JP2005206904A - METHOD OF PRODUCING Ni-W ALLOY FILM - Google Patents

METHOD OF PRODUCING Ni-W ALLOY FILM Download PDF

Info

Publication number
JP2005206904A
JP2005206904A JP2004016357A JP2004016357A JP2005206904A JP 2005206904 A JP2005206904 A JP 2005206904A JP 2004016357 A JP2004016357 A JP 2004016357A JP 2004016357 A JP2004016357 A JP 2004016357A JP 2005206904 A JP2005206904 A JP 2005206904A
Authority
JP
Japan
Prior art keywords
alloy
cathode
film
metal
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004016357A
Other languages
Japanese (ja)
Inventor
Noriaki Sugamoto
憲明 菅本
Takahiro Hattori
孝博 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004016357A priority Critical patent/JP2005206904A/en
Publication of JP2005206904A publication Critical patent/JP2005206904A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ni-W alloy film which is utilizable for wide applications owing to its excellent bending properties while maintaining the characteristics of an Ni-W alloy of high hardness as well as heat resistance, corrosion resistance and wear resistance. <P>SOLUTION: The Ni-W alloy film is obtained by dipping a metal whose surface is polished so as to be finished into a specular shape as a cathode into an electrolytic bath prepared by adding 0.05 to 0.15 mol/L of nickel sulfate and 0.2 to 0.4 mol/L of sodium tungstate, and performing electrolysis treatment under the condition satisfying a cathode current density of 5 to 15 A/dm<SP>2</SP>while keeping the electrolytic bath temperature at 50 to 70°C, thus forming an Ni-W alloy plating film on the surface of the cathode metal, and thereafter peeling the obtained plating film from the cathode metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気めっき法によるNi−W合金被膜の製造方法に係り、詳しくは硬度が高く耐磨耗性に優れるというNi−W合金の特性を維持しつつ、圧縮応力や引張り応力等の所謂めっき応力が小さく、折り曲げ特性にも優れた高強度Ni−W合金被膜の製造方法に関する。   The present invention relates to a method for producing a Ni-W alloy coating by electroplating, and more specifically, so-called compressive stress, tensile stress, etc., while maintaining the characteristics of a Ni-W alloy having high hardness and excellent wear resistance. The present invention relates to a method for producing a high-strength Ni—W alloy film having a small plating stress and excellent bending characteristics.

Ni−W合金めっき被膜は、硬度が高く、耐食性、耐熱性および耐摩耗性が優れているため、ガラス金型や連続鋳造鋳型及び各種装置において、主として機械的摩耗を受ける部分にめっきを施すことによって利用されている。従来のNi−W合金のめっき方法としては、クエン酸を有機錯化剤として使用するホルト法や、酒石酸を有機錯化剤として用いるブレナー法が知られているが、これらの方法は電解浴のpHが約9前後であるために強烈なアンモニア臭が発生して、作業環境を著しく悪化させるという問題があった。これを回避するためにアンモニア臭の発生しない領域、即ちpHが7以下となるようにアンモニアで調整した、タングステン酸ナトリウムと硫酸ニッケル及びクエン酸を含有する電解浴を用い、陰極の電流密度10A/dm、浴温を70℃に保持してNi−Wめっきを施す方法も提案されている。しかしながら、工業的規模でめっきを行う場合、浴温度を70℃に保持することは、特に冬期や寒冷地に工場がある場合においては加熱容量的に著しく困難を伴い、Ni−W合金めっきのタングステン源となるタングステン酸ナトリウムと共に、コスト面においても大きな負担となることが避けられなかった。また、上記従来技術においては、めっき被膜にピットが生じ、且つ電着引張り応力が高いため、膜厚を30μm以上に形成するとクラックが生ずるという問題があった。 Ni-W alloy plating film has high hardness and excellent corrosion resistance, heat resistance and wear resistance, so in glass molds, continuous casting molds and various equipment, plating is mainly applied to the parts that receive mechanical wear. Is used by. As a conventional Ni-W alloy plating method, a Holt method using citric acid as an organic complexing agent and a Brenner method using tartaric acid as an organic complexing agent are known. Since the pH was around 9, there was a problem that intense ammonia odor was generated and the working environment was remarkably deteriorated. In order to avoid this, a cathode current density of 10 A / liter was used using an electrolytic bath containing sodium tungstate, nickel sulfate and citric acid, which was adjusted with ammonia so that the ammonia odor was not generated, that is, pH was 7 or less. A method of applying Ni—W plating while maintaining dm 2 and the bath temperature at 70 ° C. has also been proposed. However, when plating on an industrial scale, maintaining the bath temperature at 70 ° C. is extremely difficult in terms of heating capacity, especially when there are factories in winter and cold regions, and tungsten of Ni—W alloy plating. Along with the sodium tungstate used as a source, it was inevitable that the cost would be a heavy burden. Moreover, in the said prior art, since the pit was produced in the plating film and the electrodeposition tensile stress was high, there existed a problem that a crack would arise if a film thickness was formed in 30 micrometers or more.

そこで溶解時にタングステン酸イオンとアルカリ金属イオンを生ずる第1イオン生成材料を25.0〜38.5g/L、硫酸ニッケルを10.0〜20.0g/L、溶解時にクエン酸イオンを生ずる第2イオン生成材料を30.0〜50.2g/Lを含有し、pHを6.0〜7.0に調整した電解浴を用い、該電解浴温を60〜65℃、陰極電流密度を3〜7A/dmの条件で、W含有量が44重量%以上のNi−W合金めっき被膜を形成する方法(例えば、特許文献1参照)が開示され、電解槽の浴温度65℃に抑えると共に、タングステンイオンの供給源として、低濃度のタングステン酸ナトリウムを用いることでコストの低減を図り、しかも電着応力を低下させて均一な電着性を有する膜厚の厚いNi−W合金めっきが得られた旨報告されている。 Therefore, 25.0 to 38.5 g / L of a first ion generating material that generates tungstate ions and alkali metal ions at the time of dissolution, 10.0 to 20.0 g / L of nickel sulfate, and a second material that generates citrate ions at the time of dissolution. An electrolytic bath containing 30.0 to 50.2 g / L of an ion generating material and having a pH adjusted to 6.0 to 7.0 was used. The electrolytic bath temperature was 60 to 65 ° C., and the cathode current density was 3 to 3. A method of forming a Ni—W alloy plating film having a W content of 44 wt% or more under the condition of 7 A / dm 2 is disclosed (for example, see Patent Document 1), and the bath temperature of the electrolytic cell is suppressed to 65 ° C., By using low-concentration sodium tungstate as a source of tungsten ions, the cost can be reduced, and the electrodeposition stress can be reduced to obtain a thick Ni-W alloy plating with uniform electrodeposition. Report It has been tell.

また、スルファミン酸ニッケル、タングステン化合物及びクエン酸を含有し、ニッケルのモル濃度とタングステンのモル濃度との合計値(Ni+W)が0.1乃至0.4モル/L、タングステンモル分率{W/(W+Ni)}が0.35乃至0.8であり、前記クエン酸のモル濃度が前記ニッケル及びタングステンのモル濃度の合計値以上であり、pHが6乃至7に調整されためっき液を、60乃至80℃に加熱して、陰極電流密度が3乃至30A/dmの条件で、被めっき材にNi−W合金めっきを施す方法(例えば、特許文献2参照)が開示され、ニッケルイオンの供給源としてスルファミン酸ニッケルを用い、ニッケル及びタングステンのモル濃度の合計、タングステンモル分率、クエン酸のモル濃度及びpHを所定の範囲に規定することによって、引張り応力等の所謂めっき応力を低くして、熱負荷を繰り返してもクラックの発生を回避し得るNi−W合金めっき被膜を形成することができると報告されている。 Further, it contains nickel sulfamate, a tungsten compound and citric acid, the total value of nickel molar concentration and tungsten molar concentration (Ni + W) is 0.1 to 0.4 mol / L, tungsten molar fraction {W / (W + Ni)} is 0.35 to 0.8, the molar concentration of the citric acid is equal to or higher than the total value of the molar concentrations of nickel and tungsten, and the pH is adjusted to 6 to 7, A method of applying Ni—W alloy plating to a material to be plated under the condition of heating to 80 ° C. and a cathode current density of 3 to 30 A / dm 2 is disclosed (for example, refer to Patent Document 2). Nickel sulfamate is used as the source, and the total molar concentration of nickel and tungsten, the molar fraction of tungsten, the molar concentration of citric acid and the pH are defined within a predetermined range. Thus, it is reported that a so-called plating stress such as a tensile stress can be lowered to form a Ni—W alloy plating film that can avoid the generation of cracks even when the thermal load is repeated.

更に、一対の平行に配置された長辺モールド銅板とその間に平行に配置された一対の短辺モールド銅板を備えた連続鋳造用鋳型において、該長辺モールド銅板及び/又は短辺モールド銅板の内側下部或いは内側全面に、タングステンを20〜50重量%含有するNi−W合金めっきを形成した連続鋳造用鋳型(例えば、特許文献3参照)が開示され、凝固鋳片との摩耗及び冷却水スプレーによる腐食環境下であっても、モールド銅板の摩耗や腐蝕及び腐蝕損耗が低減され、鋳片との焼付を生じないため、溶鋼の連続鋳造設備において好適に使用し得る連続鋳造用鋳型を提供できる旨報告されている。   Further, in a continuous casting mold comprising a pair of long-side mold copper plates arranged in parallel and a pair of short-side mold copper plates arranged therebetween, the inside of the long-side mold copper plate and / or the short-side mold copper plate Disclosed is a continuous casting mold (see, for example, Patent Document 3) in which a Ni—W alloy plating containing 20 to 50% by weight of tungsten is formed on the entire surface of the lower part or the inner side. Even in a corrosive environment, the mold copper plate wear and corrosion and corrosion wear are reduced, and no seizure with the slab occurs. Therefore, it is possible to provide a continuous casting mold that can be suitably used in molten steel continuous casting equipment. It has been reported.

上記各従来技術によれば、基材に対するNi−W合金めっき被膜の形成方法としては、それぞれ優れた成果が報告され、その多くは実用に供されている。しかしながら、得られる被膜は耐熱性や耐腐食性に優れると共に高い硬度を有する反面、展延性や折り曲げ特性に乏しいため、その用途は上記のように金型や機械的摩耗を受け易い部材など、主に下地金属の表面コーティング用に限られているのが現状であった。   According to each of the above conventional techniques, excellent results have been reported as methods for forming a Ni—W alloy plating film on a base material, and many of them have been put to practical use. However, the coating film obtained is excellent in heat resistance and corrosion resistance and has high hardness, but on the other hand, it has poor spreadability and bending characteristics, so its use is mainly for molds and members that are susceptible to mechanical wear as described above. However, it is currently limited to the surface coating of the base metal.

ところが近時、タングステン又はモリブデン15〜30モル%を含有し、残部がニッケル若しくはコバルトよりなる合金であって、水素含有量を5モル%以下に制限することによって、ビッカース硬度500DPN以上の硬度を有し、かつ抗折曲げ試験における歪量0.01以上の高弾性変形能を有し、歪量1.0においても破断を生じない高塑性変形能を有するニッケル基若しくはコバルト基電解析出合金が開発され、その実施例においては硫酸ニッケル、タングステン酸ナトリウム、クエン酸ナトリウム、塩化アンモニウム及び臭化ナトリウムからなる電解水溶液に、白金陽極板と銅陰極板を浸漬して電解処理することにより、陰極板上にNi−W合金を電解析出させる旨開示されている。更に該合金をマイクロアレイコネクタの電極として用い、接触摺動面の機械的、化学的安定性を保証し、高弾性・高塑性変形能が充分な接触圧によって低い接触電気抵抗と、無破断による長寿命とを保障している(例えば、特許文献4参照)。
特開平4−365890号公報(第1〜6頁、図1〜2図) 特開平7−310196号公報(第1〜6頁、図1〜4図) 特開2001−212651号公報(第1〜12頁、図1〜12図) 特開平11−269587号公報(第1〜8頁、図1〜7図)
However, recently, it is an alloy containing 15 to 30 mol% of tungsten or molybdenum and the balance being nickel or cobalt, and has a Vickers hardness of 500 DPN or more by limiting the hydrogen content to 5 mol% or less. And a nickel-based or cobalt-based electrodeposited alloy having a high elastic deformability having a strain amount of 0.01 or more in the anti-bending test and having a high plastic deformability that does not break even at a strain amount of 1.0 The cathode plate was developed by immersing a platinum anode plate and a copper cathode plate in an electrolytic aqueous solution consisting of nickel sulfate, sodium tungstate, sodium citrate, ammonium chloride and sodium bromide. It is disclosed that Ni-W alloy is electrolytically deposited on the top. In addition, the alloy is used as an electrode for microarray connectors to ensure the mechanical and chemical stability of the contact sliding surface, and high elastic and high plastic deformability with low contact electrical resistance due to sufficient contact pressure and long without breakage. The lifetime is guaranteed (see, for example, Patent Document 4).
JP-A-4-365890 (pages 1-6, FIGS. 1-2) Japanese Patent Laid-Open No. 7-310196 (pages 1-6, FIGS. 1-4) Japanese Patent Laid-Open No. 2001-212651 (pages 1 to 12, FIGS. 1 to 12) Japanese Patent Laid-Open No. 11-269587 (pages 1-8, FIGS. 1-7)

このように折り曲げ特性に優れたNi−W合金被膜は、陰極として用いられる下地金属上に析出層として所定の厚みに形成されのち、物理的に下地金属を該合金被膜から剥ぎ取ることによって得ることができる。また、下地金属に易溶解性の金属を用い、Ni−W合金被膜形成後該下地金属を溶解除去する方法も好ましく採り入れられているが、いずれの方法においても得られる合金被膜の外観や金属被膜としての折り曲げ特性が、下地金属表面の形態に大きく影響をうけるという新たな問題が生じた。即ち、下地金属に圧延筋のようなキズが残されている場合、得られたNi−W合金めっき被膜は、該被膜をキズ方向に対して垂直に折り曲げた場合には、その優れた曲げ特性によって180度の曲げが可能であるが、キズ方向に平行に折り曲げると容易に割れが生じるという未解決な課題が残されていた。本発明は、斯かる課題を解決して連続鋳造用鋳型やガラス用金型に止まらず、マイクロ構造体や長寿命表面被覆材として幅広い用途に用いられるNi−W合金被膜、即ち高硬度で耐食性、耐熱性、耐摩耗性に優れるというNi−W合金特有の機能に加え、高弾性変形能や高塑性変形能を有する折り曲げ特性に優れた高強度Ni−W合金膜を、比較的低コストで提供することを目的とするものである。   Thus, a Ni-W alloy film having excellent bending characteristics is obtained by forming a deposited layer on a base metal used as a cathode to a predetermined thickness and then physically peeling the base metal from the alloy film. Can do. In addition, a method in which an easily soluble metal is used for the base metal and the base metal is dissolved and removed after formation of the Ni-W alloy film is preferably employed. As a result, a new problem arises in that the bending characteristics of the substrate are greatly affected by the morphology of the underlying metal surface. That is, when scratches such as rolling streaks remain in the base metal, the obtained Ni-W alloy plating film has excellent bending characteristics when the film is bent perpendicularly to the scratch direction. Can be bent 180 degrees, but there remains an unsolved problem that cracking easily occurs when bent parallel to the scratch direction. The present invention is not limited to continuous casting molds and glass molds by solving such problems, and Ni-W alloy coatings used in a wide range of applications as microstructures and long-life surface coating materials, that is, high hardness and corrosion resistance. High-strength Ni-W alloy film with excellent bending characteristics that has high elastic deformation ability and high plastic deformation ability in addition to the unique function of Ni-W alloy, which is excellent in heat resistance and wear resistance, at a relatively low cost It is intended to provide.

上記課題を解決する本発明は、電気めっき法によって折り曲げ特性に優れた高強度Ni−W合金被膜を製造する方法において、硫酸ニッケル0.05〜0.15mol/Lと、タングステン酸ナトリウム0.2〜0.4mol/Lとを加えることによって調製した電解浴に、表面を研磨して鏡面状に仕上げた金属を陰極として浸漬し、該電解浴温を50〜70℃に維持しつつ、陰極電流密度5〜15A/dmの条件で電解処理することにより、前記陰極金属表面にNi−W合金めっき被膜を形成したのち、得られた該めっき被膜を前記陰極金属から剥離することを特徴的構成要件とするNi−W合金被膜の製造方法を要旨とするものである。 The present invention that solves the above-mentioned problems is a method for producing a high-strength Ni—W alloy film having excellent bending characteristics by electroplating, and includes nickel sulfate 0.05 to 0.15 mol / L and sodium tungstate 0.2 In the electrolytic bath prepared by adding ~ 0.4 mol / L, a metal whose surface was polished and mirror finished was immersed as a cathode, and while maintaining the electrolytic bath temperature at 50 to 70 ° C, the cathode current by electrolysis treatment under the conditions of a density 5~15A / dm 2, after forming the Ni-W alloy plating film on the cathode metal surface, characteristic configuration to peel the plating film obtained from the cathode metal The gist of the manufacturing method of the required Ni-W alloy coating.

本発明はまた、前記陰極金属が銅又は銅合金板であることを特徴とするNi−W合金被膜の製造方法を好ましい態様とするものである。   The present invention also provides a preferred embodiment of a method for producing a Ni-W alloy coating, wherein the cathode metal is copper or a copper alloy plate.

本発明は更に、前記電解浴温が55〜65℃、陰極電流密度が5〜10A/dmであることを特徴とするNi−W合金被膜の製造方法を好ましい態様とするものである。 The present invention further provides a preferred embodiment of a method for producing a Ni-W alloy coating, wherein the electrolytic bath temperature is 55 to 65 ° C. and the cathode current density is 5 to 10 A / dm 2 .

本発明に係る上記電気めっき法によるNi−W合金被膜の製造方法は、陰極となる下地金属表面に研磨を施すことによって鏡面状に仕上げ、その鏡面状金属表面に電解によってNi−W合金を析出させ、所定の厚さのめっき被膜を形成したのち、該めっき被膜を陰極である下地金属から剥離することによって、所望のNi−W合金被膜を得ることができる。得られた該合金被膜は高硬度と、耐熱性、耐磨耗性、耐腐食性等においてNi−W合金特有の性能を有することは勿論、該被膜の折曲位置や折曲方向に関係なく、あらゆる方向からの折り曲げ試験においても、優れた折り曲げ特性を有していることが確認された。また、下地金属との剥離手段は限定されないが、該下地金属を溶解除去する方法を用いた場合、剥離時に生成被膜に加工キズを残す惧れがなくなり、より高い品質が保障される。これによりガラス金型や連続鋳造鋳型等の耐摩耗部材に止まらず、マイクロ構造体や長寿命表面被覆材として幅広い用途に用いられるNi−W合金被膜が提供し得る。   The method for producing a Ni—W alloy coating by the electroplating method according to the present invention is to finish a mirror surface by polishing the surface of a base metal serving as a cathode, and deposit a Ni—W alloy by electrolysis on the surface of the mirror metal. Then, after forming a plating film with a predetermined thickness, the plating film is peeled off from the base metal serving as the cathode, whereby a desired Ni—W alloy film can be obtained. The obtained alloy film has high hardness, heat resistance, abrasion resistance, corrosion resistance, etc., and has a characteristic unique to Ni-W alloys, regardless of the position and direction of bending of the film. In the bending test from all directions, it was confirmed to have excellent bending characteristics. Further, the peeling means from the base metal is not limited. However, when the method of dissolving and removing the base metal is used, there is no possibility of leaving a processing scratch on the formed film at the time of peeling, and higher quality is guaranteed. Thereby, it is possible to provide a Ni—W alloy coating that can be used for a wide range of applications as a microstructure or a long-life surface coating material, without being limited to wear-resistant members such as glass molds and continuous casting molds.

以下本発明の実施の形態について実施例等に基いて更に具体的に説明するが、本発明はこれに拘束されるものではなく、本発明の主旨の範囲内において自由に設計変更が可能である。
図1は本発明によって得られたNi−W合金被膜の曲げ特性を確認するために用いられるテスト用治具と、サンプルとなるNi−W合金の状態を模式的に示す側面図である。
Hereinafter, the embodiment of the present invention will be described more specifically based on examples and the like. However, the present invention is not limited thereto, and can be freely modified within the scope of the gist of the present invention. .
FIG. 1 is a side view schematically showing a test jig used for confirming the bending characteristics of a Ni—W alloy coating obtained by the present invention and the state of a sample Ni—W alloy.

本発明による高強度Ni−W合金被膜は、従来から知られている電気めっき法を採用することによって得られるが、使用される電解浴液(以下単に「電解浴」ということがある。)は、予めクエン酸ナトリウム、硫酸アンモニウム及びラウリル酸ナトリウムを含む溶液中に、硫酸ニッケル0.05〜0.15mol/Lと、タングステン酸ナトリウム0.2〜0.4mol/Lとを加えることによって調製される。この際、クエン酸ナトリウムはNiイオンとタングステンイオンの合計値以上、硫酸アンモニウムの溶液中の濃度については0.5mol/Lを中心に上・下限40%の範囲で任意であり、ラウリル酸ナトリウムは0.1〜1.0g/Lの範囲で任意である。ここでクエン酸ナトリウムは金属イオンの錯化剤、硫酸アンモニウムは浴の導電性向上成分として作用する。また、ラウリル酸ナトリウムはピット防止剤である。   The high-strength Ni—W alloy coating according to the present invention can be obtained by employing a conventionally known electroplating method, but the electrolytic bath solution used (hereinafter sometimes simply referred to as “electrolytic bath”). Prepared by adding 0.05 to 0.15 mol / L of nickel sulfate and 0.2 to 0.4 mol / L of sodium tungstate in a solution containing sodium citrate, ammonium sulfate and sodium laurate in advance. . At this time, sodium citrate is arbitrarily selected from the total of Ni ions and tungsten ions, and the concentration of ammonium sulfate in the solution is arbitrary within the range of 40% in the upper and lower limits centering on 0.5 mol / L, and sodium laurate is 0 It is optional in the range of 1 to 1.0 g / L. Here, sodium citrate acts as a metal ion complexing agent, and ammonium sulfate acts as a conductivity enhancing component of the bath. Sodium laurate is a pit inhibitor.

前記電解浴において、ニッケルイオン(Ni2+)の供給源となる硫酸ニッケルは0.05〜0.15mol/L、好ましくは0.06〜0.12mol/Lの範囲で加えられるが、該硫酸ニッケルが下限に満たない場合、適正な電気めっきが進行せず電解途中での成分調整が必要となるなど、その効率が著しく低下し、上限を超えた場合は被膜の電着応力が増加し、曲げ特性が低下する。また、タングステン酸イオン(WO 2−)の供給源となるタングステン酸ナトリウムは0.2〜0.4mol/L、好ましくは0.25〜0.35mol/Lの範囲で加えられるが、該タングステン酸ナトリウムが下限に満たない場合は、被膜の曲げ特性が低下し、上限を超えた場合、被膜の電着応力が増すとともに高価な原材料をいたずらに費消してコストの上昇を招来する。 In the electrolytic bath, nickel sulfate as a source of nickel ions (Ni 2+ ) is added in a range of 0.05 to 0.15 mol / L, preferably 0.06 to 0.12 mol / L. If the lower limit is less than the lower limit, proper electroplating does not proceed and component adjustment is required during electrolysis, and the efficiency drops significantly.If the upper limit is exceeded, the electrodeposition stress of the coating increases and bending Characteristics are degraded. In addition, sodium tungstate serving as a supply source of tungstate ion (WO 4 2− ) is added in a range of 0.2 to 0.4 mol / L, preferably 0.25 to 0.35 mol / L. When sodium acid salt is less than the lower limit, the bending properties of the coating are lowered, and when the upper limit is exceeded, the electrodeposition stress of the coating increases and expensive raw materials are consumed unnecessarily, leading to an increase in cost.

本発明においては、電気めっき法によって下地金属となる陰極に析出生成させることによってNi−W合金被膜を形成するが、陰極となる該下地金属は、その表面を研磨して予め鏡面状態に仕上げておくことが要件となる。研磨手段としてはバフ研磨などの機械的手段のほか、金属表面を所定の溶液中に短時間浸漬させることによって平滑な光沢面を得る化学研磨法も好ましく採用される。下地金属は上記手段によって鏡面状態に仕上げられる金属であれば特に制限しないが、本発明においては銅又は銅合金板が好ましく採用される。該銅又は銅合金板はバフ研磨は勿論のこと、上記化学研磨法によってもその表面が容易に鏡面状に仕上げることができるため、微細なキズであっても完全に平滑化することができる。   In the present invention, the Ni—W alloy film is formed by depositing and forming on the cathode serving as the base metal by electroplating, but the base metal serving as the cathode is polished in advance to a mirror surface state. It is a requirement to leave. As the polishing means, in addition to mechanical means such as buffing, a chemical polishing method for obtaining a smooth glossy surface by immersing the metal surface in a predetermined solution for a short time is preferably employed. The base metal is not particularly limited as long as it is a metal that can be finished in a mirror state by the above means, but in the present invention, a copper or copper alloy plate is preferably employed. Since the surface of the copper or copper alloy plate can be mirror-finished easily by the above-described chemical polishing method as well as buffing, even a fine flaw can be completely smoothed.

一方の陽極材は、電解浴中の腐食性溶液に対して耐えることのできる金属として、本発明においてはPt/Tiクラッド材を採用しているが、該クラッド材以外であっても同等程度の耐腐食性金属であれば使用することを妨げるものではない。   One anode material employs a Pt / Ti clad material in the present invention as a metal that can withstand a corrosive solution in an electrolytic bath. If it is a corrosion-resistant metal, it will not prevent it from being used.

本発明における電解条件は、電解浴の浴温を50〜70℃、好ましくは55〜65℃の範囲とし、陰極電流密度を5〜15A/dm、好ましくは5〜10A/dmの範囲として規定している。電解浴の浴温が50℃以下の場合は効率的な電解が進行せず、70℃を超える浴温を維持することは浴槽に過大な加熱装置を要することとなり、コスト面での負担が大きくなる。また、陰極電流密度が5A/dm以下の場合は適切な電解析出が進行せず、15A/dm以上の場合は電流効率が低下して使用電力が浪費され、陰極面に析出生成されるNi−W合金被膜の結晶粒子組成に悪影響を及ぼし、高硬度を有しつつ折り曲げ特性にも優れためっき被膜の生成を阻害することが懸念される。従って健全な状態でのNi−W合金被膜を効率よく生成させるためには、電解浴の浴温と陰極電流密度は所定の範囲内で正しくコントロールされることが望ましい。 The electrolysis conditions in the present invention are such that the bath temperature of the electrolytic bath is 50 to 70 ° C., preferably 55 to 65 ° C., and the cathode current density is 5 to 15 A / dm 2 , preferably 5 to 10 A / dm 2 . It prescribes. When the bath temperature of the electrolytic bath is 50 ° C. or lower, efficient electrolysis does not proceed, and maintaining a bath temperature exceeding 70 ° C. requires an excessive heating device for the bathtub, and the cost burden is large. Become. In addition, when the cathode current density is 5 A / dm 2 or less, appropriate electrolytic deposition does not proceed. When the cathode current density is 15 A / dm 2 or more, the current efficiency is reduced and power consumption is wasted, and deposition occurs on the cathode surface. There is a concern that it may adversely affect the crystal particle composition of the Ni—W alloy coating and inhibit the formation of a plating coating having high hardness and excellent bending properties. Therefore, in order to efficiently produce a Ni-W alloy film in a healthy state, it is desirable that the bath temperature and the cathode current density of the electrolytic bath are correctly controlled within a predetermined range.

上記のようにして陰極となる下地金属、具体的には鏡面仕上げされた銅板上に析出して生成されたNi−W合金めっき被膜は、該下地金属から剥離されて本発明によるNi−W合金被膜を形成する。該下地金属からの剥離方法は任意であるが、本発明においては銅溶解液を用いて下地金属を溶解除去する方法を好ましく採用する。溶解溶液としては特に制限しないが、例えば過硫酸アンモニウム100g/Lと硫酸20ml/Lとの混合溶液などが用いられる。下地金属との剥離手段が化学的方法による溶解除去であるため、物理的に剥ぎ取る方法とは異なり、合金被膜に対する加工キズを残す惧れは未然に回避される。   The Ni—W alloy plating film formed by depositing on the base metal to be the cathode as described above, specifically, the mirror-finished copper plate, is peeled off from the base metal and the Ni—W alloy according to the present invention. Form a film. The method of peeling from the base metal is arbitrary, but in the present invention, a method of dissolving and removing the base metal using a copper solution is preferably employed. Although it does not restrict | limit especially as a melt | dissolution solution, For example, the mixed solution of ammonium persulfate 100g / L and sulfuric acid 20ml / L etc. are used. Since the peeling means from the base metal is dissolution and removal by a chemical method, unlike the method of physically peeling off, the possibility of leaving a processing scratch on the alloy coating is avoided.

[実施例1]
クエン酸ナトリウム0.5mol/L、硫酸アンモニウム0.5mol/L及びラウリル硫酸ナトリウム0.5g/Lからなる溶液中に、硫酸ニッケル0.08mol/L及びタングステン酸ナトリウム0.32mol/Lを加えてめっき液組成を調製した電解浴に、陰極となる下地金属として表面をバフ研磨によって鏡面に加工した厚さ0.3mmの圧延銅板と、陽極金属としてのPt/Tiクラッド材を浸漬し、電解浴の浴温度を60℃に保持しながら陰極電流密度を10A/dmの条件で電気めっきを行い、該下地金属の表面に膜厚20μmのNi−W合金めっき被膜を生成させた。次いで浴槽から取り出した下地金属から、生成した該Ni−W合金めっき被膜を剥離するために、過硫酸アンモニウム100g/L及び硫酸20ml/Lの組成に調製された銅溶解液を用い、下地金属である銅板を溶解除去することにより、厚さ20μmのNi−W合金被膜を得た。得られたNi−W合金被膜は外観上ピットや加工キズは存在せず、優れた光沢を有していることが確認された。なお、下地金属である銅板の圧延筋の影響を確認するために図1に示す方法によって、各方向への密着曲げ試験を行った。テスト用治具1の間隔をしだいに狭めていき、被膜が破断したときの間隔から、式1を用いて曲げ変形率を求めた。密着曲げは2R=2Tとなったときを示す。
[式1]
曲げ変形率=T/(2R−T)
T:サンプル膜厚、R:サンプル外周部の曲率半径
得られた試験結果は表2に示す通りである。
[Example 1]
Plating by adding nickel sulfate 0.08 mol / L and sodium tungstate 0.32 mol / L into a solution consisting of sodium citrate 0.5 mol / L, ammonium sulfate 0.5 mol / L and sodium lauryl sulfate 0.5 g / L A 0.3 mm thick rolled copper plate whose surface was processed into a mirror surface by buffing as a base metal to be a cathode and a Pt / Ti clad material as an anode metal were immersed in an electrolytic bath prepared with a liquid composition. Electroplating was performed under the condition of a cathode current density of 10 A / dm 2 while maintaining the bath temperature at 60 ° C., and a 20 μm thick Ni—W alloy plating film was formed on the surface of the base metal. Next, in order to peel off the generated Ni—W alloy plating film from the base metal taken out from the bath, a copper solution prepared with a composition of ammonium persulfate 100 g / L and sulfuric acid 20 ml / L is used as the base metal. The copper plate was dissolved and removed to obtain a 20 μm thick Ni—W alloy coating. It was confirmed that the obtained Ni—W alloy film had excellent gloss without appearance and no pits or processing flaws. In addition, in order to confirm the influence of the rolling reinforcement of the copper plate which is a base metal, the adhesion bending test to each direction was done by the method shown in FIG. The spacing between the test jigs 1 was gradually reduced, and the bending deformation rate was determined using Equation 1 from the spacing when the coating broke. The close contact bending is shown when 2R = 2T.
[Formula 1]
Bending deformation rate = T / (2R-T)
Table 2 shows the test results obtained for T: sample film thickness and R: radius of curvature of the outer periphery of the sample.

[実施例2〜4]
電解浴のめっき液組成とめっき条件を下記表1に示すように変更した以外は、実施例1と同様にしてNI−W合金被膜を生成させ、下地金属からの剥離条件等は実施例1と同様にしてNi−W合金被膜を得た。得られたNi−W合金被膜は外観上ピットや加工キズは存在せず、優れた光沢を有していることが確認された。なお、得られた該合金被膜について実施例1と同様に密着曲げテストを実施した。得られた試験結果は表2に示す通りである。
[Examples 2 to 4]
Except for changing the plating solution composition and plating conditions of the electrolytic bath as shown in Table 1 below, an NI-W alloy film was produced in the same manner as in Example 1, and the conditions for peeling from the base metal were as in Example 1. Similarly, a Ni—W alloy film was obtained. It was confirmed that the obtained Ni—W alloy film had excellent gloss without appearance and no pits or processing flaws. In addition, the adhesion bending test was implemented similarly to Example 1 about this obtained alloy film. The test results obtained are as shown in Table 2.

Figure 2005206904
Figure 2005206904

[比較例1]
バフ研磨を実施せず、表面に圧延筋が残ったままの銅板を下地銅箔に用いた以外は、実施例1と同様にして厚さ20μmのNi−W合金被膜を得た。得られた該合金被膜に外観上圧延筋が転写された細かな筋が確認された。得られた該合金被膜について実施例1と同様に密着曲げテストを実施した。得られた試験結果は表2に示す通りである。
[Comparative Example 1]
A Ni—W alloy film having a thickness of 20 μm was obtained in the same manner as in Example 1 except that buffing was not performed, and a copper plate with the rolling streaks remaining on the surface was used as the base copper foil. Fine streaks in which rolling streaks were transferred on the appearance were confirmed on the obtained alloy coating. An adhesion bending test was performed on the obtained alloy coating in the same manner as in Example 1. The test results obtained are as shown in Table 2.

[比較例2]
圧延銅箔の表面を化学研磨によって凹凸をつけた後、実施例と同様にして、厚さ20μmのNi−W合金めっき被膜を得た。得られた該合金被膜は外観上下地金属の影響を受けた凹凸が存在し、光沢も劣っていることが確認された。得られた該合金被膜について実施例1と同様に密着曲げテストを実施した。得られた結果は表2に示す通りである。
[Comparative Example 2]
After roughening the surface of the rolled copper foil by chemical polishing, a Ni—W alloy plating film having a thickness of 20 μm was obtained in the same manner as in the example. It was confirmed that the obtained alloy film had irregularities affected by the base metal in appearance and was inferior in gloss. An adhesion bending test was performed on the obtained alloy coating in the same manner as in Example 1. The results obtained are as shown in Table 2.

Figure 2005206904
Figure 2005206904

実施例並びに比較例からも明らかなように、本発明によって得られたNi−W合金被膜は高硬度と、耐熱性、耐磨耗性、耐腐食性等においてNi−W合金特有の性能を有することは勿論、該被膜の折曲位置や折曲方向に関係なく、あらゆる方向からの折り曲げ試験においても、優れた折り曲げ特性を有していることが確認された。また、本発明による下地金属との剥離手段は、該下地金属を化学的手段によって溶解除去する方法を採り入れているため、物理的な剥ぎ取り方法と異なり、生成被膜に加工キズの残る惧れもなく、高い品質が保障される。本発明を用いることで、低コストで高品質被膜の作製が可能となるため、ガラス金型や連続鋳造鋳型等の耐摩耗部材に止まらず、マイクロ構造体や長寿命表面被覆材としてとして幅広い用途に用いことが可能な、信頼性の高いNi−W合金被膜として期待される。     As is clear from the examples and comparative examples, the Ni-W alloy coating obtained by the present invention has high hardness and performance unique to the Ni-W alloy in heat resistance, wear resistance, corrosion resistance, and the like. Of course, it was confirmed that the film has excellent folding characteristics in bending tests from any direction regardless of the folding position and the folding direction of the coating. Further, the peeling means from the base metal according to the present invention employs a method of dissolving and removing the base metal by chemical means, and therefore, unlike the physical peeling method, there is a possibility that processing scratches may remain on the formed film. And high quality is guaranteed. By using the present invention, it becomes possible to produce high-quality coatings at low cost, so it is not limited to wear-resistant members such as glass molds and continuous casting molds, but it can be used for a wide range of applications as microstructures and long-life surface coating materials. It is expected as a highly reliable Ni-W alloy coating that can be used for

本発明によって得られたNi−W合金被膜の曲げ特性を確認するために用いられるテスト用治具と、サンプルとなるNi−W合金の状態を説明するための側面図であるIt is a side view for demonstrating the state of the test jig | tool used in order to confirm the bending characteristic of the Ni-W alloy film obtained by this invention, and the sample Ni-W alloy.

符号の説明Explanation of symbols

1 テスト用治具
2 試験片(Ni−W合金被膜)

1 Test jig 2 Test piece (Ni-W alloy coating)

Claims (3)

電気めっき法によって折り曲げ特性に優れた高強度Ni−W合金被膜を製造する方法において、硫酸ニッケル0.05〜0.15mol/Lと、タングステン酸ナトリウム0.2〜0.4mol/Lとを加えることによって調製した電解浴に、表面を研磨して鏡面状に仕上げた金属を陰極として浸漬し、該電解浴温を50〜70℃に維持しつつ、陰極電流密度5〜15A/dmの条件で電解処理することにより、前記陰極金属表面にNi−W合金めっき被膜を形成したのち、得られた該めっき被膜を前記陰極金属から剥離することを特徴とするNi−W合金被膜の製造方法。 In a method for producing a high-strength Ni—W alloy film having excellent bending properties by electroplating, nickel sulfate 0.05 to 0.15 mol / L and sodium tungstate 0.2 to 0.4 mol / L are added. A metal whose surface was polished to a mirror finish was dipped in the electrolytic bath prepared as a cathode, and the electrolytic bath temperature was maintained at 50 to 70 ° C., while the cathode current density was 5 to 15 A / dm 2 . A method for producing a Ni-W alloy film, comprising forming a Ni-W alloy plating film on the surface of the cathode metal by electrolytic treatment in step 1 and then peeling the obtained plating film from the cathode metal. 前記陰極金属が銅又は銅合金板であることを特徴とする請求項1記載のNi−W合金被膜の製造方法。 The method for producing a Ni-W alloy coating according to claim 1, wherein the cathode metal is copper or a copper alloy plate. 前記電解浴温が55〜65℃、陰極電流密度が5〜10A/dmであることを特徴とする請求項1記載のNi−W合金被膜の製造方法。

2. The method for producing a Ni—W alloy coating according to claim 1, wherein the electrolytic bath temperature is 55 to 65 ° C. and the cathode current density is 5 to 10 A / dm 2 .

JP2004016357A 2004-01-23 2004-01-23 METHOD OF PRODUCING Ni-W ALLOY FILM Pending JP2005206904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016357A JP2005206904A (en) 2004-01-23 2004-01-23 METHOD OF PRODUCING Ni-W ALLOY FILM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016357A JP2005206904A (en) 2004-01-23 2004-01-23 METHOD OF PRODUCING Ni-W ALLOY FILM

Publications (1)

Publication Number Publication Date
JP2005206904A true JP2005206904A (en) 2005-08-04

Family

ID=34901535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016357A Pending JP2005206904A (en) 2004-01-23 2004-01-23 METHOD OF PRODUCING Ni-W ALLOY FILM

Country Status (1)

Country Link
JP (1) JP2005206904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031329A (en) * 2008-07-30 2010-02-12 Taiyo Denka Kogyo Kk Nickel plating bath
JP2012193395A (en) * 2011-03-15 2012-10-11 Kanagawa Prefecture Ni-W ELECTROFORMING SOLUTION FOR MOLDING DIE, METHOD FOR PRODUCING MOLDING DIE, MOLDING DIE, AND METHOD FOR PRODUCING MOLDED ARTICLE
CN104889414A (en) * 2015-04-09 2015-09-09 上海应用技术学院 A preparation method of ferro-tungsten alloy powder
CN114318450A (en) * 2022-02-15 2022-04-12 山东胜利通兴石油装备科技有限公司 Nickel-based tungsten alloy wear-resistant and corrosion-resistant coating oil pipe and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031329A (en) * 2008-07-30 2010-02-12 Taiyo Denka Kogyo Kk Nickel plating bath
JP4643690B2 (en) * 2008-07-30 2011-03-02 太陽電化工業株式会社 Nickel plating bath for electroplating
JP2012193395A (en) * 2011-03-15 2012-10-11 Kanagawa Prefecture Ni-W ELECTROFORMING SOLUTION FOR MOLDING DIE, METHOD FOR PRODUCING MOLDING DIE, MOLDING DIE, AND METHOD FOR PRODUCING MOLDED ARTICLE
CN104889414A (en) * 2015-04-09 2015-09-09 上海应用技术学院 A preparation method of ferro-tungsten alloy powder
CN114318450A (en) * 2022-02-15 2022-04-12 山东胜利通兴石油装备科技有限公司 Nickel-based tungsten alloy wear-resistant and corrosion-resistant coating oil pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4857340B2 (en) Pretreatment of magnesium substrate for electroplating
JP5894721B2 (en) Surface-treated metal plate and method for producing molded product using the surface-treated metal plate
JP5326515B2 (en) Chromium plating bath manufacturing method and plating film forming method
Matsui et al. Improvement in tensile ductility of electrodeposited bulk nanocrystalline Ni–W by sulfamate bath using propionic acid
CN209779038U (en) Production system of corrosion-resistant and wear-resistant stainless steel-based coating structure
KR20080101342A (en) Using high frequence pluse of electrolytic plating method of ni-co-b for heat resistance hardness and high conductivity
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
JP2005206904A (en) METHOD OF PRODUCING Ni-W ALLOY FILM
JP2007308801A (en) Nickel/cobalt/phosphorus electroplating composition and its application
CN104120461A (en) Method for preparing gradient alloy plating layer on surface of thin strip continuous casting crystallization roller and plating solution
JP2007254866A (en) Plating pretreatment method for aluminum or aluminum alloy raw material
KR20190098113A (en) Plasma Electrolytic Polishing Method with Luster and Dimensional Stability
JPS60234380A (en) Substrate for solar cell
JPH02217497A (en) Nickel-tungsten-silicon carbide composite plating method
CN111286768B (en) Nickel-cobalt-manganese-lanthanum alloy plating solution and preparation method and application thereof
CN110923764A (en) Processing technology of wear-resistant and corrosion-resistant metal surface coating
Tang Pulse reversal plating of nickel alloys
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
Walker Structure and properties of electrodeposited metals
RU2503751C2 (en) Method of iron coat electroplating in flowing electrolyte with coarse disperse particles
KR102012726B1 (en) Hexavalent Chrome Plating Solution And Crack Free Pulse-Reverse Electroplating Method Using of The Same
US20230142535A1 (en) Rollers and work rolls including surface coatings
TWI243856B (en) Method for reducing internal stress of electroplated layer made of nickel-based alloy material
JP3918156B2 (en) Chromium-plated component manufacturing method and chrome-plated component
KR20220117709A (en) Method of manufacturing an electrode for electroplating with a ni-nip plating layer and an electrode manufactured thereby