JP2010040631A - 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 - Google Patents
計測条件最適化方法及びプログラムの作成方法、並びに露光装置 Download PDFInfo
- Publication number
- JP2010040631A JP2010040631A JP2008199458A JP2008199458A JP2010040631A JP 2010040631 A JP2010040631 A JP 2010040631A JP 2008199458 A JP2008199458 A JP 2008199458A JP 2008199458 A JP2008199458 A JP 2008199458A JP 2010040631 A JP2010040631 A JP 2010040631A
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- search
- mark
- condition
- illumination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
【課題】サーチアライメントマークの計測条件の最適化を効率的に行う。
【解決手段】 サーチアライメントマークの計測条件のうち、マークの画像信号の取り込みのために重要な照明条件が最初に最適化され(ステップ106)、その最適化された照明条件の下でアライメント検出系を用いて、サーチアライメントマークを検出するサーチアライメント計測が行われ(ステップ112)、そのサーチアライメント計測でエラーが発生した場合に、照明条件以外の計測条件の最適化が行われる(ステップ114、116)。これにより、最適化された照明条件の下でアライメント検出系を用いて行われたサーチアライメント計測の結果エラーが発生しない限り、照明条件以外の計測条件の最適化が行われることがない。従って、サーチアライメントマークの計測条件の最適化を効率的に行うことができる。
【選択図】図2
【解決手段】 サーチアライメントマークの計測条件のうち、マークの画像信号の取り込みのために重要な照明条件が最初に最適化され(ステップ106)、その最適化された照明条件の下でアライメント検出系を用いて、サーチアライメントマークを検出するサーチアライメント計測が行われ(ステップ112)、そのサーチアライメント計測でエラーが発生した場合に、照明条件以外の計測条件の最適化が行われる(ステップ114、116)。これにより、最適化された照明条件の下でアライメント検出系を用いて行われたサーチアライメント計測の結果エラーが発生しない限り、照明条件以外の計測条件の最適化が行われることがない。従って、サーチアライメントマークの計測条件の最適化を効率的に行うことができる。
【選択図】図2
Description
本発明は、計測条件最適化方法及びプログラムの作成方法、並びに露光装置に係り、特に、サーチ用マークの計測条件を最適化する計測条件最適化方法及び該方法を利用するプログラムの作成方法、並びに前記計測条件最適化方法の実施に好適な露光装置に関する。
従来、半導体素子、液晶表示素子等のマイクロデバイス(電子デバイスなど)の製造におけるリソグラフィ工程では、ステップ・アンド・リピート方式の投影露光装置(いわゆるステッパ)、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが比較的多く用いられている。
この種の投影露光装置において重ね合わせ露光を行う際には、被露光基板としてのウエハ(又はガラスプレート等)上の各ショット領域に既に形成されている回路パターンと、これから露光するマスクとしてのレチクルのパターンとの位置合わせであるウエハのファインアライメントを高精度に行う必要がある。従来の高精度なファインアライメントの方式として、例えば特許文献1、2に開示されるように、ウエハ上から選択された所定個数のショット領域(サンプルショット)に付設されたファインアライメントマーク(ウエハマーク)の座標位置を計測し、この計測結果を統計処理して各ショット領域の配列座標を算出するエンハンスト・グローバル・アライメント(EGA)方式が知られている。
このEGA方式でファインアライメントを行う際には、アライメントセンサの検出レンジ内に被検マークが確実に収まるように、予めサーチアライメントが行われていた。すなわち、ウエハ上に形成されている所定のサーチアライメント・マーク(サーチマーク)の位置を検出することによって、ウエハの大まかなショット配列が求められ、このショット配列に基づいて各サンプルショットのウエハマークがアライメントセンサの検出レンジ内に位置決めされていた。
サーチアライメント等を行う場合、サーチマークを確実に検出することが重要であり、そのためには、サーチマークを検出するためのアライメントセンサのマーク検出時の計測条件を、最適化する必要がある。従来は、サーチアライメントの処理手順を規定するプロセスプログラムファイル(以下、レシピファイルとも呼ぶ)の作成の際に、技術者によって、計測条件の最適化が行われていた。
しかしながら、最近の露光装置ではサーチマークが従来に比べて小型になり、これに伴って、プロセスプログラムファイルの作成時に技術者が計測条件の最適化を行うことの負担が大きくなり、また、計測条件の最適化そのものを行うことも困難になりつつある。
本発明の第1の態様によれば、基板上に形成された複数の区画領域にパターンを重ね合わせて形成するために、ファインアライメント計測に先だって行われるサーチアライメント計測で用いられるサーチ用マークの計測条件を最適化する計測条件最適化方法であって、前記基板上に付設されたサーチ用マークの検出に用いられる画像処理方式のマーク検出系の前記サーチ用マーク検出時の照明条件を最適化する第1工程と;前記照明条件の最適化の後、その最適化された照明条件の下で前記マーク検出系を用いて、前記サーチ用マークを検出するサーチアライメント計測を行い、そのサーチアライメント計測でエラーが発生した場合に、前記照明条件以外の計測条件の最適化を行う第2工程と;を含む計測条件最適化方法が提供される。
これによれば、サーチ用マークの計測条件のうち、マークの画像信号の取り込みのために重要な照明条件が最初に最適化され、その最適化された照明条件の下でマーク検出系を用いて、サーチ用マークを検出するサーチアライメント計測が行われ、そのサーチアライメント計測でエラーが発生した場合に、照明条件以外の計測条件の最適化が行われる。これにより、最適化された照明条件の下でマーク検出系を用いて行われたサーチアライメント計測の結果エラーが発生しない限り、照明条件以外の計測条件の最適化が行われることがない。従って、サーチ用マークの計測条件の最適化を効率的に行うことができる。
また、本発明の第2の態様によれば、本発明の計測条件最適化方法によって決定された最適条件を、前記サーチアライメント計測の処理手順を規定するプログラム中の対応する条件として決定する工程を含む、プログラムの作成方法が提供される。
また、本発明の第3の態様によれば、基板上の複数の区画領域にパターンを重ね合わせて形成する露光装置であって、基板上に付設されたサーチ用マークを含むマークを検出対象とし、少なくとも照明条件の変更が可能な画像処理方式のマーク検出系と;マーク検出系の前記サーチ用マーク検出時の照明条件を最適化し、その最適化された照明条件の下で前記マーク検出系を用いて、前記サーチ用マークを検出するサーチアライメント計測を行い、そのサーチアライメント計測でエラーが発生した場合に、前記照明条件以外の計測条件の最適化を行う最適化装置と;を備える露光装置が提供される。
これによれば、最適化装置により、サーチ用マークの計測条件のうち、マークの画像信号の取り込みのために重要な照明条件が最初に最適化され、その最適化された照明条件の下でマーク検出系を用いて、サーチ用マークを検出するサーチアライメント計測が行われ、そのサーチアライメント計測でエラーが発生した場合に、照明条件以外の計測条件の最適化が行われる。これにより、最適化された照明条件の下でマーク検出系を用いて行われたサーチアライメント計測の結果エラーが発生しない限り、照明条件以外の計測条件の最適化が行われることがない。従って、サーチ用マークの計測条件の最適化を効率的に行うことができる。
以下、本発明の一実施形態を図1〜図4に基づいて説明する。図1には、本発明の最適化条件決定方法を好適に実施可能な一実施形態に係る露光装置100の概略的な構成が示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))である。
露光装置100は、照明系IOP、レチクルRを保持するレチクルステージRST、レチクルRに形成されたパターンの像を感応剤(レジスト)が塗布されたウエハW上に投影する投影ユニットPU、ウエハWを保持してXY平面内を移動するウエハステージWST、ウエハステージWSTを駆動する駆動系22、及びこれらの制御系等を備えている。制御系は装置全体を統括制御するマイクロコンピュータ(あるいはワークステーション)などを含む主制御装置28を中心として構成されている。
照明系IOPは、例えばArFエキシマレーザ(出力波長193nm)(又はKrFエキシマレーザ(出力波長248nm)など)から成る光源、及び該光源に送光光学系を介して接続された照明光学系を含む。照明光学系としては、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、オプティカルインテグレータ等を含む照度均一化光学系、ビームスプリッタ、レチクルブラインド等(いずれも不図示)を含み、光源から射出されたレーザビームを整形し、この整形されたレーザビーム(以下、照明光ともいう)ILにより、レチクルR上でX軸方向(図1における紙面直交方向)に細長く伸びるスリット状の照明領域をほぼ均一な照度で照明する。
レチクルステージRSTは、照明系IOPの図1における下方に配置されている。レチクルステージRST上にレチクルRが載置されている。レチクルRは、不図示のバキュームチャック等を介してレチクルステージRSTに吸着保持されている。レチクルステージRSTは、不図示のレチクルステージ駆動系によって、水平面(XY平面)内で微小駆動可能であるとともに、走査方向(ここでは図1の紙面内左右方向であるY軸方向とする)に所定ストローク範囲で走査される。レチクルステージRSTの位置情報は、その端部に固定された移動鏡12を介してレーザ干渉計14によって計測され、レーザ干渉計14の計測値が主制御装置28に供給されている。なお、移動鏡12に代えて、レチクルステージRSTの端面を鏡面加工して反射面(移動鏡12の反射面に相当)を形成しても良い。
投影ユニットPUは、レチクルステージRSTの図1における下方に配置されている。投影ユニットPUは、鏡筒40と、該鏡筒40内に所定の位置関係で保持された複数の光学素子を含む投影光学系PLとを含む。投影光学系PLとしては、ここでは両側テレセントリックな縮小系であって、光軸AXpと平行な方向(Z軸方向)に配列された複数枚のレンズエレメント(図示省略)を含む屈折光学系が用いられている。
投影光学系PLの投影倍率は、一例として1/4とされている。このため、前述の如く照明光ILによりレチクルRが均一な照度で照明されると、その照明領域内のレチクルRのパターンが投影光学系PLにより縮小されて、レジストが塗布されたウエハW上に投影され、ウエハW上の被露光領域(ショット領域)の一部にパターンの縮小像が形成される。このとき、投影光学系PLはその視野内の一部(すなわち、露光エリアであって、投影光学系PLに関して照明領域と共役な矩形領域)にその縮小像を形成する。
ウエハステージWSTは、リニアモータ等を含む駆動系22によって、X軸方向、Y軸方向に所定ストロークで駆動されるとともに、Z軸方向、X軸回りの回転方向(θx方向)、Y軸回りの回転方向(θy方向)、及びZ軸回りの回転方向(θz方向)に微小駆動される。ウエハステージWST上に不図示のウエハホルダを介してウエハWが真空吸着等によって保持されている。
ウエハステージWSTの位置情報は、その端部に固定された移動鏡24を介してレーザ干渉計システム(以下、「干渉計システム」と略述する)26によって計測され、干渉計システム26の計測値が主制御装置28に供給されている。主制御装置28は、干渉計システム26の計測値に基づいて、ウエハステージWSTのXY平面内の位置情報(回転情報(ヨーイング量(θz方向の回転量θz)、ピッチング量(θx方向の回転量θx)、ローリング量(θy方向の回転量θy))を含む)を計測する。なお、ウエハステージWSTの端面を鏡面加工して反射面(移動鏡24の反射面に相当)を形成しても良い。また、ウエハステージWSTに代えて、X軸方向、Y軸方向及びθz方向に移動する第1ステージと、該第1ステージ上でZ軸方向、θx方向及びθy方向に微動する第2ステージとを備える、ステージを用いても良い。
干渉計システム26の計測値は主制御装置28に供給され、主制御装置28は干渉計システム26の計測値に基づいて駆動系22を介してウエハステージWSTのXY平面内の位置(θz方向の回転を含む)を制御する。
また、ウエハW表面のZ軸方向の位置及び傾斜量は、例えば特開平6−283403号公報等に開示される送光系50a及び受光系50bを有する斜入射方式の多点焦点位置検出系から成るフォーカスセンサAFSによって計測される。このフォーカスセンサAFSの計測値も主制御装置28に供給されている。
また、ウエハステージWST上には、その表面がウエハWの表面と同じ高さになるような基準板FPが固定されている。この基準板FPの表面には、後述するアライメント検出系ASのいわゆるベースライン計測等に用いられる基準マークなどが形成されている。
投影ユニットPUの鏡筒40の側面に、ウエハWに形成されたアライメントマーク及び上記基準マークを検出するアライメント検出系ASが設けられている。このアライメント検出系ASとしては、一例としてハロゲンランプ等のブロードバンド(広帯域)光でマークを照明し、このマーク画像を画像処理することによってマーク位置を計測する画像処理方式の結像式アライメントセンサの一種であるFIA(Field Image Alignment)系が用いられている。
アライメント検出系ASの検出信号は、アライメント制御装置16に供給され、アライメント制御装置16は、その検出信号をA/D変換し、このデジタル化された波形信号を演算処理してマーク位置を検出する。この結果は、アライメント制御装置16から主制御装置28に供給される。
アライメント検出系ASとしては、本実施形態では、少なくとも照明条件及びフォーカスオフセットの変更(又は切り換え)が可能なものが用いられている。照明条件の変更は、照明帯域(照明光波長帯域)、照明絞り、及びNDフィルタ(ニュートラル・デンシティ・フィルタ)の少なくとも1つの切り換えを実行することで、行うことができるようになっている。照明光波長帯域としては、一例として、ブロード、グリーン、オレンジ、及びレッドの4つの照明帯域が設定可能であるものとする。また、照明絞りとして、少なくとも直径の異なる3つの円形絞りと輪帯絞りとが、切り換え設定可能に設けられているものとする。また、NDフィルタを有する減光装置としては、例えば3段の回転板を有するものが用いられており、各回転板には透過率(減光率)の異なる複数のNDフィルタが設けられている。そして、減光装置によって、透過率が3、6、10、15、20、30、50、100の各%に切り換え設定可能である。なお、透過率100%のNDフィルタとは、複数のNDフィルタが取り付けられたフィルタ板に形成された開口である。なお、照明条件及びフォーカスオフセットの変更は、主制御装置28の指示に基づき、アライメント制御装置16によって行われる。
さらに、本実施形態の露光装置100では、図示は省略されているが、レチクルRの上方に、例えば米国特許第5,646,413号明細書等に開示される、露光波長の光を用いたTTR(Through The Reticle)アライメント系から成る一対のレチクルアライメント検出系が設けられ、該レチクルアライメント検出系の検出信号は、アライメント制御装置16を介して主制御装置28に供給される。
次に、上述のようにして構成された本実施形態に係る露光装置100で、実際の露光に先立って行われる、アライメント時の最適化条件決定方法について、サーチアライメントを例にとって、主制御装置28(より正確には内部のCPU)の処理アルゴリズムを概略的に示す図2のフローチャートに沿って説明する。ここで、サーチアライメントは、何よりサーチマークを検出できることが重要であるため、精度よりも信号品質にウェイトを置いた判定を行うこととする。すなわち、照明条件その他の計測条件の最適化は、大略、サーチマーク全体の信号コントラスト(又は振幅)が最大となるように行われる。
まず、ステップ102において、不図示のウエハローダを用いてウエハステージWSTの不図示のウエハホルダ上にウエハをロードする。ここでは、実際にデバイスの製造に用いられる、少なくとも1層のレチクルパターンの転写が行われ、その際に、サーチアライメントマークとファインアライメントマークとが形成されたウエハWがウエハホルダ上にロードされる。図3(A)及び図3(B)に示されるように、ウエハW上の各ショット領域Sn(正確にはその周囲のスクライブライン上)には、サーチアライメントマーク(サーチマーク)32X,32Y及びファインアライメントマーク(EGAマーク)33X,33Yが付設されている。サーチマーク32X,32Yは、それぞれ、X軸方向およびY軸方向に所定ピッチで形成された凹凸のライン・アンド・スペースパターン(マルチパターン)である。EGAマーク33X,33Yも、同様である。また、サーチアライメントマーク、ファインアライメントマークの設計パラメータ(形状、数、及び位置等)、及びウエハの設計パラメータ(ウエハの大きさ及び区画領域のレイアウト等)は、予め定められており、計測条件の最適化処理に先立ってメモリ(不図示)に記憶されているものとする。
次のステップ104で、第1番目のサーチマークがアライメント検出系の検出視野内(検出中心近傍)に位置決めされるように、サーチマークの座標に基づいて、ウエハステージWSTを移動させた後、ステップ106の照明条件の最適化のサブルーチンに移行する。
なお、本実施形態のアライメント検出系ASには、AGC(Auto Gain Control)機能が搭載されている。そこで、以下に説明する照明条件の最適化処理では、主制御装置28は、AGC機能を有効にして、波長帯、絞り、照度について最適化する。主制御装置28は、AGC機能を有効にする場合、常時、アライメントオートフォーカスを実行する。
照明条件の最適化のサブルーチンでは、まず、図4のステップ152において、波長帯及び絞りについて、上記の各条件の中から各1つを与える。
そして、ステップ154で、与えられた波長帯及び絞りの条件にて、照度(NAフィルタ)を変えつつ、ステップ156において、アライメント検出系ASを用いて任意の1つのサーチマークを検出する。
そして、次のステップ158において、得られる撮像信号(検出信号)のコントラストが最大、又は最大から所定の範囲(許容範囲)であるか否かを判断する。そして、この判断が否定された場合には、ステップ160で予定していた全ての照度(NDフィルタ)の変更が終了したか否かを判断する。そして、この判断が否定された場合には、ステップ154に戻り、照度条件として別の条件を与える(NDフィルタを変更する)。そして、ステップ158又はステップ160における判断が否定が肯定されるまで、ステップ154→156→158→160のループの処理・判断を繰り返す。これにより、最初の照明条件について、照度の最適化が試みられる。なお、照度(NDフィルタ)は、最大照度から徐々に小さくなるように変更される。
一方、ステップ158における判断が肯定された場合には、そのときの照明条件における照度の最適化が完了し、ステップ162に移行して、波長帯・絞りの全ての組み合わせについて処理が終了した否かを判断する。そして、この判断が否定された場合には、ステップ152に戻り、照明条件を次の照明条件に変更した後、ステップ162における判断が否定されるまで、ステップ152以下の処理・判断を繰り返す。
この一方、上記ステップ160における判断が肯定された場合には、そのとき設定されている照明条件での照度の最適化は失敗したものと判断して、ステップ162に移行する。
そして、ステップ162における判断が肯定されると、照明条件最適化のサブルーチンを終了し、メインルーチンのステップ108にリターンする。これにより、全ての照明条件(波長帯と絞りの組み合わせ)に対して、照度の最適化が試みられたことになる。
ステップ108では、1条件以上、照度の最適化に成功したか否かを判断する。そして、この判断が肯定された場合には、ステップ110に進んで、最適化に成功した照明条件(波長帯と絞りについての複数の照明条件(最適条件))の中から1つを選択する、すなわち最適条件を決定する。ここで、主制御装置28が、所定の基準に従って、照明条件の1つ、すなわち推奨される条件を選択(最適条件として決定)しても良いし、あるいは主制御装置28は、選択すべき複数の最適条件の一覧を表示し、その中からオペレータに1つの最適条件を選択させることとしても良い。後者の場合、推奨される条件については強調して表示することが望ましい。
主制御装置28では、「スループット優先」と「コントラスト優先」との2つのモードのいずれかの選択に従って推奨条件を選択する。なお、予め、一方の選択モードが設定されているものとし、必要に応じて選択モードを変更することとする。照度の最適化が成功した照明条件が1つのみの場合、モードの選択、設定に関係なく、その1つを推奨条件として選択する。
スループット優先モードでは、主制御装置28は、より最適な条件があったとしても、標準条件(例えば、波長帯ブロード、絞り大σ絞り、NAフィルタオート(Auto))を選択する。ただし、その標準条件において、後述する判定処理においてエラーが発生する場合、コントラスト優先モードを採用する。また、波長帯と照度(NAフィルタ)の条件に関しては、ファインアライメント(EGA)計測における波長帯及び照度と同じ条件(波長帯及び照度)を選択すると良い。そこで、ファインアライメント(EGA)計測に対する計測条件の最適化の際に、決定した波長帯及び照度の最適条件を修正できるようにする。勿論、サーチアライメント計測及びEGA計測において最適化処理が成功することを条件とする。
一方、コントラスト優先モードでは、主制御装置28は、コントラストが最大となる照明条件を選択する。最大コントラスト(最大振幅)が得られる照明条件が複数ある場合、AGC設定ゲインで除した生の信号の振幅がもっとも大きい照明条件を選択する。
次のステップ112では、選択された照明条件の下で、所定数のサーチマークのステージ座標系(X,Y)における位置座標をアライメント検出系ASを用いて検出する、サーチアライメント計測を行う。
そして、次のステップ114では、ステップ112のサーチアライメント計測に際して、認識エラー又は計測エラーが発生しなかったか否かを判断することで、その照明条件が十分であるか否か検証する。そして、ここでの判断が否定された場合、すなわち認識エラー又は計測エラーが発生する場合には、ステップ116に移行する。ステップ116では、マーク・パラメータ及び/又は撮像信号の演算処理アルゴリズムの変更処理を実行する。そして、この変更処理を実行後、ステップ106に戻り、ステップ114における判断が肯定されるまで、ステップ106→108→110→112→114→116のループの処理・判断を繰り返す。ただし、ステップ108における判断が肯定されつづけることを条件とする。これにより、照明条件及びマーク・パラメータ及び/又は撮像信号の演算処理アルゴリズムの最適化が実行されることになる。
一方、ステップ114における判断が肯定された場合、すなわち認識エラー及び計測エラーが発生しなかった場合には、ステップ118及びステップ120の判定処理に進む。
この判定処理は、ステップ118において、サーチアライメントの結果に基づいて、ウエハW上の第1EGAマーク(EGAにおける先頭サンプルショットにおける第1ウエハマーク)を、アライメント検出系ASの検出視野内に位置決めすべく、ウエハステージWSTを移動させるとともに、次のステップ120において、第1EGAマークが、アライメント検出系ASの検出視野内に位置決めされたか否かを判断することで行われる。
この場合、マニュアル・アシストモードで、オペレータが第1EGAマークがアライメント検出系ASの検出視野内に位置決めされたか否かを、目視にて確認し、その確認結果を入力装置を介して入力することで、主制御装置28が、その入力に基づいて判断することとしても良いし、あるいは、主制御装置28が、アライメント検出系ASを用いて第1EGAマークを検出し、その検出結果に基づいて、第1EGAマークがアライメント検出系ASの検出視野内に位置決めされたか否かを判断することとしても良い。
そして、ステップ120における判断が肯定された場合、すなわち第1EGAマークが、アライメント検出系ASの検出視野内に位置決めされた場合、本ルーチンの一連の処理、すなわちサーチアライメント計測の計測条件の最適化、すなわちサーチマークの計測条件の最適化処理を終了する。その後、ファインアライメント計測の計測条件の最適化処理に移行することとなる。
この一方、上記ステップ108における判断が否定された場合、すなわち照明条件の最適化ができなかった場合には、マークが存在しない可能性もあるため、ステップ124のマニュアル・アシストによる計測条件の最適化処理に移行する。
同様に、上記ステップ120における判断が否定された場合、すなわち第1EGAマークがアライメント検出系ASの検出視野内に位置決めされない場合には、誤認識/誤計測が発生していると思われるので、ステップ124のマニュアル・アシストによる計測条件の最適化処理に移行する。
ステップ124のマニュアル・アシストによる計測条件の最適化処理では、手動で波長帯と絞りについての条件を変更し、上述の照明条件の最適化処理(図4参照)を実行し、結果を判断する。なお、結果を判断するために、アライメント計測の結果(マークの検出位置等)とマークの撮像信号とを表示する機能を用意することとする。このマニュアル・アシスト処理により、最適化に成功した場合、本ルーチンの一連の処理を終了し、成功しない場合、サーチアライメント計測に対する計測条件の最適化処理を中断する(強制終了する)。
そして、最適化に成功し、最適化結果を保存した場合には、主制御装置28は、この最適化により決定された最適条件を用いて、サーチアライメント計測のレシピファイルを作成しておく。このレシピファイルの作成は、予め、最適化の対象である条件の数値を空白としたレシピファイルを用意しておき、このレシピファイルの空白に決定された最適条件を当てはめることで容易に行うことができる。
これにより、実際のウエハの処理の際には、主制御装置28が、作成されたレシピファイルを読み出し、このレシピファイルに基づいて、ウエハのサーチアライメントを、確実かつ正確に行うことが可能になる。
以上説明したように、本実施形態に係る露光装置100によると、主制御装置28により、サーチアライメントマークの計測条件のうち、マークの画像信号の取り込みのために重要な照明条件が最初に最適化され(ステップ106参照)、その最適化された照明条件の下でアライメント検出系ASを用いて、サーチアライメントマークを検出するサーチアライメント計測が行われ(ステップ112参照)、そのサーチアライメント計測でエラーが発生した場合に、照明条件以外の計測条件の最適化が行われる(ステップ114、116参照)。これにより、最適化された照明条件の下でアライメント検出系ASを用いて行われたサーチアライメント計測の結果エラーが発生しない限り、照明条件以外の計測条件の最適化が行われることがない。従って、サーチアライメントマークの計測条件の最適化を効率的に行うことができる。
また、本実施形態の露光装置100によると、主制御装置28が図4のフローチャートに対応する処理アルゴリズムで一連の処理を行うことで、サーチアライメントマークの計測条件の最適化を行うことができる。従って、オペレータ(又は技術者)等の人手によることなく、露光装置100がほぼ全自動で、サーチアライメント計測における最適計測条件を決定することが可能になる。
また、本実施形態の露光装置100によると、主制御装置28が、決定された最適条件を、サーチアライメント計測の処理手順を規定するプロセスプログラム(レシピファイル)中の対応する条件として決定することで、サーチアライメント計測のレシピファイルを作成する。これにより、ほぼ全自動で、サーチマークに応じた最適計測条件を含むサーチアライメント計測のレシピファイルを作成することが可能になる。そして、実際のウエハの処理の際には、主制御装置28が、作成されたレシピファイルを読み出し、このレシピファイルに基づいて、ウエハのサーチアライメントを、確実かつ正確に行うことが可能になる。そして、このサーチアライメントの結果に基づいて、ファインアライメント(EGA)を精度良く行うことが可能である。
また、本実施形態の露光装置100では、上述のようにウエハのファインアライメントを精度良く行うことができるので、このファインアライメントの結果に基づいて露光の際の際にレチクルRのパターンをウエハW上の各ショット領域に精度良く重ね合わせて転写することが可能になる。
なお、上記実施形態では、全ての照明条件について、照度の最適化を行うこととしたが、これに限らず、最適化処理の時間を短縮するため、波長帯と絞りについての一部の条件のみに対して、照度の最適化処理を行うこととしても良い。例えば、マークの種類毎に、標準条件を定めるとする。その標準条件として、波長帯に対して上記4つの条件を、絞りに対して大σ、小σの2つの条件のみを、選択する。なお、標準条件は、前もって、レシピに登録しておけば良い。
なお、上記実施形態では、レシピファイルを作成する際に、本発明に係る最適化方法が実施される場合について説明したが、これに限らず、実際のウエハの処理の際に、パイロットウエハ又はロット先頭ウエハなどを用いて、上記のサーチアライメント計測の計測条件の最適化を行うこととしても良い。
なお、上記実施形態では、サーチアライメント計測のレシピファイルを露光装置が作成し、その際に、計測条件を最適化する場合について説明したが、これに限らず、本発明の計測条件最適化方法、及びプログラムの作成方法を、露光装置以外の画像処理方式のアライメントセンサを備えた装置、例えば重ね合わせ測定機などで行うようにすることで、それらの装置でサーチアライメント計測のレシピファイルを作成することも可能である。
また、上記実施形態では、説明の簡略化のため、主制御装置28が、計測条件の最適化を含むサーチアライメント計測に関する処理、レシピファイルの作成などを全て行うものとしたが、例えば主制御装置28が行う各種処理を、複数のハードウェアで、分担して行うようにしても良い。例えば、前述の図2のフローチャートで示される、各ステップの処理を、複数のマイクロコンピュータで適宜分担して行うようにしても良い。
なお、上記実施形態では、光源として、KrFエキシマレーザ(出力波長248nm)などの紫外光源、ArFエキシマレーザ等の真空紫外域のパルスレーザ光源などを用いるものとしたが、これに限らず、水銀ランプは勿論、F2レーザ、あるいはAr2レーザ(出力波長126nm)などの他の真空紫外光源を用いても良い。また、例えば、真空紫外光として上記各光源から出力されるレーザ光に限らず、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(Er)(又はエルビウムとイッテルビウム(Yb)の両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
更に、照明光ILとしてEUV光、X線、あるいは電子線やイオンビームなどの荷電粒子線を用いる露光装置、投影光学系を用いない、例えばプロキシミティ方式の露光装置、ミラープロジェクション・アライナー、及び例えば国際公開WO99/49504号パンフレットなどに開示される、投影光学系PLとウエハとの間に液体が満たされる液浸型露光装置などにも本発明を適用しても良い。
また、上述の各実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク、あるいは光反射性の基板上に所定の反射パターンを形成した光反射型マスクを用いたが、それらに限定されるものではない。例えば、そのようなマスクに代えて、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(光学系の一種とする)を用いるようにしても良い。このような電子マスクは、例えば米国特許第6,778,257号明細書に開示されている。なお、上述の電子マスクとは、非発光型画像表示素子と自発光型画像表示素子との双方を含む概念である。
また、例えば、2光束干渉露光と呼ばれているような、複数の光束の干渉によって生じる干渉縞を基板に露光するような露光装置にも適用することができる。そのような露光方法及び露光装置は、例えば、国際公開第01/35168号パンフレットに開示されている。
なお、上記実施形態では、ステップ・アンド・スキャン方式等の走査型露光装置に本発明が適用された場合について説明したが、これに限らず、ステップ・アンド・リピート方式又はステップ・アンド・スティッチ方式の投影露光装置にも本発明は好適に適用できる。
なお、本発明は、半導体製造用の露光装置に限らず、液晶表示素子などを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられるデバイスパターンをセラミックウエハ上に転写する露光装置、及び撮像素子(CCDなど)、マイクロマシン、有機EL、DNAチップなどの製造に用いられる露光装置などにも適用することができる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
なお、これまでは、基板上にパターンを形成する露光装置について説明したが、スキャン動作により、基板上にパターンを形成する方法は、露光装置に限らず、例えば、特開2004−130312号公報などに開示される,インクジェットヘッド群と同様のインクジェット式の機能性液体付与装置を備えた素子製造装置を用いても実現可能である。
上記公開公報に開示されるインクジェットヘッド群は、所定の機能性液体(金属含有液体、感光材料など)をノズル(吐出口)から吐出して基板(例えばPET、ガラス、シリコン、紙など)に付与するインクジェットヘッドを複数有している。このインクジェットヘッド群のような機能性液体付与装置を用意して、パターンの生成に用いることとすれば良い。この機能性液体付与装置を備えた素子製造装置では、基板を固定して、機能性液体付与装置を走査方向にスキャンしても良いし、基板と機能性液体付与装置とを相互に逆向きに走査しても良い。
半導体デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置によりレチクルのパターンをウエハに転写するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。従って、その半導体デバイスを生産性良く製造することが可能となる。
以上説明したように、本発明の計測条件最適化方法は、サーチアライメント計測の計測条件を最適化するのに適している。また、本発明のプログラムの作成方法は、サーチアライメント計測のレシピの作成に適している。また、本発明の露光装置は、基板上の複数の区画領域にパターンを重ね合わせて形成するのに適している。
16…アライメント制御装置、28…主制御装置、100…露光装置、Sn…ショット領域、32X,32Y…サーチアライメントマーク、AS…アライメント検出系、W…ウエハ。
Claims (10)
- 基板上に形成された該基板の大まかな位置合わせを行うための複数個のサーチ用マークの計測条件を最適化する計測条件最適化方法であって、
前記基板上に付設されたサーチ用マークの検出に用いられる画像処理方式のマーク検出系の前記サーチ用マーク検出時の照明条件を最適化する第1工程と;
前記照明条件の最適化の後、その最適化された照明条件の下で前記マーク検出系を用いて、前記サーチ用マークを検出するサーチアライメント計測を行い、そのサーチアライメント計測でエラーが発生した場合に、前記照明条件以外の計測条件の最適化を行う第2工程と;を含む計測条件最適化方法。 - 前記エラーが発生しなかった前記サーチアライメント計測の結果に基づいて、前記基板を所定位置に位置決めし、その位置決めの結果に基づいて、前記最適化の成否を判定する第3工程をさらに含む請求項1に記載の計測条件最適化方法。
- 前記照明条件を含む前記計測条件の最適化は、前記マーク検出系による前記サーチ用マークの撮像信号のコントラストが極力最大になるように行われる請求項1又は2に記載の計測条件最適化方法。
- 前記照明条件以外の計測条件は、マーク・パラメータ及び信号処理アルゴリズムの少なくとも一方を含む請求項1〜3のいずれか一項に記載の計測条件最適化方法。
- 請求項1〜4のいずれか一項に記載の計測条件最適化方法によって決定された最適条件を、前記サーチアライメント計測の処理手順を規定するプログラム中の対応する条件として決定する工程を含む、プログラムの作成方法。
- 基板上の複数の区画領域にパターンを重ね合わせて形成する露光装置であって、
基板上に付設されたサーチ用マークを含むマークを検出対象とし、少なくとも照明条件の変更が可能な画像処理方式のマーク検出系と;
マーク検出系の前記サーチ用マーク検出時の照明条件を最適化し、その最適化された照明条件の下で前記マーク検出系を用いて、前記サーチ用マークを検出するサーチアライメント計測を行い、そのサーチアライメント計測でエラーが発生した場合に、前記照明条件以外の計測条件の最適化を行う最適化装置と;を備える露光装置。 - 前記最適化装置は、前記マーク検出系による前記サーチ用マークの撮像信号のコントラストが極力最大になるように、前記照明条件を含む前記計測条件を最適化する請求項6に記載の露光装置。
- 前記照明条件以外の計測条件は、マーク・パラメータ及び信号処理アルゴリズムの少なくとも一方を含む請求項6又は7に記載の露光装置。
- 前記エラーが発生しなかった前記サーチアライメント計測の結果に基づいて、前記基板を所定位置に位置決めし、その位置決めの結果に基づいて、前記最適化の成否を判定する判定装置をさらに備える請求項6〜8のいずれか一項に記載の露光装置。
- 前記判定装置によって最適化成功したと判定された最適条件を、前記サーチアライメント計測の処理手順を規定するプログラム中の対応する条件として決定することで、前記プログラムを作成する請求項9に記載の露光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008199458A JP2010040631A (ja) | 2008-08-01 | 2008-08-01 | 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008199458A JP2010040631A (ja) | 2008-08-01 | 2008-08-01 | 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010040631A true JP2010040631A (ja) | 2010-02-18 |
Family
ID=42012891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008199458A Pending JP2010040631A (ja) | 2008-08-01 | 2008-08-01 | 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010040631A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200110409A (ko) * | 2018-02-20 | 2020-09-23 | 에이에스엠엘 네델란즈 비.브이. | 증가된 대역폭을 갖는 계측 방법 및 장치 |
-
2008
- 2008-08-01 JP JP2008199458A patent/JP2010040631A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200110409A (ko) * | 2018-02-20 | 2020-09-23 | 에이에스엠엘 네델란즈 비.브이. | 증가된 대역폭을 갖는 계측 방법 및 장치 |
JP2021514071A (ja) * | 2018-02-20 | 2021-06-03 | エーエスエムエル ネザーランズ ビー.ブイ. | 帯域幅の増加を伴うメトロロジ方法及び装置 |
JP7002663B2 (ja) | 2018-02-20 | 2022-01-20 | エーエスエムエル ネザーランズ ビー.ブイ. | 帯域幅の増加を伴うメトロロジ方法及び装置 |
KR102453081B1 (ko) | 2018-02-20 | 2022-10-07 | 에이에스엠엘 네델란즈 비.브이. | 증가된 대역폭을 갖는 계측 방법 및 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100781105B1 (ko) | 노광장치, 면위치 조정장치, 마스크 및 디바이스 제조방법 | |
JP6980562B2 (ja) | パターン形成装置、アライメントマークの検出方法及びパターン形成方法 | |
JPH0950951A (ja) | リソグラフィ方法およびリソグラフィ装置 | |
KR20080059572A (ko) | 광학 특성 계측 방법, 노광 방법 및 디바이스 제조 방법,그리고 검사 장치 및 계측 방법 | |
JP2010186918A (ja) | アライメント方法、露光方法及び露光装置、デバイス製造方法、並びに露光システム | |
JP7328809B2 (ja) | 検出装置、露光装置、および物品製造方法 | |
US20020037460A1 (en) | Stage unit, measurement unit and measurement method, and exposure apparatus and exposure method | |
JP2009200105A (ja) | 露光装置 | |
US20090208855A1 (en) | Exposure apparatus and device manufacturing method | |
JPH0864518A (ja) | 露光方法 | |
JP2012033923A (ja) | 露光方法及び露光装置、並びにデバイス製造方法 | |
JP4280523B2 (ja) | 露光装置及び方法、デバイス製造方法 | |
JP2006294854A (ja) | マーク検出方法、位置合わせ方法、露光方法、プログラム及びマーク計測装置 | |
JP3466893B2 (ja) | 位置合わせ装置及びそれを用いた投影露光装置 | |
US8077290B2 (en) | Exposure apparatus, and device manufacturing method | |
JP2009099873A (ja) | 露光装置およびデバイス製造方法 | |
JP2012038794A (ja) | 検出条件最適化方法、プログラム作成方法、並びに露光装置及びマーク検出装置 | |
JP2011159753A (ja) | 検出条件最適化方法、プログラム作成方法、及び露光装置 | |
JP2010040632A (ja) | 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 | |
JP2010040631A (ja) | 計測条件最適化方法及びプログラムの作成方法、並びに露光装置 | |
JP2006148013A (ja) | 位置合わせ方法及び露光方法 | |
JP2006278799A (ja) | 位置計測方法及び該位置計測方法を使用したデバイス製造方法 | |
JP2006030021A (ja) | 位置検出装置及び位置検出方法 | |
JP2010283157A (ja) | 露光装置及びデバイス製造方法 | |
KR20080018684A (ko) | 반도체 제조설비 및 그를 이용한 웨이퍼 정렬방법 |