors is not limited to semi-stationary products such as home appliances, but may be used for applications that generate vibration, such as in-vehicle applications.
When vibration is applied to the chip-type electrolytic capacitor 91, as described above, a gap is generated between the elastic sealing material 97 and the insulating plate 93, so that the insulating plate 93 is laterally and vertically with respect to the capacitor body 92. It vibrates in the direction or the rotation direction with the lead wire 95 as the rotation center. Further, the capacitor main body 92 also vibrates laterally with respect to the substrate or in the rotational direction. As a result, a load due to vibration is concentrated on the lead wire 95, and the lead wire 95 may be broken to cause a malfunction.

そこで、特許文献2には、図5に示すような、絶縁板93´の弾性封口材97側の面に円錐状突起98を複数設け、この突起98を弾性封口材に当接させることにより、弾性コンデンサ本体に対する絶縁板の振動を防止するチップ形電解コンデンサ91´が開示されている。   Therefore, in Patent Document 2, as shown in FIG. 5, by providing a plurality of conical projections 98 on the surface of the insulating plate 93 ′ on the side of the elastic sealing material 97, by contacting the projections 98 with the elastic sealing material, A chip-type electrolytic capacitor 91 ′ that prevents vibration of the insulating plate relative to the elastic capacitor body is disclosed.

特許第2703718号公報Japanese Patent No. 2703718 特開2006‐41125号公報JP 2006-41125 A

しかしながら、特許文献2のチップ形電解コンデンサでは、絶縁板に設けられた突部の形状が円錐状であるため、絶縁板と弾性封口材とは点接触することとなり、突部と弾性封口材との接触面積が小さいため、特にチップ形電解コンデンサに大きな振動が作用した場合には、耐振動性が十分でなかった。加えて弾性封口材の変形を抑制する効果も十分でなかった。   However, in the chip-type electrolytic capacitor of Patent Document 2, since the shape of the protrusion provided on the insulating plate is conical, the insulating plate and the elastic sealing material are in point contact, and the protrusion and the elastic sealing material are Because of the small contact area, vibration resistance was not sufficient particularly when large vibrations acted on the chip-type electrolytic capacitor. In addition, the effect of suppressing deformation of the elastic sealing material was not sufficient.

そこで、本発明は、弾性封口材の絶縁板側への変形をより確実に抑制するとともに、耐振動性を向上させたチップ形電解コンデンサを提供することを目的とする。   Therefore, an object of the present invention is to provide a chip-type electrolytic capacitor that more reliably suppresses deformation of the elastic sealing material toward the insulating plate and improves vibration resistance.

本発明のチップ形電解コンデンサは、一対のリード線が導出されたコンデンサ素子と、前記コンデンサ素子を収納する有底筒状の外装ケースと、前記外装ケースの開口端を封口すると共に、前記一対のリード線が貫通される一対の貫通孔が形成された弾性封口材とを有するコンデンサ本体と、前記弾性封口材に対向して配置されると共に、前記一対のリード線が貫通される絶縁板とを備えたチップ形電解コンデンサにおいて、前記弾性封口材の前記絶縁板側の面に、この面に沿って延在する1つ以上の第1突部が形成されており、さらに、前記第1突部の先端が延在方向と同一方向に延在する二股形状であることを特徴とする(第1の発明)。   The chip-type electrolytic capacitor of the present invention includes a capacitor element from which a pair of lead wires are derived, a bottomed cylindrical outer case that houses the capacitor element, an opening end of the outer case, and a pair of the pair of lead wires. A capacitor main body having a pair of through-holes through which lead wires are penetrated and an insulating plate through which the pair of lead wires are penetrated. In the chip-type electrolytic capacitor provided, one or more first protrusions extending along the surface of the elastic sealing material on the insulating plate side are formed, and the first protrusion It is characterized by having a forked shape extending in the same direction as the extending direction (first invention).

この構成によると、弾性封口材が絶縁板側に押圧されて、先端が二股形状の第1突部が絶縁板に当接した場合、二股が開くように第1突部が変形できるため、弾性封口材の絶縁板側への押圧が分散し、第1突部が変形することで弾性封口材の弾性板側への変形と、絶縁板の変形を抑制できる。
同時に、絶縁板とコンデンサ本体の振動を抑制できる。
さらに、第1突部の形状が、弾性封口材の面に沿って延在する形状であるため、突部の形状が点接触するような形状の場合に比べて、弾性封口材の変形が確実に抑制され、耐振動性がより向上する。
According to this configuration, when the elastic sealing material is pressed toward the insulating plate and the first protrusion having a bifurcated tip is in contact with the insulating plate, the first protrusion can be deformed so that the two branches open. The pressure on the insulating plate side of the sealing material is dispersed and the first protrusion is deformed, so that deformation of the elastic sealing material to the elastic plate side and deformation of the insulating plate can be suppressed.
At the same time, vibrations of the insulating plate and the capacitor body can be suppressed.
Furthermore, since the shape of the first protrusion is a shape extending along the surface of the elastic sealing material, the deformation of the elastic sealing material is more reliable than in the case where the shape of the protrusion is in point contact. The vibration resistance is further improved.

前記第1突部は、前記一対の貫通孔の間を通り、前記一対の貫通孔を結ぶ線分に交差する方向に延在していることが好ましい(第2の発明)。
弾性封口材の絶縁板側への変形は、弾性封口材のほぼ中央部が絶縁板側に突出する形となるため、弾性封口材のほぼ中央部である一対の貫通孔の間を通るように第1突部を設けることにより、弾性封口材の変形をより確実に抑制することができる。
The first protrusion preferably extends in a direction passing through the pair of through holes and intersecting a line segment connecting the pair of through holes (second invention).
The deformation of the elastic sealing material toward the insulating plate is such that the substantially central portion of the elastic sealing material protrudes toward the insulating plate, so that it passes between the pair of through-holes that are substantially the central portion of the elastic sealing material. By providing the first protrusion, the deformation of the elastic sealing material can be more reliably suppressed.

前記第1突部の先端は、互いに隣接して並列配置された、半円柱状または多角柱状の2つの突部からなる二股形状であることが好ましい(第3の発明)。   It is preferable that the tip of the first protrusion has a bifurcated shape composed of two protrusions having a semi-cylindrical shape or a polygonal column shape arranged adjacent to each other in parallel (third invention).

前記第1突部は、前記絶縁板に当接していることが好ましい(第4の発明)。
この構成によると、弾性封口材の絶縁板側への変形をより確実に抑制することができるとともに、弾性封口材と絶縁板とが密着するため耐振動性もより向上する。
The first protrusion is preferably in contact with the insulating plate (fourth invention).
According to this configuration, deformation of the elastic sealing material toward the insulating plate can be more reliably suppressed, and vibration resistance is further improved because the elastic sealing material and the insulating plate are in close contact with each other.

また、前記弾性封口材の前記絶縁板側の面に、この面に沿って延在する2つの第2突部が形成されており、前記2つの第2突部が、それぞれ、前記第1突部の両端部に連結されると共に、前記第1突部に交差する方向に延在し、かつ、前記一対の貫通孔と前記弾性封口材の外縁との間に形成されていることが好ましい(第5の発明)。
この構成によると、第1突部のみが設けられている場合に比べて、弾性封口材から絶縁板への力の伝達がより分散して行われるため、弾性封口材の変形をより確実に抑制することができるとともに、耐振動性もより向上する。
Moreover, two second protrusions extending along the surface are formed on the surface of the elastic sealing material on the insulating plate side, and the two second protrusions are respectively formed on the first protrusion. It is preferable that it is connected to both ends of the part, extends in a direction intersecting the first protrusion, and is formed between the pair of through holes and the outer edge of the elastic sealing material ( (5th invention).
According to this configuration, since the transmission of force from the elastic sealing material to the insulating plate is more dispersed than when only the first protrusion is provided, the deformation of the elastic sealing material is more reliably suppressed. The vibration resistance can be further improved.

前記第2突部の先端が、延在方向と同一方向に延在する二股形状であってもよい(第6の発明)。
この構成によると、第1突部と同様に、弾性封口材が絶縁板側に押圧されて、第2突部が絶縁板に当接した場合、第2突部の二股が開くように第2突部が変形できるため、弾性封口材の絶縁板側への押圧が分散し、第2突部が変形することで弾性封口材の弾性板側への変形を抑制できる。
同時に、絶縁板とコンデンサ本体の振動も抑制できる。
The tip of the second protrusion may have a bifurcated shape extending in the same direction as the extending direction (sixth invention).
According to this configuration, similarly to the first protrusion, when the elastic sealing material is pressed toward the insulating plate and the second protrusion comes into contact with the insulating plate, the second protrusion is opened so that the fork is opened. Since the protrusion can be deformed, the pressure of the elastic sealing material on the insulating plate side is dispersed, and the deformation of the elastic sealing material on the elastic plate side can be suppressed by the deformation of the second protrusion.
At the same time, vibrations of the insulating plate and the capacitor body can be suppressed.

また、前記第2突部は、前記弾性封口材の表面に沿って延在する半円柱状または多角柱状に形成されていてもよい(第7の発明)。
上述したように、弾性封口材の絶縁板側への変形は、弾性封口材のほぼ中央部が絶縁板側に突出する形となるため、弾性封口材の外縁部近くに形成される第2突部は、その先端が二股形状でなくとも、弾性封口材の変形を抑制する効果および耐振動性を向上させる効果を得ることができる。
Further, the second protrusion may be formed in a semi-cylindrical shape or a polygonal column shape extending along the surface of the elastic sealing material (seventh invention).
As described above, the deformation of the elastic sealing material toward the insulating plate is such that the substantially central portion of the elastic sealing material protrudes toward the insulating plate, so that the second protrusion formed near the outer edge of the elastic sealing material. Even if the tip of the part is not bifurcated, the effect of suppressing deformation of the elastic sealing material and the effect of improving vibration resistance can be obtained.

前記第2突部は、前記絶縁板に当接していることが好ましい(第8の発明)。
この構成によると、弾性封口材の絶縁板側への変形をより確実に抑制することができるとともに、弾性封口材と絶縁板とが密着するため、耐振動性もより向上する。
The second protrusion is preferably in contact with the insulating plate (eighth invention).
According to this configuration, the elastic sealing material can be more reliably prevented from being deformed toward the insulating plate side, and the elastic sealing material and the insulating plate are in close contact with each other, so that the vibration resistance is further improved.

本発明のチップ形電解コンデンサによると、弾性封口材の絶縁板側の面に、先端が二股形状の第1突部が形成されていることにより、弾性封口材が絶縁板側に押圧された場合、この二股が開くように第1突部は変形できるため、弾性封口材の絶縁板側への押圧が分散し、第1突部が変形することで弾性封口材の絶縁板側への変形と、絶縁板の変形を抑制できる。
同時に、絶縁板とコンデンサ本体の振動を抑制できる。
さらに、第1突部の形状が、弾性封口材の面に沿って延在する形状であるため、突部の形状が点接触するような形状の場合に比べて、弾性封口材の変形が確実に抑制され、耐振動性がより向上する。
According to the chip-type electrolytic capacitor of the present invention, when the elastic sealing material is pressed to the insulating plate side by forming the bifurcated first protrusion on the surface of the elastic sealing material on the insulating plate side Since the first protrusion can be deformed so that the fork is opened, the pressure on the insulating plate side of the elastic sealing material is dispersed, and the deformation of the elastic sealing material to the insulating plate side is caused by the deformation of the first protrusion. The deformation of the insulating plate can be suppressed.
At the same time, vibrations of the insulating plate and the capacitor body can be suppressed.
Furthermore, since the shape of the first protrusion is a shape extending along the surface of the elastic sealing material, the deformation of the elastic sealing material is more reliable than in the case where the shape of the protrusion is in point contact. The vibration resistance is further improved.

以下、本発明の実施の形態について説明する。
図1(a)に示すように、本実施形態のチップ形電解コンデンサ1は、コンデンサ本体2と、絶縁板3とから構成されている。
コンデンサ本体2は、コンデンサ素子4と、外装ケース6と、弾性封口材7とを有する。チップ形電解コンデンサ1は、図1中の上下方向が実際の上下方向となるように設置されている。
Embodiments of the present invention will be described below.
As shown in FIG. 1A, the chip-type electrolytic capacitor 1 according to this embodiment includes a capacitor body 2 and an insulating plate 3.
The capacitor body 2 includes a capacitor element 4, an exterior case 6, and an elastic sealing material 7. The chip-type electrolytic capacitor 1 is installed such that the vertical direction in FIG. 1 is the actual vertical direction.

コンデンサ素子4は、陽極箔と陰極箔とがセパレータを介して巻回された構造を有する。陽極箔および陰極箔は、アルミニウム等の弁作用金属からなり、表面が粗面化されており、また、陽極箔の表面には、誘電体となる酸化皮膜が形成されている。陽極箔および陰極箔には、リード線5がそれぞれ接続されている。これにより、コンデンサ素子4の一方の端面からは一対のリード線5が導出されている。   The capacitor element 4 has a structure in which an anode foil and a cathode foil are wound via a separator. The anode foil and the cathode foil are made of a valve action metal such as aluminum and have a roughened surface, and an oxide film serving as a dielectric is formed on the surface of the anode foil. Lead wires 5 are connected to the anode foil and the cathode foil, respectively. Thereby, a pair of lead wires 5 is led out from one end face of the capacitor element 4.

コンデンサ素子4は、電解液が含浸された状態で外装ケース6に収納されている。外装ケース6は、例えばアルミニウム製であって、一端が開口した有底円筒状に形成されている。   The capacitor element 4 is housed in the outer case 6 in a state where it is impregnated with the electrolytic solution. The outer case 6 is made of aluminum, for example, and is formed in a bottomed cylindrical shape with one end opened.

外装ケース6の開口端は、一対のリード線5が貫通された状態で、弾性封口材7によって封口されている。弾性封口材7は、例えば、イソブチレン−イソプレンラバー(IIR)やエチレンプロピレンターポリマー(EPT)のようなゴム材料で形成されている。   The open end of the outer case 6 is sealed with an elastic sealing material 7 in a state where the pair of lead wires 5 are penetrated. The elastic sealing material 7 is formed of a rubber material such as isobutylene-isoprene rubber (IIR) or ethylene propylene terpolymer (EPT).

図1(b)および(c)に示すように、弾性封口材7は、円柱状に形成されている。弾性封口材7には、一対のリード線5が貫通される一対の貫通孔7bが、上下方向に延在して形成されている。一対の貫通孔7bは、弾性封口材7のほぼ中央部に形成されている。つまり、一対の貫通孔7bを結ぶ線分の中心は、弾性封口材7の下面7aの中心とほぼ一致する。   As shown in FIGS. 1B and 1C, the elastic sealing material 7 is formed in a cylindrical shape. The elastic sealing material 7 is formed with a pair of through holes 7b through which the pair of lead wires 5 penetrates so as to extend in the vertical direction. The pair of through holes 7 b are formed at substantially the center of the elastic sealing material 7. That is, the center of the line segment connecting the pair of through holes 7 b substantially coincides with the center of the lower surface 7 a of the elastic sealing material 7.

また、弾性封口材7の下面7a(絶縁板3側の面)には、第1突部8および2つの第2突部9、10がH字状になるように形成されている。第1突部8および2つの第2突部9、10は、それぞれ下面7aに沿って延在しており、弾性封口材7に一体成形により形成されている。   Further, on the lower surface 7 a (surface on the insulating plate 3 side) of the elastic sealing material 7, the first protrusion 8 and the two second protrusions 9 and 10 are formed in an H shape. The first protrusion 8 and the two second protrusions 9 and 10 respectively extend along the lower surface 7 a and are formed on the elastic sealing material 7 by integral molding.

第1突部8は、一対の貫通孔7bを結ぶ線分の中央を通り、一対の貫通孔7bを結ぶ線分に直交する方向に延在して形成されている。 第1突部8は、互いに隣接して並列配置された、三角柱状の2つの突部8a、8bから構成される。2つの突部8a、8bは、その断面が直角三角形状であって、直角三角形の斜辺に相当する面が互いに向き合うように配置され、その中央にV字状の凹部を形成している。つまり、第1突部8の先端は、第1突部8の延在方向と同一方向に延在する二股形状に形成されている。
突部8a、8bの突出先端は、一対の貫通孔7bを結ぶ線分の中心から幾分ずれた位置にある。
The first protrusion 8 is formed to extend in a direction orthogonal to the line segment connecting the pair of through holes 7b through the center of the line segment connecting the pair of through holes 7b. The first protrusion 8 is composed of two triangular prism-shaped protrusions 8a and 8b that are arranged adjacent to each other in parallel. The two protrusions 8a and 8b have a right triangle shape in cross section, and are arranged so that surfaces corresponding to the hypotenuses of the right triangle face each other, and a V-shaped recess is formed at the center. That is, the tip end of the first protrusion 8 is formed in a bifurcated shape extending in the same direction as the extending direction of the first protrusion 8.
The projecting tips of the projecting portions 8a and 8b are located slightly shifted from the center of the line segment connecting the pair of through holes 7b.

また、第1突部8の突出先端(突部8a、8bの突出先端)は絶縁板3の上面3aに当接している。なお、突部8a、8bの突出高さ(弾性封口材7の下面7aと絶縁板3の上面3aとの間隔)は、例えば0.2mm程度であるが、この値に限定されるものではない。   Further, the protruding tip of the first protrusion 8 (the protruding tip of the protrusions 8 a and 8 b) is in contact with the upper surface 3 a of the insulating plate 3. The protrusion height of the protrusions 8a and 8b (the distance between the lower surface 7a of the elastic sealing material 7 and the upper surface 3a of the insulating plate 3) is, for example, about 0.2 mm, but is not limited to this value. .

また、2つの第2突部9、10は、下面7aに沿って延在する半円柱状に形成されている。2つの第2突部9、10は、第1突部8に直交する方向、つまり、一対の貫通孔7bを結ぶ線分に平行な方向に延在している。2つの第2突部9、10は、一対の貫通孔7bと弾性封口材7の外縁との間にそれぞれ形成されており、その延在方向のほぼ中央部は、第1突部8の両端部にそれぞれ連結されている。
また、2つの第2突部9、10の突出先端も、第1突部8と同じく、絶縁板3の上面3aに当接している。
The two second protrusions 9 and 10 are formed in a semi-cylindrical shape extending along the lower surface 7a. The two second protrusions 9 and 10 extend in a direction orthogonal to the first protrusion 8, that is, in a direction parallel to a line segment connecting the pair of through holes 7 b. The two second protrusions 9 and 10 are formed between the pair of through holes 7 b and the outer edge of the elastic sealing material 7, respectively, and the substantially central part in the extending direction is at both ends of the first protrusion 8. Each part is connected.
Further, the protruding tips of the two second protrusions 9 and 10 are also in contact with the upper surface 3 a of the insulating plate 3 in the same manner as the first protrusion 8.

絶縁板3は、例えば絶縁性樹脂からなり、弾性封口材7の下面7aに対向して配置されている。絶縁板3には、板厚に直交する方向に延在する一対の貫通孔3bと、下面に沿って延在する一対の収納溝3cとが形成されている。
一対のリード線5は、絶縁板3の一対の貫通孔3bに挿通され、その先端が収納溝3cに沿って折り曲げられて収納される。
The insulating plate 3 is made of, for example, an insulating resin, and is disposed so as to face the lower surface 7a of the elastic sealing material 7. The insulating plate 3 is formed with a pair of through holes 3b extending in a direction orthogonal to the plate thickness and a pair of storage grooves 3c extending along the lower surface.
The pair of lead wires 5 are inserted into the pair of through holes 3b of the insulating plate 3, and the tips thereof are bent and stored along the storage grooves 3c.

絶縁板3の上面3aと弾性封口材7の下面7aとの間には、隙間が形成されている。また、絶縁板3の上面3aと外装ケース6の開口端との間にも僅かな隙間が形成されている。   A gap is formed between the upper surface 3 a of the insulating plate 3 and the lower surface 7 a of the elastic sealing material 7. A slight gap is also formed between the upper surface 3 a of the insulating plate 3 and the opening end of the outer case 6.

以上のような構成のチップ形電解コンデンサ1によると、例えばリフローはんだ付けを行う際、チップ形電解コンデンサ1が高温下にさらされることにより、コンデンサ本体2の内部圧力が上昇し、弾性封口材7が絶縁板3側に変形しようとするが、弾性封口材7に形成された第1突部8および2つの第2突部9、10が既に絶縁板3と当接しているため、弾性封口材7の絶縁板3側への変形が拘束されるとともに、第1突部8を構成する2つの突部8a、8bが互いに離間する方向(二股が開く方向)に変形することで押圧を分散させることができるので、弾性封口材7の変形を抑制できる。
その結果、リフロー等の高温下での弾性封口材7の変形に起因するリード線5の変形や、絶縁板3の変形を抑制することができる。
According to the chip type electrolytic capacitor 1 having the above configuration, for example, when performing reflow soldering, the chip type electrolytic capacitor 1 is exposed to a high temperature, whereby the internal pressure of the capacitor body 2 is increased, and the elastic sealing material 7. Tries to be deformed toward the insulating plate 3 side, but since the first protrusion 8 and the two second protrusions 9, 10 formed on the elastic sealing material 7 are already in contact with the insulating plate 3, the elastic sealing material 7 is restrained from being deformed to the insulating plate 3 side, and the two protrusions 8a and 8b constituting the first protrusion 8 are deformed in a direction in which they are separated from each other (a direction in which the fork is opened) to disperse the pressure. Therefore, deformation of the elastic sealing material 7 can be suppressed.
As a result, deformation of the lead wire 5 and deformation of the insulating plate 3 due to deformation of the elastic sealing material 7 under high temperature such as reflow can be suppressed.

また、第1突部8および2つの第2突部9、10により、コンデンサ本体2と絶縁板3とが密着するため、基板実装されたチップ形電解コンデンサ1に振動が加わった場合であっても、絶縁板3がコンデンサ本体2に対して振動するのを抑制することができる。
その結果、絶縁板3の振動に起因するリード線5の破断を防止することができる。
Further, since the capacitor main body 2 and the insulating plate 3 are in close contact with each other by the first protrusion 8 and the two second protrusions 9 and 10, vibration is applied to the chip-type electrolytic capacitor 1 mounted on the substrate. Moreover, it can suppress that the insulating plate 3 vibrates with respect to the capacitor | condenser main body 2. FIG.
As a result, breakage of the lead wire 5 due to vibration of the insulating plate 3 can be prevented.

弾性封口材7の絶縁板3側への変形は、弾性封口材7のほぼ中央部が絶縁板3側に突出する形となる。上述したように、第1突部8は、弾性封口材7のほぼ中央部である一対の貫通孔7bの間に設けられているため、弾性封口材7の変形を確実に抑制することができる。
同時に、第1突部8を構成する2つの突部8a、8bの突出先端が、一対の貫通孔7bを結ぶ線分の中心から幾分ずれた位置にあるため、突出先端が弾性封口材7の中央に位置している場合に比べて、絶縁板3に局所的に力が作用するのを防止することができる。
The deformation of the elastic sealing material 7 toward the insulating plate 3 is such that the substantially central portion of the elastic sealing material 7 protrudes toward the insulating plate 3. As described above, the first protrusion 8 is provided between the pair of through-holes 7b that are substantially the center of the elastic sealing material 7, so that the deformation of the elastic sealing material 7 can be reliably suppressed. .
At the same time, the projecting tips of the two projecting portions 8a and 8b constituting the first projecting portion 8 are located at a position slightly deviated from the center of the line segment connecting the pair of through holes 7b. Compared with the case where it is located in the center of this, it can prevent that a force acts on the insulating board 3 locally.

また、2つの第2突部9、10が設けられていることにより、第1突部8のみ設けられている場合に比べて、弾性封口材7から絶縁板3への力の伝達がより分散して行われ、弾性封口材7の変形をより確実に抑制することができるとともに、耐振動性もより向上する。   Further, since the two second protrusions 9 and 10 are provided, the transmission of force from the elastic sealing material 7 to the insulating plate 3 is more dispersed than in the case where only the first protrusion 8 is provided. Thus, the deformation of the elastic sealing material 7 can be more reliably suppressed, and the vibration resistance is further improved.

さらに、第1突部8および2つの第2突部9、10の形状が、弾性封口材7の下面7aに沿って延在する形状であるため、突部の形状が点接触するような形状の場合に比べて、弾性封口材7の変形が確実に抑制され、耐振動性がより向上する。   Furthermore, since the shape of the first protrusion 8 and the two second protrusions 9 and 10 is a shape extending along the lower surface 7a of the elastic sealing material 7, the shape of the protrusion is in point contact. Compared to the case, the deformation of the elastic sealing material 7 is surely suppressed, and the vibration resistance is further improved.

また、第1突部8および第2突部9、10は、ゴム材料で形成されているため、コンデンサ本体2及び内部のコンデンサ素子4に、基板実装時や、リフローはんだ付け後の基板搬送時等に加わる振動ストレスを緩和することができる。   Further, since the first protrusion 8 and the second protrusions 9 and 10 are formed of a rubber material, the capacitor main body 2 and the internal capacitor element 4 are mounted on the substrate or when the substrate is conveyed after reflow soldering. The vibration stress applied to the etc. can be relieved.

なお、上記実施形態では、表面実装前の状態において、弾性封口材7の第1突部8の突出先端が、絶縁板3の上面3aと当接しているが、必ずしも絶縁板3に当接していなくてもよい。この場合であっても、弾性封口材7が絶縁板3側に押圧されて、第1突部8が絶縁板3に当接すると、二股が開くように第1突部8が変形できるため、弾性封口材7の絶縁板3側への押圧が分散し、第1突部8が変形することで弾性封口材7の絶縁板3側への変形を抑制できる。
同時に、絶縁板3とコンデンサ本体2の振動を抑制できる。
さらに、第1突部8の形状が、弾性封口材7の下面7aに沿って延在する形状であるため、第1突部8の形状が点接触するような形状の場合に比べて、弾性封口材7の変形が確実に抑制され、耐振動性がより向上する。
In the above embodiment, the protruding tip of the first protrusion 8 of the elastic sealing material 7 is in contact with the upper surface 3a of the insulating plate 3 in a state before surface mounting, but is not necessarily in contact with the insulating plate 3. It does not have to be. Even in this case, when the elastic sealing material 7 is pressed to the insulating plate 3 side and the first protrusion 8 comes into contact with the insulating plate 3, the first protrusion 8 can be deformed so as to open a fork. The pressure to the insulating plate 3 side of the elastic sealing material 7 is dispersed, and the deformation of the elastic sealing material 7 to the insulating plate 3 side can be suppressed by the first protrusion 8 being deformed.
At the same time, vibrations of the insulating plate 3 and the capacitor body 2 can be suppressed.
Furthermore, since the shape of the 1st protrusion 8 is a shape extended along the lower surface 7a of the elastic sealing material 7, compared with the case where the shape of the 1st protrusion 8 is a point contact shape, it is elastic. The deformation of the sealing material 7 is reliably suppressed, and the vibration resistance is further improved.

また、上記実施形態の弾性封口材7には、第1突部8と2つの第2突部9、10が設けられているが、例えば、図2に示すように、第1突部8のみが設けられた弾性封口材107を備えたチップ形電解コンデンサ101であってもよい。   Moreover, although the 1st protrusion 8 and the two 2nd protrusions 9 and 10 are provided in the elastic sealing material 7 of the said embodiment, for example, as shown in FIG. 2, only the 1st protrusion 8 is provided. It may be a chip-type electrolytic capacitor 101 provided with an elastic sealing material 107 provided with.

また、上記実施形態では、第1突部8は、断面が直角三角柱状の突部8a、8bから構成されているが、突部8a、8bの断面形状は、必ずしも直角三角形状でなくてもよい。例えば、正三角形状であってもよく、また半円柱状であってもよい。但し、これらの場合よりも、断面形状が直角三角形の方が、第1突部8が絶縁板3に押圧されたときに、2つの突部8a、8bの先端が離間するように変形しやすくなるため、この点においては、上記実施形態の方が好ましい。   Moreover, in the said embodiment, although the 1st protrusion 8 is comprised from the protrusions 8a and 8b whose cross section is a right triangular prism shape, the cross-sectional shape of the protrusions 8a and 8b does not necessarily need to be a right triangle shape. Good. For example, it may be an equilateral triangle shape or a semi-cylindrical shape. However, the cross-sectional shape of the right triangle is easier to deform so that the tips of the two protrusions 8a and 8b are separated when the first protrusion 8 is pressed against the insulating plate 3 than in these cases. Therefore, in this respect, the above embodiment is preferable.

また、第1突部8は、その先端に延在方向と同一方向に延在する二股を有する形状であれば、上記記実施形態のように、2つの突部8a、8bから構成されていなくてもよい。例えば、第1突部は、下面7aに沿って延在する四角柱状の突部であって、その先端に突出高さよりも浅いV字状の溝が形成されている構成であってもよい。   Moreover, if the 1st protrusion 8 is the shape which has the forked part extended in the same direction as the extension direction at the front-end | tip, it is not comprised from the two protrusions 8a and 8b like the above-mentioned embodiment. May be. For example, the first protrusion may be a quadrangular prism-shaped protrusion extending along the lower surface 7a, and a V-shaped groove shallower than the protrusion height may be formed at the tip.

また、上記実施形態では、第2突部9、10は、半円柱状に形成されているが、この形状に限定されるものでない。例えば、三角柱状などの多角柱状であってもよい。また、第1突部8のように、その先端が延在方向と同一方向に延在する二股を有する形状であってもよい。   Moreover, in the said embodiment, although the 2nd protrusions 9 and 10 are formed in the semi-cylindrical shape, it is not limited to this shape. For example, a polygonal column shape such as a triangular column shape may be used. Moreover, the shape which has the forked part extended in the same direction as the extension direction like the 1st protrusion part 8 may be sufficient.

また、上記実施形態では、液状の電解質を用いたチップ形電解コンデンサに本発明を適用した場合について説明したが、本発明は、固体電解質を用いたチップ型固体電解コンデンサにも適用することができる。   In the above embodiment, the case where the present invention is applied to a chip-type electrolytic capacitor using a liquid electrolyte has been described. However, the present invention can also be applied to a chip-type solid electrolytic capacitor using a solid electrolyte. .

次に、本発明の具体的な実施例を従来例と合わせて説明する。   Next, specific examples of the present invention will be described together with conventional examples.

〔実施例1〕第1突部+第2突部2つ
実施例1として、図1に示す形状の弾性封口材を備えたチップ形電解コンデンサを60個作製した。このチップ形電解コンデンサは、直径が8mm、長さが6.5mmである。なお、後述する実施例2および従来例1、2のチップ形電解コンデンサも実施例1と同じ寸法である。
[Example 1] First protrusion + two second protrusions
As Example 1, 60 chip-type electrolytic capacitors each having an elastic sealing material having the shape shown in FIG. This chip-type electrolytic capacitor has a diameter of 8 mm and a length of 6.5 mm. The chip type electrolytic capacitors of Example 2 and Conventional Examples 1 and 2 to be described later have the same dimensions as Example 1.

〔実施例2〕第1突部のみ
実施例2として、図2に示す形状の弾性封口材を備えたチップ形電解コンデンサを60個作製した。
[Example 2] Only the first protrusion As Example 2, 60 chip type electrolytic capacitors each having an elastic sealing material having the shape shown in FIG.

(従来例1)突部なし
従来例1として、図3に示すように、弾性封口材に突部が形成されていないチップ形電解コンデンサを60個作製した。
(Conventional Example 1) No Protrusion As Conventional Example 1, as shown in FIG. 3, 60 chip-type electrolytic capacitors having no protrusion formed on the elastic sealing material were produced.

(従来例2)絶縁板に円錐状突起2つ形成
従来例2として、図5に示すように、絶縁板の弾性封口材側の面において、絶縁板の2つの貫通孔を結ぶ線分と直交する線上に、円錐状突起が2つ形成されているチップ形電解コンデンサを60個作製した。
(Conventional example 2) Two conical protrusions are formed on the insulating plate As conventional example 2, as shown in FIG. 5, the surface of the insulating plate on the side of the elastic sealing material is orthogonal to the line connecting the two through holes of the insulating plate Sixty chip-type electrolytic capacitors having two conical protrusions formed on the line to be formed were produced.

上記実施例1、2、および従来例1、2のチップ形電解コンデンサについて、リフローはんだ付けを行い、弾性封口材の変形を調べるために、リフローはんだ付けの前後における、チップ形電解コンデンサの全長の変形量、および、絶縁板の上下方向の変形量を測定した。
また、リフローはんだ付け後に、コンデンサ本体と絶縁板との間での左右方向、上下方向および回転方向のガタ付きの有無を確認し、さらに、振動試験(加速度30G、周波数10〜2000Hz、X、Y、Z方向各2時間)を行い、振動試験後のリード線の破断による動作不良の有無を確認した。その結果を表1に示す。
For the chip type electrolytic capacitors in Examples 1 and 2 and Conventional Examples 1 and 2, the total length of the chip type electrolytic capacitor before and after the reflow soldering was performed in order to perform reflow soldering and examine the deformation of the elastic sealing material. The amount of deformation and the amount of deformation in the vertical direction of the insulating plate were measured.
In addition, after reflow soldering, the presence or absence of rattling in the horizontal direction, vertical direction, and rotation direction between the capacitor body and the insulating plate is confirmed. Further, a vibration test (acceleration 30G, frequency 10 to 2000 Hz, X, Y , 2 hours each in the Z direction), and the presence or absence of malfunction due to breakage of the lead wire after the vibration test was confirmed. The results are shown in Table 1.

Figure 2010040963
Figure 2010040963

なお、チップ形電解コンデンサの全長の変形量とは、リフローはんだ付けの前後における、絶縁板の収納溝に収納されたリード線の下端から外装ケースの上面までの長さの差とした。
また、絶縁板の上下方向の変形量とは、図4に示すように、リフローはんだ付け後の、絶縁板下面の中心の高さと、絶縁板下面の陽極側の周縁部の高さとの差A1と、絶縁板の下面の中心の高さと、絶縁板の下面の陰極側の周縁部の高さとの差A2とを足した値(A1+A2)とした。
また、ガタ付きの有無の確認、リード線の破断による動作不良の有無の確認は、作製された60個のチップ形電解コンデンサのうち、30個について調べた。
The amount of deformation of the entire length of the chip-type electrolytic capacitor was defined as a difference in length from the lower end of the lead wire stored in the storage groove of the insulating plate to the upper surface of the outer case before and after reflow soldering.
Further, as shown in FIG. 4, the vertical deformation amount of the insulating plate is a difference A1 between the height of the center of the lower surface of the insulating plate after reflow soldering and the height of the peripheral edge on the anode side of the lower surface of the insulating plate. And a difference (A1 + A2) between the height of the center of the lower surface of the insulating plate and the height A2 of the peripheral edge on the cathode side of the lower surface of the insulating plate.
In addition, the confirmation of the presence or absence of backlash and the confirmation of the presence or absence of malfunction due to the breakage of the lead wires were examined for 30 of the produced 60 chip-type electrolytic capacitors.

表1から明らかなように、突部が形成された弾性封口材を備えた実施例1、2のチップ形電解コンデンサは、従来例1、2と比べて、チップ形電解コンデンサの全長の変形量および絶縁板の変形量が小さく、弾性封口材の変形が抑制されていることが分かった。
また、実施例1、2のチップ形電解コンデンサは、コンデンサ本体と絶縁板との間のガタ付きがなくなり、耐振動性も向上していることが分かった。
なお、円錐状突起を設けた従来例2は、突起なしの従来例と比べてガタ付き、耐振動性が改善されてはいるが、実施例1、2に比べると劣っている。
As is apparent from Table 1, the chip-type electrolytic capacitors of Examples 1 and 2 having the elastic sealing material formed with the protrusions are deformed over the entire length of the chip-type electrolytic capacitor as compared with Conventional Examples 1 and 2. It was also found that the deformation amount of the insulating plate was small and the deformation of the elastic sealing material was suppressed.
Further, it was found that the chip type electrolytic capacitors of Examples 1 and 2 were free from backlash between the capacitor body and the insulating plate, and the vibration resistance was improved.
The conventional example 2 provided with the conical protrusions has a backlash and improved vibration resistance compared to the conventional example without the protrusions, but is inferior to the first and second examples.

さらに、第1突部と2つの第2突部を設けた実施例1は、第1突部のみ設けた実施例2に比べて、チップ形電解コンデンサの全長の変化量および絶縁板の変形量が小さくなるとともに、耐振動性が改善されることが分かった。   Further, the first embodiment provided with the first protrusions and the two second protrusions is different from the second embodiment in which only the first protrusions are provided in the change amount of the total length of the chip-type electrolytic capacitor and the deformation amount of the insulating plate. It was found that the vibration resistance was improved with decreasing.

(a)は本発明の実施形態および実施例1のチップ形電解コンデンサの構造図であり、(b)は前記電解コンデンサに用いた弾性封口材の平面図であり、(c)は前記弾性封口材の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) is structure drawing of the chip-type electrolytic capacitor of embodiment of this invention and Example 1, (b) is a top view of the elastic sealing material used for the said electrolytic capacitor, (c) is the said elastic sealing. It is sectional drawing of material. (a)は実施例2のチップ形電解コンデンサの構造図であり、(b)は前記電解コンデンサに用いた弾性封口材の平面図であり、(c)は前記弾性封口材の断面図である。(A) is a structure figure of the chip-type electrolytic capacitor of Example 2, (b) is a top view of the elastic sealing material used for the electrolytic capacitor, and (c) is a sectional view of the elastic sealing material. . (a)は従来例のチップ形電解コンデンサの構造図であり、(b)は前記電解コンデンサに用いた弾性封口材の平面図であり、(c)は弾性封口材の断面図である。(A) is a structural view of a conventional chip-type electrolytic capacitor, (b) is a plan view of an elastic sealing material used in the electrolytic capacitor, and (c) is a cross-sectional view of the elastic sealing material. 前記従来例の弾性封口材が変形した状態でのチップ形電解コンデンサの断面図である。It is sectional drawing of the chip-type electrolytic capacitor in the state which the elastic sealing material of the said prior art example deform | transformed. (a)は他の従来例のチップ形電解コンデンサの構造図であり、(b)は前記電解コンデンサに用いた絶縁板の平面図であり、(c)は絶縁板の断面図である。(A) is a structure figure of the chip type electrolytic capacitor of other conventional examples, (b) is a top view of the insulating board used for the above-mentioned electrolytic capacitor, and (c) is a sectional view of an insulating board.

符号の説明Explanation of symbols

1、91、91´、101 チップ形電解コンデンサ
2、92 コンデンサ本体
3、93 絶縁板
3a、93a 上面
3b、93b 貫通孔
3c、93c 溝部
4、94 コンデンサ素子
5、95 リード線
6、96 外装ケース
7、97、107 弾性封口材
7a、97a、107a 下面
7b、97b、107b 貫通孔
8 第1突部
8a、8b 突部
9、10 第2突部
98 円錐状突起
1, 91, 91 ', 101 Chip-type electrolytic capacitor 2, 92 Capacitor body 3, 93 Insulating plate 3a, 93a Top surface 3b, 93b Through hole 3c, 93c Groove portion 4, 94 Capacitor element 5, 95 Lead wire 6, 96 Outer case 7, 97, 107 Elastic sealing material 7a, 97a, 107a Lower surface 7b, 97b, 107b Through hole 8 First projection 8a, 8b Projection 9, 10 Second projection 98 Conical projection

Claims (8)

一対のリード線が導出されたコンデンサ素子と、前記コンデンサ素子を収納する有底筒状の外装ケースと、前記外装ケースの開口端を封口すると共に、前記一対のリード線が貫通される一対の貫通孔が形成された弾性封口材とを有するコンデンサ本体と、前記弾性封口材に対向して配置されると共に、前記一対のリード線が貫通される絶縁板とを備えたチップ形電解コンデンサにおいて、
前記弾性封口材の前記絶縁板側の面に、この面に沿って延在する1つ以上の第1突部が形成されており、
さらに、前記第1突部の先端が延在方向と同一方向に延在する二股形状であることを特徴とするチップ形電解コンデンサ。
A capacitor element from which a pair of lead wires are derived, a bottomed cylindrical outer case that houses the capacitor element, and a pair of penetrations that seal the opening end of the outer case and through which the pair of lead wires pass. In a chip-type electrolytic capacitor comprising a capacitor main body having an elastic sealing material in which holes are formed, and an insulating plate that is disposed opposite to the elastic sealing material and through which the pair of lead wires penetrates,
One or more first protrusions extending along the surface are formed on the surface of the elastic sealing material on the insulating plate side,
Furthermore, the chip-type electrolytic capacitor is characterized in that the tip of the first protrusion has a bifurcated shape extending in the same direction as the extending direction.
前記第1突部が、前記一対の貫通孔の間を通り、前記一対の貫通孔を結ぶ線分に交差する方向に延在していることを特徴とする請求項1に記載のチップ形電解コンデンサ。   2. The chip-type electrolysis according to claim 1, wherein the first protrusion extends between the pair of through holes and in a direction intersecting a line segment connecting the pair of through holes. Capacitor. 前記第1突部の先端が、互いに隣接して並列配置された、半円柱状または多角柱状の2つの突部からなる二股形状であることを特徴とする請求項1または2に記載のチップ形電解コンデンサ。   3. The chip shape according to claim 1, wherein a tip end of the first protrusion has a bifurcated shape including two protrusions having a semi-cylindrical shape or a polygonal column shape arranged adjacent to each other in parallel. Electrolytic capacitor. 前記第1突部が、前記絶縁板に当接していることを特徴とする請求項1〜3の何れか1項に記載のチップ形電解コンデンサ。   The chip-type electrolytic capacitor according to claim 1, wherein the first protrusion is in contact with the insulating plate. 前記弾性封口材の前記絶縁板側の面に、この面に沿って延在する2つの第2突部が形成されており、
前記2つの第2突部が、それぞれ、前記第1突部の両端部に連結されると共に、前記第1突部に交差する方向に延在し、かつ、前記一対の貫通孔と前記弾性封口材の外縁との間に形成されていることを特徴とする請求項1〜4の何れか1項に記載のチップ形電解コンデンサ。
Two second protrusions extending along this surface are formed on the surface of the elastic sealing material on the insulating plate side,
The two second protrusions are connected to both ends of the first protrusion, respectively, extend in a direction intersecting the first protrusion, and the pair of through holes and the elastic seal 5. The chip-type electrolytic capacitor according to claim 1, wherein the chip-type electrolytic capacitor is formed between the outer edge of the material.
前記第2突部の先端が延在方向と同一方向に延在する二股形状であることを特徴とする請求項5に記載のチップ形電解コンデンサ。   6. The chip-type electrolytic capacitor according to claim 5, wherein the tip of the second protrusion has a bifurcated shape extending in the same direction as the extending direction. 前記第2突部が、前記弾性封口材の表面に沿って延在する半円柱状または多角柱状に形成されていることを特徴とする請求項5に記載のチップ形電解コンデンサ。   The chip-type electrolytic capacitor according to claim 5, wherein the second protrusion is formed in a semi-cylindrical shape or a polygonal column shape extending along a surface of the elastic sealing material. 前記第2突部が、前記絶縁板に当接していることを特徴とする請求項5〜7の何れか1項に記載のチップ形電解コンデンサ。   The chip-type electrolytic capacitor according to claim 5, wherein the second protrusion is in contact with the insulating plate.
JP2008205162A 2008-08-08 2008-08-08 Chip type electrolytic capacitor Active JP5119083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205162A JP5119083B2 (en) 2008-08-08 2008-08-08 Chip type electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205162A JP5119083B2 (en) 2008-08-08 2008-08-08 Chip type electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010040963A true JP2010040963A (en) 2010-02-18
JP5119083B2 JP5119083B2 (en) 2013-01-16

Family

ID=42013155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205162A Active JP5119083B2 (en) 2008-08-08 2008-08-08 Chip type electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5119083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040995A (en) * 2017-08-25 2019-03-14 ニチコン株式会社 Chip type electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640649U (en) * 1979-09-07 1981-04-15
JPH0317621U (en) * 1989-06-30 1991-02-21
JPH09162078A (en) * 1995-12-01 1997-06-20 Nichicon Corp Electronic parts
JP2004349363A (en) * 2003-05-21 2004-12-09 Nok Corp Sealing rubber
JP2006202887A (en) * 2005-01-19 2006-08-03 Elna Co Ltd Chip-type aluminum electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640649U (en) * 1979-09-07 1981-04-15
JPH0317621U (en) * 1989-06-30 1991-02-21
JPH09162078A (en) * 1995-12-01 1997-06-20 Nichicon Corp Electronic parts
JP2004349363A (en) * 2003-05-21 2004-12-09 Nok Corp Sealing rubber
JP2006202887A (en) * 2005-01-19 2006-08-03 Elna Co Ltd Chip-type aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040995A (en) * 2017-08-25 2019-03-14 ニチコン株式会社 Chip type electrolytic capacitor

Also Published As

Publication number Publication date
JP5119083B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP4837670B2 (en) Electronic component, lead unit for electronic component, and method of manufacturing capacitor
WO2020246195A1 (en) Capacitor and method for producing same, and capacitor-mounting method
JP4782044B2 (en) Chip type aluminum electrolytic capacitor
JP2007208137A (en) Electricity storage device and mounter
KR20180133505A (en) Electronic parts
WO2001057893A1 (en) Chip capacitor
JP5119083B2 (en) Chip type electrolytic capacitor
JP2015228405A (en) Chip capacitor and method of manufacturing the same
JP4683197B2 (en) Chip capacitor
JP4078777B2 (en) Chip type aluminum electrolytic capacitor
JP2008244033A (en) Chip type capacitor
JP2007103532A (en) Manufacturing method of chip type electrolytic capacitor
JP2003264124A (en) Chip type capacitor
JP2020202363A (en) Capacitor and method for producing the same, and method for mounting capacitor
JP4618418B2 (en) Chip type aluminum electrolytic capacitor
JP5118295B2 (en) Electrolytic capacitor manufacturing method
JP4507739B2 (en) Horizontal type surface mount electrolytic capacitor
JP2002025859A (en) Chip-type aluminum electrolytic capacitor
JPH0315330B2 (en)
JP2005203478A (en) Chip-type aluminum electrolytic capacitor
JP4481757B2 (en) Electronic components
JP2006286984A (en) Chip type capacitor
JP2008166021A (en) Connecting terminal structure of battery
JP4385153B2 (en) Chip capacitor
JP2006041069A (en) Chip type aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5119083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250