JP5491751B2 - Power quality evaluation system - Google Patents

Power quality evaluation system Download PDF

Info

Publication number
JP5491751B2
JP5491751B2 JP2009059731A JP2009059731A JP5491751B2 JP 5491751 B2 JP5491751 B2 JP 5491751B2 JP 2009059731 A JP2009059731 A JP 2009059731A JP 2009059731 A JP2009059731 A JP 2009059731A JP 5491751 B2 JP5491751 B2 JP 5491751B2
Authority
JP
Japan
Prior art keywords
harmonic
harmonic component
component
abnormality
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059731A
Other languages
Japanese (ja)
Other versions
JP2010213545A (en
Inventor
保博 田口
義博 竹井
崇 宮部
真也 數澤
穣 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009059731A priority Critical patent/JP5491751B2/en
Publication of JP2010213545A publication Critical patent/JP2010213545A/en
Application granted granted Critical
Publication of JP5491751B2 publication Critical patent/JP5491751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明は、電力系統に生じる高調波、電圧変動、電圧不平衡、瞬時電圧低下等による電力品質の悪化を評価する電力品質評価システムに関する。   The present invention relates to a power quality evaluation system that evaluates deterioration of power quality due to harmonics, voltage fluctuation, voltage imbalance, instantaneous voltage drop, and the like generated in a power system.

従来、電力系統に生じる電気機器の高調波を解析して電力状態を管理する方法としては、幾つかの技術が提案されている。   2. Description of the Related Art Conventionally, several techniques have been proposed as a method for managing the power state by analyzing harmonics of electric equipment generated in the power system.

その1つの技術は、予め模擬高圧配電線を用いて故障要因別に波形をサンプル収集し、各々のサンプル波形の所定次数までの高調波成分を解析する。そして、故障要因別に高調波含有率の次数毎の平均値の総和を求めた後、故障要因別の総和データの最大値及び最小値を算出して記憶する。実際の高圧配電線の地絡故障時、その零相に流れる電流波形が故障要因別の最大値と最小値の間に入るか否かに基づいて高圧配電線の地絡故障の原因を推定する(特許文献1)。   One technique is to collect a sample of waveforms for each failure factor in advance using a simulated high-voltage distribution line, and analyze harmonic components up to a predetermined order of each sample waveform. And after calculating | requiring the sum total of the average value for every order of a harmonic content rate according to a failure factor, the maximum value and minimum value of the sum total data according to a failure factor are calculated and memorize | stored. Estimate the cause of the ground fault of the high-voltage distribution line based on whether or not the current waveform flowing in the zero phase of the actual high-voltage distribution line is in the range between the maximum and minimum values for each failure factor (Patent Document 1).

他のもう1つの技術は、需要家における基本波有効電力及び基本波無効電力の過度状態前後の変動有効分及び変動無効分を検出し、その変動分の大きさに基づいて需要家の負荷、力率改善コンデンサ、変圧器等の投入・停止といった運用状態を特定する。   Another technique detects a fluctuation active part and a fluctuation reactive part before and after the transient state of the fundamental wave active power and fundamental wave reactive power in the consumer, and loads the consumer based on the magnitude of the fluctuation, Specify the operating conditions such as turning on / off power factor correction capacitors and transformers.

また、この技術においては、需要家設備の投入時の電流を周波数分析し、高調波成分の波形パターンである設備毎に異なり、かつ時間的に高調波成分比率が変化する変化パターンを取り出し、需要家設備の運用状態や障害発生設備を特定するものである(特許文献2)。   In this technology, the current at the time of customer equipment input is frequency-analyzed, the change pattern of the harmonic component that varies with the equipment, which is the waveform pattern of the harmonic component, and the harmonic component ratio changes with time is extracted. It specifies the operating state of the house facilities and the facility where the failure occurs (Patent Document 2).

特開平06−217451号公報Japanese Patent Laid-Open No. 06-217451 特許第3952355号Japanese Patent No. 3952355

しかしながら、前者の技術は高圧配電線の地絡故障の原因を特定するだけであり、後者の技術は主に需要家設備の投入・停止の運用状態を特定するものであって、高調波の異常状態から負荷設備の故障やその前兆となる異常を推定する電力品質評価システムではない。   However, the former technique only identifies the cause of the ground fault of the high-voltage distribution line, and the latter technique mainly identifies the operational state of the customer equipment on / off, and the abnormal harmonics. It is not a power quality evaluation system that estimates failure of load equipment and abnormalities that are precursors to it from the state.

本発明は上記事情に鑑みてなされたもので、電力系統から負荷設備に供給される電圧、電流等の電気量から実測高調波成分を計算し、この実測高調波成分計算結果と予め設定される異常の可能性を有する高調波正常高調波成分,高調波異常高調波成分等との高調波成分一致度を計算し、総合的に電力品質を悪化させる負荷設備の故障やその前兆となる異常を推定する電力品質評価システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and calculates an actual harmonic component from the amount of electricity such as voltage and current supplied from the power system to the load equipment, and presets the actual harmonic component calculation result. Calculates the harmonic component coincidence with the normal harmonic component, harmonic abnormal harmonic component, etc. that have the possibility of abnormalities, and can detect faults in the load equipment that comprehensively degrade power quality and abnormalities that are a precursor An object is to provide a power quality evaluation system for estimation.

上記課題を解決するために、本発明に係る電力品質評価システムは、電力系統から各種の装置,機器等で構成される負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する高調波成分計算手段と、前記負荷設備を構成する装置,機器などの正常時の複数の高調波正常高調波成分の高調波正常パターンを記憶する高調波正常データベースと、前記高調波成分計算手段で得られる実測高調波成分計算結果と前記高調波正常データベースに記憶される複数の高調波正常パターンの高調波正常高調波成分との高調波成分一致度を計算する高調波成分一致度計算手段と、この高調波成分一致度計算手段で算出された各高調波成分一致度の中から当該高調波成分一致度が低い高調波正常パターンを、前記負荷設備に含まれる装置,機器などの高調波異常の可能性を示す高調波正常パターンと推定し、出力または表示する高調波異常出力手段とを備えた電力品質評価システムである。   In order to solve the above-described problems, the power quality evaluation system according to the present invention performs waveform analysis on the amount of electricity such as voltage and current supplied from a power system to a load facility composed of various devices and equipment, and performs harmonic analysis. Harmonic component calculation means for calculating components, a harmonic normal database for storing harmonic normal patterns of a plurality of normal harmonic components at normal times, such as devices and equipment that constitute the load facility, and the harmonics Harmonic component coincidence for calculating the harmonic component coincidence between the actual harmonic component calculation result obtained by the component calculating means and the harmonic normal harmonic components of a plurality of harmonic normal patterns stored in the harmonic normal database A calculation means and a normal harmonic pattern having a low harmonic component coincidence among the harmonic component coincidence calculated by the harmonic component coincidence calculating means, the apparatus included in the load facility, Vessels is a power quality evaluation system and a harmonic error output means for estimating the harmonic normal pattern, outputs or display indicating the possibility of harmonic abnormalities such.

また、高調波正常パターンの高調波正常高調波成分の高調波成分一致度だけでなく、高調波異常高調波成分の高調波成分一致度、負荷高調波成分の高調波成分一致度等を計算し、総合的な観点から電力品質を悪化させる負荷設備等の装置、機器の故障やその前兆となる異常を推定するものである。   In addition to calculating the harmonic component coincidence of the normal harmonic component of the harmonic normal pattern, the harmonic component coincidence of the harmonic abnormal harmonic component, the harmonic component coincidence of the load harmonic component, etc. From a comprehensive point of view, it is intended to estimate a failure of a device such as a load facility or equipment that deteriorates the power quality, or an abnormality that is a precursor.

本発明によれば、電力系統から負荷設備に供給される電圧、電流等の電気量から実測高調波成分を計算し、この実測高調波成分計算結果と予め設定される異常の可能性を有する高調波正常高調波成分,高調波異常高調波成分等との高調波成分一致度を計算し、総合的に電力品質を悪化させる負荷設備の故障やその前兆となる異常を推定できる電力品質評価システムを提供できる。   According to the present invention, the measured harmonic component is calculated from the amount of electricity such as voltage and current supplied from the power system to the load facility, and the measured harmonic component calculation result and a harmonic having a preset possibility of abnormality are calculated. A power quality evaluation system that calculates harmonic component coincidence with normal harmonic components, abnormal harmonic components, etc., and can estimate failure of load equipment and overall abnormalities that worsen power quality. Can be provided.

本発明に係る電力品質評価システムの電力系統への適用例を示す系統図。The system diagram which shows the example of application to the electric power grid | system of the electric power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムの第1の実施形態を示す概略構成図。The schematic block diagram which shows 1st Embodiment of the electric power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムの第1の実施形態の他の例を示す概略構成図。The schematic block diagram which shows the other example of 1st Embodiment of the power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムの第1の実施形態のさらに他の例を示す概略構成図。The schematic block diagram which shows the further another example of 1st Embodiment of the electric power quality evaluation system which concerns on this invention. 電気量の一例である例えば線間2相分の電圧波形例を説明する図。The figure explaining the voltage waveform example for two phases between lines which is an example of the amount of electricity. 高調波成分計算手段の一具体例であるFFT処理部を用いた構成図。The block diagram which used the FFT process part which is a specific example of a harmonic component calculation means. 高調波成分計算手段で計算された実測高調波成分結果の一例を示す図。The figure which shows an example of the measurement harmonic component result calculated by the harmonic component calculation means. 高調波異常データベースに記憶される高調波異常と推定される複数次数からなる複数の高調波異常パターンの例を示す説明図。Explanatory drawing which shows the example of the several harmonic abnormality pattern which consists of multiple orders estimated with the harmonic abnormality memorize | stored in a harmonic abnormality database. 高調波成分一致度計算手段の機能ブロック及び処理内容を説明する図。The figure explaining the functional block and processing content of a harmonic component coincidence calculation means. 高調波成分一致度計算手段による高調波成分の規格化を説明する図。The figure explaining normalization of the harmonic component by a harmonic component coincidence calculation means. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一致している例を説明する図。The figure explaining the example in which the normalized measurement harmonic component result and the normalized harmonic generator harmonic component correspond. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが完全に一致していない例を説明する図。The figure explaining the example from which the normalized actual harmonic component result and the normalized harmonic generator harmonic component are not completely in agreement. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一部一致している例を説明する図。The figure explaining the example in which the normalized actual harmonic component result and the normalized harmonic generator harmonic component partially correspond. 規格化実測高調波成分計算結果と規格化高調波異常高調波成分との一致度の程度と規格化差合計値との関係を表わす図。The figure showing the relationship between the degree of coincidence of the standardization measurement harmonic component calculation result and the standardization harmonic abnormal harmonic component, and the standardization difference total value. 高調波成分一致度と規格化差分合計値との関係を別の観点から表わした図。The figure showing the relationship between a harmonic component coincidence degree and the standardization difference total value from another viewpoint. 図3〜図4に示す高調波異常推定手段の一具体例を示す構成図The block diagram which shows one specific example of the harmonic abnormality estimation means shown in FIGS. 高調波成分一致度と高調波正常・異常高調波成分との関係を示した図。The figure which showed the relationship between a harmonic component coincidence and a harmonic normal / abnormal harmonic component. 高調波成分一致度と高調波正常パターン、高調波異常パターン、高調波負荷パターンとの表示例を示す図。The figure which shows the example of a display of a harmonic component coincidence, a harmonic normal pattern, a harmonic abnormal pattern, and a harmonic load pattern. 本発明に係る電力品質評価システムの第2の実施形態を示す概略構成図。The schematic block diagram which shows 2nd Embodiment of the electric power quality evaluation system which concerns on this invention. 図19に示す結果表示制御手段により表示される一定時間毎に取得した複数の高調波異常パターン毎の高調波成分一致度の時系列的な変化の表示例を示す図。The figure which shows the example of a display of the time-sequential change of the harmonic component coincidence for every some harmonic abnormality pattern acquired by the result display control means shown in FIG. 19 for every fixed time. 本発明に係る電力品質評価システムの第3の実施形態を示す概略構成図。The schematic block diagram which shows 3rd Embodiment of the electric power quality evaluation system which concerns on this invention. 高調波成分計算手段の他の例を示す構成図。The block diagram which shows the other example of a harmonic component calculation means. 電気量に含む高調波電圧の電圧ベクトルと高調波電流との位相関係を説明する図。The figure explaining the phase relationship between the voltage vector of the harmonic voltage contained in an electric quantity, and a harmonic current. 本発明に係る電力品質評価システムの第4の実施形態を示す概略構成図。The schematic block diagram which shows 4th Embodiment of the electric power quality evaluation system which concerns on this invention. 高調波発生源と高調波電流との関係から、高調波異常発生源を特定する方法を説明する図。The figure explaining the method of specifying a harmonic abnormality generation source from the relationship between a harmonic generation source and a harmonic current. 本発明に係る電力品質評価システムの第5の実施形態を示す概略構成図。The schematic block diagram which shows 5th Embodiment of the electric power quality evaluation system which concerns on this invention. 図24に示す高調波異常推定手段による高調波異常発生源判定(特定)ロジックを説明する図。The figure explaining the harmonic abnormality generation source determination (specification) logic by the harmonic abnormality estimation means shown in FIG. 本発明に係る電力品質評価システムの第6の実施形態を示す概略構成図。The schematic block diagram which shows 6th Embodiment of the electric power quality evaluation system which concerns on this invention. 図26のアラーム発生手段から発生するアラームのアラーム伝送系を示す図。The figure which shows the alarm transmission system of the alarm which generate | occur | produces from the alarm generation means of FIG. アラームの発生条件を説明する図。The figure explaining the generating condition of an alarm. 図28に示す構成に新たに制御指令発生手段を設けた電力品質評価システムの概略構成図。The schematic block diagram of the electric power quality evaluation system which newly provided the control command generation | occurrence | production means in the structure shown in FIG. 図31の制御指令発生手段から発生する制御指令の制御指令伝送系を示す図。The figure which shows the control command transmission system of the control command which generate | occur | produces from the control command generation | occurrence | production means of FIG. 制御指令の発生条件を説明する図。The figure explaining the generation conditions of a control command.

以下、本発明の実施の形態について図面を参照して説明するに先立ち、本願発明を実現するに至った経緯を説明する。   Prior to the description of embodiments of the present invention with reference to the drawings, the background to the realization of the present invention will be described below.

上位の商用電力系統に接続される需要家の電力系統母線には、企業の工場内を例に挙げれば、各建屋ごとに多数の装置、機器が設置され、また同一の建物であっても各階ごとに異なる装置、機器が設置されている。その結果、装置、機器が正常であっても、他の装置、機器の影響を受けて、高調波異常の可能性を示す高調波正常高調波成分の高調波正常パターンを発生したり、あるいは電力系統母線に複数の装置、機器が並列的に接続されている場合、負荷特有の高調波の影響の高い負荷高調波成分の高調波負荷パターンを発生する場合もある。このことは、高調波異常の可能性が高い高調波異常パターンの高調波正常高調波成分の高調波一致度だけでは、電力品質を悪化させる負荷設備の故障やその前兆となる異常を推定することが難しく、総合的に高調波成分の高調波一致度を把握し、高調波成分の異常を推定することが望ましい。   A large number of devices and equipment are installed in each building on the power grid bus of the customer connected to the upper commercial power grid. Different devices and equipment are installed. As a result, even if the device and equipment are normal, the harmonic normal pattern of the harmonic normal harmonic component indicating the possibility of harmonic abnormality is generated due to the influence of other devices and equipment, or the power When a plurality of devices and devices are connected in parallel to the system bus, a harmonic load pattern of a load harmonic component that is highly influenced by the load-specific harmonics may be generated. This means that a failure of a load facility that deteriorates power quality or an anomaly that is a precursor to it can be estimated only by the harmonic coincidence of the harmonic normal harmonic components of the harmonic abnormality pattern that has a high possibility of harmonic abnormality. Therefore, it is desirable to comprehensively grasp the harmonic matching degree of the harmonic components and estimate the abnormality of the harmonic components.

そこで、本発明者等は以上の状況を考慮し、電力品質を評価することにある。   Therefore, the present inventors consider the above situation and evaluate the power quality.

(第1の実施の形態)
図1は本発明に係る電力品質評価システム1を電力系統に適用した一例を示す系統図である。
電力品質評価システム1は、例えば、上位電力系統から電力を受電する母線2と負荷設備(各種の装置,機器等を含む)3との間に測定装置4が設置され、この測定装置4で測定される負荷設備3に供給される電圧及び電流を含む電気量5から、電圧及び電流に重畳される高調波成分を計算し、この実測高調波成分計算結果と予め記憶される高調波成分とに基づいて負荷設備の故障やその前兆となる異常を推定するシステムである。
(First embodiment)
FIG. 1 is a system diagram showing an example in which a power quality evaluation system 1 according to the present invention is applied to a power system.
In the power quality evaluation system 1, for example, a measuring device 4 is installed between a bus 2 that receives power from a higher power system and a load facility (including various devices, equipment, etc.) 3. The harmonic component superimposed on the voltage and current is calculated from the amount of electricity 5 including the voltage and current supplied to the load equipment 3 to be operated, and the result of the actual harmonic component calculation and the harmonic component stored in advance are calculated. This is a system that estimates the failure of the load equipment and the abnormality that is a precursor thereof.

図2は本発明に係る電力品質評価システム1の第1の実施形態を示す概略構成図である。図2は請求項1に対応する。
電力品質評価システム1は、コンピュータを用いて、一定の処理手順に従ってソフトウエア的に処理するものであって、機能的には,高調波成分計算手段11と、データ記録手段12と、高調波成分一致度計算手段13と、高調波異常推定手段14とで構成される。
FIG. 2 is a schematic configuration diagram showing the first embodiment of the power quality evaluation system 1 according to the present invention. FIG. 2 corresponds to claim 1.
The power quality evaluation system 1 uses a computer to perform software processing according to a certain processing procedure. Functionally, the power quality evaluation system 11, the data recording unit 12, the harmonic component Consistency calculation means 13 and harmonic abnormality estimation means 14 are configured.

高調波成分計算手段11は、測定装置4で測定された上位電力系統から供給される電圧、電流等の電気量5を波形分析して高調波成分を計算し、実測高調波成分計算結果15を取得し、高調波成分一致度計算手段13に送出する。   The harmonic component calculation means 11 calculates the harmonic component by analyzing the waveform of the electric quantity 5 such as voltage and current supplied from the higher power system measured by the measuring device 4, and obtains the measured harmonic component calculation result 15. Acquired and sent to the harmonic component coincidence calculation means 13.

データ記録手段12は、電力品質を評価するために各種のデータを記憶するものであって、予め高調波正常と推定される高調波成分(以下、高調波正常高調波成分と呼ぶ)16aのパターン(以下、高調波正常パターンと呼ぶ)21aを格納するデータベース17が設けられ、さらに高調波成分計算手段11で取得された実測高調波成分計算結果15が記憶される。   The data recording means 12 stores various data for evaluating the power quality, and is a pattern of a harmonic component (hereinafter referred to as a harmonic normal harmonic component) 16a presumed that the harmonic is normal in advance. A database 17 for storing 21a (hereinafter referred to as a harmonic normal pattern) is provided, and an actually measured harmonic component calculation result 15 acquired by the harmonic component calculation means 11 is stored.

高調波成分一致度計算手段13は、実測高調波成分計算結果15とデータベース17に格納される複数の次数からなる高調波正常パターン21aを持つ高調波正常高調波成分16aとから高調波成分一致度18aを計算する機能を有する。   The harmonic component coincidence calculation means 13 calculates the harmonic component coincidence from the actual harmonic component calculation result 15 and the harmonic normal harmonic component 16a having the harmonic normal pattern 21a having a plurality of orders stored in the database 17. It has a function of calculating 18a.

高調波異常推定手段14は、高調波成分一致度計算手段13で算出された高調波成分一致度18aの中から高調波成分一致度18aが低い高調波正常パターン21aを高調波異常の可能性を示す高調波正常パターン21aと推定する。すなわち、高調波異常推定手段14は、高調波正常パターン21aの高調波成分一致度18aから高調波異常を判定し、高調波異常推定結果20として出力する。   The harmonic abnormality estimation means 14 determines the possibility of a harmonic abnormality in the harmonic normal pattern 21a having a lower harmonic component coincidence 18a from the harmonic component coincidence 18a calculated by the harmonic component coincidence calculation means 13. It is estimated that the harmonic normal pattern 21a is shown. That is, the harmonic abnormality estimation means 14 determines a harmonic abnormality from the harmonic component coincidence degree 18a of the harmonic normal pattern 21a, and outputs it as a harmonic abnormality estimation result 20.

図3は本発明に係る電力品質評価システム1の第1の実施形態の他の例を示す概略構成図である。図3は請求項2に対応する。
この電力品質評価システム1の構成は図2とほぼ同じであり、特に異なるところは、データ記録手段12を構成するデータベース17に記憶される高調波パターンの種類が異なることにある。従って、図3において、図2と同一または等価な部分には同一符号を付し、詳しい説明を省略する。
FIG. 3 is a schematic configuration diagram showing another example of the first embodiment of the power quality evaluation system 1 according to the present invention. FIG. 3 corresponds to claim 2.
The configuration of the power quality evaluation system 1 is almost the same as that shown in FIG. 2, and the difference is that the types of harmonic patterns stored in the database 17 constituting the data recording means 12 are different. Therefore, in FIG. 3, the same or equivalent parts as in FIG.

データ記録手段12には高調波成分計算手段11によって取得された実測高調波成分計算結果15が記憶され、さらにデータベース17には、予め前述したように高調波正常と推定される高調波正常高調波成分16aの高調波正常パターン21aと、装置等の故障やその前兆となる高調波異常と推定される高調波成分(以下、高調波異常高調波成分と呼ぶ)16bのパターン(以下、高調波異常パターンと呼ぶ)21b(後記する図8参照)とが記憶されている。   The data recording means 12 stores the actually measured harmonic component calculation result 15 acquired by the harmonic component calculating means 11, and the database 17 stores the harmonic normal harmonics estimated in advance as normal as described above. Harmonic normal pattern 21a of component 16a and pattern (hereinafter referred to as harmonic abnormal harmonic component) 16b of a harmonic component (hereinafter referred to as harmonic abnormal harmonic component) that is presumed to be a malfunction of the device or a harmonic abnormality that is a precursor thereof. 21b (refer to FIG. 8 described later) is stored.

高調波成分一致度計算手段13は、データ記録手段12に保存された実測高調波成分計算結果15と高調波正常高調波成分16aの高調波成分との高調波成分一致度18a、データ記録手段12に保存された実測高調波成分計算結果15と高調波異常高調波成分16bの高調波成分との高調波成分一致度18bとを計算する機能を有する。   The harmonic component coincidence calculation means 13 includes a harmonic component coincidence degree 18a between the actual harmonic component calculation result 15 stored in the data recording means 12 and the harmonic component of the harmonic normal harmonic component 16a, and the data recording means 12. And the harmonic component coincidence degree 18b between the harmonic component calculation result 15 and the harmonic component of the harmonic abnormal harmonic component 16b.

高調波異常推定手段14は、高調波成分一致度18aが低い高調波正常パターン21aを高調波異常の可能性を示す高調波正常パターン21aと推定し、また高調波成分一致度18bが高い高調波異常パターン21bを高調波異常の可能性が高い高調波異常パターン21bと推定する。   The harmonic abnormality estimation means 14 estimates the harmonic normal pattern 21a having a low harmonic component coincidence 18a as the harmonic normal pattern 21a indicating the possibility of harmonic abnormality, and the harmonic having a high harmonic component coincidence 18b. The abnormal pattern 21b is estimated as a harmonic abnormal pattern 21b having a high possibility of harmonic abnormality.

高調波異常推定手段14は、高調波正常高調波成分16aの高調波成分一致度18aと高調波正常高調波成分16bの高調波成分一致度18bとから高調波異常を判定し、その判定結果を高調波異常推定結果20として出力する。   The harmonic abnormality estimation means 14 determines a harmonic abnormality from the harmonic component coincidence 18a of the harmonic normal harmonic component 16a and the harmonic component coincidence 18b of the harmonic normal harmonic component 16b, and the determination result is obtained. Output as harmonic abnormality estimation result 20.

図4は本発明に係る電力品質評価システム1の第1の実施形態のさらに他の例を示す概略構成図である。図4は請求項3に対応する。
この電力品質評価システム1の構成は図2とほぼ同じであり、特に異なるところは、データ記録手段12を構成するデータベース17に記憶される高調波パターンの種類が異なることにある。従って、図4において、図2と同一または等価な部分には同一符号を付し、詳しい説明を省略する。
FIG. 4 is a schematic configuration diagram showing still another example of the first embodiment of the power quality evaluation system 1 according to the present invention. FIG. 4 corresponds to claim 3.
The configuration of the power quality evaluation system 1 is almost the same as that shown in FIG. 2, and the difference is that the types of harmonic patterns stored in the database 17 constituting the data recording means 12 are different. Therefore, in FIG. 4, the same or equivalent parts as in FIG.

データ記録手段12には高調波成分計算手段11によって取得された実測高調波成分計算結果15が記憶され、さらにデータベース17には、予め前述したように高調波正常と推定される高調波正常高調波成分16aの高調波正常パターン21aと、装置等の故障やその前兆となる高調波異常と推定される高調波異常高調波成分16bの高調波異常パターン21bと、母線2に並列に負荷設備3が接続されている場合、それら負荷特有の高調波と推定される高調波成分(以下、負荷高調波成分と呼ぶ)16cのパターン(以下、高調波負荷パターンと呼ぶ)21cが記憶されている。   The data recording means 12 stores the actually measured harmonic component calculation result 15 acquired by the harmonic component calculating means 11, and the database 17 stores the harmonic normal harmonics estimated in advance as normal as described above. The load equipment 3 is parallel to the bus 2 and the harmonic normal pattern 21a of the component 16a, the harmonic abnormal pattern 21b of the harmonic abnormal harmonic component 16b that is estimated to be a malfunction or a harmonic abnormality that is a precursor thereof, and the like. If connected, a pattern (hereinafter referred to as a harmonic load pattern) 21c of a harmonic component (hereinafter referred to as a load harmonic component) 16c estimated as a harmonic unique to those loads is stored.

そこで、高調波成分一致度計算手段13としては、データ記録手段12に保存された実測高調波成分計算結果15と高調波正常高調波成分16aの高調波成分との高調波成分一致度18aと、同じくデータ記録手段12に保存された実測高調波成分計算結果15と高調波異常高調波成分16bの高調波成分との高調波成分一致度18bと、同じくデータ記録手段12に保存された実測高調波成分計算結果15と負荷高調波成分16cとの高調波成分一致度18cとをそれぞれ計算する。   Therefore, as the harmonic component coincidence calculation means 13, the harmonic component coincidence degree 18a between the measured harmonic component calculation result 15 stored in the data recording means 12 and the harmonic component of the harmonic normal harmonic component 16a, Similarly, the harmonic component coincidence 18b between the actual harmonic component calculation result 15 stored in the data recording unit 12 and the harmonic component of the harmonic abnormal harmonic component 16b, and the actual harmonic stored in the data recording unit 12 are also stored. The component calculation result 15 and the harmonic component matching degree 18c of the load harmonic component 16c are respectively calculated.

高調波異常推定手段14は、高調波成分一致度計算手段13で計算された高調波成分一致度18aの中から高調波成分一致度18aが低い高調波正常パターン21aを高調波異常の可能性を示す高調波正常パターン21aと推定し、また高調波成分一致度18bが高い高調波異常パターン21bを高調波異常の可能性が高い高調波異常パターン21bと推定し、さらに高調波成分一致度18cが高い高調波負荷パターン21cを負荷による高調波の影響の高い高調波負荷パターン21cと推定する。   The harmonic abnormality estimation means 14 determines the possibility of a harmonic abnormality in the harmonic normal pattern 21a having a lower harmonic component coincidence 18a from the harmonic component coincidence 18a calculated by the harmonic component coincidence calculation means 13. The harmonic abnormal pattern 21b having a high harmonic component matching degree 18b is estimated as the harmonic abnormal pattern 21b having a high possibility of harmonic abnormality, and the harmonic component matching degree 18c is further calculated. The high harmonic load pattern 21c is estimated as the harmonic load pattern 21c having a high influence of the harmonic due to the load.

すなわち、高調波異常推定手段14は、高調波正常パターン21aの高調波成分一致度18aと、高調波異常パターン21bの高調波成分一致度18bと、高調波負荷パターン21cの高調波成分一致度18cとから高調波異常を判定し、その判定結果を高調波異常推定結果20として出力する。   That is, the harmonic abnormality estimation means 14 includes the harmonic component matching degree 18a of the harmonic normal pattern 21a, the harmonic component matching degree 18b of the harmonic abnormal pattern 21b, and the harmonic component matching degree 18c of the harmonic load pattern 21c. From the above, a harmonic abnormality is determined, and the determination result is output as a harmonic abnormality estimation result 20.

図5は、電気量の一例である例えば線間2相分の電圧波形例を説明する図である。   FIG. 5 is a diagram illustrating an example of a voltage waveform for two phases between lines, which is an example of the amount of electricity.

同図において、横軸は時間、縦軸は電圧を表わす。今、3相分の電圧をVa、Vb、Vcとすると、3相分の線間電圧はVab、Vbc、Vcaとなる。2相分の例では、線間電圧はVab、Vbcとなる。   In the figure, the horizontal axis represents time and the vertical axis represents voltage. Now, assuming that the voltages for the three phases are Va, Vb, and Vc, the line voltages for the three phases are Vab, Vbc, and Vca. In the example for two phases, the line voltages are Vab and Vbc.

次に、以上のような電力品質評価システム1の作用について説明する。
先ず、図6は本発明の全ての請求項に関係する高調波成分計算手段11を説明する図である。高調波成分計算手段11は、母線2と負荷設備3との間に設置される測定装置4から伝送系を通じて当該負荷設備3に供給される電圧、電流等の電気量5を取り込み、あるいは測定装置4から伝送系を通じて伝送されてくる電気量5を受信し、当該電気量5に含む基本電圧波に含まれる高調波の次数毎の成分を計算する。すなわち、高調波成分計算手段11は、高調波成分を各次数成分の和とみなし、次数毎の高調波成分を計算する。
Next, the operation of the power quality evaluation system 1 as described above will be described.
First, FIG. 6 is a diagram for explaining the harmonic component calculation means 11 related to all claims of the present invention. The harmonic component calculation means 11 takes in an electric quantity 5 such as voltage and current supplied to the load facility 3 from the measurement device 4 installed between the bus 2 and the load facility 3 through the transmission system, or measures the measurement device. 4 receives the amount of electricity 5 transmitted through the transmission system from 4 and calculates a component for each order of the harmonics included in the fundamental voltage wave included in the amount of electricity 5. That is, the harmonic component calculation means 11 regards the harmonic component as the sum of each order component, and calculates the harmonic component for each order.

高調波の次数毎の成分を計算する手法は、最も一般的に使用されている高速フーリェ変換(FFT:Fast Fourier Transformation)が知られているが、本実施の形態では、一例として図6に示す高速フーリェ変換機能を持つFFT処理部11aを用いて高調波成分の計算処理を実行する。   The most commonly used fast Fourier transformation (FFT) is known as a method for calculating the components for each harmonic order. In the present embodiment, an example is shown in FIG. Harmonic component calculation processing is executed using an FFT processing unit 11a having a high-speed Fourier transform function.

なお、高調波とは、基本波に重畳する基本波のn倍(nは2以上の整数)の周波数を持つ正弦波の集まりである。高調波を含む一般的な電気量の波形は、商用周波数を基本周波数とする基本波とこの基本周波数のn倍(周期は1/n)となる周波数を持つ各正弦波(高調波成分)との和で表わされる。以下、基本波を一次成分、周期が基本波の1/2(周波数は2倍)となる正弦波を2次成分、周期が基本波の1/3(周波数は3倍)となる正弦波を3次成分、以下同様に周期が基本波の1/n(周波数はn倍)となる正弦波をn次成分と称する。   The harmonics are a collection of sine waves having a frequency n times (n is an integer of 2 or more) of the fundamental wave superimposed on the fundamental wave. The waveform of a general electric quantity including harmonics is a fundamental wave having a commercial frequency as a fundamental frequency and each sine wave (harmonic component) having a frequency that is n times the fundamental frequency (period is 1 / n). It is expressed as the sum of Hereinafter, a sine wave whose primary component is a primary component, a sine wave whose period is 1/2 of the fundamental wave (frequency is twice), a secondary component, and a sine wave whose period is 1/3 of the fundamental wave (frequency is 3 times) A sine wave whose period is 1 / n (frequency is n times) of the fundamental wave is hereinafter referred to as an n-order component.

ところで、以上のように図6に示す高速フーリェ変換機能を持つFFT処理部11aを用いる理由は次の通りである。   Incidentally, the reason for using the FFT processing unit 11a having the high-speed Fourier transform function shown in FIG. 6 as described above is as follows.

通常、商用周波数に高調波が入ると、商用周波数が歪んでいると呼ばれ、フーリェ変換等により高調波成分を求めているが、観測データ(測定データ)が機器の動作特性から離散的なサンプリングデータである場合があり得る。このようなサンプリングデータから高調波成分を求める場合、離散型フーリェ変換と呼ばれる手法を用いる必要がある。その点、高速フーリェ変換機能を持つFFT処理部11aは、離散型フーリェ変換を高速に解けるように工夫された変換手法であり、連続的または離散的なサンプリングデータの何れにも対応できる為である。   Usually, when harmonics enter the commercial frequency, it is said that the commercial frequency is distorted, and the harmonic component is obtained by Fourier transform etc., but the observation data (measurement data) is discretely sampled from the operating characteristics of the equipment. It can be data. When obtaining harmonic components from such sampling data, it is necessary to use a technique called discrete Fourier transform. In this respect, the FFT processing unit 11a having a high-speed Fourier transform function is a conversion method devised so as to be able to solve the discrete Fourier transform at high speed, and can cope with either continuous or discrete sampling data. .

FFT処理部11aは、電気量5を波形分析し、当該電気量5に含まれる次数毎の高調波成分を取り出す。   The FFT processing unit 11a analyzes the waveform of the quantity of electricity 5 and extracts a harmonic component for each order included in the quantity of electricity 5.

図7は、線間2相分の電圧波形について、高調波成分計算手段11で計算された実測高調波成分結果の一例を示す図であって、FFT処理部11aを用いて、高調波次数毎の高調波成分を計算した例である。同図の例は、Vab,Vbcの高調波含有率を示すもので、横軸には高調波の次数、縦軸には高調波含有率を表わしている。   FIG. 7 is a diagram showing an example of the actually measured harmonic component result calculated by the harmonic component calculating means 11 for the voltage waveform for two phases between lines, using the FFT processing unit 11a for each harmonic order. This is an example of calculating the harmonic component of. The example in the figure shows the harmonic content of Vab and Vbc, with the horizontal axis representing the harmonic order and the vertical axis representing the harmonic content.

ここで、高調波含有率は、高調波の次数毎に計算されるもので、下式で表わされる。
高調波含有率(次数)=高調波の大きさ(次数)÷基本波の大きさ ……(1)
前述したように、データベース17には前述したように高調波正常パターン21aの高調波正常高調波成分16a、高調波異常パターン21bの高調波異常高調波成分16b及び高調波負荷パターン21cの負荷高調波成分16cが蓄積されているが、高調波異常高調波成分16bとしては、例えば図8に示すような複数の次数成分及びそれら各次数成分の大きさ(高調波含有率)からなる高調波異常パターン21bで表わされ、それぞれ高調波異常と推定される次数成分の組み合わせで構成されるパターンに特徴を持っている。因みに、図8は、一例として3つの高調波異常パターン21bA、21bB、21bCを示している。
Here, the harmonic content is calculated for each order of harmonics and is expressed by the following equation.
Harmonic content (order) = Harmonic magnitude (order) ÷ Fundamental wave size (1)
As described above, the database 17 includes the harmonic normal harmonic component 16a of the harmonic normal pattern 21a, the harmonic abnormal harmonic component 16b of the harmonic abnormal pattern 21b, and the load harmonic of the harmonic load pattern 21c as described above. Although the component 16c is accumulated, as the harmonic abnormal harmonic component 16b, for example, a harmonic abnormal pattern including a plurality of order components and the magnitude (harmonic content) of each order component as shown in FIG. Each pattern is characterized by a combination of order components that are represented by 21b and are estimated to be harmonic abnormalities. Incidentally, FIG. 8 shows three harmonic abnormality patterns 21bA, 21bB, and 21bC as an example.

ところで、高調波異常は、機器や装置の故障だけでなく、これら機器や装置の故障の前兆となっている場合が多い。そのため、高調波異常データベース17には、故障の前兆となる次数成分の組み合わせ及び各次数成分の含有率からなる例えば3つの高調波異常パターン21bA、21bB、21bCが蓄積されている。   By the way, the harmonic abnormality is not only a failure of the device or the apparatus but also often indicates a failure of the device or the apparatus. For this reason, the harmonic abnormality database 17 stores, for example, three harmonic abnormality patterns 21bA, 21bB, and 21bC that are composed of combinations of order components that are signs of failure and the contents of each order component.

ここで、図8に示す高調波異常パターン21bの横軸は高調波の次数、縦軸は高調波含有率で表わしており、この高調波含有率は前述したように高調波の次数毎に式(1)で計算される。   Here, the horizontal axis of the harmonic anomaly pattern 21b shown in FIG. 8 is represented by the harmonic order, and the vertical axis is represented by the harmonic content. The harmonic content is calculated for each harmonic order as described above. Calculated in (1).

図9は高調波成分一致度計算手段13(13a,13cを含む。以下、同じ)の機能ブロック及び処理内容を説明する図である。   FIG. 9 is a diagram for explaining functional blocks and processing contents of the harmonic component coincidence calculation means 13 (including 13a and 13c; the same applies hereinafter).

高調波成分一致度計算手段13は、実測高調波成分計算結果15の合計が1となるように規格化する処理を実行する規格化計算処理部13aと、この規格化計算処理部13aで得られた実測高調波成分計算結果15の規格化結果(規格化した値)とデータベース17に格納される高調波異常高調波成分16b毎に高調波成分の合計が1となるように規格化した値との一致度を計算する一致度計算処理部13bとが設けられている。   The harmonic component coincidence calculation means 13 is obtained by the normalization calculation processing unit 13a that executes a process of normalizing so that the total of the actual harmonic component calculation results 15 becomes 1, and the normalization calculation processing unit 13a. The standardized result (standardized value) of the actually measured harmonic component calculation result 15 and the value normalized so that the sum of the harmonic components becomes 1 for each harmonic abnormal harmonic component 16b stored in the database 17; And a coincidence degree calculation processing unit 13b for calculating the coincidence degree.

高調波成分一致度計算手段13は、実測高調波成分計算結果15を受け取ると、規格化計算処理部13aが規格化処理を実行し、実測高調波成分計算結果15に含む各次数の高調波成分の合計が1になるように規格化する。   When the harmonic component coincidence calculation means 13 receives the measured harmonic component calculation result 15, the normalization calculation processing unit 13 a executes the normalization process, and the harmonic components of the respective orders included in the measured harmonic component calculation result 15. Is normalized so that the sum of 1 becomes 1.

規格化に際しては、次の式(2)を用いて、規格化後のj次(jは2以上の自然数)の成分を算出する。   At the time of normalization, a j-th order component (j is a natural number of 2 or more) after normalization is calculated using the following equation (2).

規格化後のj次の成分=規格化前j次の高調波成分/規格化前の高調波成分の合計値
……(2)
図10は高調波成分の規格化を説明する図である。
J-order component after normalization = j-th harmonic component before normalization / total value of harmonic components before normalization
(2)
FIG. 10 is a diagram illustrating normalization of harmonic components.

高調波成分としては、データベース17の高調波異常高調波成分16bの最大次数と、実測高調波成分計算結果15の高調波成分の最大次数とが一致していない場合がある。例えば、実測高調波成分計算結果15の高調波成分の最大次数が25次まであるが、高調波異常高調波成分16bの最大次数が例えば20次までしかない場合がある。このようなとき、両者の次数のうち低い次数、すなわち,最大次数の低い高調波異常高調波成分16bの最大次数20次に一致させ、両者とも20次までの高調波成分を抽出し規格化する。その結果、前記式(2)の分母は規格化前の高調波成分の20次までの合計値となる。   As the harmonic component, the maximum order of the harmonic abnormal harmonic component 16b in the database 17 may not match the maximum order of the harmonic component in the actually measured harmonic component calculation result 15. For example, although the maximum order of the harmonic component of the actually measured harmonic component calculation result 15 is up to 25th order, the maximum order of the harmonic abnormal harmonic component 16b may be up to 20th order, for example. In such a case, the lower order of both orders, that is, the maximum order 20 of the harmonic anomalous harmonic component 16b having the lowest maximum order is matched, and both harmonic components up to the 20th order are extracted and normalized. . As a result, the denominator of the formula (2) is the total value up to the 20th order of the harmonic components before normalization.

一致度計算処理部13bは、実測高調波成分計算結果15の規格後の値(以下、規格化実測高調波成分計算結果22と呼ぶ。図11(a)参照)と、データベース17に格納される高調波異常高調波成分16bの規格後の値(以下、規格化高調波異常高調波成分23と呼ぶ。図11(b)参照)との差分の絶対値を次数ごとに取り、式(3)のように合計値(以下、規格化差分合計値24と呼ぶ)を計算する。   The coincidence calculation processing unit 13b stores the value after the standardization of the measured harmonic component calculation result 15 (hereinafter referred to as the normalized measured harmonic component calculation result 22; see FIG. 11A) and the database 17. The absolute value of the difference from the value after the standardization of the harmonic abnormal harmonic component 16b (hereinafter referred to as the normalized harmonic abnormal harmonic component 23; see FIG. 11B) is taken for each order, and the equation (3) The total value (hereinafter referred to as the normalized difference total value 24) is calculated as follows.

規格化差分合計値24=|規格化後の2次の成分(実測高調波成分計算結果15)−規格化後の2次の成分(高調波異常高調波成分16b)|+|規格化後の3次の成分(実測高調波成分計算結果15)−規格化後の3次の成分(高調波異常高調波成分16b)|+ …… +|規格化後のn次の成分(実測高調波成分計算結果15)−規格化後のn次の成分(高調波異常高調波成分16b)|
=|2次の成分(規格化実測高調波成分計算結果22)−2次の成分(規格化高調波異常高調波成分23)|+|3次の成分(規格化実測高調波成分計算結果22)−3次の成分(規格化高調波異常高調波成分23)|+ …… +|n次の成分(規格化実測高調波成分計算結果22)−n次の成分(規格化高調波異常高調波成分23)|
……(3)
この式(3)から、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23が完全に一致している場合、規格化差分合計値24はゼロとなる。
Total normalized difference 24 = | Second-order component after normalization (actually measured harmonic component calculation result 15) -Second-order component after normalization (harmonic abnormal harmonic component 16b) | + | Third-order component (measured harmonic component calculation result 15) -standardized third-order component (harmonic abnormal harmonic component 16b) | +... + | N-th normalized component (measured harmonic component) Calculation result 15) -nth-order component after normalization (harmonic abnormal harmonic component 16b) |
= | Second order component (standardized actual harmonic component calculation result 22) -second order component (normalized harmonic abnormal harmonic component 23) | + | third order component (standardized actual harmonic component calculation result 22) ) -3rd order component (standardized harmonic abnormal harmonic component 23) | +... + | Nth order component (standardized actual harmonic component calculation result 22) -nth order component (standardized harmonic abnormal harmonic component) Wave component 23) |
...... (3)
From this equation (3), when the normalized measured harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 completely coincide, the normalized difference total value 24 becomes zero.

図11は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致している例を示す図である。すなわち、一致度計算処理部13Bは、式(3)に基づき、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致している場合、規格化差分合計値24がゼロとなる。   FIG. 11 is a diagram illustrating an example in which the normalized actual harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 completely match. That is, the coincidence calculation processing unit 13B, based on the formula (3), when the standardized actual harmonic component calculation result 22 and the standardized harmonic abnormal harmonic component 23 completely match, the standardized difference total The value 24 becomes zero.

一方、式(3)に基づき、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが完全に一致してない場合、規格化実測高調波成分計算結果22の合計値と、規格化高調波異常高調波成分23の合計値がそれぞれ1であることから、規格化差分合計値24は2となる。例えば、図12に示すように、3次、5次の高調波成分を含む規格化実測高調波成分計算結果22と、7次、9次の高調波成分を含む規格化高調波異常高調波成分23との場合、各次数が完全不一致となる。しかし、両者とも規格化されているので、それぞれ複数次数の合計値は1となる。その結果、規格化差分絶対値の合計値24は2となる。   On the other hand, if the normalized measured harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 do not completely match based on the equation (3), the total value of the normalized measured harmonic component calculated result 22 Since the total value of the normalized harmonic abnormal harmonic component 23 is 1 respectively, the normalized difference total value 24 is 2. For example, as shown in FIG. 12, the standardized measured harmonic component calculation result 22 including the third and fifth harmonic components, and the normalized harmonic abnormal harmonic component including the seventh and ninth harmonic components. In the case of 23, the orders are completely inconsistent. However, since both are standardized, the total value of the multiple orders is 1, respectively. As a result, the total value 24 of the normalized difference absolute value is 2.

図13は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23とが一部一致している例を示す図である。この例は、5次の高調波成分が一致しているが、他の次数の高調波成分は一致していない。このような場合、規格化実測高調波成分計算結果22の合計値1のうち、一致していない3次の高調波成分をもつ規格化実測高調波成分計算結果22が0.6であり、規格化高調波異常高調波成分23の合計値1のうち、一致していない7次の高調波成分をもつ規格化高調波異常高調波成分22が0.6である。その結果、規格化差分絶対値の合計値24は、0.6+0.6=1.2となる。   FIG. 13 is a diagram illustrating an example in which the normalized actual harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 partially match. In this example, the fifth-order harmonic components match, but the other-order harmonic components do not match. In such a case, out of the total value 1 of the normalized measured harmonic component calculation result 22, the normalized measured harmonic component calculation result 22 having a third harmonic component that does not match is 0.6. Of the total value 1 of the normalized harmonic abnormal harmonic component 23, the normalized harmonic abnormal harmonic component 22 having the seventh harmonic component that does not match is 0.6. As a result, the total value 24 of the normalized difference absolute value is 0.6 + 0.6 = 1.2.

以上のように規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23の一致の度合いは、全く一致していない場合から全く一致している場合までは、規格化差分絶対値の合計値24は2(全く一致していない場合)から0(全く一致している場合)までの中間値で表されることが分かる。   As described above, the normalized difference absolute value from the case where the normalized measured harmonic component calculation result 22 and the normalized harmonic anomalous harmonic component 23 coincide with each other from when they do not coincide with each other completely. It can be seen that the total value 24 is represented by an intermediate value from 2 (when there is no coincidence) to 0 (when there is no coincidence).

図14は、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23との一致度の程度と規格化差合計値24との関係を示す図である。この図から明らかなように、完全一致の規格化差分合計値24は0、完全不一致の規格化差分合計値24は2となり、部分的に一致しているときはその中間の値となることを表わしている。   FIG. 14 is a diagram showing the relationship between the degree of coincidence between the normalized actual harmonic component calculation result 22 and the normalized harmonic abnormal harmonic component 23 and the normalized difference total value 24. As can be seen from this figure, the normalized difference total value 24 of perfect match is 0, and the normalized difference total value 24 of completely mismatch is 2, and when it partially matches, it becomes an intermediate value. It represents.

ここで、高調波成分一致度18b(18a,18cを含む)の定義について考える。
今、規格化実測高調波成分計算結果22と規格化高調波異常高調波成分23が完全に一致している場合を100%、全く一致していない場合を−100%、これら中間を0%にすれば、理解し易くなる。
Here, the definition of the harmonic component coincidence degree 18b (including 18a and 18c) will be considered.
Now, when the normalized measured harmonic component calculation result 22 and the normalized harmonic anomalous harmonic component 23 are completely coincident, 100%, when they are not coincident at all, −100%, and the middle is 0%. This will make it easier to understand.

そこで、図15に示す高調波成分一致度18bと規格化差分合計値24との間の変換式は、式(4)で表わせる。その結果、式(4)で計算された結果が高調波成分一致度18(18a、18cを含む)と定義できる。   Therefore, the conversion equation between the harmonic component matching degree 18b and the normalized difference total value 24 shown in FIG. 15 can be expressed by equation (4). As a result, the result calculated by Expression (4) can be defined as the harmonic component coincidence degree 18 (including 18a and 18c).

高調波成分一致度18(18a,18b,18c)=(1−規格化差分合計値24)×100(%) ……(4)
すなわち、請求項1に対応する実施の形態における高調波成分一致度計算手段13では、高調波正常高調波成分16aごとに、実測高調波成分計算結果15との高調波成分一致度18aを式(4)によって計算し、高調波異常推定手段14に渡す。請求項2に対応する実施の形態における高調波成分一致度計算手段13では、高調波異常高調波成分16bごとに、実測高調波成分計算結果15との高調波成分一致度18bを式(4)によって計算し、高調波異常推定手段14に渡す。請求項3に対応する実施の形態における高調波成分一致度計算手段13では、負荷高調波成分16cごとに、実測高調波成分計算結果15との高調波成分一致度18cを式(4)によって計算し、高調波異常推定手段14に渡す。
Harmonic component coincidence 18 (18a, 18b, 18c) = (1−normalized difference total value 24) × 100 (%) (4)
That is, the harmonic component coincidence calculation means 13 in the embodiment corresponding to claim 1 calculates the harmonic component coincidence 18a with the actually measured harmonic component calculation result 15 for each harmonic normal harmonic component 16a by the formula ( 4) and pass to the harmonic abnormality estimation means 14. In the harmonic component coincidence calculation means 13 in the embodiment corresponding to claim 2, for each harmonic abnormal harmonic component 16b, the harmonic component coincidence 18b with the actually measured harmonic component calculation result 15 is expressed by equation (4). And pass to the harmonic abnormality estimation means 14. In the harmonic component coincidence calculation means 13 in the embodiment corresponding to claim 3, for each load harmonic component 16c, the harmonic component coincidence 18c with the actually measured harmonic component calculation result 15 is calculated by the equation (4). To the harmonic abnormality estimation means 14.

そこで、請求項1に対応する実施の形態における高調波異常推定手段14では、高調波成分一致度計算手段13から受け取った高調波正常高調波成分16aごとの高調波成分一致度18aをもとに、請求項2に対応する実施の形態における高調波異常推定手段14では、高調波成分一致度計算手段13から受け取った高調波異常高調波成分16bごとの高調波成分一致度18bを加え、請求項3に対応する実施の形態における高調波異常推定手段14では、高調波成分一致度計算手段13から受け取った負荷高調波成分16cごとの高調波成分一致度18cを加え、高調波異常を推定する。   Therefore, the harmonic abnormality estimation means 14 in the embodiment corresponding to claim 1 is based on the harmonic component coincidence 18a for each harmonic normal harmonic component 16a received from the harmonic component coincidence calculating means 13. The harmonic abnormality estimation means 14 in the embodiment corresponding to claim 2 adds the harmonic component coincidence degree 18b for each harmonic abnormal harmonic component 16b received from the harmonic component coincidence calculation means 13, and The harmonic abnormality estimation means 14 in the embodiment corresponding to 3 adds the harmonic component coincidence 18c for each load harmonic component 16c received from the harmonic component coincidence calculation means 13, and estimates the harmonic abnormality.

図16は高調波異常推定手段14の機能ブロック及び処理内容を説明する図である。   FIG. 16 is a diagram for explaining functional blocks and processing contents of the harmonic abnormality estimation means 14.

高調波異常推定手段14は一致度並び替え処理部14aと高調波異常抽出部14bとで構成される。   The harmonic abnormality estimation means 14 includes a matching degree rearrangement processing unit 14a and a harmonic abnormality extraction unit 14b.

一致度並び替え処理部14aは、各請求項の実施の形態ごとに次のような処理を行う。
高調波異常高調波成分16の高調波成分一致度18(18a,18b,18c)をもとに、請求項1に対応する実施の形態では高調波正常高調波成分16aを、請求項2に対応する実施の形態では高調波異常高調波成分16bを加え、請求項3に対応する実施の形態では負荷高調波成分16cを加えて、それぞれ並び替えを実施する。例えば高調波成分一致度18の高いものから順に並び替える。
The degree-of-match rearrangement processing unit 14a performs the following processing for each embodiment of each claim.
Based on the harmonic component coincidence 18 (18a, 18b, 18c) of the harmonic abnormal harmonic component 16, the harmonic normal harmonic component 16a corresponds to claim 2 in the embodiment corresponding to claim 1. In the embodiment, the harmonic abnormal harmonic component 16b is added, and in the embodiment corresponding to claim 3, the load harmonic component 16c is added, and rearrangement is performed. For example, the components are rearranged in descending order of the harmonic component matching degree 18.

高調波異常抽出部14bは、各請求項の実施の形態ごとに次のような処理を行う。
請求項1に対応する実施の形態の高調波異常抽出部14bは、高調波成分一致度18aの高いものから順に並び替えた高調波正常高調波成分16aをもつ高調波正常パターン21aの高調波成分一致度18aが低い場合、高調波異常と推定されるパターン21aを抽出し、高調波異常推定結果20として出力する。
The harmonic abnormality extraction unit 14b performs the following processing for each embodiment of each claim.
The harmonic anomaly extraction unit 14b of the embodiment corresponding to claim 1 has the harmonic components of the harmonic normal pattern 21a having the harmonic normal harmonic components 16a rearranged in descending order of the harmonic component matching degree 18a. When the degree of coincidence 18a is low, the pattern 21a estimated to be harmonic abnormality is extracted and output as the harmonic abnormality estimation result 20.

次に、請求項2に対応する実施の形態の高調波異常抽出部14は、高調波成分一致度18aの高いものから順に並び替えた高調波正常高調波成分16aをもつ高調波正常パターン21aの高調波成分一致度18aと、高調波成分一致度18bの高いものから順に並び替えた高調波異常高調波成分16bをもつ高調波異常パターン21bの高調波成分一致度18bとを比較し、高調波異常パターン21bの高調波成分一致度18bの方が相対的に高いと高調波異常と推定し、当該高調波異常と推定される高調波異常パターン21bを抽出し、高調波異常推定結果20として出力する。   Next, the harmonic abnormality extraction unit 14 according to the embodiment corresponding to claim 2 includes the harmonic normal pattern 21a having the harmonic normal harmonic components 16a rearranged in order from the highest harmonic component matching degree 18a. The harmonic component matching degree 18a is compared with the harmonic component matching degree 18b of the harmonic abnormal pattern 21b having the harmonic abnormal harmonic component 16b rearranged in order from the highest harmonic component matching degree 18b. If the harmonic component matching degree 18b of the abnormal pattern 21b is relatively higher, it is estimated that the harmonic is abnormal, the harmonic abnormal pattern 21b estimated to be the harmonic abnormal is extracted, and is output as the harmonic abnormal estimation result 20 To do.

さらに、請求項3に対応する実施の形態の高調波異常抽出部14bは、高調波成分一致度18aの高いものから順に並び替えた高調波正常高調波成分16aをもつ高調波正常パターン21aの高調波成分一致度18aと、高調波成分一致度18bの高いものから順に並び替えた高調波異常高調波成分16bをもつ高調波異常パターン21bの高調波成分一致度18bと、高調波成分一致度18cの高いものから順に並び替えた負荷高調波成分16cをもつ高調波負荷パターン21cの高調波成分一致度18cとを比較し、高調波異常パターン21bの高調波成分一致度18bの方が相対的に高いと高調波異常と推定し、当該高調波異常と推定される高調波異常パターン21bを抽出し、高調波異常推定結果20として出力する。   Furthermore, the harmonic abnormality extraction unit 14b according to the embodiment corresponding to claim 3 has the harmonic normal pattern 21a having the harmonic normal harmonic components 16a rearranged in descending order of the harmonic component matching degree 18a. The harmonic component coincidence 18b and the harmonic component coincidence 18c of the harmonic abnormal pattern 21b having the harmonic abnormal harmonic component 16b rearranged in order from the highest in the harmonic component coincidence 18b. The harmonic component matching degree 18c of the harmonic load pattern 21c having the load harmonic component 16c rearranged in order from the higher one is compared, and the harmonic component matching degree 18b of the harmonic abnormal pattern 21b is relatively If it is higher, it is estimated as a harmonic abnormality, and a harmonic abnormality pattern 21b estimated as the harmonic abnormality is extracted and output as a harmonic abnormality estimation result 20.

図17(a)は高調波成分一致度18aと高調波正常高調波成分16aとの関係を説明する図である。   FIG. 17A is a diagram for explaining the relationship between the harmonic component matching degree 18a and the normal harmonic component 16a.

高調波正常高調波成分16aに対応する高調波正常パターン21aを、高調波成分一致度18aの高いものから順に左側から並べていくと、図17(a)に示すように高調波成分一致度18aが100%から−100%の間に収まり、左側にあるほど高調波正常として高いと考えられる。   When the harmonic normal patterns 21a corresponding to the harmonic normal harmonic components 16a are arranged from the left in order from the highest harmonic component matching degree 18a, the harmonic component matching degree 18a is obtained as shown in FIG. It is considered that the higher the harmonics are normal, the lower the value is between 100% and -100% and the left side.

よって、高調波異常推定手段14の高調波異常抽出部14bでは、高調波異常抽出しきい値25を設定し、高調波成分一致度18aが高調波異常抽出しきい値25より低い高調波正常高調波成分16aをもつ高調波正常パターン21aを高調波異常として抽出することができる。   Therefore, the harmonic abnormality extraction unit 14b of the harmonic abnormality estimation means 14 sets the harmonic abnormality extraction threshold value 25, and the harmonic normal harmonics whose harmonic component matching degree 18a is lower than the harmonic abnormality extraction threshold value 25. The normal harmonic pattern 21a having the wave component 16a can be extracted as a harmonic abnormality.

図17(b)は高調波成分一致度18bと高調波異常高調波成分16bとの関係を説明する図である。   FIG. 17B is a diagram for explaining the relationship between the harmonic component coincidence 18b and the harmonic abnormal harmonic component 16b.

高調波異常高調波成分16bに対応する高調波異常パターン21bを、高調波成分一致度18bの高いものから順に左側から並べていくと、図17(b)に示すように高調波成分一致度18bが100%から−100%の間に収まり、左側にあるほど高調波異常として高いと考えられる。   When the harmonic abnormal patterns 21b corresponding to the harmonic abnormal harmonic components 16b are arranged in order from the higher harmonic component matching degree 18b from the left side, the harmonic component matching degree 18b is obtained as shown in FIG. It is considered that it is higher between 100% and -100%, and the higher the left side, the higher the harmonic anomaly.

よって、高調波異常推定手段14bの高調波異常抽出部14bでは、高調波異常抽出しきい値25を設定し、高調波成分一致度18bが高調波異常抽出しきい値25より高い高調波異常高調波成分16bをもつ高調波異常パターン21bを高調波異常として抽出することができる。   Therefore, the harmonic abnormality extraction unit 14b of the harmonic abnormality estimation unit 14b sets the harmonic abnormality extraction threshold value 25, and the harmonic abnormality harmonics whose harmonic component matching degree 18b is higher than the harmonic abnormality extraction threshold value 25. The harmonic abnormality pattern 21b having the wave component 16b can be extracted as a harmonic abnormality.

なお、高調波異常抽出しきい値25としては、実験の積み重ねや経験等を通して電力の品質に影響を与える可能性を考慮しつつ、高調波正常パターン21a,高調波異常パターン21bごとに異なる値を用いてもよい。   As the harmonic abnormality extraction threshold 25, a different value is used for each of the harmonic normal pattern 21a and the harmonic abnormality pattern 21b in consideration of the possibility of affecting the power quality through accumulation of experiments and experience. It may be used.

従って、高調波異常抽出部14bは、図17(b)において高調波異常抽出しきい値25より上側に存在する高調波異常高調波成分16bを高調波異常推定結果20として出力する。   Accordingly, the harmonic abnormality extraction unit 14b outputs the harmonic abnormality harmonic component 16b existing above the harmonic abnormality extraction threshold value 25 in FIG.

図18(a)は高調波成分一致度18(18a,18b,18c)と高調波正常パターン21a、高調波異常パターン21b、高調波負荷パターン21cとの表示例を示す図である。同図において縦軸が高調波成分一致度18、横軸が高調波成分一致度18と各パターン21a〜21cとの関係を表す。   FIG. 18A is a diagram showing a display example of the harmonic component coincidence degree 18 (18a, 18b, 18c), the harmonic normal pattern 21a, the harmonic abnormal pattern 21b, and the harmonic load pattern 21c. In the figure, the vertical axis represents the harmonic component coincidence 18, and the horizontal axis represents the relationship between the harmonic component coincidence 18 and the patterns 21a to 21c.

この図18(a)では、高調波正常パターン21aが高調波異常抽出しきい値25の上側に存在し、また高調波負荷パターン21cが高調波正常パターン21aの下側にあり、高調波異常パターン21bが高調波異常抽出しきい値25の下側にあるが、当該高調波異常パターン21bの高調波は負荷高調波の影響を受けているので、正常であり故障はないと判断できる。つまり、母線2に接続される負荷設備3が近くの他の負荷設備であるパソコンや回転機などの影響を受けて異常となる成分の高調波が発生していると考えられる。   In FIG. 18A, the harmonic normal pattern 21a exists above the harmonic abnormality extraction threshold 25, and the harmonic load pattern 21c is below the harmonic normal pattern 21a. Although 21b is below the harmonic abnormality extraction threshold 25, since the harmonics of the harmonic abnormality pattern 21b are affected by the load harmonics, it can be determined that there is no failure. In other words, it is considered that the load equipment 3 connected to the bus 2 is affected by the nearby load equipment such as a personal computer or a rotating machine, and a harmonic component of an abnormal component is generated.

一方、図18(b)では、高調波異常パターン21bが高調波異常抽出しきい値25の上側に存在し、高調波正常パターン21aが高調波異常抽出しきい値25の下側にあるが、高調波異常パターン21bが高調波正常パターン21aや高調波負荷パターン21cの上側にあることから、その高調波異常パターン21bの高調波は、異常であり故障の可能性があると判断できる。   On the other hand, in FIG. 18B, the harmonic abnormality pattern 21b exists above the harmonic abnormality extraction threshold 25, and the harmonic normal pattern 21a is below the harmonic abnormality extraction threshold 25. Since the harmonic abnormality pattern 21b is on the upper side of the harmonic normal pattern 21a and the harmonic load pattern 21c, it can be determined that the harmonics of the harmonic abnormality pattern 21b are abnormal and have a possibility of failure.

従って、以上のような実施の形態によれば、電力系統から伝送系を介して電力の供給を受ける需要家の電圧、電流等の電気量を収集し、電力品質の一つである高調波成分を取り出し、これら実測高調波成分と予め記憶される高調波正常高調波成分16a、高調波異常高調波成分16b、負荷高調波成分16cとの一致度を計算し、各高調波成分16a〜16cの一致度と高調波異常抽出しきい値25とから電力品質を評価するので、何れの高調波の異常パターンにより電力品質の評価を悪化させているかを確実、かつ正確に推定することができる。   Therefore, according to the embodiment as described above, the amount of electricity such as the voltage and current of the consumer who receives power supply from the power system through the transmission system is collected, and the harmonic component which is one of the power quality The degree of coincidence of these measured harmonic components with the harmonic normal harmonic component 16a, harmonic abnormal harmonic component 16b, and load harmonic component 16c stored in advance is calculated, and each of the harmonic components 16a to 16c is calculated. Since the power quality is evaluated from the degree of coincidence and the harmonic abnormality extraction threshold value 25, it is possible to reliably and accurately estimate which harmonic abnormality pattern is deteriorating the evaluation of the power quality.

また、高調波成分一致度計算手段13(13a,13b,13c)は、一致度を計算し、一致度の高い順番に並べて表示可能とするので、各異常パターン21a〜21cを見やすく並べて表示でき、何れの高調波の異常パターン21a〜21cが最も電力品質に影響を与えているか容易に把握できる。   Moreover, since the harmonic component coincidence calculation means 13 (13a, 13b, 13c) calculates the coincidence and makes it possible to arrange and display in order of high coincidence, each abnormal pattern 21a to 21c can be displayed in an easy-to-view manner, It can be easily grasped which harmonic abnormal pattern 21a to 21c has the most influence on the power quality.

(第2の実施の形態:請求項5に対応)
図19は、電力品質評価システム1の一つの構成要素である高調波異常推定手段14に代えて、結果表示制御手段31を設けた構成図である。これら高調波異常推定手段14(14a,14b,14c)及び結果表示制御手段31は、広義には高調波異常出力手段に相当するものである。
(Second embodiment: corresponding to claim 5)
FIG. 19 is a configuration diagram in which a result display control unit 31 is provided in place of the harmonic abnormality estimation unit 14 which is one component of the power quality evaluation system 1. These harmonic abnormality estimation means 14 (14a, 14b, 14c) and the result display control means 31 correspond to harmonic abnormality output means in a broad sense.

以下、図4に示す構成に結果表示制御手段31を設けた例について説明するが、図2,図3に示す構成に結果表示制御手段31を設けてもよい。   Hereinafter, an example in which the result display control unit 31 is provided in the configuration illustrated in FIG. 4 will be described. However, the result display control unit 31 may be provided in the configuration illustrated in FIGS.

すなわち、この電力品質評価システム1は、図4に示す高調波成分計算手段11、データ記録手段12及び高調波成分一致度計算手段13の他に、高調波成分一致度計算手段13の出力側に新たに結果表示制御手段31を設けた構成である。   In other words, the power quality evaluation system 1 is provided on the output side of the harmonic component coincidence calculating unit 13 in addition to the harmonic component calculating unit 11, the data recording unit 12, and the harmonic component coincidence calculating unit 13 shown in FIG. The result display control means 31 is newly provided.

高調波成分一致度計算手段13は、各高調波正常パターン21a、各高調波異常パターン21b、各高調波負荷パターン21cの高調波成分一致度18cを計算し、例えばデータ記録手段12の所定の記憶領域に記憶するとともに、結果表示制御手段31に送出する。   The harmonic component coincidence calculating means 13 calculates the harmonic component coincidence degree 18c of each harmonic normal pattern 21a, each harmonic abnormal pattern 21b, and each harmonic load pattern 21c, for example, a predetermined storage of the data recording means 12 The result is stored in the area and sent to the result display control means 31.

結果表示制御手段31は、高調波成分一致度計算手段13から出力される各高調波異常パターン21a〜21c毎の高調波成分一致度18a〜18cを表示装置32に表示するとともに、一定時間毎に高調波成分計算手段11に戻り、各構成手段11,13,31による処理を繰り返し実行する。その結果、データ記録手段12の所定の記憶領域には、所要とする期間(例えば24時間)にわたって各時間毎の各高調波正常パターン21a、各高調波異常パターン21b、各高調波負荷パターン21c毎の高調波成分一致度18cがそれぞれ時系列的に記憶される。   The result display control unit 31 displays the harmonic component coincidence degrees 18a to 18c for the respective harmonic abnormality patterns 21a to 21c output from the harmonic component coincidence degree calculating unit 13 on the display device 32, and at regular intervals. Returning to the harmonic component calculating means 11, the processing by each of the constituting means 11, 13, 31 is repeatedly executed. As a result, in the predetermined storage area of the data recording means 12, each harmonic normal pattern 21a, each harmonic abnormal pattern 21b, and each harmonic load pattern 21c for each time over a required period (for example, 24 hours). Are stored in time series.

図20は、結果表示制御手段31によって高調波異常パターン21aA、21aB、高調波異常パターン21b、高調波負荷パターン21cA、21cB毎の高調波成分一致度18cの表示例を示す図である。縦軸は高調波成分一致度18c、横軸は時間である。   FIG. 20 is a diagram illustrating a display example of the harmonic component coincidence degree 18c for each of the harmonic abnormality patterns 21aA and 21aB, the harmonic abnormality pattern 21b, and the harmonic load patterns 21cA and 21cB by the result display control unit 31. The vertical axis represents the harmonic component coincidence 18c, and the horizontal axis represents time.

図20の例は、一日24時間分の表示例である。すなわち、高調波成分一致度計算手段13は、高調波正常パターン21aとして、高調波異常パターン21aA、21aB、高調波負荷パターン21cとして、高調波負荷パターン21cA、21cB、高調波異常パターン21bの高調波成分一致度18cを一日24時間分にわたって時系列的に蓄積し、結果表示制御手段31にて表示した例である。   The example of FIG. 20 is a display example for 24 hours a day. That is, the harmonic component coincidence calculation means 13 uses the harmonics of the harmonic load patterns 21cA and 21cB and the harmonic abnormal pattern 21b as the harmonic abnormal patterns 21aA and 21aB and the harmonic load pattern 21c as the harmonic normal pattern 21a. This is an example in which the component coincidence degree 18c is accumulated in time series for 24 hours a day and displayed by the result display control means 31.

この実施の形態によれば、第1の実施の形態と同様の効果を奏する他、所要とする期間にわたって各時間毎の各高調波異常パターン21a〜21c毎の高調波成分一致度18a〜18cの変化を表示できるので、各高調波異常パターン21a〜21cの時間的な変化の推移を把握でき、特定の高調波異常パターン21a〜21cが何れの時間帯に大きく異常となることを判断することができる。   According to this embodiment, in addition to the same effects as those of the first embodiment, the harmonic component coincidence degree 18a to 18c for each harmonic abnormality pattern 21a to 21c for each time over a required period of time. Since the change can be displayed, it is possible to grasp the transition of the temporal change of each of the harmonic abnormality patterns 21a to 21c, and to determine that the specific harmonic abnormality pattern 21a to 21c becomes significantly abnormal in any time zone. it can.

(第3の実施の形態:請求項6に対応)
図21は本発明に係る電力品質評価システム1の第3の実施形態を示す概略構成図である。
この実施の形態は、電力品質評価システム1の1つの構成要素である高調波成分計算手段11の代わりに、測定装置4で測定された電気量5に含む電流の方向を計算する機能(図22参照)を付加した高調波成分計算手段11Aを設けた構成である。また、この例では、データベース17に装置等の故障やその前兆となる高調波異常と推定される高調波成分16bの高調波異常パターン21bを格納しているが、図2〜図4に示すように高調波正常パターン21a、高調波異常パターン21b及び高調波負荷パターン21cを格納した構成でもよい。
(Third Embodiment: Corresponding to Claim 6)
FIG. 21 is a schematic configuration diagram showing a third embodiment of the power quality evaluation system 1 according to the present invention.
In this embodiment, instead of the harmonic component calculation means 11 which is one component of the power quality evaluation system 1, a function of calculating the direction of current included in the quantity of electricity 5 measured by the measuring device 4 (FIG. 22). 11A to which the harmonic component calculation means 11A added is added. Further, in this example, the database 17 stores the harmonic abnormality pattern 21b of the harmonic component 16b that is estimated to be a malfunction of the device or the like and a harmonic abnormality that is a precursor thereof, as shown in FIGS. May be configured to store the harmonic normal pattern 21a, the harmonic abnormal pattern 21b, and the harmonic load pattern 21c.

その他の構成は図2〜図4と同様であるので、同一の機能部分には添字a,b,cを付さずに、単にデータ記録手段を12、高調波成分一致度計算手段を13、高調波異常推定手段を14として説明する。第4の実施の形態以降においても同様である。   Since the other configurations are the same as those in FIGS. 2 to 4, the same functional part is not attached with the subscripts a, b, c, but the data recording means 12, the harmonic component coincidence calculation means 13, The harmonic abnormality estimation means is described as 14. The same applies to the fourth and subsequent embodiments.

高調波成分計算手段11Aは、図22に示すように、FFT処理部11aと電流方向計算処理部11bとで構成される。電流方向計算処理部11bは、ある次数の高調波であるk次(kは2以上n以下を満たす自然数)の高調波電圧の方向と高調波電流の方向とが同方向か逆方向かを電圧ベクトルと電流ベクトルとの位相差から判断し、電流の向きも含めて実測高調波成分計算結果15として、例えばデータ記録手段12に記憶するものである。これにより、図21に示す高調波異常推定手段14としては、例えば高調波異常発生源となる装置、機器からの電流の向きまで高調波異常推定結果20として出力でき、また表示装置32に表示することができる。   As shown in FIG. 22, the harmonic component calculation unit 11A includes an FFT processing unit 11a and a current direction calculation processing unit 11b. The current direction calculation processing unit 11b determines whether the direction of the harmonic voltage of the kth order (k is a natural number satisfying 2 or more and n or less) which is a harmonic of a certain order and the direction of the harmonic current are the same direction or the reverse direction. The determination is made from the phase difference between the vector and the current vector, and the measured harmonic component calculation result 15 including the current direction is stored in the data recording means 12, for example. Accordingly, as the harmonic abnormality estimation means 14 shown in FIG. 21, for example, the harmonic abnormality estimation result 20 can be output up to the direction of the current from the apparatus or device that becomes the harmonic abnormality generation source, and is displayed on the display device 32. be able to.

図23は電流方向計算処理部11bが行う高調波電流の方向(電流ベクトル)の計算の一例を説明する図である。
ある次数nの高調波電圧の電圧ベクトル33、ある次数nの高調波電流の電流ベクトル34とすると、電圧ベクトル33からみた電流ベクトル34の遅れ、進みが90度以内であれば、電流ベクトル34は電圧ベクトル33と向きが同方向とする。逆に、電流ベクトル34の遅れ、進みが90度を超えていれば、電流ベクトル34は電圧ベクトル33と向きが逆方向とする。
FIG. 23 is a diagram for explaining an example of the calculation of the direction (current vector) of the harmonic current performed by the current direction calculation processing unit 11b.
Assuming that a voltage vector 33 of a harmonic voltage of a certain order n and a current vector 34 of a harmonic current of a certain order n, if the delay and advance of the current vector 34 viewed from the voltage vector 33 are within 90 degrees, the current vector 34 is The direction is the same as the voltage vector 33. Conversely, if the delay or advance of the current vector 34 exceeds 90 degrees, the direction of the current vector 34 is opposite to that of the voltage vector 33.

図23の例は、電圧ベクトル33に対し、電流ベクトル34A、電流ベクトル34Bは同方向、電流ベクトル34C、電流ベクトル34Dは逆方向である。   In the example of FIG. 23, with respect to the voltage vector 33, the current vector 34A and the current vector 34B are in the same direction, and the current vector 34C and the current vector 34D are in the opposite direction.

従って、以上のような電流方向計算処理部11bを追加し、高調波次数毎に高調波電流の方向を判断することにより、前述した実施の形態の効果の他、高調波電流の方向から、装置等の故障やその前兆となる高調波異常を発生する装置(高調波異常発生源)の方向を見つけ出し、表示することができる。つまり、高調波の異常がどちらの方向にあるかについても判断できる。   Therefore, by adding the current direction calculation processing unit 11b as described above and determining the direction of the harmonic current for each harmonic order, in addition to the effect of the above-described embodiment, the apparatus can be used from the direction of the harmonic current. It is possible to find and display the direction of a device (a harmonic abnormality generating source) that generates a malfunction such as a malfunction or a harmonic abnormality that is a precursor thereof. That is, it can be determined in which direction the abnormality of the harmonic is.

従って、この実施の形態によれば、第1,2の実施の形態の電力品質評価システム1と比較し、高調波異常推定結果の精度をより向上させることができる。   Therefore, according to this embodiment, the accuracy of the harmonic abnormality estimation result can be further improved as compared with the power quality evaluation system 1 of the first and second embodiments.

(第4の実施の形態:請求項7に対応)
図24は本発明に係る電力品質評価システム1の第4の実施形態を示す概略構成図である。
(Fourth embodiment: corresponding to claim 7)
FIG. 24 is a schematic configuration diagram showing a fourth embodiment of the power quality evaluation system 1 according to the present invention.

この実施の形態は、上位電力系統から母線2に至る送電線6A、母線2から負荷設備3Bに接続される下位の電力系統となる送電線6B及び母線2から負荷設備3Cに接続される下位の電力系統である送電線6Cにそれぞれ個別に測定装置4A、4B、4Cを設置し、各測定装置4A、4B、4Cからそれぞれ伝送系7A、7B、7Cを介して電気量(電圧、電流)5A、5B、5Cを電力品質評価システム1に取り込み、電力品質の評価を行う構成である。   In this embodiment, the power transmission line 6A from the upper power system to the bus 2 and the power transmission line 6B as a lower power system connected from the bus 2 to the load facility 3B and the lower power line connected from the bus 2 to the load facility 3C. The measuring devices 4A, 4B, and 4C are individually installed on the power transmission line 6C that is the power system, and the electric quantity (voltage, current) 5A from the measuring devices 4A, 4B, and 4C through the transmission systems 7A, 7B, and 7C, respectively. 5B and 5C are incorporated into the power quality evaluation system 1 to evaluate the power quality.

電力品質評価システム1は、各測定装置4A、4B、4Cで測定された電気量5A、5B、5Cに基づき、図2〜図4,図19,図21の高調波成分計算手段11,11aで順次各送電線6A、6B、6Cを流れる例えば電流の高調波成分を計算し、実測高調波成分計算結果15を取得し、データ記録手段12に格納していく。また、高調波成分一致度計算手段13は、各実測高調波成分計算結果15と高調波異常高調波成分16bとの高調波成分一致度18bを計算する。そして、高調波異常推定手段14が各実測高調波成分計算結果15の高調波成分一致度18bに基づき、各送電線6A、6B、6Cを流れる電流の高調波異常推定結果20A、20B、20Cを出力する。   The power quality evaluation system 1 uses the harmonic component calculation means 11 and 11a of FIGS. 2 to 4, 19 and 21 based on the electric quantities 5A, 5B and 5C measured by the measuring devices 4A, 4B and 4C. For example, the harmonic component of the current flowing through each of the transmission lines 6A, 6B, and 6C is calculated sequentially, and the actually measured harmonic component calculation result 15 is acquired and stored in the data recording means 12. Further, the harmonic component coincidence calculation means 13 calculates a harmonic component coincidence 18b between each actually measured harmonic component calculation result 15 and the harmonic abnormal harmonic component 16b. Then, the harmonic abnormality estimation means 14 calculates the harmonic abnormality estimation results 20A, 20B, and 20C of the currents flowing through the transmission lines 6A, 6B, and 6C based on the harmonic component coincidence degree 18b of each measured harmonic component calculation result 15. Output.

その結果、高調波異常推定手段14からは、送電線6Aに流れる高調波異常の要因となる高調波異常パターン21bと向きをもった高調波異常推定結果20A、送電線6Bに流れる高調波異常の要因となる高調波異常パターン21bと向きをもった高調波異常推定結果20B、送電線6Cに流れる高調波異常の要因となる高調波異常パターン21bと向きをもった高調波異常推定結果20Cを出力できる。   As a result, the harmonic abnormality estimation means 14 determines the harmonic abnormality estimation result 20A having the direction and the harmonic abnormality pattern 21b that causes the harmonic abnormality flowing in the transmission line 6A, and the harmonic abnormality flowing in the transmission line 6B. Harmonic abnormality estimation result 20B having the same direction as the harmonic abnormality pattern 21b that becomes the factor, and harmonic abnormality estimation result 20C having the direction of the harmonic abnormality pattern 21b that causes the harmonic abnormality flowing in the transmission line 6C are output. it can.

図25は、図24に示す各測定装置4A、4B、4Cから取得された電気量5A、5B、5Cから、高調波異常発生源を特定する方法を説明する高調波発生源と高調波電流との関係を示す図である。   FIG. 25 shows a harmonic generation source and a harmonic current for explaining a method of identifying a harmonic abnormality generation source from the electric quantities 5A, 5B, and 5C acquired from the measurement devices 4A, 4B, and 4C shown in FIG. It is a figure which shows the relationship.

今、例えば負荷設備3Bに高調波異常発生源が存在していると仮定すれば、当該高調波異常発生源の影響を受けて高調波電流36Bが送電線6B、母線2、送電線6Aを通って上位電力系統に流れ込むか、送電線6Cを通って負荷設備3Cに流れ込むことになる。   For example, assuming that a harmonic abnormality generating source exists in the load facility 3B, for example, the harmonic current 36B passes through the transmission line 6B, the bus 2, and the transmission line 6A under the influence of the harmonic abnormality generation source. Then, it flows into the upper power system, or flows into the load facility 3C through the transmission line 6C.

このとき、電力品質評価システム1は、各測定装置4A、4B、4Cを通じて前述するように各送電線6A、6B、6Cを流れる高調波電流の向きを取得しているので、高調波成分一致度18の他に、これら送電線6A、送電線6B、送電線6Cの高調波電流の向きに基づき、高調波異常発生源が負荷設備3Bであることが推定できる。   At this time, the power quality evaluation system 1 acquires the direction of the harmonic current flowing through each of the transmission lines 6A, 6B, and 6C through the measuring devices 4A, 4B, and 4C as described above. 18, it can be estimated that the harmonic abnormality generating source is the load facility 3 </ b> B based on the direction of the harmonic currents of the transmission line 6 </ b> A, the transmission line 6 </ b> B, and the transmission line 6 </ b> C.

すなわち、電力品質評価システム1の高調波成分計算手段11AがFFT処理部11aにより高調波成分を計算する一方、電流方向計算処理部11bにより高調波異常発生源から流れる高調波電流36の向きを含む実測高調波成分計算結果15を取り出す。   That is, the harmonic component calculation means 11A of the power quality evaluation system 1 calculates the harmonic component by the FFT processing unit 11a, while the current direction calculation processing unit 11b includes the direction of the harmonic current 36 flowing from the harmonic abnormality generating source. The measured harmonic component calculation result 15 is taken out.

高調波成分一致度計算手段13は、高調波電流36の向きを含む実測高調波成分計算結果15と高調波電流36の向きを含む高調波異常高調波成分16bとの一致度を計算した後に高調波異常推定手段14に渡す。その結果、高調波異常推定手段14は、一致度の高い高調波異常の要因となる高調波パターン21bが分かるので、高調波異常の要因となる高調波パターン21bをもつ高調波異常発生源を特定することができる。   The harmonic component coincidence calculation means 13 calculates the coincidence between the measured harmonic component calculation result 15 including the direction of the harmonic current 36 and the harmonic abnormal harmonic component 16 b including the direction of the harmonic current 36, and then the harmonic. It passes to the wave abnormality estimation means 14. As a result, the harmonic abnormality estimation means 14 can identify the harmonic pattern 21b that causes the harmonic abnormality with a high degree of coincidence, and therefore identifies the harmonic abnormality generation source having the harmonic pattern 21b that causes the harmonic abnormality. can do.

例えば、高調波電流36Bの高調波異常の要因となる高調波パターン21bがインバータ付きモータの故障である場合、インバータ付きモータから発生した高調波異常が、送電線6B、母線2、送電線6Aを通って上位電力系統に流れ込み、また送電線6Cを通って負荷設備3Cに流れ込んでいることが分かる。   For example, when the harmonic pattern 21b that causes the harmonic abnormality of the harmonic current 36B is a failure of the motor with the inverter, the harmonic abnormality generated from the motor with the inverter causes the transmission line 6B, the bus 2, and the transmission line 6A to It can be seen that it flows into the upper power system through, and flows into the load facility 3C through the transmission line 6C.

従って、以上のような実施の形態によれば、複数の測定装置4A、4B、4Cで測定される電気量に含む各高調波電流36A、36B、36Cの方向から、高調波異常の要因となる高調波異常パターン21bをもつ高調波異常発生源を容易に特定することができる。   Therefore, according to the above embodiment, it becomes a factor of a harmonic abnormality from the direction of each harmonic current 36A, 36B, 36C included in the quantity of electricity measured by a plurality of measuring devices 4A, 4B, 4C. It is possible to easily identify a harmonic abnormality generation source having the harmonic abnormality pattern 21b.

(第5の実施の形態:請求項7に対応)
図26は本発明に係る電力品質評価システム1の第5の実施形態を示す概略構成図である。
(Fifth embodiment: corresponding to claim 7)
FIG. 26 is a schematic configuration diagram showing a fifth embodiment of the power quality evaluation system 1 according to the present invention.

この電力品質評価システム1は、図24や図25に示すように複数の送電線6A〜6Cにそれぞれ測定装置4A〜4Cが設置されていることを前提とし、特に高調波異常推定手段14が図27に示すように論理的な条件判定に従って高調波異常発生源を特定するものである。   The power quality evaluation system 1 is based on the premise that measuring devices 4A to 4C are installed in a plurality of transmission lines 6A to 6C, respectively, as shown in FIGS. As shown in FIG. 27, the harmonic abnormality generation source is specified according to logical condition determination.

すなわち、電力品質評価システム1としては、高調波成分計算手段11,11A、高調波成分一致計算手段13及び高調波異常推定手段14を備え、各測定装置4A、4B、4Cから電気量5A、5B、5Cを取り込み、高調波異常推定手段14にて高調波異常推定結果20ないし高調波異常要因となる高調波異常パターン21bをもつ高調波異常発生源を特定し、高調波異常発生源推定結果37として出力する。   That is, the power quality evaluation system 1 includes harmonic component calculation means 11 and 11A, harmonic component coincidence calculation means 13 and harmonic abnormality estimation means 14, and each of the measurement devices 4A, 4B, and 4C receives the electric quantities 5A and 5B. 5C, the harmonic abnormality estimation source 14 identifies the harmonic abnormality generation source 20 having the harmonic abnormality pattern 21b that becomes the harmonic abnormality factor, and the harmonic abnormality generation source estimation result 37. Output as.

図27は高調波異常推定手段14による高調波異常発生源判定(特定)ロジック38を説明する図である。   FIG. 27 is a diagram for explaining the harmonic abnormality generation source determination (specification) logic 38 by the harmonic abnormality estimation means 14.

この高調波異常発生源判定ロジック38には、高調波異常発生源が一箇所の場合の高調波異常発生源判定ロジック38Aと、高調波異常発生源が複数箇所の場合の高調波異常発生源判定ロジック38Bとに分けられ、各判定ロジック38A、38Bに基づいて判定し、高調波異常発生源を特定する。   The harmonic abnormality generation source determination logic 38 includes a harmonic abnormality generation source determination logic 38A when there is one harmonic abnormality generation source and a harmonic abnormality generation source determination when there are a plurality of harmonic abnormality generation sources. It is divided into logic 38B, and a determination is made based on the determination logics 38A and 38B, and a harmonic abnormality generation source is specified.

因みに、例えば高調波異常発生源判定ロジック38Aは、高調波異常発生源が上位電力系統側であるとする判定ロジックと高調波異常発生源が負荷設備3Bであるとする判定ロジックと高調波異常発生源が負荷設備3Cであるとする判定ロジックとに分けられ、それぞれ条件が規定されている。   For example, the harmonic abnormality generation source determination logic 38A includes a determination logic that the harmonic abnormality generation source is on the higher power system side, a determination logic that the harmonic abnormality generation source is the load facility 3B, and a harmonic abnormality occurrence. It is divided into determination logic that the source is the load facility 3C, and the conditions are defined respectively.

(第6の実施の形態:請求項8に対応)
図28は本発明に係る電力品質評価システム1の第6の実施形態を示す概略構成図である。
(Sixth embodiment: corresponding to claim 8)
FIG. 28 is a schematic configuration diagram showing a sixth embodiment of the power quality evaluation system 1 according to the present invention.

この実施の形態における電力品質評価システム1は、高調波成分計算手段11,11A、データ記録手段12、高調波成分一致度計算手段13及び高調波異常推定手段14,14Aの他、新たにアラーム発生手段40を設けた構成である。   The power quality evaluation system 1 according to this embodiment includes a new alarm generation in addition to the harmonic component calculation means 11 and 11A, the data recording means 12, the harmonic component coincidence calculation means 13 and the harmonic abnormality estimation means 14 and 14A. In this configuration, means 40 is provided.

アラーム発生手段40は、高調波異常推定手段14,14Aによって高調波異常発生源が特定されるが、その中でも高調波の程度が大きいとか、高い高調波成分一致度18bを有する、いわゆる発生原因となる高調波異常発生源をもつ負荷設備3や電力エネルギー系を集中管理する中央監視制御センター41に対し、特定された高調波異常発生源が高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21bであることのアラーム42を送出する。   The alarm generation means 40 has a harmonic abnormality generation source specified by the harmonic abnormality estimation means 14 and 14A. Among them, the generation degree of harmonics is high, or the so-called generation cause having a high harmonic component coincidence 18b. An alarm 42 indicating that the specified harmonic abnormality source is in a harmonic abnormal state or a specific high frequency is applied to the central monitoring control center 41 that centrally manages the load equipment 3 having the harmonic abnormality generation source and the power energy system. An alarm 42 indicating the abnormal pattern 21b is sent out.

図29はアラーム発生手段40によるアラーム42のアラーム伝送系を説明する図である。   FIG. 29 is a diagram for explaining an alarm transmission system of the alarm 42 by the alarm generating means 40. FIG.

電力品質評価システム1は、各負荷設備3B、3Cとの間にアラーム42を伝送するアラーム伝送系43B、43Cを接続し、また中央監視制御センター41との間にも同様にアラーム伝送系43Dを接続する。そして、アラーム発生手段40が、高調波異常推定手段14,14Aによって高調波異常発生源として特定され、その高調波の程度が大きいとか、高調波成分一致度18が高いとき、アラーム伝送系43を介して高調波発生原因となっている高調波異常発生源に高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21bであことのアラーム42を通知する。   The power quality evaluation system 1 connects the alarm transmission systems 43B and 43C for transmitting the alarm 42 between the load facilities 3B and 3C, and similarly connects the alarm transmission system 43D to the central monitoring and control center 41. Connecting. When the alarm generation means 40 is specified as a harmonic abnormality generation source by the harmonic abnormality estimation means 14 and 14A and the degree of the harmonic is large or the harmonic component matching degree 18 is high, the alarm transmission system 43 is set. The alarm 42 indicating the harmonic abnormal state or the alarm 42 indicating the specific high frequency abnormality pattern 21b is notified to the harmonic abnormality generation source that is the cause of the harmonic generation.

なお、高調波の程度は、式(5)による総合ひずみ率が良く用いられる。
総合ひずみ率=高調波分のみの実効値÷実効値 ……(5)
例えば、高調波異常推定手段14,14Aによって高調波異常発生源が負荷設備3Bであると特定されたとき、アラーム発生手段40は、アラーム伝送系43Bを介して負荷設備3Bに対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21bであることのアラーム42を通知する。
In addition, the total distortion rate by Formula (5) is often used for the degree of harmonics.
Total distortion factor = RMS value only for harmonics ÷ RMS value (5)
For example, when the harmonic abnormality generation means is identified by the harmonic abnormality estimation means 14, 14A as the load equipment 3B, the alarm generation means 40 sends the load equipment 3B to the load equipment 3B via the alarm transmission system 43B. Is notified of an alarm 42 indicating that the harmonic is abnormal or a specific high frequency abnormality pattern 21b.

また、アラーム発生手段40は、アラーム伝送系43Dを介して中央監視制御センター41に対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは特定の高周波異常パターン21bであることのアラーム42を通知する。   Further, the alarm generation means 40 notifies the central monitoring control center 41 via the alarm transmission system 43D that the load equipment 3B is in an abnormal state of harmonics or an alarm 42 that the specific high frequency abnormality pattern 21b is present. To be notified.

なお、アラーム発生手段40がアラーム42の発生する場合、図30に示す条件のもとにアラーム42を発生するようにしてもよい。例えば、予め高調波警戒レベルしきい値44及び一定の時間(アラーム発生時限値)45を設定し、式(5)で求めた総合ひずみ率が、高調波警戒レベルしきい値44を超え、かつ、一定の時間(アラーム発生時限値)45を経過したときのアンド条件を満たしたとき、負荷設備3Bが高調波異常状態であることのアラーム42を発生する。   When the alarm generating means 40 generates the alarm 42, the alarm 42 may be generated under the conditions shown in FIG. For example, the harmonic warning level threshold value 44 and a certain time (alarm generation time limit value) 45 are set in advance, and the total distortion obtained by the equation (5) exceeds the harmonic warning level threshold value 44, and When the AND condition when a certain time (alarm generation time limit value) 45 has passed is satisfied, an alarm 42 indicating that the load equipment 3B is in a harmonic abnormal state is generated.

あるいは、総合ひずみ率が高調波警戒レベルしきい値44を超え、かつ一定の時間(アラーム発生時限値)45を経過し、さらに図17に示すように、高調波成分一致度18が高調波異常抽出しきい値25を超えたときのアンド条件を満たしたとき、負荷設備3Bが高調波異常状態であることのアラーム42あるいはその高調波成分一致度18の高い高調波異常パターン21bを有するアラーム42を発生する。   Alternatively, the total distortion rate exceeds the harmonic warning level threshold value 44 and a certain time (alarm generation time limit value) 45 elapses. Further, as shown in FIG. When the AND condition when the extraction threshold value 25 is exceeded is satisfied, the alarm 42 indicating that the load equipment 3B is in a harmonic abnormal state or the alarm 42 having a harmonic abnormal pattern 21b having a high harmonic component matching degree 18 Is generated.

次に、アラーム発生系の他の例について、図29及び図30を参照して説明する。
図31は、図28に示す構成に新たに制御指令発生手段46を設けた電力品質評価システム1の概略構成図である。請求項9に対応する。
Next, another example of the alarm generation system will be described with reference to FIGS. 29 and 30. FIG.
FIG. 31 is a schematic configuration diagram of the power quality evaluation system 1 in which a control command generation means 46 is newly provided in the configuration shown in FIG. This corresponds to claim 9.

この電力品質評価システム1は、高調波異常推定手段14,14Aの出力側にアラーム発生手段40と制御指令発生手段46とを備え、アラーム発生手段40は前述した要領でアラーム42を発生する。   This power quality evaluation system 1 includes an alarm generation means 40 and a control command generation means 46 on the output side of the harmonic abnormality estimation means 14 and 14A, and the alarm generation means 40 generates an alarm 42 in the manner described above.

一方、制御指令発生手段46は、ある負荷設備3が高調波異常発生源であると特定されたとき、その負荷設備3に対して停止等の制御指令47を送出する。   On the other hand, when it is specified that a certain load facility 3 is a harmonic abnormality generation source, the control command generation means 46 sends a control command 47 such as a stop to the load facility 3.

図32は制御指令発生手段46による制御指令47の伝送系を説明する図である。   FIG. 32 is a diagram for explaining the transmission system of the control command 47 by the control command generating means 46.

この例は、電力品質評価システム1と各負荷設備3B、3Cとの間に新たに制御指令伝送系48B、48Cを接続し、例えば、高調波異常推定手段14,14Aによって高調波異常発生源が負荷設備3Bであると特定されたとき、アラーム発生手段40は、アラーム伝送系43Bを介して負荷設備3Bに対し、負荷設備3Bが高調波異常状態であることのアラーム42あるいは高周波異常パターン21を有するアラーム42を発生する。   In this example, control command transmission systems 48B and 48C are newly connected between the power quality evaluation system 1 and the load facilities 3B and 3C. For example, the harmonic abnormality generation source is generated by the harmonic abnormality estimation means 14 and 14A. When the load facility 3B is identified, the alarm generation means 40 sends an alarm 42 or a high frequency abnormality pattern 21 indicating that the load facility 3B is in a harmonic abnormal state to the load facility 3B via the alarm transmission system 43B. Alarm 42 is generated.

一方、制御指令発生手段46は、高調波異常推定手段14,14Aによって例えば負荷設備3Bが高調波異常発生源として特定され、その高調波の程度が大きいとか、高調波成分一致度18が高いとき、その特定された負荷設備3に対し、制御指令伝送系48Bを介して停止を含む負荷低減に関する制御指令47を送出することにより、負荷設備3が異常に至らないようにする。   On the other hand, the control command generation means 46, for example, when the load abnormality 3B is specified as the harmonic abnormality generation source by the harmonic abnormality estimation means 14, 14A, and the degree of the harmonic is large or the harmonic component matching degree 18 is high. The load facility 3 is prevented from becoming abnormal by sending a control command 47 relating to load reduction including stop to the specified load facility 3 via the control command transmission system 48B.

さらに、アラーム発生手段40は、アラーム伝送系43Dを介して中央監視制御センター41に対し、負荷設備3Bが高調波異常状態であることと、負荷設備3Bへ停止等の制御指令を送出したことのアラーム42を発生する。   Further, the alarm generating means 40 indicates that the load equipment 3B is in a harmonic abnormal state and has sent a control command such as a stop to the load equipment 3B to the central monitoring control center 41 via the alarm transmission system 43D. An alarm 42 is generated.

なお、制御指令47の発生条件としては、図33に示すように新たに高調波危険レベルしきい値50及び一定の時間(制御指令発生時限値)51を設定し、式(5)で求めた総合ひずみ率が、高調波警戒レベルしきい値44を超えたとき、あるいは図17に示すように高調波成分一致度18が高調波異常抽出しきい値25を超えこととのアンド条件を満たしたとき、高調波異常状態となっている例えば負荷設備3Bにアラーム42を発生するが、さらに、総合ひずみ率が高調波の危険レベルを示す高調波危険レベルしきい値50を超え、かつその超えた時間が一定の時間(制御指令発生時限値)51を経過したとき、高調波異常状態となっている例えば負荷設備3Bに対して、動作停止や運転出力を低下させるなどの制御指令47を送出する。   As a condition for generating the control command 47, a harmonic danger level threshold value 50 and a certain time (control command generation time limit value) 51 are newly set as shown in FIG. When the total distortion exceeds the harmonic warning level threshold value 44, or as shown in FIG. 17, the AND condition that the harmonic component coincidence degree 18 exceeds the harmonic abnormality extraction threshold value 25 is satisfied. When, for example, an alarm 42 is generated in the load equipment 3B in a harmonic abnormal state, the total distortion rate exceeds and exceeds the harmonic danger level threshold value 50 indicating the danger level of harmonics. When the time has passed a certain time (control command generation time limit value) 51, a control command 47 for stopping the operation or reducing the operation output is sent to the load equipment 3B that is in a harmonic abnormal state, for example.

従って、以上のような実施の形態によれば、上位電力系統から需要家に至る下位電力系統の複数箇所から電気量を取得し、電力品質の一つである高調波異常の発生要因と発生場所を推定し、高調波異常が警戒レベルにあることのアラームを発生するので、現場の監視要員は電力品質が悪化していることを把握でき、必要な対策を講じることが可能となる。   Therefore, according to the embodiment as described above, the amount of electricity is obtained from a plurality of locations in the lower power system from the upper power system to the customer, and the generation factor and location of the harmonic abnormality that is one of the power quality And an alarm that the harmonic abnormality is at a warning level is generated, so that the on-site monitoring staff can grasp that the power quality is deteriorating and can take necessary measures.

また、上位電力系統から需要家に至る下位電力系統の複数箇所から電気量を取得し、電力品質の一つである高調波異常の発生要因と発生場所を推定し、高調波異常の影響が危険な状態にあるとき、高調波異常の発生源に対して高調波異常の抑制を図るべき制御指令を送出するので、高調波異常による災害を未然に回避することができる。   In addition, the amount of electricity is obtained from multiple locations in the lower power system from the upper power system to the customer, and the cause and location of the harmonic abnormality, which is one of the power quality, is estimated. In such a state, since a control command for suppressing the harmonic abnormality is sent to the source of the harmonic abnormality, a disaster due to the harmonic abnormality can be avoided in advance.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、第3の実施の形態以降の実施の形態では、専ら高調波異常パターン21bを例に挙げて説明しているが、高調波正常パターン21aや高調波負荷パターン21cにも同様に適用するものである。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the third and subsequent embodiments, the harmonic abnormality pattern 21b is described as an example, but the same applies to the harmonic normal pattern 21a and the harmonic load pattern 21c. It is.

1…電力品質評価システム、3(3B,3C)…負荷設備、4(4A,4B,4C)…測定装置、5(5A,5B,5C)…電圧、電流等の電気量、6A,6B,6C…送電線、7A,7B,7C…伝送系、11…高調波成分計算手段、11a…FFT処理部、11b…電流方向計算処理部、12…データ記録手段、13…高調波成分一致度計算手段、13a…規格化計算処理部、13b…一致度計算処理部、14…高調波異常推定手段、14a…一致度並び替え処理部、14b…高調波異常抽出部、16a…高調波正常高調波成分、16b…高調波異常高調波成分、16c…負荷高調波成分、17…データベース、21a…高調波正常パターン、21b…高調波異常パターン、21c…高調波負荷パターン、31…結果表示制御手段、40…アラーム発生手段、41…中央監視制御センター、46…制御指令発生手段。   DESCRIPTION OF SYMBOLS 1 ... Electric power quality evaluation system, 3 (3B, 3C) ... Load equipment, 4 (4A, 4B, 4C) ... Measuring apparatus, 5 (5A, 5B, 5C) ... Electric quantity, such as a voltage and an electric current, 6A, 6B, 6C: Transmission line, 7A, 7B, 7C ... Transmission system, 11: Harmonic component calculation means, 11a ... FFT processing section, 11b ... Current direction calculation processing section, 12 ... Data recording means, 13 ... Harmonic component coincidence calculation Means, 13a ... Normalization calculation processing unit, 13b ... Consistency calculation processing unit, 14 ... Harmonic abnormality estimation means, 14a ... Concordance rearrangement processing unit, 14b ... Harmonic abnormality extraction unit, 16a ... Harmonic normal harmonics 16b: Harmonic abnormal harmonic component, 16c: Load harmonic component, 17 ... Database, 21a ... Harmonic normal pattern, 21b ... Harmonic abnormal pattern, 21c ... Harmonic load pattern, 31 ... Result display control means, 40 Alarm generating means, 41 ... central monitoring control center, 46 ... control command generation means.

Claims (8)

電力系統から各種の装置,機器等で構成される負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する高調波成分計算手段と、
前記負荷設備を構成する装置,機器などの正常時の複数の高調波正常高調波成分の高調波正常パターンと、前記負荷設備を構成する装置,機器などの故障や当該故障の前兆となる高調波異常と推定される複数の高調波異常高調波成分の高調波異常パターンとを記憶するデータベースと、
前記高調波成分計算手段で得られる実測高調波成分計算結果と前記データベースに記憶される複数の高調波正常パターンの高調波正常高調波成分との第1の高調波成分一致度と、前記実測高調波成分計算結果と前記データベースに記憶される複数の高調波異常パターンの高調波異常高調波成分との第2の高調波成分一致度とを計算する高調波成分一致度計算手段と、
この高調波成分一致度計算手段によって得られた前記高調波正常高調波成分の第1の高調波成分一致度が低い前記高調波正常パターンを高調波異常の可能性を示す高調波正常パターンと推定し、また、前記高調波異常高調波成分の第2の高調波成分一致度が高い前記高調波異常パターンを高調波異常の可能性が高い高調波異常パターンと推定し、それぞれ出力または表示する高調波異常出力手段と
を備えたことを特徴とする電力品質評価システム。
Harmonic component calculation means for calculating the harmonic component by analyzing the waveform of the electric quantity such as voltage and current supplied from the power system to the load equipment composed of various devices and equipment,
Harmonic normal patterns of a plurality of normal harmonic components in the normal state of devices, equipment, etc. constituting the load equipment, and harmonics that are a failure of the equipment, equipment, etc. constituting the load equipment, and a precursor of the malfunction A database for storing a harmonic abnormality pattern of a plurality of harmonic abnormal harmonic components estimated to be abnormal;
A first harmonic component coincidence between a measured harmonic component calculation result obtained by the harmonic component calculating means and a harmonic normal harmonic component of a plurality of harmonic normal patterns stored in the database, and the measured harmonic A harmonic component coincidence calculating means for calculating a second harmonic component coincidence between a harmonic component calculation result and a harmonic abnormal harmonic component of a plurality of harmonic abnormal patterns stored in the database;
The harmonic normal pattern having a low first harmonic component coincidence of the harmonic normal harmonic components obtained by the harmonic component coincidence calculating means is estimated as a harmonic normal pattern indicating the possibility of harmonic abnormality. In addition, the harmonic abnormal pattern having a high second harmonic component coincidence of the harmonic abnormal harmonic component is estimated as a harmonic abnormal pattern having a high possibility of harmonic abnormality, and is output or displayed respectively. A power quality evaluation system comprising a wave abnormality output means.
電力系統から各種の装置,機器等で構成される負荷設備に供給される電圧、電流等の電気量を波形分析し高調波成分を計算する高調波成分計算手段と、
前記負荷設備を構成する装置,機器などの正常時の複数の高調波正常高調波成分の高調波正常パターンと、前記負荷設備を構成する装置,機器などの故障や当該故障の前兆となる高調波異常と推定される複数の高調波異常高調波成分の高調波異常パターンと、前記電力系統に接続される複数の負荷設備特有の高調波と推定される負荷高調波成分の高調波負荷パターンとを記憶するデータベースと、
前記高調波成分計算手段で得られる実測高調波成分計算結果と前記データベースに記憶される複数の高調波正常パターンの高調波正常高調波成分との第1の高調波成分一致度と、前記実測高調波成分計算結果と前記データベースに記憶される複数の高調波異常パターンの高調波異常高調波成分との第2の高調波成分一致度と、前記実測高調波成分計算結果と前記データベースに記憶される複数の高調波負荷パターンの負荷高調波成分との第3の高調波成分一致度とを計算する高調波成分一致度計算手段と、
この高調波成分一致度計算手段で得られた前記高調波正常高調波成分の第1の高調波成分一致度が低い前記高調波正常パターンを高調波異常の可能性を示す高調波正常パターンと推定し、また、前記高調波異常高調波成分の第2の高調波成分一致度が高い前記高調波異常パターンを高調波異常の可能性が高い高調波異常パターンと推定し、さらに前記負荷高調波成分の第3の高調波成分一致度が高い前記高調波負荷パターンを負荷による高調波の影響の高い高調波負荷パターンと推定し、それぞれ出力または表示する高調波異常出力手段と
を備えたことを特徴とする電力品質評価システム。
Harmonic component calculation means for calculating the harmonic component by analyzing the waveform of the electric quantity such as voltage and current supplied from the power system to the load equipment composed of various devices and equipment,
Harmonic normal patterns of a plurality of normal harmonic components in the normal state of devices, equipment, etc. constituting the load equipment, and harmonics that are a failure of the equipment, equipment, etc. constituting the load equipment, and a precursor of the malfunction A harmonic abnormality pattern of a plurality of harmonic abnormal harmonic components estimated to be abnormal, and a harmonic load pattern of a load harmonic component estimated to be unique to a plurality of load equipment connected to the power system. A database to remember,
A first harmonic component coincidence between a measured harmonic component calculation result obtained by the harmonic component calculating means and a harmonic normal harmonic component of a plurality of harmonic normal patterns stored in the database, and the measured harmonic The second harmonic component coincidence between the harmonic component calculation result and the harmonic abnormal harmonic component of the plurality of harmonic abnormal patterns stored in the database, the measured harmonic component calculation result, and the database are stored in the database Harmonic component coincidence calculating means for calculating a third harmonic component coincidence with load harmonic components of a plurality of harmonic load patterns;
The harmonic normal pattern having a low first harmonic component coincidence of the harmonic normal harmonic components obtained by the harmonic component coincidence calculating means is estimated as a harmonic normal pattern indicating the possibility of harmonic abnormality. Further, the harmonic abnormal pattern having a high second harmonic component coincidence of the harmonic abnormal harmonic component is estimated as a harmonic abnormal pattern having a high possibility of harmonic abnormality, and the load harmonic component is further estimated. The harmonic load pattern having a high degree of coincidence of the third harmonic component is estimated as a harmonic load pattern having a high influence of the harmonic due to the load, and is provided with a harmonic abnormal output means for outputting or displaying each. Power quality evaluation system.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記高調波異常出力手段は、前記高調波正常高調波成分をもつ高調波正常パターン、前記高調波異常高調波成分をもつ高調波異常パターン、前記負荷高調波成分をもつ高調波負荷パターンのうち、1種類以上の高調波パターンについて、高調波成分一致度の高い高調波パターンから低い高調波パターンの順に表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2 ,
The harmonic abnormal output means, the harmonic normal pattern having the harmonic normal harmonic component, the harmonic abnormal pattern having the harmonic abnormal harmonic component, the harmonic load pattern having the load harmonic component, One or more types of harmonic patterns are displayed in order from a harmonic pattern having a higher harmonic component matching degree to a lower harmonic pattern.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記高調波異常出力手段に代えて結果表示制御手段を設け、予め定めた時間間隔ごとに前記高調波パターンの高調波成分一致度を計算し、この計算された高調波成分一致度と前記高調波パターンとを一定期間に亘って時系列的に表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2 ,
A result display control unit is provided instead of the harmonic abnormality output unit, and the harmonic component coincidence of the harmonic pattern is calculated at predetermined time intervals, and the calculated harmonic component coincidence and the harmonic are calculated. A power quality evaluation system, wherein a pattern is displayed in a time series over a certain period.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記高調波成分計算手段は、高調波電流の方向を計算する電流方向計算処理手段を有し、
この電流方向計算処理手段は、高調波次数毎に高調波電圧の方向と高調波電流の方向とから高調波電流の方向を計算し、この計算された高調波電流の方向から前記装置、機器等の故障やその前兆となる高調波異常を発生する高調波異常発生源の方向を求めて出力し、表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2 ,
The harmonic component calculation means has a current direction calculation processing means for calculating the direction of the harmonic current,
This current direction calculation processing means calculates the direction of the harmonic current from the direction of the harmonic voltage and the direction of the harmonic current for each harmonic order, and the apparatus, device, etc. from the calculated direction of the harmonic current Power quality evaluation system, which determines, outputs, and displays the direction of the harmonic abnormality generating source that generates the harmonic abnormality that is a precursor or a precursor to the malfunction.
請求項5に記載の電力品質評価システムにおいて、
上位電力系統から下位電力系統に至る複数の観測点から複数の負荷設備に供給される電圧、電流等の電気量を測定し、この測定された電気量から前記複数の観測点の高調波電流の方向を計算し、故障や当該故障の前兆となる高調波異常を発生する高調波異常発生源となる特定の前記負荷設備の位置を特定することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 5 ,
Measure the amount of electricity such as voltage and current supplied to a plurality of load facilities from a plurality of observation points from the upper power system to the lower power system, and calculate the harmonic current of the plurality of observation points from the measured amount of electricity. A power quality evaluation system characterized by calculating a direction and identifying a position of the specific load facility that is a source of a harmonic abnormality generating a malfunction or a harmonic abnormality that is a precursor of the malfunction.
請求項6に記載の電力品質評価システムにおいて、
前記観測点ごとの歪み率を計算し、この歪み率が予め定めた高調波警戒レベルしきい値を超えたとき、前記高調波異常発生源となる特定の前記負荷設備に注意喚起情報を送出するアラーム発生手段を設けたことを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 6 ,
The distortion rate for each observation point is calculated, and when the distortion rate exceeds a predetermined harmonic warning level threshold value, alert information is sent to the specific load facility that is the harmonic abnormality generation source. An electric power quality evaluation system comprising an alarm generating means.
請求項7に記載の電力品質評価システムにおいて、
前記観測点ごとの歪み率を計算し、この歪み率が前記高調波警戒レベルしきい値よりも大きな予め定めた高調波危険レベルしきい値を超えたとき、前記高調波異常発生源となる特定の前記負荷設備に動作遮断や出力調整等の制御指令を送出する制御指令発生手段を設けたことを特徴とする電力品質評価システム。
In the power quality evaluation system according to claim 7 ,
The distortion rate for each observation point is calculated, and when the distortion rate exceeds a predetermined harmonic danger level threshold value that is larger than the harmonic warning level threshold value, the harmonic abnormality generation source is specified. A power quality evaluation system comprising a control command generating means for sending a control command for shutting down operation or adjusting output to the load equipment.
JP2009059731A 2009-03-12 2009-03-12 Power quality evaluation system Expired - Fee Related JP5491751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059731A JP5491751B2 (en) 2009-03-12 2009-03-12 Power quality evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059731A JP5491751B2 (en) 2009-03-12 2009-03-12 Power quality evaluation system

Publications (2)

Publication Number Publication Date
JP2010213545A JP2010213545A (en) 2010-09-24
JP5491751B2 true JP5491751B2 (en) 2014-05-14

Family

ID=42973109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059731A Expired - Fee Related JP5491751B2 (en) 2009-03-12 2009-03-12 Power quality evaluation system

Country Status (1)

Country Link
JP (1) JP5491751B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693164B2 (en) * 2010-11-12 2015-04-01 三菱重工業株式会社 Power system and power system monitoring and control method
JP7038011B2 (en) * 2018-06-22 2022-03-17 株式会社日立製作所 Power system operation support device and method, and vibration suppression system
KR102560880B1 (en) * 2021-03-26 2023-07-31 옴니시스템 주식회사 Power supply system and power supply method for negative pressure container
CN115343579B (en) * 2022-10-20 2023-01-10 国网四川省电力公司电力科学研究院 Power grid fault analysis method and device and electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952355B2 (en) * 2000-12-28 2007-08-01 東京電力株式会社 Distribution system monitoring method
JP2004112325A (en) * 2002-09-18 2004-04-08 Chubu Electric Power Co Inc Method and apparatus for detecting fault in communication apparatus
JP2006050732A (en) * 2004-08-03 2006-02-16 Chubu Electric Power Co Inc Monitoring apparatus and method
JP5665250B2 (en) * 2007-02-07 2015-02-04 株式会社東芝 Power quality evaluation system
JP4802129B2 (en) * 2007-03-19 2011-10-26 株式会社東芝 Power quality evaluation system
JP4937205B2 (en) * 2008-07-22 2012-05-23 株式会社東芝 Power quality evaluation system

Also Published As

Publication number Publication date
JP2010213545A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4937205B2 (en) Power quality evaluation system
JP4751278B2 (en) Power quality monitoring system and method
US20130275813A1 (en) Method and system for use in condition monitoring
CN110210740A (en) A kind of distribution network reliability evaluation method considering power supply quality
JP5491751B2 (en) Power quality evaluation system
JP4802129B2 (en) Power quality evaluation system
KR20060038527A (en) The remote terminal unit for distribution automation that can be monitored electrical quality on realtime in distribution network
US9413173B2 (en) Power conversion device, control device for power conversion device, and control method for power conversion device
JP5418219B2 (en) High voltage insulation monitoring device
KR101144276B1 (en) Power quality monitoring system and method thereof
US20120077527A1 (en) Network event identification and method of operation
JP5395509B2 (en) Power quality evaluation system
JP5665250B2 (en) Power quality evaluation system
CN114252694A (en) System and method for monitoring energy related data in an electrical system
Guo et al. Evidence-based approach to power transmission risk assessment with component failure risk analysis
Stewart et al. Phasor Measurements for DistributionSystem Applications
Jalilian et al. Detection of short-term voltage disturbances and harmonics using μPMU-based variational mode extraction method
US20180024203A1 (en) Detection of electric power system anomalies in streaming measurements
Cho et al. A waveform distortion evaluation method based on a simple half-cycle RMS calculation
CN109884436A (en) Power capacitor complexes on-line monitoring method
JP5932880B2 (en) Equipment failure evaluation equipment
de Melo et al. Power Quality Monitoring using Synchronized Phasor Measurements: An approach based on hardware-in-the-loop simulations
JP2011122853A (en) Apparatus failure evaluation system
Kempner et al. Optimized monitoring of voltage sags in distribution systems caused by balanced and unbalanced short-circuits
Gupta et al. Intelligent wide area monitoring of power system oscillatory dynamics in real time

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R151 Written notification of patent or utility model registration

Ref document number: 5491751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees