JP2010031329A - Nickel plating bath - Google Patents

Nickel plating bath Download PDF

Info

Publication number
JP2010031329A
JP2010031329A JP2008195951A JP2008195951A JP2010031329A JP 2010031329 A JP2010031329 A JP 2010031329A JP 2008195951 A JP2008195951 A JP 2008195951A JP 2008195951 A JP2008195951 A JP 2008195951A JP 2010031329 A JP2010031329 A JP 2010031329A
Authority
JP
Japan
Prior art keywords
nickel
plating bath
plating
nickel plating
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195951A
Other languages
Japanese (ja)
Other versions
JP4643690B2 (en
Inventor
Takeshi Ito
豪 伊藤
Taku Ito
卓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO DENKA KOGYO KK
Original Assignee
TAIYO DENKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO DENKA KOGYO KK filed Critical TAIYO DENKA KOGYO KK
Priority to JP2008195951A priority Critical patent/JP4643690B2/en
Publication of JP2010031329A publication Critical patent/JP2010031329A/en
Application granted granted Critical
Publication of JP4643690B2 publication Critical patent/JP4643690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel plating bath which is excellent in uniform electrodeposition properties and with which plating cost is reduced. <P>SOLUTION: The nickel plating bath contains nickel chloride hexahydrate in an amount of 4-100 g/L and sodium citrate dihydrate in an amount of 50-300 g/L, and in the nickel plating bath, a pH buffer agent such as boric acid is not contained or contained in a concentration of not higher than the saturated concentration, while nickel sulfate hexahydrate is not contained or contained in an amount of not higher than 30 g/L, and pH is set to be 6.5 to 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は均一電着性に優れたニッケルめっき浴に関する。   The present invention relates to a nickel plating bath excellent in throwing power.

従来より実用化されているニッケルめっき浴として、ワット浴(硫酸ニッケル240〜300 g/L、塩化ニッケル45〜50 g/L、ホウ酸30〜40 g/Lの組成からなるニッケルめっき浴)やスルファミン酸浴(スルファミン酸ニッケル300〜450 g/L、塩化ニッケル0〜15g/L、ホウ酸30〜40 g/Lからなるニッケルめっき浴)がある。ワット浴は電流効率に優れ、光沢剤や応力緩和剤についても開発が進んでいるため、装飾めっきとして好適に用いることができる。また、スルファミン酸浴はめっき皮膜の応力が小さいという特徴があるため、電鋳等の厚いめっきを行うのに適している。   As a nickel plating bath that has been practically used in the past, Watt bath (nickel plating bath having a composition of nickel sulfate 240 to 300 g / L, nickel chloride 45 to 50 g / L, boric acid 30 to 40 g / L) and There is a sulfamic acid bath (a nickel plating bath composed of nickel sulfamate 300 to 450 g / L, nickel chloride 0 to 15 g / L, boric acid 30 to 40 g / L). The Watt bath is excellent in current efficiency and has been developed for brighteners and stress relieving agents, so that it can be suitably used as decorative plating. In addition, since the sulfamic acid bath has a feature that the stress of the plating film is small, it is suitable for performing thick plating such as electroforming.

しかし、これらワット浴やスルファミン酸浴を用いたニッケルめっきは、均一電着性において問題が生じていた。例えば、深絞りのプレス製品などにニッケルめっきを施す場合には、ワット浴やスルファミン酸浴を用いた場合、深く絞られた内部までめっきが付き難く、ニッケルめっき皮膜が薄くなってしまい、耐食性が不十分となりやすい。その一方、被めっき物の凸部には電流が集中しやすく、めっきが厚くなりすぎて、寸法精度が悪くなる等の問題を生じていた。   However, nickel plating using these watt baths and sulfamic acid baths has a problem in throwing power. For example, when nickel plating is applied to deep-drawn press products, when using a Watt bath or a sulfamic acid bath, it is difficult to apply plating to the deeply drawn inside, the nickel plating film becomes thin, and corrosion resistance is reduced. It tends to be insufficient. On the other hand, current tends to concentrate on the convex portions of the object to be plated, and plating has become too thick, resulting in problems such as poor dimensional accuracy.

ニッケルめっきの均一電着性を向上させるための方法として、深く絞られた内部に補助電極を挿入したり、凸部付近に遮蔽物を設置したりすることが行われている。しかし、補助電極や遮蔽物を設置するのは手間がかかることであり、生産性が低下し、ひいてはめっきにかかるコストの高騰化を招来することとなる。   As a method for improving the uniform electrodeposition of nickel plating, an auxiliary electrode is inserted into a deeply squeezed interior, or a shielding object is installed in the vicinity of a convex portion. However, installation of auxiliary electrodes and shields is time consuming, resulting in a decrease in productivity and an increase in cost for plating.

この点、均一電着性に優れている無電解ニッケルめっき浴を用いれば、均一な膜厚のニッケルめっき層を形成させることができる。しかし、無電解ニッケルめっきのめっき速度は遅く、めっき浴に長い時間入れておかなければならないため、生産性が悪いという欠点を有する。また、ニッケルイオンを還元して金属とするために還元剤が必要となるため、めっきコストが高くなり、さらには、使用済みのめっき浴を廃棄するための廃液処理も必要となるという問題がある。特に、還元剤として次亜リン酸を用いる場合には、廃液に多量のリンが含まれることとなり、河川や湖沼の富栄養化等、環境汚染の原因となるおそれがある。   In this regard, if an electroless nickel plating bath excellent in uniform electrodeposition is used, a nickel plating layer having a uniform film thickness can be formed. However, the plating speed of electroless nickel plating is slow, and it must be kept in the plating bath for a long time. In addition, since a reducing agent is required to reduce nickel ions to metal, there is a problem that the plating cost increases, and further, a waste liquid treatment for discarding the used plating bath is required. . In particular, when hypophosphorous acid is used as the reducing agent, the waste liquid contains a large amount of phosphorus, which may cause environmental pollution such as eutrophication of rivers and lakes.

このため、被めっき物の形状に関わらず、どの部分にも均一な厚さのニッケルめっき皮膜が得られるような、均一電着性に優れたニッケルめっき浴が求められていた。そして、そのようなめっき浴として、クエン酸やその塩を含むニッケルめっき浴が提案されている(特許文献1、特許文献2)。   For this reason, there has been a demand for a nickel plating bath that is excellent in uniform electrodeposition so that a nickel plating film having a uniform thickness can be obtained in any part regardless of the shape of the object to be plated. As such a plating bath, a nickel plating bath containing citric acid or a salt thereof has been proposed (Patent Document 1, Patent Document 2).

特開2001−172790号公報JP 2001-172790 A 特開2002−212775号公報JP 2002-212775 A

本発明は、上記従来の実情に鑑みてなされたものであって、均一電着性に優れ、めっきコストの低廉なニッケルめっき浴を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and it is an object to be solved to provide a nickel plating bath which is excellent in uniform electrodeposition and low in plating cost.

本発明者らは、ニッケルめっき浴の均一電着性を向上させることについて鋭意研究を行なった。その結果、ニッケルイオン源としての塩化ニッケル及び/又は硫酸ニッケルをニッケルイオン濃度換算で1g/L〜20g/L含み、クエン酸をクエン酸・一水和物換算で50g/L〜300g/L含み、pHがアンモニアによって6.5〜10に調節されたニッケルめっき浴が優れた均一電着性を示すことを見出し、既に特許出願を行なった(特願2007−231095)。そして、さらに優れた均一電着性を有するニッケルめっき浴について、鋭意研究を行なった結果、塩化ニッケル−クエン酸ナトリウム−ホウ酸等のpH緩衝剤の系のニッケルめっき浴において、優れた均一電着性を備えためっき浴の組成範囲を見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to improve the throwing power of the nickel plating bath. As a result, nickel chloride and / or nickel sulfate as a nickel ion source contains 1 g / L to 20 g / L in terms of nickel ion concentration, and citric acid contains 50 g / L to 300 g / L in terms of citric acid / monohydrate. The inventors have found that a nickel plating bath whose pH is adjusted to 6.5 to 10 with ammonia exhibits excellent throwing power, and has already filed a patent application (Japanese Patent Application No. 2007-231095). Further, as a result of earnest research on nickel plating baths having even more uniform electrodeposition, excellent uniform electrodeposition in nickel plating baths of pH buffer system such as nickel chloride-sodium citrate-boric acid. The composition range of the plating bath having the properties was found and the present invention was completed.

すなわち、本発明のニッケルめっき浴は、塩化ニッケル・六水和物を4g/L〜100g/L含み、クエン酸ナトリウム・二水和物を50g/L〜300g/L含み、pH緩衝剤を含まないか又は飽和濃度以下とされており、硫酸ニッケル・六水和物を含まないか又は30g/L以下とされており、pHが6.5〜10とされていることを特徴とする。   That is, the nickel plating bath of the present invention contains 4 g / L to 100 g / L of nickel chloride hexahydrate, 50 g / L to 300 g / L of sodium citrate dihydrate, and contains a pH buffer. Or no saturation concentration or less, nickel sulfate hexahydrate is not contained or 30 g / L or less, and the pH is 6.5 to 10.

本発明のニッケルめっき浴では、クエン酸ナトリウム・二水和物が50g/L〜300g/Lと多量に含まれており、従来のクエン酸ニッケルめっき浴(上記特許文献1に記載のクエン酸ニッケルめっき浴のクエン酸濃度は12g/L〜21g/L)と比較して、クエン酸イオンの濃度が高くされている。また、めっき浴中の塩化ニッケル・六水和物の濃度は4g/L〜100g/L(ニッケルイオン濃度換算で0.89〜22.3g/L)であり、上記特許文献1に記載されて従来のクエン酸ニッケルめっき浴中のニッケルイオン濃度や、上記特許文献2のクエン酸ニッケルめっき浴中の好適なニッケルイオン濃度範囲(15g/L〜80g/L)よりも低めとなっている。さらに、従来のワット浴等にニッケルイオン源として多量に含まれている硫酸ニッケルは30g/L以下と低くされている。また、pHが6.5〜10とされており、上記特許文献1に記載されて従来のクエン酸ニッケルめっき浴のpHが3〜5であるのに対して、高くされている。   In the nickel plating bath of the present invention, sodium citrate dihydrate is contained in a large amount of 50 g / L to 300 g / L, and a conventional nickel citrate plating bath (the nickel citrate described in Patent Document 1 above) is contained. The citric acid concentration of the plating bath is higher than that of 12 g / L to 21 g / L). The concentration of nickel chloride hexahydrate in the plating bath is 4 g / L to 100 g / L (0.89 to 22.3 g / L in terms of nickel ion concentration), which is described in Patent Document 1 above. It is lower than the nickel ion concentration in the conventional nickel citrate plating bath and the preferred nickel ion concentration range (15 g / L to 80 g / L) in the nickel citrate plating bath of Patent Document 2. Furthermore, nickel sulfate contained in a large amount as a nickel ion source in a conventional watt bath or the like is as low as 30 g / L or less. Moreover, pH is set to 6.5-10, and it is made high compared with the pH of the conventional nickel citrate plating bath described in the said patent document 1 being 3-5.

このように、本発明のニッケルめっき浴と、従来のクエン酸ニッケルめっき浴とは、浴組成に大きな違いがある。本発明のニッケルめっき浴に含まれているクエン酸ナトリウムの役割は、pH緩衝剤としてよりも、ニッケルイオンの錯化剤として機能していると考えられる。すなわち、従来のクエン酸ニッケルめっき浴では、クエン酸に対するニッケルイオンの濃度が高く、pHも低いため、クエン酸はニッケルイオンの錯化剤としてよりも、pH緩衝剤として添加されているといえる。これに対して、本発明のニッケルめっき浴では、ニッケルイオン濃度が低く、クエン酸の添加量が極めて多く、しかもpHが高くされているため、クエン酸がニッケルイオンの錯化剤として機能していると考えられる。このため、本発明のニッケルめっき浴では、ニッケルイオンが錯化された状態からのニッケルが析出することとなり、このことが、従来のクエン酸ニッケルめっき浴とは異なり、極めて均一電着性に優れたニッケルめっき皮膜が形成される要因となっているものと推定される。   Thus, there is a great difference in the bath composition between the nickel plating bath of the present invention and the conventional nickel citrate plating bath. It is considered that the role of sodium citrate contained in the nickel plating bath of the present invention functions as a nickel ion complexing agent rather than as a pH buffering agent. That is, in the conventional nickel citrate plating bath, since the concentration of nickel ions with respect to citric acid is high and the pH is low, it can be said that citric acid is added as a pH buffer rather than as a complexing agent of nickel ions. On the other hand, in the nickel plating bath of the present invention, since the nickel ion concentration is low, the amount of citric acid added is extremely large, and the pH is high, citric acid functions as a complexing agent for nickel ions. It is thought that there is. For this reason, in the nickel plating bath of the present invention, nickel from a state in which nickel ions are complexed is precipitated, which is very excellent in electrodeposition, unlike the conventional nickel citrate plating bath. It is presumed that this is the cause of the formation of a nickel plating film.

また、本発明のニッケルめっき浴では、pH緩衝剤を含まないか又は飽和濃度以下とされている。pH緩衝剤を含まなくてもニッケルめっきが可能なのは、クエン酸ナトリウム・二水和物がpH緩衝剤としての役割をするためであると考えられる。なお、ここでpH緩衝剤とは、ニッケルめっき表面近傍が水の電気化学的還元によって生じたOHイオンによってアルカリに移行するのを防止して、正常なニッケルめっき皮膜を得るために添加される薬剤をいう。このようなpH緩衝剤としては、めっき業界において広く用いられているものを用いることができる。例えばホウ酸、リンゴ酸、クエン酸、マレイン酸、フマル酸、グリコール酸、グルタル酸、L−グルタミン酸、酢酸、プロピオン酸、及びそれらの塩類が挙げられる。
発明者らは、pH緩衝剤としてホウ酸を用いることにより、優れた均一電着性を有するニッケルめっきが可能となることを確認している。
Further, the nickel plating bath of the present invention does not contain a pH buffer or has a saturation concentration or less. The reason why nickel plating is possible without including a pH buffer is considered to be due to the role of sodium citrate dihydrate as a pH buffer. Here, the pH buffering agent is added to obtain a normal nickel plating film by preventing the vicinity of the nickel plating surface from shifting to alkali by OH ions generated by electrochemical reduction of water. A drug. As such a pH buffering agent, those widely used in the plating industry can be used. Examples thereof include boric acid, malic acid, citric acid, maleic acid, fumaric acid, glycolic acid, glutaric acid, L-glutamic acid, acetic acid, propionic acid, and salts thereof.
The inventors have confirmed that the use of boric acid as a pH buffering agent enables nickel plating having excellent throwing power.

また、本発明のめっき浴では、従来のワット浴やスルファミン酸浴と同様、電気めっきによってニッケルを析出させるため、無電解ニッケルめっき浴のように、還元剤を添加する必要もない。また、補助電極や遮蔽物を設置しなくても、均一な厚みのニッケルめっき皮膜を形成することができる。このため、めっきコストも低廉なものとなる。   Further, in the plating bath of the present invention, nickel is deposited by electroplating as in the case of the conventional watt bath and sulfamic acid bath, so that it is not necessary to add a reducing agent unlike the electroless nickel plating bath. Further, a nickel plating film having a uniform thickness can be formed without installing an auxiliary electrode or a shield. For this reason, the plating cost is also low.

なお、クエン酸ナトリウムは二水和物として加える他、無水物として加えても良いし、クエン酸を水酸化ナトリウムで中和しても良い。これらの場合には、クエン酸ナトリウム・二水和物換算で50g/L〜300g/L含まれていればよい。   Sodium citrate may be added as an anhydride in addition to dihydrate, or citric acid may be neutralized with sodium hydroxide. In these cases, it may be contained in an amount of 50 g / L to 300 g / L in terms of sodium citrate dihydrate.

また、本発明のニッケルめっき浴では、光沢剤及び/又は応力緩和剤が添加されていることも好ましい。光沢剤が添加されれば、広い電流密度の範囲で均質な外観のニッケルめっきとすることができるため、装飾用のニッケルめっきとして用いることができる。また、応力緩和剤を添加すれば、ニッケルめっき皮膜の応力が緩和され、割れ等の異常なめっきとなることを防止することができる。   In the nickel plating bath of the present invention, it is also preferable that a brightener and / or a stress relaxation agent is added. If a brightening agent is added, it can be made into nickel plating with a uniform appearance in a wide current density range, and can therefore be used as decorative nickel plating. Moreover, if a stress relaxation agent is added, the stress of a nickel plating film is relieved and it can prevent becoming abnormal plating, such as a crack.

本発明のニッケルめっき浴はニッケル源として塩化ニッケルを用いているため、ニッケル陽極の溶解性は良好となる。塩化ニッケル・六水和物の添加量は4g/L〜100g/Lの範囲とすることを要す。塩化ニッケル・六水和物の添加量は4g/L未満では、連続してニッケルめっきを行なう場合、ニッケルイオン濃度の変動割合が大きくなり、ニッケルイオン濃度の浴管理が難しくなる。また、塩化ニッケル・六水和物の添加量が100g/Lを超えると、陽極をニッケルにした場合、塩素イオンの影響でニッケルが過剰に溶け、ニッケルイオン濃度が上昇し、やはりニッケルイオン濃度の浴管理が難しくなる。さらに好適な塩化ニッケル・六水和物の濃度範囲は、8g/L〜80g/Lである   Since the nickel plating bath of the present invention uses nickel chloride as the nickel source, the solubility of the nickel anode is good. The addition amount of nickel chloride hexahydrate needs to be in the range of 4 g / L to 100 g / L. When the addition amount of nickel chloride hexahydrate is less than 4 g / L, when nickel plating is continuously performed, the fluctuation rate of the nickel ion concentration becomes large, and bath management of the nickel ion concentration becomes difficult. Also, when the addition amount of nickel chloride hexahydrate exceeds 100 g / L, when the anode is made of nickel, the nickel ions are excessively dissolved by the influence of chlorine ions, and the nickel ion concentration is increased. Bath management becomes difficult. A more preferable nickel chloride hexahydrate concentration range is 8 g / L to 80 g / L.

また、クエン酸ナトリウム・二水和物は50g/L〜300g/L含であることが好ましい。クエン酸ナトリウム・二水和物の添加量が50g/L未満の場合には、ニッケルの錯体化が進まず、均一電着性が低下する。一方、クエン酸ナトリウム・二水和物が300g/Lを超えると、溶解度の限界に近づくため、冬場等において、クエン酸が溶解しきれずに、析出するおそれがある。   The sodium citrate dihydrate preferably contains 50 g / L to 300 g / L. When the amount of sodium citrate dihydrate added is less than 50 g / L, the complexation of nickel does not proceed and the throwing power decreases. On the other hand, when sodium citrate dihydrate exceeds 300 g / L, the limit of solubility is approached, and thus citric acid may not be completely dissolved and may precipitate in winter.

また、本発明のニッケルめっき浴では、硫酸ニッケルが六水和物換算で30g/L以下とする必要がある。本発明者らの試験結果によれば、硫酸ニッケルが六水和物換算で30g/Lを越えると、めっき被膜が黒変して異常な析出となったり、沈殿物が生じたりする。特に、塩化ニッケル・六水和物が80g以上の場合には、硫酸ニッケルが六水和物換算で30g/Lを越えると均一電着性が極端に低下する。   In the nickel plating bath of the present invention, nickel sulfate needs to be 30 g / L or less in terms of hexahydrate. According to the test results of the present inventors, when nickel sulfate exceeds 30 g / L in terms of hexahydrate, the plating film turns black, resulting in abnormal precipitation or precipitation. In particular, when the amount of nickel chloride hexahydrate is 80 g or more, the throwing power is extremely lowered when nickel sulfate exceeds 30 g / L in terms of hexahydrate.

また、pH緩衝剤としての役割を果たすべく、ホウ酸を添加しても良いが、本発明のめっき浴では、クエン酸イオンがpH緩衝剤としての役割を果たすため、ホウ酸をまったく添加しなくても、良好なニッケルめっき皮膜を得ることができる。   In addition, boric acid may be added to serve as a pH buffering agent, but in the plating bath of the present invention, citrate ions serve as a pH buffering agent, so no boric acid is added at all. However, a good nickel plating film can be obtained.

また、本発明のニッケルめっき浴のpHは6.5〜10が好ましい。6.5未満では電流密度の小さい部分が正常なめっき皮膜ができずに、焦げたような外観となる。また、pHが10を超えるとめっき液に沈殿物が生じるという問題がある。なお、本発明のニッケルめっき浴では、電気めっきを行うとpHが若干高くなるという傾向にあるが、pHを調節するために、塩酸などの酸を用いることも可能である。   The pH of the nickel plating bath of the present invention is preferably 6.5 to 10. If it is less than 6.5, a portion having a small current density will not be able to form a normal plating film, and the appearance will be burnt. Moreover, when pH exceeds 10, there exists a problem that a deposit arises in a plating solution. In the nickel plating bath of the present invention, the pH tends to be slightly higher when electroplating is performed, but an acid such as hydrochloric acid can be used to adjust the pH.

本発明に用いられる光沢剤としては、ブチンジオール等のアセチレン誘導体、サッカリン、ヘキシンジオール等が挙げられる。また、本発明に用いられる応力緩和剤としては、ベンゼンスルホン酸、ナフタレンジスルホン酸等が挙げられる。   Examples of the brightener used in the present invention include acetylene derivatives such as butynediol, saccharin, and hexynediol. Examples of the stress relaxation agent used in the present invention include benzenesulfonic acid and naphthalenedisulfonic acid.

本発明のニッケルめっき浴を用いてニッケルめっきを行う場合、陽極としてはニッケルを用いることが好ましい。こうであれば、めっき浴中のニッケルイオンが、ニッケル陽極から補充され、変動し難くなる。また、めっき浴の浴温は適宜選択すればよいが、30〜50℃が好ましい。50℃を超えると、液の蒸発が促進され、エネルギーの消費量も多くなり、作業環境も悪くなる。また、30℃未満では、季節によって冷却装置が必要となる。   When nickel plating is performed using the nickel plating bath of the present invention, nickel is preferably used as the anode. If it is like this, the nickel ion in a plating bath will be replenished from a nickel anode, and will not change easily. Moreover, what is necessary is just to select the bath temperature of a plating bath suitably, but 30-50 degreeC is preferable. If the temperature exceeds 50 ° C., the evaporation of the liquid is promoted, the amount of energy consumption increases, and the working environment becomes worse. Moreover, if it is less than 30 degreeC, a cooling device will be needed according to a season.

以下、本発明のニッケルめっき浴を具体化した実施例について、さらに詳述する。
(実施例1)
以下に示す手順に従ってニッケルめっき浴を建浴した。すなわち、水にクエン酸ナトリウム・二水和物を200g/L、塩化ニッケル・六水和物を80g/L、ホウ酸を40g/Lとなるように添加して加温溶解し、実施例1のニッケルめっき浴とした。このめっき浴のpHは5.8であり、ニッケルイオン濃度換算で19.77g/Lのニッケルイオンが含まれている。
Hereinafter, the Example which actualized the nickel plating bath of this invention is further explained in full detail.
Example 1
A nickel plating bath was constructed according to the following procedure. That is, sodium citrate dihydrate was added to water at 200 g / L, nickel chloride hexahydrate was added at 80 g / L, and boric acid was added at 40 g / L. Nickel plating bath. The plating bath has a pH of 5.8 and contains 19.77 g / L of nickel ions in terms of nickel ion concentration.

(実施例2)
実施例2では、塩化ニッケル・六水和物の濃度を40g/Lとした。このめっき浴にはニッケルイオン濃度換算で9.89g/Lのニッケルイオンが含まれている。その他は実施例1のニッケルめっき浴と同じであり、説明を省略する。
(Example 2)
In Example 2, the concentration of nickel chloride hexahydrate was 40 g / L. This plating bath contains 9.89 g / L of nickel ions in terms of nickel ion concentration. Others are the same as the nickel plating bath of Example 1, and description is abbreviate | omitted.

(実施例3)
実施例3ではクエン酸ナトリウム・二水和物を100g/L、塩化ニッケル・六水和物の濃度を40g/Lとした。このめっき浴にはニッケルイオン濃度換算で9.88g/Lのニッケルイオンが含まれている。その他は実施例1のニッケルめっき浴と同じであり、説明を省略する。
(Example 3)
In Example 3, sodium citrate dihydrate was 100 g / L, and the concentration of nickel chloride hexahydrate was 40 g / L. This plating bath contains 9.88 g / L of nickel ions in terms of nickel ion concentration. Others are the same as the nickel plating bath of Example 1, and description is abbreviate | omitted.

(実施例4)
実施例4ではクエン酸ナトリウム・二水和物を300g/L、塩化ニッケル・六水和物の濃度を80g/Lとした。このめっき浴にはニッケルイオン濃度換算で19.77g/Lのニッケルイオンが含まれている。その他は実施例1のニッケルめっき浴と同じであり、説明を省略する。
Example 4
In Example 4, sodium citrate dihydrate was 300 g / L, and the concentration of nickel chloride hexahydrate was 80 g / L. This plating bath contains 19.77 g / L of nickel ions in terms of nickel ion concentration. Others are the same as the nickel plating bath of Example 1, and description is abbreviate | omitted.

(実施例5)
実施例5ではクエン酸ナトリウム・二水和物を200g/L、塩化ニッケル・六水和物の濃度を60g/Lとした。このめっき浴にはニッケルイオン濃度換算で14.84g/Lのニッケルイオンが含まれている。その他は実施例1のニッケルめっき浴と同じであり、説明を省略する。
(Example 5)
In Example 5, sodium citrate dihydrate was 200 g / L, and the concentration of nickel chloride hexahydrate was 60 g / L. This plating bath contains 14.84 g / L of nickel ions in terms of nickel ion concentration. Others are the same as the nickel plating bath of Example 1, and description is abbreviate | omitted.

(実施例6〜10)
実施例6〜10では下記組成のニッケルめっき液とし、硫酸ニッケル・六水和物の添加量は実施例12で1g/L、実施例13で5g/L、実施例14で10g/L、実施例15で20g/L、実施例16で30g/Lとした。
クエン酸カリウム・一水和物・200g/L
塩化ニッケル・六水和物・・・・80g/L
硫酸ニッケル・六水和物・・1〜30g/L
ホウ酸・・・・・・・・・・・・40g/L
(Examples 6 to 10)
In Examples 6 to 10, a nickel plating solution having the following composition was used, and the addition amount of nickel sulfate hexahydrate was 1 g / L in Example 12, 5 g / L in Example 13, and 10 g / L in Example 14. In Example 15, it was 20 g / L, and in Example 16, it was 30 g / L.
Potassium citrate monohydrate 200g / L
Nickel chloride hexahydrate ... 80g / L
Nickel sulfate hexahydrate .... 1-30g / L
Boric acid ... 40g / L

(実施例11〜14)
実施例11〜14では下記組成のニッケルめっき液とし、ホウ酸の添加量は実施例11で10g/L、実施例12で20g/L、実施例13で30g/L、実施例14で40gとした。
クエン酸カリウム・一水和物・200g/L
塩化ニッケル・六水和物・・・・80g/L
ホウ酸・・・・・・・・・10〜40g/L
(Examples 11-14)
In Examples 11 to 14, a nickel plating solution having the following composition was used, and the amount of boric acid added was 10 g / L in Example 11, 20 g / L in Example 12, 30 g / L in Example 13, and 40 g in Example 14. did.
Potassium citrate monohydrate 200g / L
Nickel chloride hexahydrate ... 80g / L
Boric acid ... 10-40g / L

(実施例15)
実施例15では下記組成のニッケルめっき液とし、ホウ酸は添加量しなかった。
クエン酸カリウム・一水和物・200g/L
塩化ニッケル・六水和物・・・・40g/L
pH・・・・・・・・・・・・・・・9.0
(Example 15)
In Example 15, a nickel plating solution having the following composition was used, and boric acid was not added.
Potassium citrate monohydrate 200g / L
Nickel chloride hexahydrate ... 40g / L
pH ... 9.0

(実施例16)
実施例16ではpH緩衝剤としてDL−リンゴ酸を用いて、下記組成のニッケルめっき液とした。
クエン酸カリウム・一水和物・200g/L
塩化ニッケル・六水和物・・・・80g/L
DL−リンゴ酸・・・・・・・・40g/L
(Example 16)
In Example 16, a nickel plating solution having the following composition was prepared using DL-malic acid as a pH buffer.
Potassium citrate monohydrate 200g / L
Nickel chloride hexahydrate ... 80g / L
DL-malic acid ... 40g / L

(比較例1)
比較例1は下記組成のワット浴である。
硫酸ニッケル・六水和物・・240g/L
塩化ニッケル・六水和物・・・45g/L
ホウ酸・・・・・・・・・・・30g/L
pH・・・・・・・・・・ 3.38(塩基性炭酸ニッケルを加えてろ過後、希硫酸
で調整)
(Comparative Example 1)
Comparative Example 1 is a Watt bath having the following composition.
Nickel sulfate hexahydrate 240g / L
Nickel chloride hexahydrate ... 45g / L
Boric acid 30g / L
pH ... 3.38 (After adding basic nickel carbonate and filtering, dilute sulfuric acid
To adjust)

(比較例2)
比較例2ではクエン酸ナトリウムの代わりにクエン酸カリウムを用い、下記組成のめっき液とした。
クエン酸カリウム・一水和物・200g/L
塩化ニッケル・六水和物・・・・80g/L
ホウ酸・・・・・・・・・・・・40g/L
pH・・・・・・・・・・ 5.5
(Comparative Example 2)
In Comparative Example 2, potassium citrate was used in place of sodium citrate to obtain a plating solution having the following composition.
Potassium citrate monohydrate 200g / L
Nickel chloride hexahydrate ... 80g / L
Boric acid ... 40g / L
pH 5.5

(比較例3)
比較例3ではクエン酸カリウム・一水和物を100g/L、塩化ニッケル・六水和物を40g/Lとした。その他については比較例2と同様であり、説明を省略する。
(Comparative Example 3)
In Comparative Example 3, potassium citrate monohydrate was 100 g / L and nickel chloride hexahydrate was 40 g / L. About others, it is the same as that of the comparative example 2, and abbreviate | omits description.

(比較例4)
比較例4では下記浴組成のニッケルめっき浴であり、硫酸ニッケル・六水和物の添加量が40g/Lと多くされている。
クエン酸ナトリウム・二水和物・200g/L
塩化ニッケル・六水和物・・・・・80g/L
硫酸ニッケル・六水和物・・・・・40g/L
ホウ酸・・・・・・・・・・・・・40g/L
pH・・・・・・・・・・ 4.7
(Comparative Example 4)
Comparative Example 4 is a nickel plating bath having the following bath composition, and the amount of nickel sulfate hexahydrate added is increased to 40 g / L.
Sodium citrate dihydrate 200g / L
Nickel chloride hexahydrate ... 80g / L
Nickel sulfate hexahydrate ... 40g / L
Boric acid ・ ・ ・ 40g / L
pH: 4.7

(比較例5)
比較例5では、硫酸ニッケル・六水和物の添加量が80g/Lと、さらに多くされており、pHは4.4である。その他については比較例4と同様であり、説明を省略する
(Comparative Example 5)
In Comparative Example 5, the addition amount of nickel sulfate hexahydrate was further increased to 80 g / L, and the pH was 4.4. About others, it is the same as that of the comparative example 4, and abbreviate | omits description

<均一電着性の評価>
均一電着性の評価はハルセル試験で行った。すなわち、図1に示すように、断面が台形形状の四角柱容器のめっき槽1を用い、図2に示すように、互いに非平行で対面する面2、面3のうち、幅が短い面2に接するようにニッケル陽極板4を挿入し、幅が長い面3に接するように黄銅板5を挿入する。黄銅板5は100mm×65mm、ニッケル陽極板4は63.5mmである。また、めっき槽1の互いに平行で対面する面の短辺側の幅Xは47.6mm、長辺側の幅Yは127mmである、深さDは63.5mmである。めっき槽1にめっき浴を267mL入れた。めっき用電源として、定電流電源6を用意し、陽極側をニッケル陽極板4に接続し、陰極側を黄銅板5に接続した。
<Evaluation of throwing power>
Evaluation of throwing power was performed by the Hull cell test. That is, as shown in FIG. 1, a plating tank 1 having a trapezoidal square cross section is used. As shown in FIG. The nickel anode plate 4 is inserted so as to be in contact with the metal plate, and the brass plate 5 is inserted so as to be in contact with the long surface 3. The brass plate 5 is 100 mm × 65 mm, and the nickel anode plate 4 is 63.5 mm. Further, the width X on the short side of the surfaces facing each other in parallel in the plating tank 1 is 47.6 mm, the width Y on the long side is 127 mm, and the depth D is 63.5 mm. 267 mL of a plating bath was placed in the plating tank 1. A constant current power source 6 was prepared as a power source for plating, the anode side was connected to the nickel anode plate 4, and the cathode side was connected to the brass plate 5.

ハルセル試験では、めっき槽1にニッケルめっき浴を267mL入れ、図示しない電気ヒータ及び温度調節装置により、浴温度を50℃とし、所定の定電流により所定の時間電気めっきを行った。そして、蛍光X線膜厚計によってめっき皮膜の膜厚を測定した。測定箇所は、図2に示すA地点、B地点及びC地点の3箇所(端からの距離OA=5mm、OB=20mm、OC=81mm)とし、(B地点の膜厚)/(C地点の膜厚)及び(A地点の膜厚)/(C地点の膜厚)の値で、均一電着性を評価した。ハルセル試験においては、陽極と陰極との距離が短いほど電流密度が大きくなり、(B地点の膜厚)/(C地点の膜厚)及び(A地点の膜厚)/(C地点の膜厚)の値が1に近いほど均一電着性が良いことになる。ハルセル試験において、陰極側の黄銅板5の各地点からニッケル陽極板4までの距離をLとした場合、その地点での過電圧を考慮しない理論的な電流密度iは、全体の電流をIとした場合、
i=I(5.10−5.24logL)
で計算することができる。こうして計算された各地点の電流密度は、定電流が3AにおいてA地点で20.0A/dm2、B地点で10.5A/dm2、C地点で1.0A/dm2となる。
In the hull cell test, 267 mL of a nickel plating bath was placed in the plating tank 1, and the electroplating was performed for a predetermined time with a predetermined constant current using an electric heater and a temperature control device (not shown). And the film thickness of the plating film was measured with the fluorescent X-ray film thickness meter. 2 points (points OA = 5 mm, OB = 20 mm, OC = 81 mm from the end) shown in FIG. 2 and (film thickness at point B) / (point C) The throwing power was evaluated by the values of (film thickness) and (film thickness at point A) / (film thickness at point C). In the hull cell test, the shorter the distance between the anode and the cathode, the larger the current density, and (film thickness at point B) / (film thickness at point C) / (film thickness at point A) / (film thickness at point C). The closer the value of) to 1, the better the electrodeposition. In the hull cell test, when the distance from each point of the brass plate 5 on the cathode side to the nickel anode plate 4 is L, the theoretical current density i not considering the overvoltage at that point is I as the total current. If
i = I (5.10-5.24 logL)
Can be calculated with Thus the current density of the computed each point becomes 1.0A / dm 2 at 20.0A / dm 2, B point in 10.5A / dm 2, C the point at point A in the constant current is 3A.

<結 果>
実施例1のニッケルめっき浴について、めっき時間を変えて行なったハルセル試験の結果を表1に示す。

Figure 2010031329
<Result>
Table 1 shows the results of the hull cell test performed for the nickel plating bath of Example 1 while changing the plating time.
Figure 2010031329

結果を表1に示す。この表から、実施例1では、ワット浴を用いた比較例1と比較して、B/C及びA/Cの値が1に近く、均一電着性が極めて優れていることが分かる。また、実施例1のニッケルめっき浴では、めっき時間を長くすることにより厚さも厚くなり、10μm以上の厚めっきも可能であることが分かった。   The results are shown in Table 1. From this table, it can be seen that in Example 1, the B / C and A / C values are close to 1 and the throwing power is extremely excellent as compared with Comparative Example 1 using a Watt bath. In addition, in the nickel plating bath of Example 1, it was found that the thickness was increased by increasing the plating time, and thick plating of 10 μm or more was possible.

また、実施例1のニッケルめっき浴を用いて、ハルセル試験(3A、3分間)を連続して10回行なった。その結果、表2に示すように、優れた均一電着性が安定して得られ、膜厚も安定していた。

Figure 2010031329
Further, using the nickel plating bath of Example 1, the hull cell test (3A, 3 minutes) was continuously performed 10 times. As a result, as shown in Table 2, excellent uniform electrodeposition was stably obtained, and the film thickness was also stable.
Figure 2010031329

また、実施例1〜5及び比較例1のニッケルめっき液について3A(比較例1では2A)、40分間(ただしの実施例1では3分間、実施例5では20分間、比較例1では3分間)のハルセル試験を行なった。その結果、表3に示すように、実施例1〜5のニッケルめっき浴では、比較例1のワット浴と比較して、遥かに優れた均一電着性が示された。その中でも、クエン酸ナトリウム・二水和物を200g/Lとした実施例1,2,5及び300g/Lとした実施例4,は、クエン酸ナトリウム・二水和物を100g/Lと少なくした実施例3よりも優れた均一電着性を示した。

Figure 2010031329
In addition, the nickel plating solutions of Examples 1 to 5 and Comparative Example 1 are 3A (2A in Comparative Example 1) and 40 minutes (however, 3 minutes in Example 1, 20 minutes in Example 5, and 3 minutes in Comparative Example 1). ) Was conducted. As a result, as shown in Table 3, the nickel plating baths of Examples 1 to 5 showed much better throwing power as compared with the watt bath of Comparative Example 1. Among them, Examples 1, 2, 5 and 300 g / L of Examples 1, 2, 5 and 300 g / L of sodium citrate dihydrate were less than 100 g / L of sodium citrate dihydrate. The uniform electrodeposition was superior to that of Example 3.
Figure 2010031329

また、比較例2及び比較例3のニッケルめっき液について3A、10分間のハルセル試験を行なった。その結果、表4に示すように、均一電着性は良好であったが、電流密度の大きな部分では正常なめっきが形成されず、析出物が剥がれ落ちた。このことから、クエン酸ナトリウムの替わりにクエン酸カリウムを用いることはできないことが分かった。

Figure 2010031329
Further, the nickel plating solutions of Comparative Example 2 and Comparative Example 3 were subjected to a 3A, 10 minute hull cell test. As a result, as shown in Table 4, the throwing power was good, but normal plating was not formed at the portion where the current density was large, and the deposits were peeled off. This indicates that potassium citrate cannot be used in place of sodium citrate.
Figure 2010031329

さらに、比較例4及び比較例5のニッケルめっき液について3A、10分間のハルセル試験を行なった。その結果、表5に示すように均一電着性は悪い結果となり、硫酸ニッケル・六水和物の添加量を多くすると、均一電着性が悪くなることが分かった。めっき液に沈殿物が生じるという問題も生じた。

Figure 2010031329
Further, the nickel plating solutions of Comparative Example 4 and Comparative Example 5 were subjected to a 3A, 10 minute hull cell test. As a result, as shown in Table 5, the throwing power was poor, and it was found that the throwing power worsened when the addition amount of nickel sulfate hexahydrate was increased. There also arises a problem that precipitates are formed in the plating solution.
Figure 2010031329

一方、クエン酸ナトリウム・二水和物200g/L、塩化ニッケル・六水和物を40g/L、ホウ酸40g/Lとし、硫酸ニッケル・六水和物を1〜30g/Lの範囲で変化させて、その影響をみた実施例6〜10の結果を表6に示す。この表から、上記比較例4,5の場合と比較して、塩化ニッケル・六水和物の添加量が40g/Lと少ない場合には、硫酸ニッケル・六水和物の添加量が30g/L以下であれば、良好な均一電着性が得られることが分かった。

Figure 2010031329
On the other hand, sodium citrate dihydrate 200 g / L, nickel chloride hexahydrate 40 g / L, boric acid 40 g / L, and nickel sulfate hexahydrate varied in the range of 1 to 30 g / L. Table 6 shows the results of Examples 6 to 10 in which the influence was observed. From this table, when the addition amount of nickel chloride hexahydrate is as small as 40 g / L as compared with Comparative Examples 4 and 5, the addition amount of nickel sulfate hexahydrate is 30 g / L. It was found that if it was L or less, good throwing power could be obtained.
Figure 2010031329

また、クエン酸ナトリウム・二水和物200g/L、塩化ニッケル・六水和物を80g/Lとし、ホウ酸を10〜30g/Lの範囲で変化させて、その影響をみた実施例11〜14の結果を表7に示す。この表から、ホウ酸が10〜30g/Lの範囲であれば、良好な均一電着性が得られることが分かった。

Figure 2010031329
Moreover, Example 11-which changed sodium borate dihydrate 200g / L, made nickel chloride hexahydrate 80g / L, changed boric acid in the range of 10-30g / L, and examined the influence. The results of 14 are shown in Table 7. From this table, it was found that good uniform electrodeposition can be obtained when boric acid is in the range of 10 to 30 g / L.
Figure 2010031329

さらにホウ酸を添加しなかった実施例15においても、表8に示すように、良好な均一電着性を示した。これは、本発明のニッケルめっき液が、クエン酸ナトリウムを多量に添加されているため、このクエン酸ナトリウムによる緩衝作用が、ホウ酸の緩衝作用の代替としての役割を果たしているためと推定される。

Figure 2010031329
Further, in Example 15 in which boric acid was not added, as shown in Table 8, good uniform electrodeposition was exhibited. This is presumably because the nickel plating solution of the present invention has a large amount of sodium citrate added, so that the buffering action by sodium citrate serves as an alternative to the buffering action of boric acid. .
Figure 2010031329

また、pH緩衝剤としてDL−リンゴ酸を用いた実施例16においても、表9に示すように、良好な均一電着性が得られた。

Figure 2010031329
Moreover, also in Example 16 using DL-malic acid as a pH buffer, as shown in Table 9, good throwing power was obtained.
Figure 2010031329

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

本発明は、深絞りのプレス成形品等のように、特に均一電着性の要求されるニッケルめっきに好適に用いることができる。   The present invention can be suitably used for nickel plating that requires particularly uniform electrodeposition, such as a deep-drawn press-formed product.

ハルセルの斜視図である。It is a perspective view of a hull cell. ハルセルを定電流電源に接続した状態での平面図である。It is a top view in the state where a hull cell was connected to a constant current power supply.

符号の説明Explanation of symbols

1…めっき槽
4…ニッケル陽極板
5…黄銅板
6…定電流電源
DESCRIPTION OF SYMBOLS 1 ... Plating tank 4 ... Nickel anode plate 5 ... Brass plate 6 ... Constant current power supply

Claims (3)

塩化ニッケル・六水和物を4g/L〜100g/L含み、クエン酸ナトリウム・二水和物を50g/L〜300g/L含み、pH緩衝剤を含まないか又は飽和濃度以下とされており、硫酸ニッケル・六水和物を含まないか又は30g/L以下とされており、pHが6.5〜10とされていることを特徴とするニッケルめっき浴。   Contains 4 g / L to 100 g / L of nickel chloride hexahydrate, 50 g / L to 300 g / L of sodium citrate dihydrate, does not contain pH buffering agent, or is less than saturated concentration A nickel plating bath characterized by not containing nickel sulfate hexahydrate or 30 g / L or less and having a pH of 6.5 to 10. 前記pH緩衝剤はホウ酸であることを特徴とする請求項1記載のニッケルめっき浴。   The nickel plating bath according to claim 1, wherein the pH buffer is boric acid. 塩化ニッケル・六水和物の濃度は8g/L〜80g/Lの範囲であることを特徴とする請求項1又は2記載のニッケルめっき浴。   The nickel plating bath according to claim 1 or 2, wherein the concentration of nickel chloride hexahydrate is in the range of 8 g / L to 80 g / L.
JP2008195951A 2008-07-30 2008-07-30 Nickel plating bath for electroplating Expired - Fee Related JP4643690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195951A JP4643690B2 (en) 2008-07-30 2008-07-30 Nickel plating bath for electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195951A JP4643690B2 (en) 2008-07-30 2008-07-30 Nickel plating bath for electroplating

Publications (2)

Publication Number Publication Date
JP2010031329A true JP2010031329A (en) 2010-02-12
JP4643690B2 JP4643690B2 (en) 2011-03-02

Family

ID=41736152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195951A Expired - Fee Related JP4643690B2 (en) 2008-07-30 2008-07-30 Nickel plating bath for electroplating

Country Status (1)

Country Link
JP (1) JP4643690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966633A (en) * 2013-02-01 2014-08-06 金华东威表面处理科技有限公司 Nickel plating solution
JP2015004094A (en) * 2013-06-19 2015-01-08 地方独立行政法人東京都立産業技術研究センター Electric nickel plating solution, method for producing plating solution, and electroplating solution
WO2015194878A1 (en) * 2014-06-19 2015-12-23 한양대학교 에리카산학협력단 Method for peeling off surface of silicon substrate
KR20150145446A (en) * 2014-06-19 2015-12-30 한양대학교 에리카산학협력단 Lift-off method for silicone substrate
JP2018031049A (en) * 2016-08-24 2018-03-01 Jfeスチール株式会社 Production method and production equipment of directional electric steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163289A (en) * 1985-01-14 1986-07-23 Nippon Kagaku Sangyo Kk Black electroplating bath by nickel and nickel alloy
JPS6345395A (en) * 1986-04-11 1988-02-26 Fuji Kiko Denshi Kk Pretreating bath for plating on hardly adherable metal stock and plating method thereof
JPH02285091A (en) * 1989-04-26 1990-11-22 Kobe Steel Ltd Nickel-copper alloy plating bath
JPH04333575A (en) * 1991-01-29 1992-11-20 Nippon Parkerizing Co Ltd Formation of composite coating film on metallic material containing titanium
JPH05222568A (en) * 1992-02-17 1993-08-31 Showa Denko Kk Plating solution composition
JPH09216845A (en) * 1996-02-08 1997-08-19 Ishihara Chem Co Ltd Polyoxyalkylene compound of bis(hydroxycyclohexyl) alkane or its derivative, and plating bath containing the compound
JP2000188476A (en) * 1998-12-21 2000-07-04 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2001355094A (en) * 2000-06-13 2001-12-25 Citizen Watch Co Ltd Base material having ornamental coating film and its manufacturing method
JP2003193285A (en) * 2001-12-28 2003-07-09 Learonal Japan Inc Nickel electroplating solution
JP2005206904A (en) * 2004-01-23 2005-08-04 Sumitomo Metal Mining Co Ltd METHOD OF PRODUCING Ni-W ALLOY FILM

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163289A (en) * 1985-01-14 1986-07-23 Nippon Kagaku Sangyo Kk Black electroplating bath by nickel and nickel alloy
JPS6345395A (en) * 1986-04-11 1988-02-26 Fuji Kiko Denshi Kk Pretreating bath for plating on hardly adherable metal stock and plating method thereof
JPH02285091A (en) * 1989-04-26 1990-11-22 Kobe Steel Ltd Nickel-copper alloy plating bath
JPH04333575A (en) * 1991-01-29 1992-11-20 Nippon Parkerizing Co Ltd Formation of composite coating film on metallic material containing titanium
JPH05222568A (en) * 1992-02-17 1993-08-31 Showa Denko Kk Plating solution composition
JPH09216845A (en) * 1996-02-08 1997-08-19 Ishihara Chem Co Ltd Polyoxyalkylene compound of bis(hydroxycyclohexyl) alkane or its derivative, and plating bath containing the compound
JP2000188476A (en) * 1998-12-21 2000-07-04 Ibiden Co Ltd Manufacture of multilayer printed wiring board
JP2001355094A (en) * 2000-06-13 2001-12-25 Citizen Watch Co Ltd Base material having ornamental coating film and its manufacturing method
JP2003193285A (en) * 2001-12-28 2003-07-09 Learonal Japan Inc Nickel electroplating solution
JP2005206904A (en) * 2004-01-23 2005-08-04 Sumitomo Metal Mining Co Ltd METHOD OF PRODUCING Ni-W ALLOY FILM

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966633A (en) * 2013-02-01 2014-08-06 金华东威表面处理科技有限公司 Nickel plating solution
JP2015004094A (en) * 2013-06-19 2015-01-08 地方独立行政法人東京都立産業技術研究センター Electric nickel plating solution, method for producing plating solution, and electroplating solution
WO2015194878A1 (en) * 2014-06-19 2015-12-23 한양대학교 에리카산학협력단 Method for peeling off surface of silicon substrate
KR20150145446A (en) * 2014-06-19 2015-12-30 한양대학교 에리카산학협력단 Lift-off method for silicone substrate
KR101595757B1 (en) * 2014-06-19 2016-02-19 한양대학교 에리카산학협력단 Lift-off method for silicone substrate
CN106463376A (en) * 2014-06-19 2017-02-22 汉阳大学校Erica产学协力团 Method for peeling surface of silicon substrate
CN106463376B (en) * 2014-06-19 2019-09-27 汉阳大学校Erica产学协力团 Method for peeling surface of silicon substrate
JP2018031049A (en) * 2016-08-24 2018-03-01 Jfeスチール株式会社 Production method and production equipment of directional electric steel sheet

Also Published As

Publication number Publication date
JP4643690B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4945193B2 (en) Hard gold alloy plating solution
JP4643690B2 (en) Nickel plating bath for electroplating
CN103668369A (en) Electric plating method capable of improving anti-corrosion performance of metal element
JP2009062577A (en) Ni PLATING BATH
CN101942683A (en) Method for preparing bismuth film by pulse plating process
JP5452458B2 (en) Nickel plating solution and nickel plating method
JPH10212591A (en) Nickel electroplating bath or nickel alloy electroplating bath and plating method using the bath
JP3985904B2 (en) Nickel-tungsten alloy plating solution and method for forming nickel-tungsten alloy plating film
JP3458843B2 (en) Continuous plating method for Ni-WP alloy
JP2010189673A (en) Trivalent chromium plating bath
CN103695977A (en) Electroplating method capable of enabling tin coating to be level and preventing tin whisker from growing
CN107236977A (en) A kind of electroplating pretreatment process optimization method
US4159926A (en) Nickel plating
US5254238A (en) Surface treating solution and surface treating process for zinc-plated steel plates
US20040031694A1 (en) Commercial process for electroplating nickel-phosphorus coatings
KR101077890B1 (en) Additives for Zn-Ni alloy electrodeposition electrolyte, Zn-Ni alloy electrodeposition electrolyte comprising the same and method for manufacturing Zn-Ni alloy electrodeposited steel sheet using the same
JPS62287092A (en) Zinc-nickel alloy plating bath
Mohan et al. Pulse electrodeposition of tin from sulphate bath
KR100506394B1 (en) Zn-Ni alloy electrolyte for good surface roughness, whiteness and suppression of edge burning
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
KR100419655B1 (en) A METHOD FOR MANUFACTURING Zn-Ni ALLOY ELECTRODEPOSITION STEEL SHEET BY USING Zn-Ni ALLOY ELECTRODEPOSITION SOLUTION
US20120003498A1 (en) Copper-zinc alloy electroplating bath and method of plating using same
CN101709493A (en) Preparation method of nano-crystalline zinc plating layer by using direct current electrodeposition
JP2018024925A (en) Method for producing electrode
KR100417931B1 (en) Zn-Ni ALLOY ELECTROPLATING SOLUTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100114

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Ref document number: 4643690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees