JP4802129B2 - Power quality evaluation system - Google Patents

Power quality evaluation system Download PDF

Info

Publication number
JP4802129B2
JP4802129B2 JP2007071381A JP2007071381A JP4802129B2 JP 4802129 B2 JP4802129 B2 JP 4802129B2 JP 2007071381 A JP2007071381 A JP 2007071381A JP 2007071381 A JP2007071381 A JP 2007071381A JP 4802129 B2 JP4802129 B2 JP 4802129B2
Authority
JP
Japan
Prior art keywords
harmonic
power quality
harmonic generation
quality evaluation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007071381A
Other languages
Japanese (ja)
Other versions
JP2008236876A (en
Inventor
保博 田口
義博 竹井
勝彦 関口
真也 數澤
茂良 藤井
和太郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007071381A priority Critical patent/JP4802129B2/en
Publication of JP2008236876A publication Critical patent/JP2008236876A/en
Application granted granted Critical
Publication of JP4802129B2 publication Critical patent/JP4802129B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明は、電力系統に生じる高調波の発生要因を推定可能な電力品質評価システムに関する。   The present invention relates to a power quality evaluation system capable of estimating the generation factor of harmonics generated in a power system.

電力系統に生じる電圧変動、電圧不平衡、瞬時電圧低下等の電力品質の程度を測定または解析する電力品質測定装置または電力品質解析装置は実用化されている。また、伝送系を通じてこれらの測定または解析する電力品質測定装置または電力品質解析装置は実用化されている。  A power quality measuring apparatus or a power quality analyzing apparatus that measures or analyzes the degree of power quality such as voltage fluctuation, voltage imbalance, and instantaneous voltage drop occurring in a power system has been put into practical use. In addition, a power quality measuring apparatus or a power quality analyzing apparatus that measures or analyzes these through a transmission system has been put into practical use.

特許文献1は、電力品質悪化の発生確率、損害度から電力品質を評価するものである。   Patent document 1 evaluates electric power quality from the generation | occurrence | production probability and damage degree of electric power quality deterioration.

特許文献2は、電力品質悪化の発生確率、損害度を考慮し、から電力品質保証装置を導入した場合の電力品質を評価するものである。   Patent Document 2 evaluates the power quality when a power quality assurance device is introduced in consideration of the occurrence probability and the degree of damage of power quality deterioration.

特許文献3は、電力品質悪化の発生確率、損害度を考慮し、電力品質悪化要因を推定する機能を備えたものである。
特開2005−73346 特開2005−287238 特開2006−217709
Patent Document 3 has a function of estimating the power quality deterioration factor in consideration of the occurrence probability and the degree of damage of power quality deterioration.
JP-A-2005-73346 JP 2005-287238 A JP 2006-217709 A

特許文献1、2、3の電力品質評価システムは、電力系統に接続し、電力の供給を受ける需要家の電圧、電流等の電気的物理量を、伝送系を用いて収集し、電力品質の程度を評価するものである。   The power quality evaluation systems of Patent Documents 1, 2, and 3 are connected to an electric power system, collect electrical physical quantities such as voltage and current of consumers who receive power supply using a transmission system, and measure the degree of power quality. Is to evaluate.

しかしながら、電力系統に接続し、電力の供給を受ける需要家の電圧、電流等の電気的物理量を、伝送系等を用いて収集し、電力品質の一つである高調波の発生要因を推定可能な電力品質評価システムはない。   However, it can be connected to the power grid, and the electrical and physical quantities such as voltage and current of consumers who receive power supply can be collected using the transmission system, etc., and the generation factor of harmonics, which is one of the power quality, can be estimated There is no power quality evaluation system.

本発明は上述した事情を考慮してなされたもので、高調波の要因を推定可能な電力品質評価システムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide a power quality evaluation system capable of estimating a factor of harmonics.

上記目的を達成するため、請求項1に対応する発明は、電力系統の少なくとも1箇所以上で測定された電流及び電圧の少なくとも何れかを含む電気的物理量に基づき、前記電気的物理量の高調波成分を前記測定箇所毎に計算する高調波成分計算手段と、前記高調波を発生することが推定される複数の高調波発生機器の高調波成分を保存するデータベースと、前記高調波成分計算手段によって計算した各高調波成分を、前記データベースに保存された複数の高調波発生機器の高調波成分に対して重み係数を付加した合計値で近似し、前記近似した重み係数に基づき高調波発生源となる前記高調波発生機器の要因を推定可能な影響度計算手段とを備えた電力品質評価システムである。     In order to achieve the above object, the invention corresponding to claim 1 is based on an electrical physical quantity including at least one of a current and a voltage measured at at least one location of a power system, and a harmonic component of the electrical physical quantity. Calculated by the harmonic component calculating means, a database for storing the harmonic components of a plurality of harmonic generating devices estimated to generate the harmonic, and the harmonic component calculating means. Each harmonic component is approximated by a total value obtained by adding a weighting factor to the harmonic components of a plurality of harmonic generation devices stored in the database, and becomes a harmonic generation source based on the approximated weighting factor. It is an electric power quality evaluation system provided with the influence calculation means which can estimate the factor of the said harmonic generator.

本発明によれば、実測した電気的物理量に基づき高調波成分を計算し、この計算した高調波成分を、データベースに保存された複数の高調波発生機器の高調波成分に対して重み係数を付加した合計値で近似することで、高調波発生機器の要因を推定可能な電力品質評価システムを提供することができる。  According to the present invention, a harmonic component is calculated based on the measured electrical physical quantity, and a weighting factor is added to the calculated harmonic component to the harmonic components of a plurality of harmonic generators stored in the database. By approximating with the total value thus obtained, it is possible to provide a power quality evaluation system capable of estimating the factor of the harmonic generation device.

図1は、本発明による電力品質評価システムの適用例を示す概略図である。   FIG. 1 is a schematic diagram showing an application example of a power quality evaluation system according to the present invention.

電力品質評価システム1は、例えば電力系統(上位電力系統)32から受電して電気を使用する需要家50のフィーダ22と電気的に接続された負荷設備28に供給される電力の品質の一つである高調波の発生要因を分析するシステムである。   The power quality evaluation system 1 is, for example, one of the qualities of power supplied to a load facility 28 that is electrically connected to a feeder 22 of a consumer 50 that uses electricity by receiving power from a power system (upper power system) 32. This is a system for analyzing the generation factors of harmonics.

電力品質評価システム1は、例えば、ハードウェアとしてのコンピュータと電力の品質について高調波を発生要因を分析するソフトウェアとしてのプログラムとが協働することによって実現される。   The power quality evaluation system 1 is realized, for example, by the cooperation of a computer as hardware and a program as software for analyzing factors that generate harmonics in terms of power quality.

図1に示されるように、需要家50の母線30と電気的に接続されたフィーダ22に少なくとも電流および電圧を含む電気的物理量の情報(以下、電気物理量情報とする)12を取得する測定装置27が設置されている。電力品質評価システム1は、測定装置27から取得した電気的物理量の情報12に基づき、電流および電圧に高調波が重畳している場合、高調波発生機器の要因を推定する。   As shown in FIG. 1, a measuring device that acquires electrical physical quantity information (hereinafter referred to as electrical physical quantity information) 12 including at least current and voltage in a feeder 22 electrically connected to a bus 30 of a customer 50. 27 is installed. The power quality evaluation system 1 estimates the factor of the harmonic generation device based on the electrical physical quantity information 12 acquired from the measuring device 27 when the harmonic is superimposed on the current and voltage.

[第1の実施形態]
図2は、本発明の第1の電力品質評価システム1の構成および機能を示す概略図である。
[First Embodiment]
FIG. 2 is a schematic diagram showing the configuration and function of the first power quality evaluation system 1 of the present invention.

図2に示す様に、図1に示す測定装置27により電力系統32の少なくとも1箇所以上で測定された電流及び電圧の少なくとも何れかを含む電気的物理量情報12に基づき、電気的物理量の高調波成分を測定箇所毎に計算する高調波成分計算手段2を備えている。   As shown in FIG. 2, the harmonics of the electrical physical quantity are based on the electrical physical quantity information 12 including at least one of the current and the voltage measured by at least one location of the power system 32 by the measuring device 27 shown in FIG. Harmonic component calculation means 2 for calculating components for each measurement location is provided.

更に、高調波成分計算手段2によって得られた高調波成分の計算結果(以下実測高調波成分計算結果6)を保存する実測高調波成分保存手段3を備えている。   Furthermore, a measured harmonic component storage means 3 for storing a calculation result (hereinafter referred to as measured harmonic component calculation result 6) of the harmonic component obtained by the harmonic component calculation means 2 is provided.

また、高調波を発生することが推定される機器の高調波成分(以下高調波発生機器高調波成分7)を蓄えたデータベース(以下高調波発生機器データベース11)を備えている。そして、実測高調波成分保存手段3によって保存された実測高調波成分結果6をベクトル要素とするベクトル(以下実測高調波ベクトル60)を、高調波発生機器高調波成分7をベクトル要素とするベクトル(以下高調波発生機器高調波ベクトル61)の重み付け係数(以下発生機器高調波重み係数62)を付加したベクトル和の近似式で表したとき、この重み付け係数(以下高調波影響度10)を計算する高調波影響度計算手段8を備えている。   In addition, a database (hereinafter referred to as harmonic generation device database 11) storing harmonic components (hereinafter referred to as harmonic generation device harmonic components 7) of devices estimated to generate harmonics is provided. Then, a vector having the measured harmonic component result 6 stored by the measured harmonic component storage means 3 as a vector element (hereinafter, measured harmonic vector 60) and a vector having the harmonic generator harmonic component 7 as a vector element (hereinafter referred to as a vector element). The weighting coefficient (hereinafter referred to as harmonic influence degree 10) is calculated when expressed by an approximate expression of a vector sum to which a weighting coefficient (hereinafter referred to as generating equipment harmonic weighting coefficient 62) of harmonic generation equipment harmonic vector 61) is added. Harmonic influence degree calculation means 8 is provided.

高調波影響度10が高いものを、実測された高調波の主要因と推定する高調波要因推定手段9を備え、高調波要因推定手段9は、推定された高調波の主要因を高調波要因推定結果20として出力する。   Harmonic factor estimation means 9 for estimating a harmonic influence factor of 10 as a main factor of the actually measured harmonic is provided, and the harmonic factor estimation means 9 converts the estimated main factor of the harmonic into a harmonic factor. Output as an estimation result 20.

図3は図1の測定装置27が実測した電気的物理量12の波形の一例として、線間2相分の電圧波形を示す図である。 例えば、電力品質評価システム1では、図3に示されるような電気的物理量の波形を表す情報を取得し、取得した波形の情報に基づいて高調波成分計算手段2が高調波成分の算出を行う。     FIG. 3 is a diagram showing voltage waveforms for two phases between lines as an example of the waveform of the electrical physical quantity 12 actually measured by the measuring device 27 of FIG. For example, in the power quality evaluation system 1, information representing the waveform of the electrical physical quantity as shown in FIG. 3 is acquired, and the harmonic component calculation means 2 calculates the harmonic component based on the acquired waveform information. .

ここで、図3に示されるグラフの横軸は時間であり、縦軸は電圧である。また、Vabとは3相(a相、b相およびc相)のa相とb相間の線間電圧をいい、Vbcとはb相とc相間の線間電圧をいう。   Here, the horizontal axis of the graph shown in FIG. 3 is time, and the vertical axis is voltage. Vab is a line voltage between a phase and b phase of three phases (a phase, b phase and c phase), and Vbc is a line voltage between b phase and c phase.

図4は図2の高調波成分計算手段2の一例である。 電気的物理量情報12を入力し、電気的物理量情報12に含まれる高調波の次数毎の成分を計算する。この場合、高調波の次数毎の成分を計算する手法としては、最も一般的な手法としてFFT(高速フーリェ変換)が知られている。実施形態では、FFT処理部02で計算するものとする。   FIG. 4 shows an example of the harmonic component calculation means 2 of FIG. The electrical physical quantity information 12 is input, and a component for each harmonic order included in the electrical physical quantity information 12 is calculated. In this case, FFT (Fast Fourier Transform) is known as the most general method for calculating components for each harmonic order. In the embodiment, the FFT processing unit 02 calculates.

ここで、FFT処理部02について説明する。高調波は、一定の周期を持つ、周期の違う正弦波の集まりとして表される。基本波を一次とすると、周期が基本波の1/2(周波数は2倍)を2次、周期が基本波の1/3(周波数は3倍)を3次、1/n(周波数はn倍)をn次と呼ぶ。商用周波数に高調波が入ると、商用周波数は歪んでいると呼ばれ、高調波成分はフーリェ変換等で求めることができる。観測データがサンプリング値である場合、これから高調波成分を求める場合は離散型フーリェ変換と呼ばれる手法が用いられている。この離散型フーリェ変換を高速に解けるように改良した手法は、高速フーリェ変換(Fast Fourier Transformation:FFT)と呼ばれ、高調波解析において最も汎用的な手法となっている。)
このようにしてFFT処理部02により、得られた実測高調波成分6を出力する。
Here, the FFT processing unit 02 will be described. Harmonics are represented as a collection of sine waves with a constant period and different periods. Assuming that the fundamental wave is primary, the period is 1/2 of the fundamental wave (frequency is twice), the period is 1/3 of the fundamental wave (frequency is 3 times), the third order, and 1 / n (frequency is n Times) is called the nth order. When a harmonic enters the commercial frequency, the commercial frequency is called distorted, and the harmonic component can be obtained by Fourier transform or the like. When the observation data is a sampling value, a technique called discrete Fourier transform is used to obtain a harmonic component from this. A method improved so that the discrete Fourier transform can be solved at high speed is called fast Fourier transformation (FFT), and is the most general-purpose method in harmonic analysis. )
In this way, the FFT processing unit 02 outputs the actually measured harmonic component 6 obtained.

図5は高調波成分計算手段2で計算された実測高調波成分結果6の例である。   FIG. 5 is an example of the measured harmonic component result 6 calculated by the harmonic component calculation means 2.

図3に示された電気的物理量12を、高調波成分計算手段2にあるFFTを使って、高調波の次数毎の成分を計算した例である。この例では、Vab、Vbcの高調波含有率を示している。縦軸が高調波含有率、横軸が高調波の次数である。高調波含有率は、高調波の次数毎に計算され、式(1)で計算される。   This is an example in which the electrical physical quantity 12 shown in FIG. 3 is calculated for each harmonic order using the FFT in the harmonic component calculation means 2. In this example, the harmonic content of Vab and Vbc is shown. The vertical axis represents the harmonic content, and the horizontal axis represents the harmonic order. The harmonic content rate is calculated for each order of the harmonics, and is calculated using Equation (1).

高調波含有率(次数) = 高調波の大きさ(次数)÷ 基本波の大きさ (1)
高調波発生機器データベース11には、高調波発生機器21の高調波発生機器高調波成分7が蓄えられている。
Harmonic content (order) = Harmonic magnitude (order) ÷ Fundamental wave magnitude (1)
The harmonic generation device database 11 stores the harmonic generation device harmonic component 7 of the harmonic generation device 21.

図6乃至図9は高調波発生機器データベース11に蓄えられた高調波発生機器高調波成分7の例である。   FIGS. 6 to 9 show examples of the harmonic generator harmonic component 7 stored in the harmonic generator database 11.

図6は電力変換装置(6相)、図7はアーク炉、図8はエアコン、図9は一般照明の例であり、図6〜図9においてそれぞれ縦軸が高調波含有率を示し、横軸が高調波の次数を示している。   6 shows an example of a power converter (6-phase), FIG. 7 shows an arc furnace, FIG. 8 shows an air conditioner, and FIG. 9 shows an example of general illumination. In FIGS. The axis indicates the harmonic order.

図10は図2の高調波成分影響度計算手段8の説明するための概略図である。   FIG. 10 is a schematic diagram for explaining the harmonic component influence calculation means 8 of FIG.

高調波成分影響度計算手段8は、規格化計算手段13と、影響度計算手段14を備えている。規格化計算手段13では、実測高調波成分計算結果6の高調波成分の合計が1になる様に規格化する。式(2)は規格化後のj次の成分を示す。

Figure 0004802129
The harmonic component influence degree calculation means 8 includes a normalization calculation means 13 and an influence degree calculation means 14. The normalization calculation means 13 performs normalization so that the sum of the harmonic components of the actually measured harmonic component calculation result 6 is 1. Equation (2) represents the j-th order component after normalization.
Figure 0004802129

実測高調波成分計算結果6の規格化後の値を規格化実測高調波成分計算結果19と、高調波発生機器データベース11にある高調波発生機器高調波成分7の規格化後の値を規格化高調波発生機器高調波成分15とする。   Standardize the value after normalization of the measured harmonic component calculation result 6 Normalize the measured harmonic component calculation result 19 and the normalized value of the harmonic generation device harmonic component 7 in the harmonic generation device database 11 A harmonic generation device harmonic component 15 is assumed.

影響度計算手段14は、実側高調波成分をベクトル要素とする実側高調波ベクトル60で表したとき、機器データベースの機器の高調波成分をベクトル要素とする重み係数62を付加したベクトル61の、ベクトル和での近似式で実測高調波の高調波ベクトルを表したとき、重み係数(高調波影響度)62を計算する。   When the influence level calculation means 14 is represented by the real side harmonic vector 60 having the real side harmonic component as a vector element, the influence degree calculating means 14 is a vector 61 to which a weighting coefficient 62 having the harmonic component of the equipment in the equipment database as a vector element is added. When the harmonic vector of the actually measured harmonic is represented by an approximate expression using a vector sum, a weighting coefficient (harmonic influence degree) 62 is calculated.

図11は高調波成分規格化を説明するための図である。ここで、図10の高調波発生機器データベース11にある高調波発生機器高調波成分7と、実測高調波成分計算結果6の高調波計算最大次数が一致してない場合もある。例えば、高調波発生機器高調波成分7の最大次数が25次で、高調波発生機器高調波成分7の最大次数がば20次までしかない場合は、規格する最大次数を一致させ、規格化は両方とも20次までで行う。この場合式(2)の分母は規格化前の高調波成分の20次までの合計値となる。   FIG. 11 is a diagram for explaining the harmonic component normalization. Here, the harmonic generation device harmonic component 7 in the harmonic generation device database 11 of FIG. 10 may not match the harmonic calculation maximum order of the actually measured harmonic component calculation result 6. For example, when the maximum order of the harmonic generation device harmonic component 7 is 25th order and the maximum order of the harmonic generation device harmonic component 7 is only 20th order, the standardized maximum order is matched, Both are performed up to the 20th order. In this case, the denominator of Equation (2) is the total value up to the 20th order of the harmonic components before normalization.

次に、影響度計算手段14の機能を図12を参照して説明する。   Next, the function of the influence calculation means 14 will be described with reference to FIG.

影響度計算手段14では、実測高調波ベクトル60を、発生機器高調波重み係数62を付加した高調波発生機器高調波ベクトル61のベクトル和で近似するための、発生機器高調波重み係数62を算出する。   The influence degree calculation means 14 calculates a generator harmonic weight coefficient 62 for approximating the measured harmonic vector 60 with the vector sum of the harmonic generator harmonic vector 61 to which the generator harmonic weight coefficient 62 is added. To do.

実測高調波成分計算結果6の規格化後の値(以下規格化実測高調波成分計算結果19)をベクトル要素とする実測高調波ベクトル60を、高調波発生機器データベース11にある高調波発生機器高調波成分7の規格化後の値(以下規格化高調波発生機器高調波成分15)を要素とする高調波発生機器高調波ベクトル61に発生機器高調波重み係数62を付加したベクトル和で近似するための発生機器高調波重み係数62を計算する。   The measured harmonic vector 60 having the normalized value of the measured harmonic component calculation result 6 (hereinafter referred to as the normalized measured harmonic component calculation result 19) as a vector element is used as a harmonic generator harmonic in the harmonic generator database 11. The harmonic component 61 is approximated by a vector sum obtained by adding the generating device harmonic weight coefficient 62 to the harmonic generating device harmonic vector 61 having the normalized value of the wave component 7 (hereinafter referred to as the normalized harmonic generating device harmonic component 15) as an element. A generator harmonic weighting factor 62 is calculated for this purpose.

式(3)は、実測高調波ベクトル60の近似式の例である。この例はn個の高調波発生機器高調波ベクトルの線形和で実測高調波ベクトル60を近似した例である。

Figure 0004802129
Expression (3) is an example of an approximate expression of the actually measured harmonic vector 60. In this example, the actually measured harmonic vector 60 is approximated by a linear sum of n harmonic generator harmonic vectors.
Figure 0004802129

式(3)で、Ajは、j番目の高調波発生機器高調波ベクトル61(高調波発生機器高調波ベクトル61−j)の発生機器高調波重み係数62である。   In Expression (3), Aj is the generator harmonic weight coefficient 62 of the j-th harmonic generator harmonic vector 61 (harmonic generator harmonic vector 61-j).

実測高調波ベクトル60のベクトル要素を2次から20次までの規格化実測高調波成分計算結果19、高調波発生機器高調波ベクトル61のベクトル要素を2次から20次までの規格化高調波発生機器高調波成分15とし、ベクトル形式で表すと、式(3)は式(4)で表される。

Figure 0004802129
Normalization of the measured harmonic vector 60 from the second to twentieth standardized harmonic component calculation result 19, and generation of the harmonic element 61 from the second harmonic to the twentieth standardized harmonic generation When the device harmonic component 15 is represented in a vector format, the equation (3) is represented by the equation (4).
Figure 0004802129

次に、発生機器高調波重み係数62の求め方を説明する。実測高調波ベクトル60のi次の成分をHMi、式(4)の右辺で表される近似式のi次の成分をhmiとすると、式(4)の右辺で表される近似式は式(5)で表される。

Figure 0004802129
Next, how to determine the generator harmonic weight coefficient 62 will be described. Assuming that the i-order component of the measured harmonic vector 60 is HMi and the i-order component of the approximate expression represented by the right side of Expression (4) is hmi, the approximate expression represented by the right side of Expression (4) is the expression ( 5).
Figure 0004802129

発生機器高調波重み係数62を、実測高調波ベクトル60で表される実測値と、式(5)で表される近似値(以下実測高調波近似値ベクトル63)の誤差が最小となるように発生機器高調波重み係数62を求めるものとする。   The generator harmonic weighting coefficient 62 is set so that the error between the actual measurement value represented by the actual harmonic vector 60 and the approximate value represented by the equation (5) (hereinafter, the actual harmonic approximation vector 63) is minimized. The generator harmonic weighting coefficient 62 is obtained.

実測高調波ベクトル60の要素と、実測高調波近似値ベクトル63の要素の差分の二乗の合計値を最小化する発生機器高調波重み係数62を求めるものとする。この手法は最小二乗法と呼ばれ、最も誤差が小さくなる近似式を求める一般的な手法である。   The generator harmonic weighting coefficient 62 that minimizes the sum of the squares of the differences between the elements of the measured harmonic vector 60 and the elements of the measured harmonic approximate value vector 63 is obtained. This method is called a least square method, and is a general method for obtaining an approximate expression with the smallest error.

実測高調波ベクトル60の要素と、実測高調波近似値ベクトル63の要素の差分の二乗の合計値をSとすると、Sは式(6)で表される。

Figure 0004802129
Assuming that the sum of the squares of the differences between the elements of the measured harmonic vector 60 and the elements of the measured harmonic approximate value vector 63 is S, S is expressed by Expression (6).
Figure 0004802129

誤差を最小二乗法で最小化するには、式(6)を各の発生機器高調波重み係数62で偏微分し、これらが零となる発生機器高調波重み係数62を求めることが必要となる。   In order to minimize the error by the least square method, it is necessary to partially differentiate Equation (6) with each generator harmonic weight coefficient 62 to obtain the generator harmonic weight coefficient 62 at which these become zero. .

j番目の発生機器高調波重み係数62で偏微分すると式(7)となる。

Figure 0004802129
When partial differentiation is performed with the j-th generator harmonic weighting coefficient 62, Equation (7) is obtained.
Figure 0004802129

式(7)を展開すると式(8)となる。

Figure 0004802129
When formula (7) is expanded, formula (8) is obtained.
Figure 0004802129

式(8)を零とおき、各の発生機器高調波重み係数62で式(8)を計算し、行列形式で表すと式(9)となる。

Figure 0004802129
When equation (8) is set to zero, equation (8) is calculated with each generator harmonic weighting coefficient 62 and expressed in matrix form, equation (9) is obtained.
Figure 0004802129

式(9)右辺行列は各要素はΣHSki×HSji (k列j行またはj列k行)、ΣHSji×HSji (j列j行の対角成分)の対称行列である。   The right-side matrix of the equation (9) is a symmetric matrix of ΣHSki × HSji (k columns j rows or j columns k rows) and ΣHSji × HSji (diagonal components of j columns j rows).

式(9)右辺行列は高調波次数の数≧高調波発生機器の数 であれば正則行列(Non−Singular Matrix)となり逆行列を計算ができ、即ち各の発生機器高調波重み係数62が計算できる。   The right side matrix of Equation (9) is a regular matrix (Non-Singular Matrix) if the number of harmonic orders ≥ the number of harmonic generators, and the inverse matrix can be calculated, that is, each generator harmonic weight coefficient 62 is calculated. it can.

図12は影響度計算手段14を説明するための概略図であり、影響度計算手段14は高調波発生機器選出手段65と、発生機器高調波重み係数計算手段66と、有意性判定手段67を備えている。   FIG. 12 is a schematic diagram for explaining the influence degree calculation means 14. The influence degree calculation means 14 includes a harmonic generation equipment selection means 65, a generation equipment harmonic weight coefficient calculation means 66, and a significance determination means 67. I have.

高調波発生機器選出手段65は、サンプルとする高調波発生機器を選出する。   The harmonic generator selection unit 65 selects a harmonic generator to be used as a sample.

発生機器高調波重み係数計算手段66では、式(3)〜式(9)で説明した手順で、
発生機器高調波重み係数62を計算する。
In the generator harmonic weight coefficient calculation means 66, the procedure described in the equations (3) to (9)
A generator harmonic weighting coefficient 62 is calculated.

次に、有意性判定手段67で発生機器高調波重み係数62の有意性を判定する。   Next, the significance determination means 67 determines the significance of the generated equipment harmonic weighting coefficient 62.

有意性とは発生機器高調波重み係数62の物理的な意味が高いかの度合いである。   Significance is the degree to which the physical meaning of the generator harmonic weighting coefficient 62 is high.

ここで、有意性の藩邸は以下のように行う。   Here, the significant residence is performed as follows.

(1)有意性判定1
有意性判定の一つとして、式(6)を用いた誤差判定がある。
(1) Significance judgment 1
As one of the significance determinations, there is an error determination using Expression (6).

誤差判定用の判定基準εをつくり、式(10)に示す様にこれを誤差判定に用いる。   An error determination criterion ε is created and used for error determination as shown in equation (10).

S= Σ (HMi −hmi) < ε (10)
(2)有意性判定2
有意性判定の別の一つとして、発生機器高調波重み係数62の正負判定がある。発生機器高調波重み係数62が負の場合は、物理的な意味が乏しく省いていく必要がある。
影響度計算手段14では、有意性判定1、有意性判定2を満たすような発生機器高調波重み係数62を見つけていく。
S = Σ (HMi−hmi) 2 <ε (10)
(2) Significance determination 2
As another significance determination, there is a positive / negative determination of the generator harmonic weighting coefficient 62. When the generator harmonic weighting coefficient 62 is negative, it has little physical meaning and needs to be omitted.
The influence degree calculation means 14 finds a generator harmonic weighting coefficient 62 that satisfies significance determination 1 and significance determination 2.

有意性判定1で有意性がNoの場合は、発生機器高調波重み係数62が最も小さな高調波発生機器を除くように、高調波発生機器選出手段65でサンプルとする高調波発生機器を選出する。    When the significance is 1 in the significance determination 1, the harmonic generator to be sampled is selected by the harmonic generator selection means 65 so as to exclude the harmonic generator having the smallest generator harmonic weight coefficient 62. .

有意性判定2で有意性がNoの場合は、発生機器高調波重み係数62が負となった高調波発生機器を除くように、高調波発生機器選出手段65でサンプルとする高調波発生機器を選出する。    If the significance is 2 in the significance determination 2, harmonic generators that are sampled by the harmonic generator selection means 65 are excluded so as to exclude harmonic generators for which the generator harmonic weight coefficient 62 is negative. elect.

有意性判定68で有意性がYesとなると、高調波影響度10を出力する。   When the significance is determined as Yes in the significance determination 68, the harmonic influence degree 10 is output.

高調波影響度10とは、有意性判定68で有意性がYesとなったときの、発生機器高調波重み係数62である。   The harmonic influence degree 10 is the generated equipment harmonic weight coefficient 62 when the significance is determined to be Yes in the significance determination 68.

図13は、図2の高調波要因推定手段9を説明するための概略図であり、これは影響度並び替え手段17と高調波要因抽出手段03とからなる。影響度並び替え手段17は、高調波影響度10例えば発生機器高調波重み係数62をもとに高調波発生機器を並び替える手段である。例えば、発生機器高調波重み係数62、具体的には高調波発生機器高調波成分7の高いものから順に並び替える。     FIG. 13 is a schematic diagram for explaining the harmonic factor estimating means 9 of FIG. 2, which comprises an influence degree rearranging means 17 and a harmonic factor extracting means 03. The influence degree rearranging means 17 is means for rearranging the harmonic generation equipment based on the harmonic influence degree 10, for example, the generation equipment harmonic weighting coefficient 62. For example, the components are rearranged in order from the highest in the generator harmonic weight coefficient 62, specifically, in the highest harmonic generator harmonic component 7.

高調波要因抽出手段03は、発生機器高調波重み係数62の高いものから順に並び替えられた高調波発生機器、具体的には高調波要因と思われる発生機器高調波成分7を抽出し、この中から、高調波要因と推定されるものを高調波要因推定結果20として出力する。     The harmonic factor extraction means 03 extracts the harmonic generators rearranged in descending order of the generator harmonic weight coefficient 62, specifically, the generator harmonic component 7 that seems to be a harmonic factor. What is estimated to be a harmonic factor from among them is output as a harmonic factor estimation result 20.

図14は、発生機器高調波重み係数62と高調波発生機器21の関係を説明するための図である。式(11)に示す様に、発生機器高調波重み係数割合69を発生機器高調波重み係数62の総和に対する発生機器高調波重み係数62の割合とする。     FIG. 14 is a diagram for explaining the relationship between the generator harmonic weighting coefficient 62 and the harmonic generator 21. As shown in the equation (11), the generator harmonic weight coefficient ratio 69 is the ratio of the generator harmonic weight coefficient 62 to the sum of the generator harmonic weight coefficients 62.

発生機器高調波重み係数割合69=
発生機器高調波重み係数62÷発生機器高調波重み係数62の総和
(11)
発生機器高調波重み係数割合69の高いものから左から並べると、図14の様に、発生機器高調波重み係数62が100%から0%の間に収まることが分かる。
Generator harmonic weighting factor ratio 69 =
Generating equipment harmonic weighting coefficient 62 ÷ Total sum of generating equipment harmonic weighting coefficient 62
(11)
When the generator harmonic weight coefficient ratio 69 is arranged from the left in order from the left, it can be seen that the generator harmonic weight coefficient 62 falls between 100% and 0% as shown in FIG.

よって、図14の様に、高調波要因抽出閾値18を設け、高調波要因抽出閾値18より発生機器高調波重み係数割合69が高い高調波発生機器21を高調波要因として抽出することが可能である。   Therefore, as shown in FIG. 14, it is possible to provide a harmonic factor extraction threshold 18 and extract a harmonic generator 21 having a higher generation device harmonic weight coefficient ratio 69 than the harmonic factor extraction threshold 18 as a harmonic factor. is there.

高調波要因推定結果20としては、図14において高調波要因抽出閾値18より上にある、高調波発生機器高調波成分7または高調波発生機器21を出力する。なお、高調波要因抽出閾値18を零に設定すると全ての要因の高調波発生機器21を出力することになる。     As the harmonic factor estimation result 20, the harmonic generation device harmonic component 7 or the harmonic generation device 21 that is above the harmonic factor extraction threshold 18 in FIG. 14 is output. Note that when the harmonic factor extraction threshold 18 is set to zero, the harmonic generators 21 of all factors are output.

以上述べた第1の実施形態の電力品質評価システムによれば、電力系統に接続し、電力の供給を受ける需要家の電圧、電流等の電気的物理量を、伝送系等を用いて収集し、電力品質の一つである高調波の発生要因を推定することができる
[第2の実施形態]
図15は本発明の第2の実施形態に係る電力品質評価システム1の構成及び機能を説明するための概略図である。図2の実施形態の高調波影響度計算手段8の出力側に設けてある、高周波要因推定手段9を設けず、この代わりに結果表示手段23を設けた点を除けば、図2と同一である。
According to the power quality evaluation system of the first embodiment described above, the electrical physical quantities such as the voltage and current of the consumer who is connected to the power system and receives power supply are collected using the transmission system and the like, A factor of generation of harmonics, which is one of power quality, can be estimated [second embodiment]
FIG. 15 is a schematic diagram for explaining the configuration and functions of the power quality evaluation system 1 according to the second embodiment of the present invention. 2 except that the high frequency factor estimating means 9 provided on the output side of the harmonic influence degree calculating means 8 of the embodiment of FIG. 2 is not provided and a result display means 23 is provided instead. is there.

結果表示手段23としては、例えば、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)、またはPDP(Plasma Display Panel)等のユーザへ評価結果を視覚的に表示する手段である。表示手段12は、高調波要因推定結果17を受け取ると、高調波要因推定結果17の内容を画像表示する。 The result display means 23 is a means for visually displaying an evaluation result to a user such as a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or a PDP (Plasma Display Panel). When receiving the harmonic factor estimation result 17, the display unit 12 displays the content of the harmonic factor estimation result 17 as an image.

尚、図15に示される電力品質評価システム1は、高調波要因推定結果をユーザが認識できる形式で出力する出力手段としての表示手段23を具備しているが、表示手段23の代わりに、例えば、印字手段等の他の出力手段を具備していても構わない。   The power quality evaluation system 1 shown in FIG. 15 includes a display unit 23 as an output unit that outputs a harmonic factor estimation result in a format that can be recognized by the user. Instead of the display unit 23, for example, Other output means such as printing means may be provided.

このような構成の電力品質評価システム1にあっては、次のような作用効果が得られる。すなわち、高調波成分計算手段2において実測高調波成分計算結果6を計算し、高調波影響度計算手段8において、高調波発生機器21毎の高調波影響度10を計算した後、結果表示手段23において、高調波発生機器21毎の高調波影響度10を表示する。これを一定時間毎に繰り返す。  In the power quality evaluation system 1 having such a configuration, the following effects can be obtained. That is, the actual harmonic component calculation result 6 is calculated in the harmonic component calculation means 2, the harmonic influence degree 10 for each harmonic generation device 21 is calculated in the harmonic influence calculation means 8, and then the result display means 23. The harmonic influence degree 10 for each harmonic generation device 21 is displayed. This is repeated at regular intervals.

図16は図15に係る結果表示手段23における高調波発生機器21毎の高調波影響度10の表示例であり、縦軸は高調波影響度10、横軸は時間を示している。図16の例は一日24時間分の表示例である。図16の例では、高調波発生機器21として、インバータ付モーターA、インバータ付モーターB、エアコン又は照明の高調波影響度10を一日24時間分プロットしてある。   FIG. 16 is a display example of the harmonic influence degree 10 for each harmonic generation device 21 in the result display means 23 shown in FIG. 15, where the vertical axis indicates the harmonic influence degree 10 and the horizontal axis indicates time. The example of FIG. 16 is a display example for 24 hours a day. In the example of FIG. 16, the harmonic influence degree 10 of the motor A with inverter, the motor B with inverter, the air conditioner, or the illumination is plotted for 24 hours a day as the harmonic generator 21.

[第3の実施形態]
図17は本発明の第3の実施形態に係る電力品質評価システム1Aの構成及び機能を説明するための概略図である。図2の実施形態の、高調波成分計算手段2を高調波成分計算手段2Aに代え、かつ高調波影響度計算手段8の出力側に設けてある、高周波要因推定手段9を設けず、この代わりに高周波要因推定手段9Aを設け、高周波要因推定手段9Aの出力側にアラーム発生手段37を設けた点を除けば、図2と同一である。
[Third Embodiment]
FIG. 17 is a schematic diagram for explaining the configuration and functions of a power quality evaluation system 1A according to the third embodiment of the present invention. In the embodiment of FIG. 2, the harmonic component calculation means 2 is replaced with the harmonic component calculation means 2A, and the high frequency factor estimation means 9 provided on the output side of the harmonic influence calculation means 8 is not provided. 2 except that a high-frequency factor estimating means 9A is provided and an alarm generating means 37 is provided on the output side of the high-frequency factor estimating means 9A.

高調波成分計算手段2Aは、この内部に図18に示す様にFFT処理部02と、電流方向計算手段24を備えたものである。また、高調波要因推定手段9Aの中に図22に示す高調波発生源特定ロジック36を備えている。   The harmonic component calculation unit 2A includes an FFT processing unit 02 and a current direction calculation unit 24 as shown in FIG. Further, a harmonic generation source specifying logic 36 shown in FIG. 22 is provided in the harmonic factor estimating means 9A.

高調波要因推定手段9Aにより、高調波発生源40が特定され、高調波発生機器21が特定されたので、高調波の程度が大きい場合は、原因となる高調波発生源40と、高調波発生機器21にアラーム発生手段37によりアラーム38を出す。図17の場合は、エネルギー系を集中管理している中央監視制御センター39へアラーム38を出す例を示している。   Since the harmonic generation source 40 is specified by the harmonic factor estimating means 9A and the harmonic generation device 21 is specified, when the degree of harmonics is large, the harmonic generation source 40 that causes the harmonic generation and the harmonic generation An alarm 38 is output to the device 21 by the alarm generation means 37. In the case of FIG. 17, an example is shown in which an alarm 38 is issued to the central monitoring control center 39 that centrally manages the energy system.

図18は本発明に係る電流方向計算手段24の説明図である。電流方向計算手段24では電流の向きを計算する。実測高調波成分計算結果6には高調波電流の向きをも記録する。図17の高調波要因推定結果20においては、高調波要因となる高周波発生機器21からの電流の向きまでを表示する。   FIG. 18 is an explanatory diagram of the current direction calculation means 24 according to the present invention. The current direction calculation means 24 calculates the direction of current. The measured harmonic component calculation result 6 also records the direction of the harmonic current. In the harmonic factor estimation result 20 of FIG. 17, the current direction from the high-frequency generator 21 that is a harmonic factor is displayed.

図19は図18に係る電流方向計算手段24の機能を説明するための図である。電圧ベクトル25はある次数nの高調波電圧のベクトルである。ある次数nの高調波電流のベクトルを電流ベクトル26とすると、電圧ベクトル25からみた電流ベクトル26の遅れ、進みが90度以内であれば、電流ベクトル26は、電圧ベクトル25と向きは同方向とする。逆に、遅れ、進みが90度を超えていれば、電流ベクトル26は、電圧ベクトル25と向きは逆方向とする。図19の例では、電圧ベクトル25に対し、電流ベクトル26A、電流ベクトル26Bは同方向、電流ベクトル26C、電流ベクトル26Dは逆方向である。   FIG. 19 is a diagram for explaining the function of the current direction calculation means 24 according to FIG. The voltage vector 25 is a harmonic voltage vector of a certain order n. Assuming that a vector of a harmonic current of a certain order n is a current vector 26, if the delay and advance of the current vector 26 with respect to the voltage vector 25 are within 90 degrees, the current vector 26 has the same direction as the voltage vector 25. To do. Conversely, if the delay and advance exceed 90 degrees, the direction of the current vector 26 is opposite to that of the voltage vector 25. In the example of FIG. 19, with respect to the voltage vector 25, the current vector 26A and the current vector 26B are in the same direction, and the current vector 26C and the current vector 26D are in the opposite direction.

図20は図17の実施形態に係る高調波発生源特定方法を説明するための系統図である。図20に示す様に、上位系統32から電力を供給し、送電線29A、母線30、送電線29B、送電線29C、負荷設備28B、負荷設備28Cで構成される系統を考える。   FIG. 20 is a system diagram for explaining a harmonic generation source specifying method according to the embodiment of FIG. As shown in FIG. 20, a system is considered in which power is supplied from the host system 32 and is composed of a power transmission line 29A, a bus 30, a power transmission line 29B, a power transmission line 29C, a load facility 28B, and a load facility 28C.

送電線29Aには測定装置27Aが設置され、送電線29Aの電気的物理量12(電圧、電流)を伝送系31Aを通じて電力品質評価システム1に取り込む。同様に、送電線29Bには測定装置27Bが設置され、送電線29Bの電気的物理量12(電圧、電流)を伝送系31Bを通じて電力品質評価システム1に取り込む。更に、送電線29Cには測定装置27Cが設置され、送電線29Cの電気的物理量12(電圧、電流)を伝送系31Cを通じて電力品質評価システム1に取り込む。 A measuring device 27A is installed in the power transmission line 29A, and the electrical physical quantity 12 (voltage, current) of the power transmission line 29A is taken into the power quality evaluation system 1 through the transmission system 31A. Similarly, a measuring device 27B is installed in the power transmission line 29B, and the electrical physical quantity 12 (voltage, current) of the power transmission line 29B is taken into the power quality evaluation system 1 through the transmission system 31B. Further, a measuring device 27C is installed on the transmission line 29C, and the electrical physical quantity 12 (voltage, current) of the transmission line 29C is taken into the power quality evaluation system 1 through the transmission system 31C.

電力品質評価システム1では、測定装置27A、測定装置27B、測定装置27Cから得た、電気的物理量12をもとに、送電線29A、送電線29B、送電線29Cを流れる電流の高調波要因推定結果20(図15参照)を出力する。送電線29A、送電線29B、送電線29Cを流れる電流の高調波要因推定結果20をそれぞれ、高調波要因推定結果20A、高調波要因推定結果20B、高調波要因推定結果20Cとする。高調波要因推定結果20Aには送電線29Aを流れる高調波の要因となる高調波発生機器21と向き、高調波要因推定結果20Bには送電線29Bを流れる高調波の要因となる高調波発生機器21と向き、高調波要因推定結果20Cには送電線29Cを流れる高調波の要因となる高調波発生機器21と向き、が出力される。   In the power quality evaluation system 1, harmonic factor estimation of current flowing through the transmission line 29A, the transmission line 29B, and the transmission line 29C is performed based on the electrical physical quantity 12 obtained from the measurement apparatus 27A, the measurement apparatus 27B, and the measurement apparatus 27C. The result 20 (see FIG. 15) is output. The harmonic factor estimation result 20 of the current flowing through the transmission line 29A, the transmission line 29B, and the transmission line 29C is set as a harmonic factor estimation result 20A, a harmonic factor estimation result 20B, and a harmonic factor estimation result 20C, respectively. The harmonic factor estimation result 20A is directed to the harmonic generation device 21 that causes a harmonic flowing in the transmission line 29A, and the harmonic factor estimation result 20B is a harmonic generation device that causes a harmonic flowing in the transmission line 29B. 21, and the harmonic factor estimation result 20 </ b> C is output with the harmonic generation device 21 and the direction that cause the harmonic flowing through the transmission line 29 </ b> C.

図21は本発明の図17の実施形態に係る高調波発生源特定方法の説明のための高調波発生源と高調波電流の関係の説明図である。例えば、負荷設備28Bに高調波発生源があると、この高調波発生源により高調波電流33は、送電線29B、母線30を通り、送電線29Aを通って上位系統32に流れ込むか、送電線29Cを通って負荷設備28Cに流れ込む。このとき、測定装置27A、測定装置27B、測定装置27Cを通じて、電力品質評価システム1は送電線29A、送電線29B、送電線29Cを流れる高調波電流33の向きが分かるから、送電線29A、送電線29B、送電線29Cの高調波電流33の向きから、高調波発生源が、負荷設備28Bであることを推定できる。   FIG. 21 is an explanatory diagram of the relationship between the harmonic generation source and the harmonic current for explaining the harmonic generation source specifying method according to the embodiment of FIG. 17 of the present invention. For example, when there is a harmonic generation source in the load facility 28B, the harmonic generation current 33 flows through the power transmission line 29B and the bus 30 and flows into the upper system 32 through the power transmission line 29A. It flows into the load facility 28C through 29C. At this time, the power quality evaluation system 1 knows the direction of the harmonic current 33 flowing through the transmission line 29A, the transmission line 29B, and the transmission line 29C through the measurement apparatus 27A, the measurement apparatus 27B, and the measurement apparatus 27C. From the direction of the harmonic current 33 of the electric wire 29B and the transmission line 29C, it can be estimated that the harmonic generation source is the load facility 28B.

よって、高調波発生源から流れる高調波電流33の高調波成分のパターンは、電力品質評価システム1の高調波成分計算手段2により分析でき、高調波影響度計算手段8や、高調波要因推定手段9により高調波の要因となる高調波発生機器21が分かるので、高調波発生源と、高調波の要因となる高調波発生機器21を特定することができる。   Therefore, the harmonic component pattern of the harmonic current 33 flowing from the harmonic generation source can be analyzed by the harmonic component calculation means 2 of the power quality evaluation system 1, and the harmonic influence calculation means 8 and the harmonic factor estimation means. 9 indicates the harmonic generation device 21 that causes the harmonic, and thus the harmonic generation source and the harmonic generation device 21 that causes the harmonic can be identified.

例えば、高調波電流33高調波の要因となる高調波発生機器21がインバータ付きモータだった場合、インバータ付きモータから発生した高調波が、送電線29B、母線30を通り、送電線29Aを通って上位系統32に流れ込み、また、送電線29Cを通って負荷設備28Cに流れ込んでいることが分かる。     For example, when the harmonic generation device 21 that causes the harmonic current 33 is a motor with an inverter, harmonics generated from the motor with an inverter pass through the power transmission line 29B and the bus 30 and pass through the power transmission line 29A. It can be seen that it flows into the host system 32 and also flows into the load facility 28C through the power transmission line 29C.

この様に、複数の測定装置27A、27B、27Cを通る高調波電流33の方向から、高調波発生源と、高調波の要因となる高調波発生機器21を特定することができる。   In this manner, the harmonic generation source and the harmonic generation device 21 that causes the harmonic can be identified from the direction of the harmonic current 33 passing through the plurality of measuring devices 27A, 27B, and 27C.

図17の実施形態の高調波要因推定手段9Aでは、高調波発生源と、高調波の要因となる高調波発生機器21を特定する。高調波の要因となる高調波発生機器21の特定方法については、第1の実施形態の説明で述べたので、高調波発生源40の特定方法の例について、図22のロジックで説明する。   In the harmonic factor estimating means 9A of the embodiment of FIG. 17, the harmonic generation source and the harmonic generation device 21 that causes the harmonic are specified. Since the method for specifying the harmonic generation device 21 that causes harmonics has been described in the description of the first embodiment, an example of a method for specifying the harmonic generation source 40 will be described with reference to the logic of FIG.

図22は、高調波要因推定手段9にある、高調波発生源特定ロジック36であり、測定装置27が図20や、図21に示す様に3箇所設置された場合を例として説明した図である。図22に示す様に、高調波発生源特定ロジック36には、高調波発生源40が一箇所の場合の高調波発生源特定ロジック36Aと、高調波発生源40が複数の場合の高調波発生源特定ロジック36Bに分けることもでき、それぞれのロジックで高調波発生源40を特定する。   FIG. 22 is a diagram illustrating the harmonic generation source specifying logic 36 in the harmonic factor estimating means 9, and an example in which the measurement device 27 is installed at three locations as shown in FIG. 20 and FIG. is there. As shown in FIG. 22, the harmonic generation source specifying logic 36 includes a harmonic generation source specifying logic 36 </ b> A in the case where there is one harmonic generation source 40, and harmonic generation in the case where there are a plurality of harmonic generation sources 40. It can also be divided into the source identification logic 36B, and the harmonic generation source 40 is identified by each logic.

図23は図17の実施形態に係るアラーム発生手段37の説明のための系統図である。電力品質評価システム1は、アラーム伝送のためのアラーム伝送系42を持ち、高調波の程度が大きい場合は、原因となる高調波発生源40と、高調波発生機器21にアラーム伝送系42を介してアラーム38を出す。   FIG. 23 is a system diagram for explaining the alarm generation means 37 according to the embodiment of FIG. The power quality evaluation system 1 has an alarm transmission system 42 for alarm transmission. When the degree of harmonics is large, the harmonic generation source 40 and the harmonic generation device 21 are connected via the alarm transmission system 42. Alarm 38.

図23は、電力品質評価システム1により、高調波発生源40が負荷設備28Bであり、高調波発生機器21が特定された例である。電力品質評価システム1は、負荷設備28Bあるいは、高調波発生機器21に、アラーム伝送系42Bを介し、アラーム38を出す。また、中央監視制御センター39に、アラーム伝送系42Dを介し、アラーム38を出し、高調波発生源40が負荷設備28Bであり、高調波発生機器21が特定されたことを伝える。   FIG. 23 shows an example in which the harmonic generation source 40 is the load facility 28B and the harmonic generation device 21 is specified by the power quality evaluation system 1. The power quality evaluation system 1 issues an alarm 38 to the load facility 28B or the harmonic generation device 21 via the alarm transmission system 42B. Further, an alarm 38 is issued via the alarm transmission system 42D to the central monitoring control center 39 to inform that the harmonic generation source 40 is the load facility 28B and the harmonic generation device 21 has been specified.

高調波の程度は式(12)に示す総合ひずみ率43がよく用いられる。   For the degree of harmonics, an overall distortion 43 shown in the equation (12) is often used.

総合ひずみ率43=高調波分のみの実効値÷実効値 (12)
総合ひずみ率43が高調波の警戒レベルを示す高調波警戒レベル閾値44を一定の時間(以下アラーム発生時限値45)を超えると、アラーム38を発生する。
Total distortion 43 = RMS value only for harmonics ÷ RMS value (12)
When the overall distortion 43 exceeds a harmonic warning level threshold value 44 indicating a harmonic warning level for a certain time (hereinafter referred to as an alarm generation time limit value 45), an alarm 38 is generated.

図24は、総合ひずみ率43が高調波警戒レベル閾値44を超えてから、アラーム38を発生させるまでの説明図であり、縦軸が総合ひずみ率43、横軸が時間である。   FIG. 24 is an explanatory diagram from when the total distortion rate 43 exceeds the harmonic warning level threshold 44 to when the alarm 38 is generated, and the vertical axis indicates the total distortion rate 43 and the horizontal axis indicates time.

図24に示す様に、高調波の総合ひずみ率43が高調波警戒レベル閾値44を超え、アラーム発生時限値45以上経過した場合、アラーム38を発生する。   As shown in FIG. 24, when the harmonic total distortion rate 43 exceeds the harmonic warning level threshold 44 and the alarm generation time limit 45 or more has elapsed, an alarm 38 is generated.

以上述べた第3の実施形態の電力品質評価システムは、前述の第1の実施形態の作用効果以外に、高調波の発生要因と、発生する場所を推定し、アラームを出すことにより、高調波の発生を警告することが可能になる。   In the power quality evaluation system of the third embodiment described above, in addition to the effects of the first embodiment described above, the generation factor of harmonics and the location where the harmonics are generated are estimated, and an alarm is issued. It becomes possible to warn of the occurrence of

[第4の実施形態]
図25は本発明の第4の実施形態に係る電力品質評価システム1Bの構成及び機能を説明するための概略図である。図17に示すように、高調波推定手段9Aの出力側に、アラーム発生手段37を設けた構成に、高調波推定要因手段9Aの出力側に、新たに制御指令発生手段47を設け、制御指令発生手段47及びアラーム発生手段37の出力が負荷設備28に与えられるように構成したものである。
[Fourth Embodiment]
FIG. 25 is a schematic diagram for explaining the configuration and functions of a power quality evaluation system 1B according to the fourth embodiment of the present invention. As shown in FIG. 17, a control command generation means 47 is newly provided on the output side of the harmonic estimation factor means 9A in the configuration in which the alarm generation means 37 is provided on the output side of the harmonic estimation means 9A. The outputs of the generating means 47 and the alarm generating means 37 are configured to be given to the load facility 28.

高調波推定要因手段9Aにより、高調波発生源40が特定され、高調波発生機器21が特定されたので、高調波の程度が非常に大きい場合は、原因となる高調波発生源40と、高調波発生機器21にアラーム発生手段37によりアラーム38を出すとともに、高調波発生機器21に制御指令発生手段47により停止等の制御指令46を出す。また、エネルギー系を集中管理している中央監視制御センター39へアラーム38を出す。   Since the harmonic generation source 40 is specified by the harmonic estimation factor means 9A and the harmonic generation device 21 is specified, when the degree of the harmonic is very large, The alarm generation unit 37 issues an alarm 38 to the wave generation device 21, and the control command generation unit 47 issues a control command 46 such as a stop to the harmonic generation device 21. Also, an alarm 38 is issued to the central supervisory control center 39 that centrally manages the energy system.

図26は、電力品質評価システム1Bにより、高調波発生源40が負荷設備28Bであり、高調波発生機器21が特定された例である。電力品質評価システム1は、負荷設備28Bあるいは、高調波発生機器21に、アラーム伝送系42Bを介し、アラーム38を出すとともに、高調波発生機器21に、制御指令伝送系47Bを介し、停止等の制御指令46を出す。また、中央監視制御センター39に、アラーム伝送系42Dを介し、アラーム38を出し、高調波発生源40が負荷設備28Bであり、高調波発生機器21が特定されたことと、停止等の制御指令46を高調波発生機器21に送ったことを伝える。   FIG. 26 is an example in which the harmonic generation source 40 is the load facility 28B and the harmonic generation device 21 is specified by the power quality evaluation system 1B. The power quality evaluation system 1 issues an alarm 38 to the load equipment 28B or the harmonic generation device 21 via the alarm transmission system 42B, and also stops the harmonic generation device 21 via the control command transmission system 47B. A control command 46 is issued. Further, an alarm 38 is output to the central monitoring control center 39 via the alarm transmission system 42D, the harmonic generation source 40 is the load facility 28B, the harmonic generation device 21 is specified, and a control command such as a stop is issued. 46 is transmitted to the harmonic generator 21.

総合ひずみ率43が高調波の警戒レベルを示す高調波警戒レベル閾値44をアラーム発生時限値45を超えると、アラーム38を発生するが、更に、総合ひずみ率43が高調波の危険レベルを示す高調波危険レベル閾値48を一定の時間(以下制御指令発生時限値49)を超えると、停止等の制御指令46を出す。   When the overall distortion 43 exceeds the harmonic warning level threshold 44 indicating the warning level of the harmonics, the alarm 38 is generated when the alarm generation time limit 45 is exceeded. Furthermore, the total distortion 43 indicates the harmonics indicating the danger level of the harmonics. When the wave danger level threshold 48 exceeds a certain time (hereinafter, control command generation time limit value 49), a control command 46 such as a stop is issued.

図27は、総合ひずみ率43が高調波危険レベル閾値48を超えてから、停止等の制御指令46を発生させるまでの説明図である。縦軸が総合ひずみ率43、横軸が時間である。図27に示す様に、高調波の総合ひずみ率43が高調波危険レベル閾値48を超え、制御指令発生時限値49以上経過した場合、停止等の制御指令46を出す。   FIG. 27 is an explanatory diagram from when the total distortion rate 43 exceeds the harmonic danger level threshold 48 to when a control command 46 such as a stop is generated. The vertical axis represents the overall strain rate 43, and the horizontal axis represents time. As shown in FIG. 27, when the harmonic total distortion rate 43 exceeds the harmonic danger level threshold 48 and the control command generation time limit value 49 or more has elapsed, a control command 46 for stopping or the like is issued.

以上述べた第4の実施形態の電力品質評価システムは、前述の第1の実施形態の作用効果以外に、高調波の発生要因と、発生する場所を推定し、高調波の影響が危険な場合、高調波発生機器を制御することにより、高調波による災害を防止することが可能になる。   In the power quality evaluation system of the fourth embodiment described above, in addition to the effects of the first embodiment described above, the generation factor of the harmonic and the place where the harmonic is generated are estimated, and the influence of the harmonic is dangerous. By controlling the harmonic generation device, it is possible to prevent disasters due to harmonics.

本発明の電力品質評価システムの適用例を示す概略図。Schematic which shows the example of application of the electric power quality evaluation system of this invention. 本発明の第1の実施形態に係る電力品質評価システムの構成及び機能を説明するための概略図。Schematic for demonstrating the structure and function of the electric power quality evaluation system which concern on the 1st Embodiment of this invention. 図1の測定装置が実測した電気的物理量の波形の一例として線間2相分の電圧波形を示す図。The figure which shows the voltage waveform for two phases between lines as an example of the waveform of the electrical physical quantity which the measurement apparatus of FIG. 1 measured. 図2の高調波成分計算手段の一例を示す概略図。Schematic which shows an example of the harmonic component calculation means of FIG. 図3に示されるVab、Vbcについて高調波成分を計算した実測高調波成分計算結果の一例を説明するための図。The figure for demonstrating an example of the measurement harmonic component calculation result which calculated the harmonic component about Vab and Vbc shown by FIG. 高調波発生機器の一例である電力変換装置(6相)の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the power converter device (6 phases) which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例であるアーク炉の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the arc furnace which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例であるエアコンの高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the air-conditioner which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例である一般照明の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the general illumination which is an example of a harmonic generator, and its component (content rate). 図2の高調波影響度計算手段の機能及び処理内容を説明するための図。The figure for demonstrating the function and processing content of the harmonic influence calculation means of FIG. 図10の規格化計算手段の機能を説明するための図。The figure for demonstrating the function of the normalization calculation means of FIG. 図10の影響度計算手段の機能及び処理内容を説明するための図。The figure for demonstrating the function and process content of the influence degree calculation means of FIG. 図2の高調波要因推定手段の機能及び処理内容を説明するための図。The figure for demonstrating the function and processing content of the harmonic factor estimation means of FIG. 図12の発生機器高調波重み係数と高調波発生機器の関係を説明するための図。The figure for demonstrating the relationship between the generator harmonic weighting coefficient of FIG. 12, and a harmonic generator. 本発明の第2の実施形態に係る電力品質評価システムの構成及び機能を説明するための概略図。Schematic for demonstrating the structure and function of the electric power quality evaluation system which concern on the 2nd Embodiment of this invention. 図15の結果表示手段における高調波発生機器毎の高調波影響度の表示例を示す図。The figure which shows the example of a display of the harmonic influence degree for every harmonic generator in the result display means of FIG. 本発明の第3の実施形態に係る電力品質評価システムの構成及び機能を説明するための概略図。Schematic for demonstrating the structure and function of the electric power quality evaluation system which concern on the 3rd Embodiment of this invention. 図17の高調波成分計算手段を説明するための図。The figure for demonstrating the harmonic component calculation means of FIG. 図18に係る電流方向計算手段の機能を説明するための図。The figure for demonstrating the function of the current direction calculation means which concerns on FIG. 図17に係る高調波発生源特定方法の説明のための系統図。FIG. 18 is a system diagram for explaining a harmonic generation source specifying method according to FIG. 17. 図17に係る高調波発生源特定方法の説明のための高調波発生源と高調波電流の関係の説明図。Explanatory drawing of the relationship between the harmonic generation source and harmonic current for description of the harmonic generation source specific method which concerns on FIG. 図17の高調波要因推定手段にある、高調波発生源特定ロジックの一例を説明するための図。The figure for demonstrating an example of a harmonic generation source specific logic in the harmonic factor estimation means of FIG. 図17に係るアラーム発生手段を説明するための系統図。FIG. 18 is a system diagram for explaining an alarm generation unit according to FIG. 17. 図17に係るアラーム発生手段を説明するためのものであって、総合ひずみ率が高調波警戒レベル閾値を超えてから、アラームを発生させるまでを説明するための図。FIG. 18 is a diagram for explaining the alarm generation means according to FIG. 17, for explaining a period from when the total distortion rate exceeds a harmonic warning level threshold to when an alarm is generated. 本発明の第4の実施形態に係る電力品質評価システムの構成及び機能を説明するための概略図。Schematic for demonstrating the structure and function of the electric power quality evaluation system which concern on the 4th Embodiment of this invention. 図25における高調波発生源が負荷設備であるときの、高調波発生機器が特定された例を説明するための図。The figure for demonstrating the example in which the harmonic generation apparatus was identified when the harmonic generation source in FIG. 25 is load equipment. 図25の制御指令発生手段における総合ひずみ率が高調波危険レベル閾値を超えてから、停止等の制御指令を発生させるまでを説明するための図。The figure for demonstrating until it produces | generates control commands, such as a stop, after the total distortion rate in the control command generation means of FIG. 25 exceeds a harmonic danger level threshold value.

符号の説明Explanation of symbols

1…電力品質評価システム、2…高調波成分計算手段、02…FFT処理部、03…高調波要因抽出手段、3…実測高調波成分保存手段、6…実測高調波成分計算結果、7…高調波発生機器高調波成分、8…高調波影響度計算手段、9…高調波要因推定手段、10…高調波影響度、11…高調波発生機器データベース、12…電気的物理量、13…規格化計算手段、14…影響度計算手段、15…規格化高調波発生機器高調波成分、17…影響度並び替え手段、18…高調波要因抽出閾値、19…規格化実測高調波成分計算結果、20…高調波要因推定結果、21…高調波発生機器、22…フィーダ、23…結果表示手段、24…電流方向計算手段、25…電圧ベクトル、26…電流ベクトル、27…測定装置、28…負荷設備、29…送電線、30…母線、31…伝送系、32…上位系統、33…高調波電流、35…高調波発生源推定結果、36…高調波発生源特定ロジック、37…アラーム発生手段、38…アラーム、39…中央監視制御センター、40…高調波発生源、42…アラーム伝送系、43…総合ひずみ率、44…高調波警戒レベル閾値、45…アラーム発生時限値、46…制御指令、47…制御指令伝送系、48…高調波危険レベル閾値、49…制御指令発生時限値、60…実測高調波ベクトル、61…高調波発生機器高調波ベクトル、62…発生機器高調波重み係数、63…実測高調波近似値ベクトル、65…高調波発生機器選出手段、66…発生機器高調波重み係数計算手段、67…有意性判定手段、68…有意性判定、69…発生機器高調波重み係数割合。   DESCRIPTION OF SYMBOLS 1 ... Electric power quality evaluation system, 2 ... Harmonic component calculation means, 02 ... FFT processing part, 03 ... Harmonic factor extraction means, 3 ... Actual harmonic component preservation | save means, 6 ... Actual harmonic component calculation result, 7 ... Harmonic Harmonic component of wave generator, 8 ... Harmonic influence calculation means, 9 ... Harmonic factor estimation means, 10 ... Harmonic influence degree, 11 ... Harmonic generator database, 12 ... Electrical physical quantity, 13 ... Normalization calculation Means, 14 ... Influence degree calculating means, 15 ... Normalized harmonic generation equipment harmonic component, 17 ... Influence degree rearranging means, 18 ... Harmonic factor extraction threshold, 19 ... Normalized actual measurement harmonic component calculation result, 20 ... Harmonic factor estimation result, 21 ... harmonic generator, 22 ... feeder, 23 ... result display means, 24 ... current direction calculating means, 25 ... voltage vector, 26 ... current vector, 27 ... measuring device, 28 ... load equipment, 29 ... Power transmission , 30 ... bus, 31 ... transmission system, 32 ... host system, 33 ... harmonic current, 35 ... harmonic generation source estimation result, 36 ... harmonic generation source identification logic, 37 ... alarm generation means, 38 ... alarm, 39 ... central monitoring and control center, 40 ... harmonic generation source, 42 ... alarm transmission system, 43 ... total distortion, 44 ... harmonic warning level threshold, 45 ... alarm occurrence time limit, 46 ... control command, 47 ... control command transmission 48: Harmonic danger level threshold value 49: Control command generation time limit value 60: Measured harmonic vector 61: Harmonic generator harmonic vector 62: Generated harmonic weight coefficient 63: Measured harmonic approximation Value vector, 65... Harmonic generator selection means, 66... Generation equipment harmonic weight coefficient calculation means, 67... Significance judgment means, 68.

Claims (5)

電力系統の少なくとも1箇所以上で測定された電流及び電圧の少なくとも何れかを含む電気的物理量に基づき、前記電気的物理量の高調波成分を前記測定箇所毎に計算する高調波成分計算手段と、
前記高調波を発生することが推定される複数の高調波発生機器の高調波成分を保存するデータベースと、
前記高調波成分計算手段によって計算した各高調波成分を、前記データベースに保存された複数の高調波発生機器の高調波成分に対して重み係数を付加した合計値で近似し、前記近似した重み係数に基づき高調波発生源となる前記高調波発生機器の要因を推定可能な影響度計算手段と、
を備えたことを特徴とする電力品質評価システム。
Harmonic component calculation means for calculating a harmonic component of the electrical physical quantity for each measurement location based on an electrical physical quantity including at least one of current and voltage measured at least at one location of the power system;
A database for storing harmonic components of a plurality of harmonic generation devices estimated to generate the harmonics;
Each harmonic component calculated by the harmonic component calculating means is approximated by a total value obtained by adding a weighting factor to the harmonic components of a plurality of harmonic generating devices stored in the database, and the approximated weighting factor An influence degree calculation means capable of estimating the factor of the harmonic generation device to be a harmonic generation source based on
A power quality evaluation system characterized by comprising:
前記影響度計算手段からの高調波影響度の高い高調波発生機器高調波成分をもつ高調波発生機器から順に表示する表示手段を更に備えたことを特徴とする請求項1記載の電力品質評価システム。   2. The power quality evaluation system according to claim 1, further comprising display means for displaying in order from a harmonic generator having a harmonic component having a higher harmonic influence from the influence calculation means. . 予め決められた時間間隔において、前記高調波影響度と前記高調波発生機器を表示する表示手段を更に備えたことを特徴とする請求項1記載の電力品質評価システム。   The power quality evaluation system according to claim 1, further comprising display means for displaying the degree of influence of harmonics and the harmonic generation device at a predetermined time interval. 高調波次数毎に高調波電流の方向を計算する手段と、
前記各高調波電流の方向から高調波発生源となる前記高調波発生機器の方向を計算する手段と、
電力系統の少なくとも1箇所以上で測定された電流及び電圧の少なくとも何れかを含む電気的物理量に基づき、測定された電気的物理量の高調波成分を前記測定箇所毎に計算する高調波成分計算し、またこれら観測点毎の前記高調波発生機器の方向から高調波発生源の位置を特定する手段と、
前記観測点ごとの高調波の程度を計算し、高調波の程度が予め決められた規定値より大きい場合に、高調波発生源となる高調波発生機器等にアラーム等の注意を喚起する情報を出す手段と、
を更に備えたことを特徴とする請求項1記載の電力品質評価システム。
Means for calculating the direction of the harmonic current for each harmonic order;
Means for calculating the direction of the harmonic generation device to be a harmonic generation source from the direction of each harmonic current;
Based on an electrical physical quantity that includes at least one of current and voltage measured at at least one location of the power system, calculate a harmonic component of the measured electrical physical quantity for each measurement location, Further, means for identifying the position of the harmonic generation source from the direction of the harmonic generation equipment for each observation point,
Calculate the degree of harmonics for each observation point, and if the degree of harmonics is greater than a predetermined value, information that alerts the harmonic generating device, etc., which is the harmonic generation source, Means to put out,
The power quality evaluation system according to claim 1, further comprising:
高調波次数毎に高調波電流の方向を計算する手段と、
これら高調波電流の方向から高調波発生源となる高調波発生機器の方向を計算する手段と、
前記電力系統の少なくとも1箇所以上で測定された電流及び電圧の少なくとも何れかを含む電気的物理量に基づき、これらの測定された電気的物理量から前記測定箇所毎の前記高調波発生機器の方向を計算し、またこれら観測点毎の前記高調波発生機器の方向から高調波発生源の位置を特定する手段と、
前記観測点ごとの高調波の程度を計算し、高調波の程度が予め決められた規定値より大きい場合に、高調波発生源となる高調波発生機器に遮断や出力調整等の制御指令を出す手段と、
を更に備えたことを特徴とする請求項1記載の電力品質評価システム。
Means for calculating the direction of the harmonic current for each harmonic order;
Means for calculating the direction of the harmonic generation device as a harmonic generation source from the direction of these harmonic currents;
Based on the electrical physical quantity including at least one of current and voltage measured at at least one location of the power system, the direction of the harmonic generating device at each measurement location is calculated from the measured electrical physical quantity. And means for identifying the position of the harmonic generation source from the direction of the harmonic generation device for each observation point;
Calculates the degree of harmonics at each observation point, and when the degree of harmonics is greater than a predetermined value, issues a control command such as shut-off or output adjustment to the harmonic generation device that is the harmonic generation source. Means,
The power quality evaluation system according to claim 1, further comprising:
JP2007071381A 2007-03-19 2007-03-19 Power quality evaluation system Expired - Fee Related JP4802129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071381A JP4802129B2 (en) 2007-03-19 2007-03-19 Power quality evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071381A JP4802129B2 (en) 2007-03-19 2007-03-19 Power quality evaluation system

Publications (2)

Publication Number Publication Date
JP2008236876A JP2008236876A (en) 2008-10-02
JP4802129B2 true JP4802129B2 (en) 2011-10-26

Family

ID=39908995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071381A Expired - Fee Related JP4802129B2 (en) 2007-03-19 2007-03-19 Power quality evaluation system

Country Status (1)

Country Link
JP (1) JP4802129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103830A (en) * 2012-11-22 2014-06-05 Toshiba Corp State estimation apparatus and state estimation method
JP2014171373A (en) * 2013-03-05 2014-09-18 Toshiba Corp State estimation device, state estimation method, and state estimation program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491751B2 (en) * 2009-03-12 2014-05-14 株式会社東芝 Power quality evaluation system
JP5395509B2 (en) * 2009-05-22 2014-01-22 株式会社東芝 Power quality evaluation system
JP5840541B2 (en) * 2012-03-16 2016-01-06 株式会社東芝 POWER LOAD ESTIMATION DEVICE, POWER LOAD ESTIMATION METHOD, AND POWER LOAD ESTIMATION PROGRAM
JP5915342B2 (en) * 2012-04-06 2016-05-11 富士電機株式会社 Power system state estimation method
CN103324840A (en) * 2013-06-06 2013-09-25 江苏大学 Power utilization quality comprehensive evaluation method for power demand side
CN103886512A (en) * 2014-02-20 2014-06-25 东南大学 Thermal power unit index evaluation unit based on gray level clustering
JP2016059126A (en) * 2014-09-08 2016-04-21 株式会社東芝 Power load estimation device, power load estimation method and power load estimation program
CN108169585B (en) * 2017-11-28 2019-08-09 国电南瑞科技股份有限公司 One kind prejudging other division of responsibiltiy engineering method based on harmonic source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260982B2 (en) * 1994-07-29 2002-02-25 株式会社トーエネック Harmonic measurement analysis system
JPH08136595A (en) * 1994-11-08 1996-05-31 Nissin Electric Co Ltd Harmonics measuring apparatus
JP3877269B2 (en) * 2000-05-18 2007-02-07 財団法人電力中央研究所 Electric equipment monitoring system and abnormality warning system using the same
KR100616272B1 (en) * 2003-02-07 2006-08-28 에이테크가부시키가이샤 Method for diagnosing abnormality with harmonics in electrical equipment
JP4213493B2 (en) * 2003-03-18 2009-01-21 三菱電機株式会社 Electricity quality price system
JP4476832B2 (en) * 2005-02-02 2010-06-09 株式会社東芝 Power quality evaluation system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103830A (en) * 2012-11-22 2014-06-05 Toshiba Corp State estimation apparatus and state estimation method
JP2014171373A (en) * 2013-03-05 2014-09-18 Toshiba Corp State estimation device, state estimation method, and state estimation program

Also Published As

Publication number Publication date
JP2008236876A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4802129B2 (en) Power quality evaluation system
US9625503B2 (en) Method and device for analysing the quality of the electrical energy in a three-phase electric network
EP3009801A1 (en) Failure sign diagnosis system of electrical power grid and method thereof
CN102288857B (en) Fault arc identification and detection method and detection protection device
US20200134516A1 (en) Method for asset management of electric power equipment
JP4751278B2 (en) Power quality monitoring system and method
JP2008191108A (en) System for evaluating quality of electric power
CN116125361B (en) Voltage transformer error evaluation method, system, electronic equipment and storage medium
JP5957397B2 (en) State estimation device, state estimation method, and state estimation program
JP4937205B2 (en) Power quality evaluation system
JP5127608B2 (en) Power quality evaluation system
JP4606257B2 (en) Demand factor analysis system and demand factor analysis method
JPWO2019017345A1 (en) State estimation device, method and program
JP5395509B2 (en) Power quality evaluation system
JP5578982B2 (en) Equipment failure evaluation system
EP3133632B1 (en) Circuit breaker
Abidullah et al. Real-time power quality disturbances detection and classification system
JP5491751B2 (en) Power quality evaluation system
CN116861316A (en) Electrical appliance monitoring method and device
WO2023004700A1 (en) Method and apparatus for detecting anomaly of transformer, and computer-readable storage medium
JP5946742B2 (en) Fluctuation estimation method, fluctuation estimation apparatus and fluctuation estimation program for total output of natural energy type distributed power supply group
Vega-Garcia et al. Evaluation of probability functions related to short circuit random variables using power quality meters
JP5932880B2 (en) Equipment failure evaluation equipment
CN110501154B (en) GIS equipment fault detection and positioning method based on MOSVR and boxplot analysis
JP2015087240A (en) Power measurement system, power measurement method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4802129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees