JP2010029003A - Power quality evaluation system - Google Patents

Power quality evaluation system Download PDF

Info

Publication number
JP2010029003A
JP2010029003A JP2008189072A JP2008189072A JP2010029003A JP 2010029003 A JP2010029003 A JP 2010029003A JP 2008189072 A JP2008189072 A JP 2008189072A JP 2008189072 A JP2008189072 A JP 2008189072A JP 2010029003 A JP2010029003 A JP 2010029003A
Authority
JP
Japan
Prior art keywords
harmonic
abnormality
harmonic component
power quality
quality evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008189072A
Other languages
Japanese (ja)
Other versions
JP4937205B2 (en
Inventor
Yasuhiro Taguchi
保博 田口
Yoshihiro Takei
義博 竹井
Katsuhiko Sekiguchi
勝彦 関口
Shinya Kazusawa
真也 數澤
Shigeyoshi Fujii
茂良 藤井
Seiji Kubota
正治 久保田
Yutaka Iino
穣 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008189072A priority Critical patent/JP4937205B2/en
Publication of JP2010029003A publication Critical patent/JP2010029003A/en
Application granted granted Critical
Publication of JP4937205B2 publication Critical patent/JP4937205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

<P>PROBLEM TO BE SOLVED: To presume a failure in a load facility which deteriorates power quality and abnormality indicating its symptom, at an early stage. <P>SOLUTION: A power quality evaluation system includes: a harmonic component calculation means 11 that analyzes waveform of the electric amount 5, such as, a voltage or a current supplied to the load facility 3 from a high-order power system, and calculates the harmonic components: a harmonic abnormal database 17, which stores the failure in the load facility 3 and a plurality of abnormal harmonic components 16, inferred as harmonic abnormality indicating the symptom of the failure; a harmonic component agreement calculation means 13, that calculates the harmonic component agreement level between an actual measurement harmonic component calculation result 15 obtained by the harmonic component calculation means 11 and the plurality of abnormal harmonic components 16 stored in the harmonic abnormal database 17; and harmonic abnormality output means 14, 31 by which the failure in the load facility 3 and the harmonic abnormal patterns indicating the symptom of the failure are specified from each calculated harmonic component agreement level to output or display a specified signal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力系統に生じる高調波、電圧変動、電圧不平衡、瞬時電圧低下等による電力品質の悪化を評価する電力品質評価システムに関する。   The present invention relates to a power quality evaluation system that evaluates deterioration of power quality due to harmonics, voltage fluctuation, voltage imbalance, instantaneous voltage drop, and the like generated in a power system.

従来、電力系統に生じる電気機器の高調波を解析して電力状態を管理する方法としては、幾つかの技術が提案されている。   2. Description of the Related Art Conventionally, several techniques have been proposed as a method for managing the power state by analyzing harmonics of electric equipment generated in the power system.

その1つの技術は、予め模擬高圧配電線を用いて故障要因別に波形をサンプル収集し、各々のサンプル波形の所定次数までの高調波成分を解析する。そして、故障要因別に高調波含有率の次数毎の平均値の総和を求めた後、故障要因別の総和データの最大値及び最小値を算出して記憶する。実際の高圧配電線の地絡故障時、その零相に流れる電流波形が故障要因別の最大値と最小値の間に入るか否かに基づいて高圧配電線の地絡故障の原因を推定する(特許文献1)。   One technique is to collect a sample of waveforms for each failure factor in advance using a simulated high-voltage distribution line, and analyze harmonic components up to a predetermined order of each sample waveform. And after calculating | requiring the sum total of the average value for every order of a harmonic content rate according to a failure factor, the maximum value and minimum value of the sum total data according to a failure factor are calculated and memorize | stored. Estimate the cause of the ground fault of the high-voltage distribution line based on whether or not the current waveform flowing in the zero phase of the actual high-voltage distribution line is in the range between the maximum and minimum values for each failure factor (Patent Document 1).

他のもう1つの技術は、需要家における基本波有効電力及び基本波無効電力の過度状態前後の変動有効分及び変動無効分を検出し、その変動分の大きさに基づいて需要家の負荷、力率改善コンデンサ、変圧器等の投入・停止といった運用状態を特定する。   Another technique detects a fluctuation active part and a fluctuation reactive part before and after the transient state of the fundamental wave active power and fundamental wave reactive power in the consumer, and loads the consumer based on the magnitude of the fluctuation, Specify the operating conditions such as turning on / off power factor correction capacitors and transformers.

また、この技術においては、需要家設備の投入時の電流を周波数分析し、高調波成分の波形パターンである設備毎に異なり、かつ時間的に高調波成分比率が変化する変化パターンを取り出し、需要家設備の運用状態や障害発生設備を特定するものである(特許文献2)。
特開平06−217451号公報 特許第3952355号
In this technology, the current at the time of customer equipment input is frequency-analyzed, the change pattern of the harmonic component that varies with the equipment, which is the waveform pattern of the harmonic component, and the harmonic component ratio changes with time is extracted. It specifies the operating state of the house facilities and the facility where the failure occurs (Patent Document 2).
Japanese Patent Laid-Open No. 06-217451 Japanese Patent No. 3952355

しかしながら、前者の技術は高圧配電線の地絡故障の原因を特定するだけであり、後者の技術は主として需要家設備の投入・停止の運用状態を特定するものであって、高調波の異常状態から負荷設備の故障やその前兆となる異常を推定する電力品質評価システムではない。   However, the former technique only identifies the cause of the ground fault of the high-voltage distribution line, and the latter technique mainly identifies the operation state of the customer equipment on / off, and the abnormal state of the harmonics. Therefore, it is not a power quality evaluation system that estimates failure of load facilities and abnormalities that are precursors.

本発明は上記事情に鑑みてなされたもので、上位電力系統から負荷設備に供給される電圧、電流等の電気量から実測高調波成分を計算し、この実測高調波成分計算結果と予め記憶される高調波異常高調波成分とに基づいて電力品質を悪化させる負荷設備の故障やその前兆となる異常を早期に推定する電力品質評価システムを提供することを目的とする。   The present invention has been made in view of the above circumstances. The measured harmonic component is calculated from the amount of electricity such as voltage and current supplied from the upper power system to the load facility, and the measured harmonic component calculation result is stored in advance. It is an object of the present invention to provide an electric power quality evaluation system that estimates at an early stage a failure of a load facility that deteriorates electric power quality based on the harmonic abnormal harmonic component and an abnormality that is a precursor thereof.

上記課題を解決するために、本発明に係る電力品質評価システムは、電力系統から各種の装置,機器等で構成される負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する高調波成分計算手段と、前記負荷設備を構成する装置,機器などの故障や当該故障の前兆となる高調波異常と推定される複数の高調波異常高調波成分を記憶する高調波異常データベースと、前記高調波成分計算手段で得られる実測高調波成分計算結果と前記高調波異常データベースに記憶される複数の高調波異常高調波成分との高調波成分一致度を計算する高調波成分一致度計算手段と、この高調波成分一致度計算手段で算出された各高調波成分一致度から前記負荷設備に含まれる装置,機器などの故障や当該故障の前兆となる高調波異常パターンを特定し、出力または表示する高調波異常出力手段とを備えた構成である。   In order to solve the above-described problems, the power quality evaluation system according to the present invention performs waveform analysis on the amount of electricity such as voltage and current supplied from a power system to a load facility composed of various devices and equipment, and performs harmonic analysis. Harmonic component calculation means for calculating components, and harmonics that store a plurality of harmonic abnormal harmonic components that are estimated to be a failure of a device or device constituting the load facility or a harmonic abnormality that is a precursor of the failure Harmonic component for calculating a harmonic component coincidence between an abnormal database, a measured harmonic component calculation result obtained by the harmonic component calculating means, and a plurality of harmonic abnormal harmonic components stored in the harmonic abnormal database The degree of coincidence calculation means, and the harmonic component pattern that is a precursor to the failure or failure of the equipment, equipment, etc. included in the load facility, from the degree of coincidence of the harmonic components calculated by the harmonic component coincidence degree calculation means Identify a structure in which a harmonic error output means for outputting or displaying.

本発明によれば、上位電力系統から負荷設備に供給される電圧、電流等の電気量から実測高調波成分を計算し、この実測高調波成分計算結果と予め記憶される高調波異常高調波成分とに基づいて電力品質を悪化させる負荷設備の故障やその前兆となる異常を早期に推定できる電力品質評価システムを提供できる。   According to the present invention, the actual harmonic component is calculated from the amount of electricity such as voltage and current supplied to the load equipment from the upper power system, and the actual harmonic component calculation result and the harmonic abnormal harmonic component stored in advance are calculated. Based on the above, it is possible to provide a power quality evaluation system that can quickly estimate a failure of a load facility that deteriorates power quality and an abnormality that is a precursor thereof.

(第1の実施の形態)
図1は本発明に係る電力品質評価システム1を電力系統に適用した一例を示す系統図である。
電力品質評価システム1は、例えば、上位電力系統から電力を受電する母線2と負荷設備(各種の装置,機器等を含む)3との間に測定装置4が設置され、この測定装置4で測定される負荷設備3に供給される電圧及び電流を含む電気量5から、電圧及び電流に重畳される高調波成分を計算し、この実測高調波成分計算結果と予め記憶される高調波異常高調波成分とに基づいて負荷設備の故障やその前兆となる異常を推定するものである。
(First embodiment)
FIG. 1 is a system diagram showing an example in which a power quality evaluation system 1 according to the present invention is applied to a power system.
In the power quality evaluation system 1, for example, a measuring device 4 is installed between a bus 2 that receives power from a higher power system and a load facility (including various devices, equipment, etc.) 3. The harmonic component superimposed on the voltage and current is calculated from the quantity of electricity 5 including the voltage and current supplied to the load equipment 3 to be operated, and the actual harmonic component calculation result and the harmonic abnormal harmonics stored in advance are calculated. Based on the components, the failure of the load facility and the anomaly that is a precursor thereof are estimated.

図2は本発明に係る電力品質評価システム1の第1の実施形態を示す概略構成図である。
電力品質評価システム1は、コンピュータを用いて、一定の処理手順に従ってソフトウエア的に処理するものであって、機能的には,高調波成分計算手段11と、データ記憶手段12と、高調波成分一致度計算手段13と、高調波異常推定手段(広義には高調波異常出力手段に相当する)14とで構成される。
FIG. 2 is a schematic configuration diagram showing the first embodiment of the power quality evaluation system 1 according to the present invention.
The power quality evaluation system 1 uses a computer to perform software processing according to a certain processing procedure. Functionally, the power quality evaluation system 1 includes harmonic component calculation means 11, data storage means 12, harmonic components. The degree of coincidence calculation means 13 and harmonic abnormality estimation means (corresponding to harmonic abnormality output means in a broad sense) 14 are configured.

高調波成分計算手段11は、測定装置4で測定された上位電力系統から供給される電圧、電流等の電気量5を波形分析して高調波成分を計算し、実測高調波成分計算結果15を取得し、高調波成分一致度計算手段13に送出する。   The harmonic component calculation means 11 calculates the harmonic component by analyzing the waveform of the electric quantity 5 such as voltage and current supplied from the higher power system measured by the measuring device 4, and obtains the measured harmonic component calculation result 15. Acquired and sent to the harmonic component coincidence calculation means 13.

高調波とは、基本波に重畳する基本波のn倍(nは2以上の整数)の周波数を持つ正弦波の集まりである。高調波を含む一般的な電気量の波形は、商用周波数を基本周波数とする基本波とこの基本周波数のn倍(周期は1/n)となる周波数を持つ各正弦波(高調波成分)との和で表わされる。以下、基本波を一次成分、周期が基本波の1/2(周波数は2倍)となる正弦波を2次成分、周期が基本波の1/3(周波数は3倍)となる正弦波を3次成分、以下同様に周期が基本波の1/n(周波数はn倍)となる正弦波をn次成分と称する。   The harmonic wave is a collection of sine waves having a frequency n times (n is an integer of 2 or more) of the fundamental wave superimposed on the fundamental wave. The waveform of a general electric quantity including harmonics is a fundamental wave having a commercial frequency as a fundamental frequency and each sine wave (harmonic component) having a frequency that is n times the fundamental frequency (period is 1 / n). It is expressed as the sum of Hereinafter, a sine wave whose primary component is a primary component, a sine wave whose period is 1/2 of the fundamental wave (frequency is twice), a secondary component, and a sine wave whose period is 1/3 of the fundamental wave (frequency is 3 times) A sine wave whose period is 1 / n (frequency is n times) of the fundamental wave is hereinafter referred to as an n-order component.

データ記憶手段12は、電力品質を評価するために各種のデータを記憶するものであって、予め高調波異常と推定される複数の次数からなる高調波異常パターン(例えば図6参照)21を持つ高調波成分(以下、高調波異常高調波成分と呼ぶ)16を格納する高調波異常データベース17が設けられ、前記高調波成分計算手段11で取得された実測高調波成分計算結果15も記憶される。   The data storage means 12 stores various data for evaluating power quality, and has a harmonic abnormality pattern 21 (see, for example, FIG. 6) having a plurality of orders presumed to be harmonic abnormalities in advance. A harmonic abnormality database 17 for storing harmonic components (hereinafter referred to as harmonic abnormal harmonic components) 16 is provided, and the actually measured harmonic component calculation result 15 acquired by the harmonic component calculation means 11 is also stored. .

高調波成分一致度計算手段13は、実測高調波成分計算結果15と高調波異常データベース17に保存される複数の次数からなる高調波異常パターン21を持つ高調波異常高調波成分16とから高調波成分一致度18を計算する機能を持っている。   The harmonic component coincidence calculation means 13 generates harmonics from the measured harmonic component calculation result 15 and the harmonic abnormal harmonic component 16 having the harmonic abnormal pattern 21 having a plurality of orders stored in the harmonic abnormal database 17. It has a function of calculating the component coincidence degree 18.

高調波異常推定手段14は、高調波成分一致度計算手段13で算出された高調波成分一致度18の中から高調波成分一致度18が高い高調波異常パターン21を、高調波異常の可能性が高い高調波異常パターン21と推定し、この推定された高調波異常パターン21を高調波異常推定結果20として出力する。   The harmonic abnormality estimation means 14 converts the harmonic abnormality pattern 21 having a higher harmonic component coincidence 18 from the harmonic component coincidence 18 calculated by the harmonic component coincidence calculation means 13 to the possibility of harmonic abnormality. Is estimated as a higher harmonic abnormality pattern 21, and the estimated higher harmonic abnormality pattern 21 is output as a higher harmonic abnormality estimation result 20.

高調波異常推定結果20の出力形式としては、例えば、表示装置に表示するとか、プリンタから印字出力し、あるいはデータ記憶手段12または別個の記憶手段に記憶し、あるいは専用伝送回線等を介して外部の出力装置に出力する形式などがある。   The output format of the harmonic abnormality estimation result 20 is, for example, displayed on a display device, printed out from a printer, stored in the data storage unit 12 or a separate storage unit, or externally via a dedicated transmission line or the like. There are formats to output to the output device.

次に、以上のような電力品質評価システム1の作用について説明する。
図3は、電気量の一例である例えば線間2相分の電圧波形例を説明する図である。
Next, the operation of the power quality evaluation system 1 as described above will be described.
FIG. 3 is a diagram illustrating an example of a voltage waveform for two phases between lines, which is an example of the amount of electricity.

同図において、横軸は時間、縦軸は電圧を表わす。今、3相分の電圧をVa、Vb、Vcとすると、3相分の線間電圧はVab、Vbc、Vcaとなる。2相分の例では、線間電圧はVab、Vbcとなる。   In the figure, the horizontal axis represents time, and the vertical axis represents voltage. Now, assuming that the voltages for the three phases are Va, Vb, and Vc, the line voltages for the three phases are Vab, Vbc, and Vca. In the example for two phases, the line voltages are Vab and Vbc.

先ず、高調波成分計算手段11は、母線2と負荷設備3との間に設置される測定装置4から伝送系を通じて当該負荷設備3に供給される電圧、電流等の電気量5を取り込み、あるいは測定装置4から伝送系を通じて伝送されてくる電気量5を受信し、当該電気量5に含む基本電圧波に含まれる高調波の次数毎の成分を計算する。すなわち、高調波成分計算手段11は、高調波成分を各次数成分の和とみなし、次数毎の高調波成分を計算する。   First, the harmonic component calculation means 11 takes in an electric quantity 5 such as voltage and current supplied to the load facility 3 through the transmission system from the measuring device 4 installed between the bus 2 and the load facility 3, or The quantity of electricity 5 transmitted from the measuring device 4 through the transmission system is received, and a component for each order of harmonics included in the fundamental voltage wave included in the quantity of electricity 5 is calculated. That is, the harmonic component calculation means 11 regards the harmonic component as the sum of each order component, and calculates the harmonic component for each order.

高調波の次数毎の成分を計算する手法は、最も一般的に使用されている高速フーリェ変換(FFT:Fast Fourier Transformation)が知られているが、本実施の形態では、一例として図4に示す高速フーリェ変換機能を持つFFT処理部11aを用いて高調波成分の計算処理を実行する。   The most commonly used fast Fourier transformation (FFT) method is known as a method for calculating components for each harmonic order. In the present embodiment, an example is shown in FIG. Harmonic component calculation processing is executed using an FFT processing unit 11a having a high-speed Fourier transform function.

その理由は、商用周波数に高調波が入ると、商用周波数が歪んでいると呼ばれ、フーリェ変換等により高調波成分を求めているが、観測データ(測定データ)が機器の動作特性から離散的なサンプリングデータである場合があり得る。このようなサンプリングデータから高調波成分を求める場合、離散型フーリェ変換と呼ばれる手法を用いる必要がある。その点、高速フーリェ変換機能を持つFFT処理部11aは、離散型フーリェ変換を高速に解けるように工夫された変換手法であり、連続的または離散的なサンプリングデータの何れにも対応できる為である。   The reason for this is that when harmonics enter the commercial frequency, the commercial frequency is distorted, and the harmonic component is obtained by Fourier transform, etc., but the observation data (measurement data) is discrete from the operating characteristics of the equipment. There may be a case where the sampling data is correct. When obtaining harmonic components from such sampling data, it is necessary to use a technique called discrete Fourier transform. In this respect, the FFT processing unit 11a having a high-speed Fourier transform function is a conversion method devised so as to be able to solve the discrete Fourier transform at high speed, and can cope with either continuous or discrete sampling data. .

FFT処理部11aは、電気量5を波形分析し、当該電気量5に含まれる次数毎の高調波成分を取り出す。   The FFT processing unit 11 a analyzes the waveform of the quantity of electricity 5 and extracts a harmonic component for each order included in the quantity of electricity 5.

図5、線間2相分の電圧波形について、高調波成分計算手段11で計算された実測高調波成分結果の一例を示す図であって、FFT処理部11aを用いて、高調波次数毎の高調波成分を計算した例である。同図において、横軸は高調波の次数、縦軸は高調波含有率を表わしている。   FIG. 5 is a diagram showing an example of the actually measured harmonic component result calculated by the harmonic component calculating means 11 for the voltage waveform for two phases between the lines, using the FFT processing unit 11a, and for each harmonic order. It is the example which calculated the harmonic component. In the figure, the horizontal axis represents the harmonic order, and the vertical axis represents the harmonic content.

ここで、高調波含有率は、高調波の次数毎に計算されるもので、下式で表わされる。
高調波含有率(次数)=高調波の大きさ(次数)÷基本波の大きさ ……(1)
一方、高調波異常データベース17には前述したように高調波異常高調波成分16が記憶されているが、高調波異常高調波成分16としては図6に示すように複数の次数成分及びそれら各次数成分の大きさ(高調波含有率)からなる高調波異常パターン21で表わされ、それぞれ高調波異常と推定される次数成分の組み合わせで構成されるパターンに特徴を持っている。因みに、図6は、一例として3つの高調波異常パターン21A、21B、21Cを示している。
Here, the harmonic content is calculated for each order of harmonics and is expressed by the following equation.
Harmonic content (order) = Harmonic magnitude (order) ÷ Fundamental wave size (1)
On the other hand, as described above, the harmonic abnormality harmonic component 16 is stored in the harmonic abnormality database 17, and the harmonic abnormality harmonic component 16 includes a plurality of order components and their respective orders as shown in FIG. It is represented by a harmonic anomaly pattern 21 made up of component magnitudes (harmonic content), and each has a characteristic feature of a pattern composed of combinations of order components estimated to be harmonic anomalies. Incidentally, FIG. 6 shows three harmonic abnormality patterns 21A, 21B, and 21C as an example.

ところで、高調波異常は、負荷設備を構成する各種の装置や機器の故障だけでなく、これら装置や機器の故障の前兆となっている場合が多い。そのため、高調波異常データベース17には、負荷設備を構成する各種の装置や機器の故障の他、故障の前兆となる次数成分の組み合わせ及び各次数成分の含有率からなる高調波異常パターン21も保存されている。   By the way, the harmonic abnormality is not only a failure of various devices and devices constituting the load facility, but also often indicates a failure of these devices and devices. Therefore, in the harmonic abnormality database 17, in addition to failure of various devices and equipment constituting the load facility, a harmonic abnormality pattern 21 including a combination of order components and a content ratio of each order component is also stored. Has been.

ここで、図6に示す高調波異常パターン21の横軸は高調波の次数、縦軸は高調波含有率で表わしており、この高調波含有率は前述したように高調波の次数毎に式(1)で計算される。   Here, the horizontal axis of the harmonic abnormality pattern 21 shown in FIG. 6 is represented by the harmonic order, and the vertical axis is represented by the harmonic content. The harmonic content is calculated for each harmonic order as described above. Calculated in (1).

図7は高調波成分一致度計算手段13の機能ブロック及び処理内容を説明する図である。   FIG. 7 is a diagram for explaining the functional blocks and processing contents of the harmonic component coincidence calculation means 13.

高調波成分一致度計算手段13は、実測高調波成分計算結果15の合計が1となるように規格化する処理を実行する規格化計算処理部13aと、この規格化計算処理部13aで得られた実測高調波成分計算結果15の規格化結果(規格化した値)と高調波異常データベース17に格納される高調波異常高調波成分16毎に高調波成分の合計が1となるように規格化した値との一致度を計算する一致度計算処理部13bとが設けられている。   The harmonic component coincidence calculation means 13 is obtained by the normalization calculation processing unit 13a that executes a process of normalizing so that the total of the actual harmonic component calculation results 15 becomes 1, and the normalization calculation processing unit 13a. Normalization result (standardized value) of the measured harmonic component calculation result 15 and the harmonic abnormality harmonic component 16 stored in the harmonic abnormality database 17 are normalized so that the sum of the harmonic components becomes 1. A coincidence calculation processing unit 13b is provided for calculating the coincidence with the obtained value.

高調波成分一致度計算手段13は、実測高調波成分計算結果15を受け取ると、規格化計算処理部13aが規格化処理を実行し、実測高調波成分計算結果15に含む各次数の高調波成分の合計が1になるように規格化する。   When the harmonic component coincidence calculation means 13 receives the measured harmonic component calculation result 15, the normalization calculation processing unit 13 a executes the normalization process, and the harmonic components of the respective orders included in the measured harmonic component calculation result 15. Is normalized so that the sum of 1 becomes 1.

規格化に際しては、次の式(2)を用いて、規格化後のj次(jは2以上の自然数)の成分を算出する。   At the time of normalization, a j-th order component (j is a natural number of 2 or more) after normalization is calculated using the following equation (2).

規格化後のj次の成分=規格化前j次の高調波成分/規格化前の高調波成分の合計値
……(2)
図8は高調波成分の規格化を説明する図である。
J-order component after normalization = j-th harmonic component before normalization / total value of harmonic components before normalization
(2)
FIG. 8 is a diagram for explaining normalization of harmonic components.

高調波成分としては、高調波異常データベース17の高調波異常高調波成分16の最大次数と、実測高調波成分計算結果15の高調波成分の最大次数とが一致していない場合がある。例えば、実測高調波成分計算結果15の高調波成分の最大次数が25次まであるが、高調波異常高調波成分16の最大次数が例えば20次までしかない場合がある。このようなとき、両者の次数のうち低い次数、すなわち,最大次数の低い高調波異常高調波成分17の最大次数20次に一致させ、両者とも20次までの高調波成分を抽出し規格化する。その結果、前記式(2)の分母は規格化前の高調波成分の20次までの合計値となる。   As the harmonic component, the maximum order of the harmonic abnormal harmonic component 16 of the harmonic abnormal database 17 may not match the maximum order of the harmonic component of the actually measured harmonic component calculation result 15. For example, although the maximum order of the harmonic component of the actually measured harmonic component calculation result 15 is up to 25th order, the maximum order of the harmonic abnormal harmonic component 16 may be up to 20th order, for example. In such a case, the lower order of both orders, that is, the maximum order 20 of the harmonic anomalous harmonic component 17 having the lowest maximum order is matched, and both harmonic components up to the 20th order are extracted and normalized. . As a result, the denominator of the formula (2) is the total value up to the 20th order of the harmonic components before normalization.

一致度計算処理部13bは、実測高調波成分計算結果15の規格後の値(以下、規格化実測高調波成分計算結果22と呼ぶ。図9(a)参照)と、高調波異常データベース17に格納される高調波異常高調波成分16の規格後の値(以下、規格化高調波異常高調波成分23と呼ぶ。図9(b)参照)との差分の絶対値を次数ごとに取り、式(3)のように合計値(以下、規格化差分合計値24と呼ぶ)を計算する。   The degree-of-match calculation processing unit 13b stores the value after the standardization of the actual harmonic component calculation result 15 (hereinafter referred to as the standardized actual harmonic component calculation result 22; see FIG. 9A) and the harmonic abnormality database 17. The absolute value of the difference from the value after the standardization of the stored harmonic abnormal harmonic component 16 (hereinafter referred to as the normalized harmonic abnormal harmonic component 23; see FIG. 9B) is taken for each order, and the equation The total value (hereinafter referred to as the normalized difference total value 24) is calculated as in (3).

規格化差分合計値24=|規格化後の2次の成分(実測高調波成分計算結果15)−規格化後の2次の成分(高調波異常高調波成分16)|+|規格化後の3次の成分(実測高調波成分計算結果15)−規格化後の3次の成分(高調波異常高調波成分16)|+ …… +|規格化後のn次の成分(実測高調波成分計算結果15)−規格化後のn次の成分(高調波異常高調波成分16)|
=|2次の成分(規格化実測高調波成分計算結果22)−2次の成分(規格化高調波異常高調波成分23)|+|3次の成分(規格化実測高調波成分計算結果22)−3次の成分(規格化高調波異常高調波成分23)|+ …… +|n次の成分(規格化実測高調波成分計算結果22)−n次の成分(規格化高調波異常高調波成分23)|
……(3)
この式(3)から、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23が完全に一致している場合、規格化差分合計値24はゼロとなる。
Normalized difference total value 24 = | Second-order component after normalization (measured harmonic component calculation result 15) -Second-order component after normalization (harmonic abnormal harmonic component 16) | + | Third-order component (measured harmonic component calculation result 15) -normalized third-order component (harmonic abnormal harmonic component 16) | + …… + | n-th component after normalization (measured harmonic component) Calculation result 15) -n-order component after normalization (harmonic abnormal harmonic component 16) |
= | Second order component (standardized actual harmonic component calculation result 22) -second order component (normalized harmonic abnormal harmonic component 23) | + | third order component (standardized actual harmonic component calculation result 22) ) -3rd order component (standardized harmonic abnormal harmonic component 23) | +... + | Nth order component (standardized actual harmonic component calculation result 22) -nth order component (standardized harmonic abnormal harmonic component) Wave component 23) |
...... (3)
From this equation (3), when the normalized measured harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 completely coincide, the normalized difference total value 24 becomes zero.

図9は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致している例を示す図である。すなわち、一致度計算処理部13bは、式(3)に基づき、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致している場合、規格化差分合計値24がゼロとなる。   FIG. 9 is a diagram illustrating an example in which the normalized actual harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 completely match. That is, the coincidence calculation processing unit 13b, based on the formula (3), if the standardized actual harmonic component calculation result 22 and the standardized harmonic abnormal harmonic component 23 completely match, the standardized difference total The value 24 becomes zero.

一方、式(3)に基づき、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致してない場合、規格化実測高調波成分計算結果22の合計値と、規格化高調波異常高調波成分23の合計値がそれぞれ1であることから、規格化差分合計値24は2となる。例えば、図10に示すように、3次、5次の高調波成分を含む規格化実測高調波成分計算結果22と、7次、9次の高調波成分を含む規格化高調波異常高調波成分23との場合、各次数が完全不一致となる。しかし、両者とも規格化されているので、それぞれ複数次数の合計値は1となる。その結果、規格化差分絶対値の合計値24は2となる。   On the other hand, if the normalized measured harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 do not completely match based on the equation (3), the total value of the normalized measured harmonic component calculated result 22 Since the total value of the normalized harmonic abnormal harmonic component 23 is 1 respectively, the normalized difference total value 24 is 2. For example, as shown in FIG. 10, normalized measured harmonic component calculation result 22 including third and fifth harmonic components and normalized harmonic abnormal harmonic component including seventh and ninth harmonic components. In the case of 23, the orders are completely inconsistent. However, since both are standardized, the total value of the multiple orders is 1, respectively. As a result, the total value 24 of the normalized difference absolute value is 2.

図11は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが一部一致している例を示す図である。この例は、5次の高調波成分が一致しているが、他の次数の高調波成分は一致していない。このような場合、規格化実測高調波成分計算結果22の合計値1のうち、一致していない3次の高調波成分をもつ規格化実測高調波成分計算結果22が0.6であり、規格化高調波異常高調波成分23の合計値1のうち、一致していない7次の高調波成分をもつ規格化高調波異常高調波成分22が0.6である。その結果、規格化差分絶対値の合計値24は、0.6+0.6=1.2となる。   FIG. 11 is a diagram illustrating an example in which the normalized actual harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 partially match. In this example, the fifth-order harmonic components match, but the other-order harmonic components do not match. In such a case, out of the total value 1 of the normalized measured harmonic component calculation result 22, the normalized measured harmonic component calculation result 22 having a third harmonic component that does not match is 0.6. Of the total value 1 of the normalized harmonic abnormal harmonic component 23, the normalized harmonic abnormal harmonic component 22 having the seventh harmonic component that does not match is 0.6. As a result, the total value 24 of the normalized difference absolute value is 0.6 + 0.6 = 1.2.

従って、規格化差分合計値24は、両者が完全に一致する場合の値0(ゼロ)から完全不一致の場合の値2までの中間の値となる。   Therefore, the normalized difference total value 24 is an intermediate value from the value 0 (zero) when the two completely match to the value 2 when the two completely match.

図12は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23との一致度の程度と規格化差合計値24との関係を示す図である。この図から明らかなように、完全一致の規格化差分合計値24は0、完全不一致の規格化差分合計値24は2となり、部分的に一致しているときはその中間の値となることを表わしている。   FIG. 12 is a diagram illustrating the relationship between the degree of coincidence between the normalized actual measurement harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 and the normalized difference total value 24. As can be seen from this figure, the normalized difference total value 24 of perfect match is 0, and the normalized difference total value 24 of completely mismatch is 2, and when it partially matches, it becomes an intermediate value. It represents.

ここで、高調波成分一致度18の定義について考える。
今、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23が完全に一致している場合を100%、全く一致していない場合を−100%、これら中間を0%にすれば、図13に示すように表わすことができ、理解し易くなる。
Here, the definition of the harmonic component matching degree 18 is considered.
Now, when the normalized measured harmonic component calculation result 22 and the normalized harmonic anomalous harmonic component 23 are completely coincident, 100%, when they are not coincident at all, −100%, and the middle is 0%. Then, it can be expressed as shown in FIG.

そこで、図13に示す高調波成分一致度18と規格化差分合計値24との間の変換式は、式(4)で表わせる。その結果、式(4)で計算された結果が高調波成分一致度18と定義することができる。
高調波成分一致度18=(1−規格化差分合計値24)×100(%) ……(4)
すなわち、一致度計算処理部13bは、高調波異常高調波成分16ごとに、実測高調波成分計算結果15との高調波成分一致度18を式(4)によって計算し、高調波異常推定手段14に渡す。
Therefore, the conversion equation between the harmonic component matching degree 18 and the normalized difference total value 24 shown in FIG. 13 can be expressed by equation (4). As a result, the result calculated by Expression (4) can be defined as the harmonic component coincidence degree 18.
Harmonic component coincidence 18 = (1−standardized difference total value 24) × 100 (%) (4)
That is, the coincidence degree calculation processing unit 13b calculates the harmonic component coincidence degree 18 with the actually measured harmonic component calculation result 15 for each harmonic abnormal harmonic component 16 by the equation (4), and the harmonic abnormality estimating means 14 To pass.

高調波異常推定手段14は、高調波成分一致度計算手段13から受け取った高調波異常高調波成分16ごとの高調波成分一致度18をもとに、高調波異常となる高調波異常パターン21を推定する。   Based on the harmonic component coincidence 18 for each harmonic abnormal harmonic component 16 received from the harmonic component coincidence calculating unit 13, the harmonic abnormality estimating unit 14 generates a harmonic abnormality pattern 21 that becomes a harmonic abnormality. presume.

図14は、高調波異常推定手段14の機能ブロック及び処理内容を説明する図である。   FIG. 14 is a diagram for explaining the functional blocks and processing contents of the harmonic abnormality estimation means 14.

高調波異常推定手段14は一致度並び替え処理部14aと高調波異常抽出部14bとで構成される。   The harmonic abnormality estimation means 14 includes a matching degree rearrangement processing unit 14a and a harmonic abnormality extraction unit 14b.

一致度並び替え処理部14aは、高調波異常高調波成分16の高調波成分一致度18をもとに当該高調波異常高調波成分16を並び替える処理を行うものであって、例えば高調波成分一致度18の高いものから順に並び替える処理を実行する。   The coincidence rearrangement processing unit 14a performs a process of rearranging the harmonic abnormal harmonic component 16 based on the harmonic component coincidence degree 18 of the harmonic abnormal harmonic component 16, and includes, for example, a harmonic component. A process of rearranging in descending order of the degree of coincidence 18 is executed.

高調波異常抽出部14bは、高調波成分一致度18の高いものから順に並び替えた高調波異常高調波成分16をもつ高調波異常パターン21の中から、高調波異常と推定されるパターン21を抽出し、高調波異常推定結果20として出力する。   The harmonic abnormality extraction unit 14b selects a pattern 21 that is estimated to be a harmonic abnormality from the harmonic abnormality patterns 21 having the harmonic abnormality harmonic components 16 that are rearranged in order from the highest harmonic component matching degree 18. Extracted and output as harmonic abnormality estimation result 20.

図15は、高調波異常高調波成分16と高調波成分一致度18との関係を説明する図である。   FIG. 15 is a diagram for explaining the relationship between the harmonic abnormal harmonic component 16 and the harmonic component coincidence degree 18.

高調波異常推定手段14は、一致度並び替え処理部14aが高調波異常高調波成分16に対応する高調波異常パターン21を、高調波成分一致度18の高いものから順に左側から並べていくと、図15に示すように高調波成分一致度18が100%から−100%の間に収まり、左側にあるほど高調波異常が高く、右側にあるほどほど高調波異常が低いと考えることができる。   The harmonic abnormality estimation unit 14 arranges the harmonic abnormality patterns 21 corresponding to the harmonic abnormal harmonic components 16 in order from the left in the descending order of the harmonic component coincidence 18 when the matching degree rearrangement processing unit 14a arranges the harmonic abnormal patterns 21 from the left. As shown in FIG. 15, it can be considered that the harmonic component coincidence 18 falls between 100% and −100%, the higher the harmonic abnormality is as it is on the left side, and the lower the harmonic abnormality is as it is on the right side.

従って、高調波異常推定手段14の高調波異常抽出部14bでは、実験の積み重ねや経験等を通して電力の品質に影響を与える可能性を考慮しつつ高調波異常抽出しきい値25を設定し、高調波成分一致度18が高調波異常抽出しきい値25よりも高い高調波異常高調波成分16をもつ高調波異常パターン21を高調波異常として抽出することが可能である。つまり、高調波異常抽出部14bは、図15に示すように高調波異常抽出しきい値25より上側に存在する高調波異常高調波成分16を高調波異常推定結果20として出力する。   Therefore, the harmonic abnormality extraction unit 14b of the harmonic abnormality estimation means 14 sets the harmonic abnormality extraction threshold 25 while considering the possibility of affecting the power quality through the accumulation of experiments and experience. It is possible to extract a harmonic abnormality pattern 21 having a harmonic abnormality harmonic component 16 having a wave component matching degree 18 higher than the harmonic abnormality extraction threshold 25 as a harmonic abnormality. That is, the harmonic abnormality extraction unit 14b outputs the harmonic abnormality harmonic component 16 existing above the harmonic abnormality extraction threshold 25 as a harmonic abnormality estimation result 20 as shown in FIG.

なお、高調波異常推定手段14としては、高調波要因抽出しきい値25を設けることなく、高調波成分一致度18の高い順に並べ替えて高調波異常推定結果20として出力してもよい。   Note that the harmonic abnormality estimation means 14 may be arranged in the descending order of the harmonic component matching degree 18 and output as the harmonic abnormality estimation result 20 without providing the harmonic factor extraction threshold 25.

図16は、高調波異常抽出しきい値25を設けずに高調波異常推定結果20を表示装置に表示した一例を示す図である。   FIG. 16 is a diagram illustrating an example in which the harmonic abnormality estimation result 20 is displayed on the display device without providing the harmonic abnormality extraction threshold value 25.

同図において、縦軸が高調波成分一致度18、横軸が高調波異常パターン21であって、高調波成分一致度18の高い順番に左側から右側に表示されている。   In the figure, the vertical axis represents the harmonic component coincidence 18 and the horizontal axis represents the harmonic abnormality pattern 21, which are displayed from the left to the right in the descending order of the harmonic component coincidence 18.

従って、以上のような実施の形態によれば、電力系統から伝送系を介して電力の供給を受ける需要家の電圧、電流等の電気量を収集し、電力品質の一つである高調波成分を取り出し、これら実測高調波成分と予め記憶される高調波異常高調波成分16との一致度を計算し、高調波異常高調波成分16の高い一致度を持つ高調波異常バターン21を抽出するので、電力品質の評価を悪化させる高調波異常バターン21を確実、かつ正確に推定することができる。   Therefore, according to the embodiment as described above, the amount of electricity such as the voltage and current of the consumer who receives power supply from the power system through the transmission system is collected, and the harmonic component which is one of the power quality , And the degree of coincidence between the measured harmonic component and the previously stored harmonic abnormal harmonic component 16 is calculated, and the harmonic abnormal pattern 21 having a high degree of coincidence of the harmonic abnormal harmonic component 16 is extracted. The harmonic abnormality pattern 21 that deteriorates the evaluation of the power quality can be estimated reliably and accurately.

また、高調波成分一致度計算手段13は、高調波成分計算手段11で得られる実測高調波成分15の合計が1となるように規格化する規格化計算処理部13aと、一致度計算処理部13bとを設け、この一致度計算処理部13bが規格化計算処理部13aで規格化された規格化実測高調波成分計算結果22と高調波異常データベース17に保存される高調波異常高調波成分23毎の高調波成分の合計が1となるように規格化された各規格化高調波異常高調波成分23との差分から一致度を計算し、一致度の高い順番に並べて表示可能とするので、高調波異常パターン21を見やすく並べて表示でき、何れの高調波異常パターン21が最も電力品質に影響を与えているか容易に把握できる。   The harmonic component coincidence calculation unit 13 includes a normalization calculation processing unit 13 a that normalizes the total of the actual harmonic components 15 obtained by the harmonic component calculation unit 11 to be 1, and a coincidence calculation processing unit. 13b, and the coincidence calculation processing unit 13b normalizes the actually measured harmonic component calculation result 22 normalized by the normalization calculation processing unit 13a and the harmonic abnormal harmonic component 23 stored in the harmonic abnormality database 17. Since the degree of coincidence is calculated from the difference from each normalized harmonic abnormal harmonic component 23 that has been standardized so that the sum of the harmonic components for each unit is 1, it can be displayed in order of the degree of coincidence. The harmonic abnormality patterns 21 can be displayed side by side in an easy-to-see manner, and it is easy to grasp which harmonic abnormality pattern 21 has the most influence on the power quality.

(第2の実施の形態)
図17は、電力品質評価システム1の一つの構成要素である高調波異常推定手段14に代えて、結果表示制御手段31を設けた構成図である。これら高調波異常推定手段14及び結果表示制御手段31は、広義には高調波異常出力手段に相当するものである。
(Second Embodiment)
FIG. 17 is a configuration diagram in which a result display control unit 31 is provided instead of the harmonic abnormality estimation unit 14 which is one component of the power quality evaluation system 1. These harmonic abnormality estimation means 14 and result display control means 31 correspond to harmonic abnormality output means in a broad sense.

すなわち、電力品質評価システム1は、図2に示す高調波成分計算手段11、データ記憶手段12及び高調波成分一致度計算手段13の他に、高調波成分一致度計算手段13の出力側に新たに結果表示制御手段31を設けてなる構成である。   That is, the power quality evaluation system 1 is newly added to the output side of the harmonic component coincidence calculation unit 13 in addition to the harmonic component calculation unit 11, the data storage unit 12, and the harmonic component coincidence calculation unit 13 shown in FIG. The result display control means 31 is provided.

高調波成分一致度計算手段13は、各高調波異常パターン21毎の高調波成分一致度18を計算し、例えばデータ記憶手段12の所定の記憶領域に記憶し、出力する。   The harmonic component coincidence calculation means 13 calculates the harmonic component coincidence 18 for each harmonic abnormality pattern 21 and stores and outputs it in a predetermined storage area of the data storage means 12, for example.

結果表示制御手段31は、高調波成分一致度計算手段13から出力される各高調波異常パターン21毎の高調波成分一致度18を表示装置32に表示するとともに、一定時間毎に高調波成分計算手段11に戻り、各構成手段11,13,31による処理を繰り返し実行する。その結果、データ記憶手段12の所定の記憶領域には、所要とする期間(例えば24時間)にわたって各時間毎の各高調波異常パターン21毎の高調波成分一致度18が時系列的に記憶される。   The result display control means 31 displays the harmonic component coincidence degree 18 for each harmonic abnormality pattern 21 output from the harmonic component coincidence degree calculating means 13 on the display device 32 and calculates the harmonic component at regular intervals. Returning to the means 11, the processing by the constituent means 11, 13, and 31 is repeatedly executed. As a result, the harmonic component coincidence degree 18 for each harmonic abnormality pattern 21 for each time is stored in a time series in a predetermined storage area of the data storage means 12 over a required period (for example, 24 hours). The

図18は、結果表示制御手段31によって高調波異常パターン21A、21B、21C、21D毎の高調波成分一致度18の表示例を示す図である。縦軸は高調波成分一致度18、横軸は時間である。   FIG. 18 is a diagram illustrating a display example of the harmonic component coincidence degree 18 for each of the harmonic abnormality patterns 21A, 21B, 21C, and 21D by the result display control unit 31. The vertical axis represents the harmonic component coincidence degree 18, and the horizontal axis represents time.

図18の例は、一日24時間分の表示例である。すなわち、高調波成分一致度計算手段13は、高調波異常パターン21A、21B、21C、21Dの高調波成分一致度18を一日24時間分にわたって時系列的に蓄積し、結果表示制御手段31にて表示した例である。   The example of FIG. 18 is a display example for 24 hours a day. That is, the harmonic component coincidence calculation means 13 accumulates the harmonic component coincidence 18 of the harmonic abnormality patterns 21A, 21B, 21C, and 21D in a time series for 24 hours a day, and the result display control means 31 It is an example displayed.

この実施の形態によれば、第1の実施の形態と同様の効果を奏する他、所要とする期間にわたって各時間毎の各高調波異常パターン21毎の高調波成分一致度18の変化を表示できるので、各高調波異常パターン21の時間的な変化の推移を把握でき、特定の高調波異常パターン21が何れの時間帯に大きく異常となることを判断することができる。   According to this embodiment, in addition to the same effects as those of the first embodiment, it is possible to display the change in the harmonic component matching degree 18 for each harmonic abnormality pattern 21 for each time over a required period. Therefore, the transition of the temporal change of each harmonic abnormality pattern 21 can be grasped, and it can be determined that the specific harmonic abnormality pattern 21 becomes significantly abnormal in any time zone.

(第3の実施の形態)
図19は本発明に係る電力品質評価システム1の第3の実施形態を示す概略構成図である。
この実施の形態は、図2に示す電力品質評価システム1の1つの構成要素である高調波成分計算手段11の代わりに、測定装置4で測定された電気量5に含む電流の方向を計算する機能(図20参照)を付加した高調波成分計算手段11Aを設けた構成である。従って、その他の構成は図2と同様であるので、同一の機能部分には同一符号を付し、その詳しい説明を省略する。
(Third embodiment)
FIG. 19 is a schematic configuration diagram showing a third embodiment of the power quality evaluation system 1 according to the present invention.
In this embodiment, instead of the harmonic component calculation means 11 which is one component of the power quality evaluation system 1 shown in FIG. This is a configuration provided with a harmonic component calculation means 11A to which a function (see FIG. 20) is added. Therefore, since the other structure is the same as that of FIG.

すなわち、高調波成分計算手段11Aは、図20に示すように、FFT処理部11aと電流方向計算処理部11bとで構成される。電流方向計算処理部11bは、ある次数の高調波であるk次(kは2以上n以下を満たす自然数)の高調波電圧の方向と高調波電流の方向とが同方向か逆方向かを電圧ベクトルと電流ベクトルとの位相差から判断し、電流の向きも含めて実測高調波成分計算結果15として、例えばデータ記憶手段12に記憶するものである。これにより、図19に示す高調波異常推定手段14としては、例えば高調波異常発生源となる装置、機器からの電流の向きまで高調波異常推定結果20として出力でき、また表示装置32に表示することが可能となる。   That is, the harmonic component calculation unit 11A includes an FFT processing unit 11a and a current direction calculation processing unit 11b as shown in FIG. The current direction calculation processing unit 11b determines whether the direction of the harmonic voltage of the kth order (k is a natural number satisfying 2 or more and n or less) which is a harmonic of a certain order and the direction of the harmonic current are the same direction or the reverse direction. Judgment is made from the phase difference between the vector and the current vector, and the measured harmonic component calculation result 15 including the current direction is stored in, for example, the data storage means 12. Accordingly, the harmonic abnormality estimation means 14 shown in FIG. 19 can output, for example, the harmonic abnormality estimation result 20 up to the direction of the current from the apparatus or device that becomes the harmonic abnormality generation source, and displays it on the display device 32. It becomes possible.

図21は電流方向計算処理部11bが行う高調波電流の方向(電流ベクトル)の計算の一例を説明する図である。
ある次数nの高調波電圧の電圧ベクトル33、ある次数nの高調波電流の電流ベクトル34とすると、電圧ベクトル33からみた電流ベクトル34の遅れ、進みが90度以内であれば、電流ベクトル34は電圧ベクトル33と向きが同方向とする。逆に、電流ベクトル34の遅れ、進みが90度を超えていれば、電流ベクトル34は電圧ベクトル33と向きが逆方向とする。
FIG. 21 is a diagram for explaining an example of the calculation of the direction (current vector) of the harmonic current performed by the current direction calculation processing unit 11b.
Assuming that a voltage vector 33 of a harmonic voltage of a certain order n and a current vector 34 of a harmonic current of a certain order n, if the delay and advance of the current vector 34 viewed from the voltage vector 33 are within 90 degrees, the current vector 34 is The direction is the same as the voltage vector 33. Conversely, if the delay or advance of the current vector 34 exceeds 90 degrees, the direction of the current vector 34 is opposite to that of the voltage vector 33.

図21の例は、電圧ベクトル33に対し、電流ベクトル34A、電流ベクトル34Bは同方向、電流ベクトル34C、電流ベクトル34Dは逆方向である。   In the example of FIG. 21, with respect to the voltage vector 33, the current vector 34A and the current vector 34B are in the same direction, and the current vector 34C and the current vector 34D are in the opposite direction.

従って、以上のような電流方向計算処理部11bを追加し、高調波次数毎に高調波電流の方向を判断することにより、前述した実施の形態の効果の他、高調波電流の方向から、装置等の故障やその前兆となる高調波異常を発生する装置(高調波異常発生源)の方向を見つけ出し、表示することができる。つまり、高調波の異常がどちらの方向にあるかについても判断できる。   Therefore, by adding the current direction calculation processing unit 11b as described above and determining the direction of the harmonic current for each harmonic order, in addition to the effects of the above-described embodiment, the apparatus can be used from the direction of the harmonic current. It is possible to find and display the direction of a device (a harmonic abnormality generating source) that generates a malfunction such as a malfunction or a harmonic abnormality that is a precursor thereof. That is, it can be determined in which direction the abnormality of the harmonic is.

従って、この実施の形態によれば、第1,2の実施の形態の電力品質評価システム1と比較し、高調波異常推定結果の精度をより向上させることができる。   Therefore, according to this embodiment, the accuracy of the harmonic abnormality estimation result can be further improved as compared with the power quality evaluation system 1 of the first and second embodiments.

(第4の実施の形態)
図22は本発明に係る電力品質評価システム1の第4の実施形態を示す概略構成図である。
(Fourth embodiment)
FIG. 22 is a schematic configuration diagram showing a fourth embodiment of the power quality evaluation system 1 according to the present invention.

この実施の形態は、上位電力系統から母線2に至る送電線6A、母線2から負荷設備3Bに接続される下位の電力系統となる送電線6B及び母線2から負荷設備3Cに接続される下位の電力系統である送電線6Cにそれぞれ個別に測定装置4A、4B、4Cを設置し、各測定装置4A、4B、4Cからそれぞれ伝送系7A、7B、7Cを介して電気量(電圧、電流)5A、5B、5Cを電力品質評価システム1に取り込み、電力品質の評価を行う構成である。   In this embodiment, the power transmission line 6A from the upper power system to the bus 2 and the power transmission line 6B as a lower power system connected from the bus 2 to the load facility 3B and the lower power line connected from the bus 2 to the load facility 3C. The measuring devices 4A, 4B, and 4C are individually installed on the power transmission line 6C that is the power system, and the electric quantity (voltage, current) 5A from the measuring devices 4A, 4B, and 4C through the transmission systems 7A, 7B, and 7C, respectively. 5B and 5C are incorporated into the power quality evaluation system 1 to evaluate the power quality.

電力品質評価システム1は、各測定装置4A、4B、4Cで測定された電気量5A、5B、5Cに基づき、図2,図17,図19の高調波成分計算手段11,11Aで順次各送電線6A、6B、6Cを流れる例えば電流の高調波成分を計算し、実測高調波成分計算結果15を取得し、データ記憶手段12に格納していく。また、高調波成分一致度計算手段13は、各実測高調波成分計算結果15と高調波異常高調波成分16との高調波成分一致度18を計算する。そして、高調波異常推定手段14が各実測高調波成分計算結果1の高調波成分一致度18に基づき、各送電線6A、6B、6Cを流れる電流の高調波異常推定結果20A、20B、20Cを出力する。   The power quality evaluation system 1 uses the harmonic component calculation means 11 and 11A shown in FIGS. 2, 17 and 19 to sequentially transmit each of the transmissions based on the electric quantities 5A, 5B and 5C measured by the measuring devices 4A, 4B and 4C. For example, the harmonic component of the current flowing through the electric wires 6A, 6B, and 6C is calculated, and the actually measured harmonic component calculation result 15 is acquired and stored in the data storage unit 12. Further, the harmonic component coincidence calculation means 13 calculates the harmonic component coincidence 18 between each actually measured harmonic component calculation result 15 and the harmonic abnormal harmonic component 16. Then, the harmonic abnormality estimation means 14 calculates the harmonic abnormality estimation results 20A, 20B, and 20C of the currents flowing through the transmission lines 6A, 6B, and 6C based on the harmonic component coincidence 18 of the respective measured harmonic component calculation results 1. Output.

その結果、高調波異常推定手段14からは、送電線6Aに流れる高調波異常の要因となる高調波異常パターン21と向きをもった高調波異常推定結果20A、送電線6Bに流れる高調波異常の要因となる高調波異常パターン21と向きをもった高調波異常推定結果20B、送電線6Cに流れる高調波異常の要因となる高調波異常パターン21と向きをもった高調波異常推定結果20Cを出力できる。   As a result, the harmonic abnormality estimation means 14 causes the harmonic abnormality estimation result 20A having the direction and the harmonic abnormality pattern 21 that causes the harmonic abnormality flowing in the transmission line 6A, and the harmonic abnormality flowing in the transmission line 6B. A harmonic abnormality estimation result 20B having a direction with the harmonic abnormality pattern 21 that becomes a factor, and a harmonic abnormality estimation result 20C having a direction with the harmonic abnormality pattern 21 that causes a harmonic abnormality flowing in the transmission line 6C are output. it can.

図23は、図22に示す各測定装置4A、4B、4Cから取得された電気量5A、5B、5Cから、高調波異常発生源を特定する方法を説明する高調波発生源と高調波電流との関係を示す図である。   FIG. 23 shows a harmonic generation source and a harmonic current for explaining a method of identifying a harmonic abnormality generation source from the electric quantities 5A, 5B, and 5C acquired from the measurement devices 4A, 4B, and 4C shown in FIG. It is a figure which shows the relationship.

今、例えば負荷設備3Bに高調波異常発生源が存在していると仮定すれば、当該高調波異常発生源の影響を受けて高調波電流36Bが送電線6B、母線2、送電線6Aを通って上位電力系統に流れ込むか、送電線6Cを通って負荷設備3Cに流れ込むことになる。   For example, assuming that a harmonic abnormality generating source exists in the load facility 3B, for example, the harmonic current 36B passes through the transmission line 6B, the bus 2, and the transmission line 6A under the influence of the harmonic abnormality generation source. Then, it flows into the upper power system, or flows into the load facility 3C through the transmission line 6C.

このとき、電力品質評価システム1は、各測定装置4A、4B、4Cを通じて前述するように各送電線6A、6B、6Cを流れる高調波電流の向きを取得しているので、高調波成分一致度18の他に、これら送電線6A、送電線6B、送電線6Cの高調波電流の向きに基づき、高調波異常発生源が負荷設備3Bであることが推定できる。   At this time, the power quality evaluation system 1 acquires the direction of the harmonic current flowing through each of the transmission lines 6A, 6B, and 6C through the measuring devices 4A, 4B, and 4C as described above. 18, it can be estimated that the harmonic abnormality generating source is the load facility 3 </ b> B based on the direction of the harmonic currents of the transmission line 6 </ b> A, the transmission line 6 </ b> B, and the transmission line 6 </ b> C.

すなわち、電力品質評価システム1の高調波成分計算手段11AがFFT処理部11aにより高調波成分を計算する一方、電流方向計算処理部11bにより高調波異常発生源から流れる高調波電流36の向きを含む実測高調波成分計算結果15を取り出す。   That is, the harmonic component calculation means 11A of the power quality evaluation system 1 calculates the harmonic component by the FFT processing unit 11a, while the current direction calculation processing unit 11b includes the direction of the harmonic current 36 flowing from the harmonic abnormality generating source. The measured harmonic component calculation result 15 is taken out.

高調波成分一致度計算手段13は、高調波電流36の向きを含む実測高調波成分計算結果15と高調波電流36の向きを含む高調波異常高調波成分16との一致度を計算した後に高調波異常推定手段14に渡す。その結果、高調波異常推定手段14は、一致度の高い高調波異常の要因となる高調波パターン21が分かるので、高調波異常の要因となる高調波パターン21をもつ高調波異常発生源を特定することができる。   The harmonic component coincidence calculation means 13 calculates the coincidence between the measured harmonic component calculation result 15 including the direction of the harmonic current 36 and the harmonic abnormal harmonic component 16 including the direction of the harmonic current 36, and then the harmonic. It passes to the wave abnormality estimation means 14. As a result, the harmonic abnormality estimation means 14 can identify the harmonic pattern 21 that causes the harmonic abnormality with a high degree of coincidence, and therefore identifies the harmonic abnormality generation source having the harmonic pattern 21 that causes the harmonic abnormality. can do.

例えば、高調波電流36Bの高調波異常の要因となる高調波パターン21がインバータ付きモータの故障である場合、インバータ付きモータから発生した高調波異常が、送電線6B、母線2、送電線6Aを通って上位電力系統に流れ込み、また送電線6Cを通って負荷設備3Cに流れ込んでいることが分かる。   For example, when the harmonic pattern 21 that causes the harmonic abnormality of the harmonic current 36B is a failure of the motor with the inverter, the harmonic abnormality generated from the motor with the inverter causes the power transmission line 6B, the bus 2, and the power transmission line 6A. It can be seen that it flows into the upper power system through, and flows into the load facility 3C through the transmission line 6C.

従って、以上のような実施の形態によれば、複数の測定装置4A、4B、4Cで測定される電気量に含む各高調波電流36A、36B、36Cの方向から、高調波異常の要因となる高調波異常パターン21をもつ高調波異常発生源を容易に特定することができる。   Therefore, according to the above embodiment, it becomes a factor of a harmonic abnormality from the direction of each harmonic current 36A, 36B, 36C included in the quantity of electricity measured by a plurality of measuring devices 4A, 4B, 4C. A harmonic abnormality generation source having the harmonic abnormality pattern 21 can be easily identified.

(第5の実施の形態)
図24は本発明に係る電力品質評価システム1の第5の実施形態を示す概略構成図である。
(Fifth embodiment)
FIG. 24 is a schematic configuration diagram showing a fifth embodiment of the power quality evaluation system 1 according to the present invention.

この電力品質評価システム1は、図22や図23に示すように複数の送電線6A〜6Cにそれぞれ測定装置4A〜4Cが設置されていることを前提とし、特に高調波異常推定手段14Aが図25に示すように論理的な条件判定に従って高調波異常発生源を特定するものである。   This power quality evaluation system 1 is based on the premise that measuring devices 4A to 4C are installed on a plurality of transmission lines 6A to 6C, respectively, as shown in FIG. 22 and FIG. As shown in FIG. 25, a harmonic abnormality generation source is specified in accordance with logical condition determination.

すなわち、電力品質評価システム1としては、高調波成分計算手段11,11A、高調波成分一致計算手段13及び高調波異常推定手段14Aを備え、各測定装置4A、4B、4Cから電気量5A、5B、5Cを取り込み、高調波異常推定手段14Aにて高調波異常推定結果20ないし高調波異常要因となる高調波異常パターン21をもつ高調波異常発生源を特定し、高調波異常発生源推定結果37として出力する。   That is, the power quality evaluation system 1 includes harmonic component calculation means 11 and 11A, harmonic component coincidence calculation means 13 and harmonic abnormality estimation means 14A, and each of the measurement devices 4A, 4B, and 4C receives an electric quantity 5A and 5B. 5C, the harmonic abnormality estimation source 14A identifies the harmonic abnormality generation source having the harmonic abnormality pattern 21 that is the harmonic abnormality estimation result 20 or the harmonic abnormality pattern 21, and the harmonic abnormality generation source estimation result 37. Output as.

図25は高調波異常推定手段14Aによる高調波異常発生源判定(特定)ロジック38を説明する図である。   FIG. 25 is a diagram for explaining the harmonic abnormality generation source determination (specification) logic 38 by the harmonic abnormality estimation means 14A.

この高調波異常発生源判定ロジック38には、高調波異常発生源が一箇所の場合の高調波異常発生源判定ロジック38Aと、高調波異常発生源が複数箇所の場合の高調波異常発生源判定ロジック38Bとに分けられ、各判定ロジック38A、38Bに基づいて判定し、高調波異常発生源を特定する。   The harmonic abnormality generation source determination logic 38 includes a harmonic abnormality generation source determination logic 38A when there is one harmonic abnormality generation source and a harmonic abnormality generation source determination when there are a plurality of harmonic abnormality generation sources. It is divided into logic 38B, and a determination is made based on the determination logics 38A and 38B, and a harmonic abnormality generation source is specified.

因みに、例えば高調波異常発生源判定ロジック38Aは、高調波異常発生源が上位電力系統側であるとする判定ロジックと高調波異常発生源が負荷設備3Bであるとする判定ロジックと高調波異常発生源が負荷設備3Cであるとする判定ロジックとに分けられ、それぞれ条件が規定されている。   For example, the harmonic abnormality generation source determination logic 38A includes a determination logic that the harmonic abnormality generation source is on the higher power system side, a determination logic that the harmonic abnormality generation source is the load facility 3B, and a harmonic abnormality occurrence. It is divided into determination logic that the source is the load facility 3C, and the conditions are defined respectively.

(第6の実施の形態)
図26は本発明に係る電力品質評価システム1の第6の実施形態を示す概略構成図である。
(Sixth embodiment)
FIG. 26 is a schematic configuration diagram showing a sixth embodiment of the power quality evaluation system 1 according to the present invention.

この実施の形態における電力品質評価システム1は、高調波成分計算手段11,11A、データ記憶手段12、高調波成分一致度計算手段13及び高調波異常推定手段14,14Aの他、新たにアラーム発生手段40を設けた構成である。   The power quality evaluation system 1 according to this embodiment includes a new alarm generation in addition to the harmonic component calculation means 11 and 11A, the data storage means 12, the harmonic component coincidence calculation means 13 and the harmonic abnormality estimation means 14 and 14A. In this configuration, means 40 is provided.

アラーム発生手段40は、高調波異常推定手段14,14Aによって高調波異常発生源が特定されるが、その中でも高調波の程度が大きいとか、高い高調波成分一致度18を有する、いわゆる発生原因となる高調波異常発生源をもつ負荷設備3や電力エネルギー系を集中管理する中央監視制御センター41に対し、特定された高調波異常発生源が高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21であることのアラーム42を送出する。   The alarm generation means 40 has a harmonic abnormality generation source identified by the harmonic abnormality estimation means 14 and 14A. Among them, the generation degree of harmonics is high, or the so-called generation cause having a high harmonic component coincidence 18 is obtained. An alarm 42 indicating that the specified harmonic abnormality source is in a harmonic abnormal state or a specific high frequency is applied to the central monitoring control center 41 that centrally manages the load equipment 3 having the harmonic abnormality generation source and the power energy system. An alarm 42 indicating the abnormal pattern 21 is sent out.

図27はアラーム発生手段40によるアラーム42のアラーム伝送系を説明する図である。   FIG. 27 is a view for explaining an alarm transmission system of the alarm 42 by the alarm generating means 40. In FIG.

電力品質評価システム1は、各負荷設備3B、3Cとの間にアラーム42を伝送するアラーム伝送系43B、43Cを接続し、また中央監視制御センター41との間にも同様にアラーム伝送系43Dを接続する。そして、アラーム発生手段40が、高調波異常推定手段14,14Aによって高調波異常発生源として特定され、その高調波の程度が大きいとか、高調波成分一致度18が高いとき、アラーム伝送系43を介して高調波発生原因となっている高調波異常発生源に高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21であことのアラーム42を通知する。   The power quality evaluation system 1 connects the alarm transmission systems 43B and 43C for transmitting the alarm 42 between the load facilities 3B and 3C, and similarly connects the alarm transmission system 43D to the central monitoring and control center 41. Connecting. When the alarm generation means 40 is specified as a harmonic abnormality generation source by the harmonic abnormality estimation means 14 and 14A and the degree of the harmonic is large or the harmonic component matching degree 18 is high, the alarm transmission system 43 is set. The alarm 42 indicating that the harmonic is abnormal or the alarm 42 indicating that the specific high frequency abnormality pattern 21 is notified to the harmonic abnormality generating source that is the cause of the generation of harmonics.

なお、高調波の程度は、式(5)による総合ひずみ率が良く用いられる。
総合ひずみ率=高調波分のみの実効値÷実効値 ……(5)
例えば、高調波異常推定手段14,14Aによって高調波異常発生源が負荷設備3Bであると特定されたとき、アラーム発生手段40は、アラーム伝送系43Bを介して負荷設備3Bに対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21であることのアラーム42を通知する。
In addition, the total distortion rate by Formula (5) is often used for the degree of harmonics.
Total distortion factor = RMS value only for harmonics ÷ RMS value (5)
For example, when the harmonic abnormality generation means is identified by the harmonic abnormality estimation means 14, 14A as the load equipment 3B, the alarm generation means 40 sends the load equipment 3B to the load equipment 3B via the alarm transmission system 43B. Is notified of an alarm 42 indicating that the state is a harmonic abnormal state or an alarm 42 indicating that the specific high frequency abnormality pattern 21 is present.

また、アラーム発生手段40は、アラーム伝送系43Dを介して中央監視制御センター41に対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21であることのアラーム42を通知する。   Further, the alarm generation means 40 notifies the central monitoring control center 41 via the alarm transmission system 43D that the load equipment 3B is in an abnormal state of harmonics or an alarm 42 that the specific high frequency abnormality pattern 21 is present. To be notified.

なお、アラーム発生手段40がアラーム42の発生する場合、図28に示す条件のもとにアラーム42を発生するようにしてもよい。例えば、予め高調波警戒レベルしきい値44及び一定の時間(アラーム発生時限値)45を設定し、式(5)で求めた総合ひずみ率が、高調波警戒レベルしきい値44を超え、かつ、一定の時間(アラーム発生時限値)45を経過したときのアンド条件を満たしたとき、負荷設備3Bが高調波異常状態であることのアラーム42を発生する。   When the alarm generating means 40 generates the alarm 42, the alarm 42 may be generated under the conditions shown in FIG. For example, the harmonic warning level threshold value 44 and a certain time (alarm generation time limit value) 45 are set in advance, and the total distortion obtained by the equation (5) exceeds the harmonic warning level threshold value 44, and When the AND condition when a certain time (alarm generation time limit value) 45 has passed is satisfied, an alarm 42 indicating that the load equipment 3B is in a harmonic abnormal state is generated.

あるいは、総合ひずみ率が高調波警戒レベルしきい値44を超え、かつ一定の時間(アラーム発生時限値)45を経過し、さらに図15に示すように、高調波成分一致度18が高調波異常抽出しきい値25を超えたときのアンド条件を満たしたとき、負荷設備3Bが高調波異常状態であることのアラーム42あるいはその高調波成分一致度18の高い高調波異常パターン21を有するアラーム42を発生する。   Alternatively, the total distortion rate exceeds the harmonic warning level threshold value 44 and a certain time (alarm generation time limit value) 45 elapses. Further, as shown in FIG. When the AND condition when the extraction threshold value 25 is exceeded is satisfied, the alarm 42 that the load equipment 3B is in the harmonic abnormal state or the alarm 42 that has the harmonic abnormal pattern 21 having a high harmonic component matching degree 18 Is generated.

次に、アラーム発生系の他の例について、図29及び図30を参照して説明する。
図29は、図26に示す構成に新たに制御指令発生手段46を設けた電力品質評価システム1の概略構成図である。
Next, another example of the alarm generation system will be described with reference to FIGS. 29 and 30. FIG.
FIG. 29 is a schematic configuration diagram of the power quality evaluation system 1 in which a control command generation means 46 is newly provided in the configuration shown in FIG.

この電力品質評価システム1は、高調波異常推定手段14,14Aの出力側にアラーム発生手段40と制御指令発生手段46とを備え、アラーム発生手段40は前述した要領でアラーム42を発生する。   This power quality evaluation system 1 includes an alarm generation means 40 and a control command generation means 46 on the output side of the harmonic abnormality estimation means 14 and 14A, and the alarm generation means 40 generates an alarm 42 in the manner described above.

一方、制御指令発生手段46は、ある負荷設備3が高調波異常発生源であると特定されたとき、その負荷設備3に対して停止等の制御指令47を送出する。   On the other hand, when it is determined that a certain load facility 3 is a harmonic abnormality generation source, the control command generation means 46 sends a control command 47 such as a stop to the load facility 3.

図30は制御指令発生手段46による制御指令47の伝送系を説明する図である。   FIG. 30 is a diagram for explaining a transmission system of the control command 47 by the control command generating means 46.

この例は、電力品質評価システム1と各負荷設備3B、3Cとの間に新たに制御指令伝送系48B、48Cを接続し、例えば、高調波異常推定手段14,14Aによって高調波異常発生源が負荷設備3Bであると特定されたとき、アラーム発生手段40は、アラーム伝送系43Bを介して負荷設備3Bに対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは高周波異常パターン21を有するアラーム42を発生する。   In this example, control command transmission systems 48B and 48C are newly connected between the power quality evaluation system 1 and the load facilities 3B and 3C. For example, the harmonic abnormality generation source is generated by the harmonic abnormality estimation means 14 and 14A. When the load facility 3B is identified, the alarm generation means 40 sends an alarm 42 or a high frequency abnormality pattern 21 indicating that the load facility 3B is in a harmonic abnormal state to the load facility 3B via the alarm transmission system 43B. Alarm 42 is generated.

一方、制御指令発生手段46は、高調波異常推定手段14,14Aによって例えば負荷設備3Bが高調波異常発生源として特定され、その高調波の程度が大きいとか、高調波成分一致度18が高いとき、その特定された負荷設備3に対し、制御指令伝送系48Bを介して停止を含む負荷低減に関する制御指令47を送出することにより、負荷設備3が異常に至らないようにする。   On the other hand, the control command generation means 46, for example, when the load abnormality 3B is specified as the harmonic abnormality generation source by the harmonic abnormality estimation means 14, 14A, and the degree of the harmonic is large or the harmonic component matching degree 18 is high. The load facility 3 is prevented from becoming abnormal by sending a control command 47 relating to load reduction including stop to the specified load facility 3 via the control command transmission system 48B.

さらに、アラーム発生手段40は、アラーム伝送系43Dを介して中央監視制御センター41に対し、負荷設備3Bが高調波異常状態であることと、負荷設備3Bへ停止等の制御指令を送出したことのアラーム42を発生する。   Further, the alarm generating means 40 indicates that the load equipment 3B is in a harmonic abnormal state and has sent a control command such as a stop to the load equipment 3B to the central monitoring control center 41 via the alarm transmission system 43D. An alarm 42 is generated.

なお、制御指令47の発生条件としては、図31に示すように新たに高調波危険レベルしきい値50及び一定の時間(制御指令発生時限値)51を設定し、式(5)で求めた総合ひずみ率が、高調波警戒レベルしきい値44を超えたとき、あるいは図15に示すように高調波成分一致度18が高調波異常抽出しきい値25を超えこととのアンド条件を満たしたとき、高調波異常状態となっている例えば負荷設備3Bにアラーム42を発生するが、さらに、総合ひずみ率が高調波の危険レベルを示す高調波危険レベルしきい値50を超え、かつその超えた時間が一定の時間(制御指令発生時限値)51を経過したとき、高調波異常状態となっている例えば負荷設備3Bに対して、動作停止や運転出力を低下させるなどの制御指令47を送出する。   As a condition for generating the control command 47, a harmonic danger level threshold value 50 and a fixed time (control command generation time limit value) 51 are newly set as shown in FIG. When the total distortion exceeds the harmonic warning level threshold value 44, or the AND condition that the harmonic component coincidence 18 exceeds the harmonic abnormality extraction threshold value 25 as shown in FIG. When, for example, an alarm 42 is generated in the load equipment 3B in a harmonic abnormal state, the total distortion rate exceeds and exceeds the harmonic danger level threshold value 50 indicating the danger level of harmonics. When the time has passed a certain time (control command generation time limit value) 51, a control command 47 for stopping the operation or reducing the operation output is sent to the load equipment 3B that is in a harmonic abnormal state, for example.

従って、以上のような実施の形態によれば、上位電力系統から需要家に至る下位電力系統の複数箇所から電気量を取得し、電力品質の一つである高調波異常の発生要因と発生場所を推定し、高調波異常が警戒レベルにあることのアラームを発生するので、現場の監視要員は電力品質が悪化していることを把握でき、必要な対策を講じることが可能となる。   Therefore, according to the embodiment as described above, the amount of electricity is obtained from a plurality of locations in the lower power system from the upper power system to the customer, and the generation factor and location of the harmonic abnormality that is one of the power quality And an alarm that the harmonic abnormality is at a warning level is generated, so that the on-site monitoring staff can grasp that the power quality is deteriorating and can take necessary measures.

また、上位電力系統から需要家に至る下位電力系統の複数箇所から電気量を取得し、電力品質の一つである高調波異常の発生要因と発生場所を推定し、高調波異常の影響が危険な状態にあるとき、高調波異常の発生源に対して高調波異常の抑制を図るべき制御指令を送出するので、高調波異常による災害を未然に回避することができる。   In addition, the amount of electricity is obtained from multiple locations in the lower power system from the upper power system to the customer, and the cause and location of the harmonic abnormality, which is one of the power quality, is estimated. In such a state, since a control command for suppressing the harmonic abnormality is sent to the source of the harmonic abnormality, a disaster due to the harmonic abnormality can be avoided in advance.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明に係る電力品質評価システムの電力系統への適用例を示す系統図。The system diagram which shows the example of application to the electric power grid | system of the electric power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムの第1の実施形態を示す概略構成図。The schematic block diagram which shows 1st Embodiment of the electric power quality evaluation system which concerns on this invention. 電気量の一例である例えば線間2相分の電圧波形例を説明する図。The figure explaining the voltage waveform example for two phases between lines which is an example of the amount of electricity. 高調波成分計算手段の一具体例であるFFT処理部を用いた構成図。The block diagram which used the FFT process part which is a specific example of a harmonic component calculation means. 高調波成分計算手段で計算された実測高調波成分結果の一例を示す図。The figure which shows an example of the measurement harmonic component result calculated by the harmonic component calculation means. 高調波異常データベースに記憶される高調波異常と推定される複数次数からなる複数の高調波異常パターンの例を示す説明図。Explanatory drawing which shows the example of the several harmonic abnormality pattern which consists of multiple orders estimated with the harmonic abnormality memorize | stored in a harmonic abnormality database. 高調波成分一致度計算手段の機能ブロック及び処理内容を説明する図。The figure explaining the functional block and processing content of a harmonic component coincidence calculation means. 高調波成分一致度計算手段による高調波成分の規格化を説明する図。The figure explaining normalization of the harmonic component by a harmonic component coincidence calculation means. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一致している例を説明する図。The figure explaining the example in which the normalized measurement harmonic component result and the normalized harmonic generator harmonic component correspond. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが完全に一致していない例を説明する図。The figure explaining the example from which the normalized actual harmonic component result and the normalized harmonic generator harmonic component are not completely in agreement. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一部一致している例を説明する図。The figure explaining the example in which the normalized actual harmonic component result and the normalized harmonic generator harmonic component partially correspond. 規格化実測高調波成分計算結果と規格化高調波異常高調波成分との一致度の程度と規格化差合計値との関係を表わす図。The figure showing the relationship between the degree of coincidence of the standardization measurement harmonic component calculation result and the standardization harmonic abnormal harmonic component, and the standardization difference total value. 高調波成分一致度と規格化差分合計値との関係を別の観点から表わした図。The figure showing the relationship between a harmonic component coincidence degree and the standardization difference total value from another viewpoint. 図2に示す高調波異常推定手段の一具体例を示す構成図Configuration diagram showing a specific example of harmonic abnormality estimation means shown in FIG. 高調波異常高調波成分と高調波成分一致度との関係を説明する図。The figure explaining the relationship between a harmonic abnormal harmonic component and a harmonic component coincidence degree. 高調波異常抽出しきい値を設けずに高調波異常推定結果を表示装置に表示した一例を示す図。The figure which shows an example which displayed the harmonic abnormality estimation result on the display apparatus, without providing a harmonic abnormality extraction threshold value. 本発明に係る電力品質評価システムの第2の実施形態を示す概略構成図。The schematic block diagram which shows 2nd Embodiment of the electric power quality evaluation system which concerns on this invention. 一定時間毎に取得した複数の高調波異常パターン毎の高調波成分一致度の時系列的な変化の表示例を示す図。The figure which shows the example of a display of the time-sequential change of the harmonic component coincidence for every several harmonic abnormal pattern acquired for every fixed time. 本発明に係る電力品質評価システムの第3の実施形態を示す概略構成図。The schematic block diagram which shows 3rd Embodiment of the electric power quality evaluation system which concerns on this invention. 高調波成分計算手段の他の例を示す構成図。The block diagram which shows the other example of a harmonic component calculation means. 電気量に含む高調波電圧の電圧ベクトルと高調波電流との位相関係を説明する図。The figure explaining the phase relationship between the voltage vector of the harmonic voltage contained in an electric quantity, and a harmonic current. 本発明に係る電力品質評価システムの第4の実施形態を示す概略構成図。The schematic block diagram which shows 4th Embodiment of the electric power quality evaluation system which concerns on this invention. 高調波発生源と高調波電流との関係から、高調波異常発生源を特定する方法を説明する図。The figure explaining the method of specifying a harmonic abnormality generation source from the relationship between a harmonic generation source and a harmonic current. 本発明に係る電力品質評価システムの第5の実施形態を示す概略構成図。The schematic block diagram which shows 5th Embodiment of the electric power quality evaluation system which concerns on this invention. 図24に示す高調波異常推定手段による高調波異常発生源判定(特定)ロジックを説明する図。The figure explaining the harmonic abnormality generation source determination (specification) logic by the harmonic abnormality estimation means shown in FIG. 本発明に係る電力品質評価システムの第6の実施形態を示す概略構成図。The schematic block diagram which shows 6th Embodiment of the electric power quality evaluation system which concerns on this invention. 図26のアラーム発生手段から発生するアラームのアラーム伝送系を示す図。The figure which shows the alarm transmission system of the alarm which generate | occur | produces from the alarm generation means of FIG. アラームの発生条件を説明する図。The figure explaining the generating condition of an alarm. 図26に示す構成に新たに制御指令発生手段を設けた電力品質評価システムの概略構成図。The schematic block diagram of the electric power quality evaluation system which provided the control command generation | occurrence | production means newly in the structure shown in FIG. 図29の制御指令発生手段から発生する制御指令の制御指令伝送系を示す図。The figure which shows the control command transmission system of the control command which generate | occur | produces from the control command generation means of FIG. 制御指令の発生条件を説明する図。The figure explaining the generation conditions of a control command.

符号の説明Explanation of symbols

1…電力品質評価システム、3(3B,3C)…負荷設備、4(4A,4B,4C)…測定装置、5(5A,5B,5C)…電圧、電流等の電気量、6A,6B,6C…送電線、7A,7B,7C…伝送系、11…高調波成分計算手段、11a…FFT処理部、11b…電流方向計算処理部、12…データ記憶手段、13…高調波成分一致度計算手段、13a…規格化計算処理部、13b…一致度計算処理部、14…高調波異常推定手段、14a…一致度並び替え処理部、14b…高調波異常抽出部、17…高調波異常データベース、31…結果表示制御手段、40…アラーム発生手段、41…中央監視制御センター、46…制御指令発生手段。   DESCRIPTION OF SYMBOLS 1 ... Electric power quality evaluation system, 3 (3B, 3C) ... Load equipment, 4 (4A, 4B, 4C) ... Measuring apparatus, 5 (5A, 5B, 5C) ... Electric quantity, such as a voltage and an electric current, 6A, 6B, 6C: Transmission line, 7A, 7B, 7C ... Transmission system, 11: Harmonic component calculation means, 11a ... FFT processing section, 11b ... Current direction calculation processing section, 12 ... Data storage means, 13 ... Harmonic component coincidence calculation Means, 13a ... Normalization calculation processing unit, 13b ... Concordance calculation processing unit, 14 ... Harmonic abnormality estimation means, 14a ... Concordance rearrangement processing unit, 14b ... Harmonic abnormality extraction unit, 17 ... Harmonic abnormality database, 31 ... Result display control means, 40 ... Alarm generation means, 41 ... Central monitoring control center, 46 ... Control command generation means.

Claims (8)

電力系統から各種の装置,機器等で構成される負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する高調波成分計算手段と、
前記負荷設備を構成する装置,機器などの故障や当該故障の前兆となる高調波異常と推定される複数の高調波異常高調波成分を記憶する高調波異常データベースと、
前記高調波成分計算手段で得られる実測高調波成分計算結果と前記高調波異常データベースに記憶される複数の高調波異常高調波成分との高調波成分一致度を計算する高調波成分一致度計算手段と、
この高調波成分一致度計算手段で算出された各高調波成分一致度から前記負荷設備に含まれる装置,機器などの故障や当該故障の前兆となる高調波異常パターンを特定し、出力または表示する高調波異常出力手段と
を備えたことを特徴とする電力品質評価システム。
Harmonic component calculation means for calculating the harmonic component by analyzing the waveform of the electric quantity such as voltage and current supplied from the power system to the load equipment composed of various devices and equipment,
A harmonic abnormality database that stores a plurality of harmonic abnormal harmonic components that are presumed to be a harmonic abnormality that is a precursor of the failure of the device, equipment, etc. constituting the load facility, and
Harmonic component coincidence calculation means for calculating the harmonic component coincidence between the actually measured harmonic component calculation result obtained by the harmonic component calculating means and a plurality of harmonic abnormal harmonic components stored in the harmonic abnormality database When,
From the harmonic component coincidence calculated by the harmonic component coincidence calculating means, a failure of a device, equipment, etc. included in the load facility or a harmonic anomaly pattern that is a precursor of the failure is identified, output or displayed. A power quality evaluation system comprising a harmonic abnormality output means.
請求項1に記載の電力品質評価システムにおいて、
前記高調波成分一致度計算手段は、前記高調波成分計算手段で得られる複数次数の実測高調波成分の合計が1となるように規格化する規格化計算処理手段と、この規格化計算処理手段で規格化された複数次数の実測高調波成分と前記高調波異常データベースに記憶される複数次数の高調波異常高調波成分の合計が1となるように規格化された各値との高調波成分一致度を計算する一致度計算処理手段とを有することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1,
The harmonic component coincidence calculation means includes a normalization calculation processing means for normalizing so that the total of the measured harmonic components of a plurality of orders obtained by the harmonic component calculation means is 1, and the normalization calculation processing means Harmonic component of each value normalized so that the sum of the measured harmonic components of multiple orders normalized in step 1 and the harmonic abnormal harmonic components of multiple orders stored in the harmonic abnormality database is 1. A power quality evaluation system comprising: a degree of coincidence calculation processing means for calculating a degree of coincidence.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記高調波異常出力手段は、前記高調波成分一致度の高い高調波異常高調波成分をもつ高調波異常パターンから順に表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2,
The harmonic anomaly output means displays in order from an abnormal harmonic pattern having a harmonic anomalous harmonic component having a high degree of harmonic component coincidence.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記高調波異常出力手段は、所要期間にわたって予め定めた時間毎に前記高調波成分計算手段及び高調波成分一致度計算手段を繰り返し実行させることにより、各高調波異常パターンにおける前記高調波一致度の時系列的な変化を表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2,
The harmonic abnormality output means repeatedly executes the harmonic component calculation means and the harmonic component coincidence calculation means for each predetermined time over a required period, whereby the harmonic coincidence degree in each harmonic abnormality pattern is determined. A power quality evaluation system that displays time-series changes.
請求項1に記載の電力品質評価システムにおいて、
前記高調波成分計算手段は、電力系統から負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する手段と、この手段により得られる高調波成分の次数毎に高調波電流の方向を計算し記憶する電流方向計算処理手段とを有し、
この高調波電流の方向から、故障や当該故障の前兆となる高調波異常を発生する高調波異常発生源である前記負荷設備を特定可能とすることを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1,
The harmonic component calculation means includes means for analyzing a waveform of an electrical quantity such as voltage and current supplied from a power system to a load facility and calculating a harmonic component, and for each order of the harmonic component obtained by the means. Current direction calculation processing means for calculating and storing the direction of the wave current,
A power quality evaluation system characterized in that, from the direction of the harmonic current, it is possible to identify the load equipment that is a harmonic abnormality generation source that generates a malfunction or a harmonic abnormality that is a precursor of the malfunction.
請求項5に記載の電力品質評価システムにおいて、
上位電力系統から下位電力系統に至る複数の観測点から複数の負荷設備に供給される電圧、電流等の電気量を測定し、この測定された電気量から前記複数の観測点の高調波電流の方向を計算し、故障や当該故障の前兆となる高調波異常を発生する高調波異常発生源となる特定の前記負荷設備の位置を特定することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 5,
Measure the amount of electricity such as voltage and current supplied to a plurality of load facilities from a plurality of observation points from the upper power system to the lower power system, and calculate the harmonic current of the plurality of observation points from the measured amount of electricity. A power quality evaluation system characterized by calculating a direction and identifying a position of the specific load facility that is a source of a harmonic abnormality generating a malfunction or a harmonic abnormality that is a precursor of the malfunction.
請求項6に記載の電力品質評価システムにおいて、
前記観測点ごとの歪み率を計算し、この歪み率が予め定めた高調波警戒レベルしきい値を超えたとき、前記高調波異常発生源となる特定の前記負荷設備に注意喚起情報を送出するアラーム発生手段を設けたことを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 6,
The distortion rate for each observation point is calculated, and when the distortion rate exceeds a predetermined harmonic warning level threshold value, alert information is sent to the specific load facility that is the harmonic abnormality generation source. An electric power quality evaluation system comprising an alarm generating means.
請求項7に記載の電力品質評価システムにおいて、
前記観測点ごとの歪み率を計算し、この歪み率が前記高調波警戒レベルしきい値よりも大きな予め定めた高調波危険レベルしきい値を超えたとき、前記高調波異常発生源となる特定の前記負荷設備に動作遮断や出力調整等の制御指令を送出する制御指令発生手段を設けたことを特徴とする電力品質評価システム。
In the power quality evaluation system according to claim 7,
The distortion rate for each observation point is calculated, and when the distortion rate exceeds a predetermined harmonic danger level threshold value that is larger than the harmonic warning level threshold value, the harmonic abnormality generation source is specified. A power quality evaluation system comprising a control command generating means for sending a control command for shutting down operation or adjusting output to the load equipment.
JP2008189072A 2008-07-22 2008-07-22 Power quality evaluation system Expired - Fee Related JP4937205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189072A JP4937205B2 (en) 2008-07-22 2008-07-22 Power quality evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189072A JP4937205B2 (en) 2008-07-22 2008-07-22 Power quality evaluation system

Publications (2)

Publication Number Publication Date
JP2010029003A true JP2010029003A (en) 2010-02-04
JP4937205B2 JP4937205B2 (en) 2012-05-23

Family

ID=41734270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189072A Expired - Fee Related JP4937205B2 (en) 2008-07-22 2008-07-22 Power quality evaluation system

Country Status (1)

Country Link
JP (1) JP4937205B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213545A (en) * 2009-03-12 2010-09-24 Toshiba Corp Power quality evaluation system
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
KR20200053579A (en) * 2017-10-24 2020-05-18 미쓰비시덴키 가부시키가이샤 Fault diagnosis device, fault diagnosis method and fault diagnosis system
CN112946393A (en) * 2021-02-03 2021-06-11 杭州林叶电气自动化有限公司 Electric energy quality monitoring and analyzing system
CN115128345A (en) * 2022-07-01 2022-09-30 费莱(浙江)科技有限公司 Power grid safety early warning method and system based on harmonic monitoring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161311B (en) * 2019-05-17 2020-09-18 华中科技大学 Detection method for harmonic waves and inter-harmonic waves

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127820A (en) * 1990-06-06 1992-04-28 Kansai Electric Power Co Inc:The Method of judging the cause of the ground fault of high-voltage distribution line
JPH06217451A (en) * 1993-01-12 1994-08-05 Kansai Electric Power Co Inc:The Ground fault cause decision method for high voltage distribution line
JPH08172735A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Harmonic-current monitoring system
JP2000292465A (en) * 1999-02-01 2000-10-20 Central Res Inst Of Electric Power Ind Electric apparatus monitoring system and abnormal operation alerting system
JP2002189064A (en) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk Method for diagnosing abnormality in electrical equipment
JP2003075516A (en) * 2001-09-03 2003-03-12 Ko Gijutsu Kenkyusho:Kk Deterioration diagnosing method for electric device
JP2005024469A (en) * 2003-07-04 2005-01-27 Sharp Corp Higher harmonic monitoring system, and higher harmonic monitoring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127820A (en) * 1990-06-06 1992-04-28 Kansai Electric Power Co Inc:The Method of judging the cause of the ground fault of high-voltage distribution line
JPH06217451A (en) * 1993-01-12 1994-08-05 Kansai Electric Power Co Inc:The Ground fault cause decision method for high voltage distribution line
JPH08172735A (en) * 1994-12-20 1996-07-02 Hitachi Ltd Harmonic-current monitoring system
JP2000292465A (en) * 1999-02-01 2000-10-20 Central Res Inst Of Electric Power Ind Electric apparatus monitoring system and abnormal operation alerting system
JP2002189064A (en) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk Method for diagnosing abnormality in electrical equipment
JP2003075516A (en) * 2001-09-03 2003-03-12 Ko Gijutsu Kenkyusho:Kk Deterioration diagnosing method for electric device
JP2005024469A (en) * 2003-07-04 2005-01-27 Sharp Corp Higher harmonic monitoring system, and higher harmonic monitoring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213545A (en) * 2009-03-12 2010-09-24 Toshiba Corp Power quality evaluation system
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
KR20200053579A (en) * 2017-10-24 2020-05-18 미쓰비시덴키 가부시키가이샤 Fault diagnosis device, fault diagnosis method and fault diagnosis system
KR102427372B1 (en) * 2017-10-24 2022-07-29 미쓰비시덴키 가부시키가이샤 Abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis system
US11953555B2 (en) 2017-10-24 2024-04-09 Mitsubishi Electric Corporation Abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis system
CN112946393A (en) * 2021-02-03 2021-06-11 杭州林叶电气自动化有限公司 Electric energy quality monitoring and analyzing system
CN112946393B (en) * 2021-02-03 2022-07-15 杭州林叶电气自动化有限公司 Electric energy quality monitoring and analyzing system
CN115128345A (en) * 2022-07-01 2022-09-30 费莱(浙江)科技有限公司 Power grid safety early warning method and system based on harmonic monitoring

Also Published As

Publication number Publication date
JP4937205B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4937205B2 (en) Power quality evaluation system
JP4751278B2 (en) Power quality monitoring system and method
US8898525B2 (en) Method and system for use in condition monitoring
US20070179726A1 (en) Automated system approach to analyzing harmonic distortion in an electric power system
JP4802129B2 (en) Power quality evaluation system
CN110210740A (en) A kind of distribution network reliability evaluation method considering power supply quality
US9413173B2 (en) Power conversion device, control device for power conversion device, and control method for power conversion device
CN110689252B (en) Capacitive voltage transformer metering error situation awareness system
CN104380554A (en) Fault detection in energy supply networks
JP5395509B2 (en) Power quality evaluation system
JP5491751B2 (en) Power quality evaluation system
JP2008191108A (en) System for evaluating quality of electric power
CN114252694A (en) System and method for monitoring energy related data in an electrical system
JP5127608B2 (en) Power quality evaluation system
KR20120002291A (en) Power quality monitoring system and method thereof
Guo et al. Evidence-based approach to power transmission risk assessment with component failure risk analysis
JP2011137718A (en) Device for monitoring high voltage insulation
US20140350873A1 (en) Method for generating a signal indicating an oscillation in an electrical energy supply network
JP5578982B2 (en) Equipment failure evaluation system
CN109884436A (en) Power capacitor complexes on-line monitoring method
JP5932880B2 (en) Equipment failure evaluation equipment
JP2011122853A (en) Apparatus failure evaluation system
de Melo et al. Power Quality Monitoring using Synchronized Phasor Measurements: An approach based on hardware-in-the-loop simulations
EP3651296A1 (en) System operation support device and method in power system, and wide-area monitoring protection control system
Kempner et al. Optimized monitoring of voltage sags in distribution systems caused by balanced and unbalanced short-circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4937205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees