JP2008191108A - System for evaluating quality of electric power - Google Patents

System for evaluating quality of electric power Download PDF

Info

Publication number
JP2008191108A
JP2008191108A JP2007028507A JP2007028507A JP2008191108A JP 2008191108 A JP2008191108 A JP 2008191108A JP 2007028507 A JP2007028507 A JP 2007028507A JP 2007028507 A JP2007028507 A JP 2007028507A JP 2008191108 A JP2008191108 A JP 2008191108A
Authority
JP
Japan
Prior art keywords
harmonic
harmonic component
quality evaluation
evaluation system
power quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007028507A
Other languages
Japanese (ja)
Other versions
JP5665250B2 (en
Inventor
Yasuhiro Taguchi
保博 田口
Yasuhiro Suwa
泰裕 諏訪
Yoshihiro Takei
義博 竹井
Minoru Iino
穣 飯野
Katsuhiko Sekiguchi
勝彦 関口
Shinya Kazusawa
真也 數澤
Shigeyoshi Fujii
茂良 藤井
Kazutaro Shinohara
和太郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007028507A priority Critical patent/JP5665250B2/en
Publication of JP2008191108A publication Critical patent/JP2008191108A/en
Application granted granted Critical
Publication of JP5665250B2 publication Critical patent/JP5665250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for evaluating the quality of electric power which infers the causes for generation of higher harmonics based on electric physical quantities, such as current and voltage of consumers receiving power supply. <P>SOLUTION: This system for evaluating quality of electric power 1A is equipped with harmonic component calculation means 8 for calculating the harmonic components of the measured electrical physical quantity 6 per each measuring place, based on the electric physical quantity 6 that includes at least either one of current and voltage measured on at least one or more places of electric power system, and harmonic components agreement calculation means 10, which cross-checks the harmonic component calculated by the harmonic components calculation means 8, with the data of harmonic component generator DB15 which resulted from association of the harmonic component generator itself with harmonic component of this generator, to calculate the agreement level between the harmonic components calculated by the harmonic component calculation means 8 and the harmonic components of the harmonic component generator DB15 data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力系統に生じる高調波、電圧変動、電圧不平衡、瞬時電圧低下等による電力品質の悪化を評価する電力品質評価システムに関する。   The present invention relates to a power quality evaluation system that evaluates deterioration of power quality due to harmonics, voltage fluctuation, voltage imbalance, instantaneous voltage drop, and the like generated in a power system.

電力品質の程度は、電力系統に生じる電圧変動、電圧不平衡、瞬時電圧低下または高調波によって判断される。電力品質の程度を測定または解析する電力品質測定装置または電力品質解析装置は、例えば、特開2003−298147号公報(特許文献1)に開示されている。
特開2003−298147号公報
The degree of power quality is determined by voltage fluctuation, voltage imbalance, instantaneous voltage drop or harmonics generated in the power system. A power quality measurement device or a power quality analysis device that measures or analyzes the degree of power quality is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-298147 (Patent Document 1).
JP 2003-298147 A

しかしながら、収集された需要家の電圧および電流等の電気的物理量に基づき、電力品質の一要素を担う高調波の発生要因を推定する電力品質評価システムは存在していない。   However, there is no power quality evaluation system that estimates the generation factors of harmonics that are one element of power quality based on the collected electrical physical quantities such as the voltage and current of the consumer.

本発明は、上述した事情を考慮してなされたものであり、上位の電力系統から電力供給を受ける需要家の電流および電圧等の電気的物理量を収集し、収集した電気的物理量に基づき高調波の発生要因を推定する電力品質評価システムを提供する。   The present invention has been made in consideration of the above-described circumstances, collects electrical physical quantities such as current and voltage of a consumer who receives power supply from a higher-order power system, and generates harmonics based on the collected electrical physical quantities. Provided is a power quality evaluation system for estimating the cause of occurrence of noise.

本発明に係る電力品質評価システムは、上述した課題を解決するため、電力系統の少なくとも1箇所以上で測定された電流および電圧の少なくとも何れかを含む電気的物理量に基づき、測定された電気的物理量の高調波成分を前記測定箇所毎に計算する高調波成分計算手段と、前記高調波成分計算手段が算出した前記測定箇所毎の高調波成分と、高調波を発生させる機器と当該機器の高調波成分とを対応させたデータとを照合して前記高調波成分計算手段が算出した高調波成分が前記データの高調波成分と一致する程度を計算する高調波成分一致度計算手段とを具備することを特徴とする。   In order to solve the above-described problem, the power quality evaluation system according to the present invention is based on an electrical physical quantity including at least one of a current and a voltage measured at at least one location of the power system. Harmonic component calculation means for calculating the harmonic component of each measurement location, the harmonic component for each measurement location calculated by the harmonic component calculation means, the harmonic generating device and the harmonics of the device Harmonic component coincidence calculation means for calculating the degree to which the harmonic component calculated by the harmonic component calculation means matches the harmonic component of the data by collating with the data corresponding to the component. It is characterized by.

本発明に係る電力品質評価システムによれば、上位の電力系統から電力供給を受ける需要家の電流および電圧等の電気的物理量を収集し、収集した電気的物理量に基づき高調波の発生要因を推定する電力品質評価システムを提供することができる。   According to the power quality evaluation system of the present invention, electrical physical quantities such as currents and voltages of consumers who receive power supply from a higher-level power system are collected, and the generation factor of harmonics is estimated based on the collected electrical physical quantities. A power quality evaluation system can be provided.

また、測定箇所が複数あり、各々の測定箇所を流れる高調波電流の方向がわかれば、高調波発生場所を推定することもできる。さらに、高調波発生機器を制御可能に構成すれば、高調波の影響で危険な事態が生じ得る場合に高調波発生機器を制御することによって高調波による災害発生を防止することができる。   In addition, if there are a plurality of measurement points and the direction of the harmonic current flowing through each measurement point is known, the harmonic generation location can be estimated. Further, if the harmonic generation device is configured to be controllable, it is possible to prevent the occurrence of a disaster due to the harmonic by controlling the harmonic generation device when a dangerous situation may occur due to the influence of the harmonic.

以下、本発明に係る電力品質評価システムを実施するための最良の形態について、添付の図面を参照して説明する。   The best mode for carrying out a power quality evaluation system according to the present invention will be described below with reference to the accompanying drawings.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る電力品質評価システムの一例である第1の電力品質評価システム1Aの適用例を示す説明図である。
[First Embodiment]
FIG. 1 is an explanatory diagram showing an application example of the first power quality evaluation system 1A which is an example of the power quality evaluation system according to the first embodiment of the present invention.

第1の電力品質評価システム1Aは、例えば、電力系統(上位電力系統)から受電して電気を使用する需要家2のフィーダ3と電気的に接続された負荷設備4に供給される電力の品質について歪みの観点から評価するシステムである。第1の電力品質評価システム1Aは、例えば、ハードウェアとしてのコンピュータと電力の品質について歪みの観点から評価するソフトウェアとしてのプログラムとが協働することによって実現される。   The first power quality evaluation system 1A is, for example, the quality of power supplied to a load facility 4 that is electrically connected to a feeder 3 of a customer 2 that uses electricity by receiving power from a power system (upper power system). It is a system that evaluates from the viewpoint of distortion. The first power quality evaluation system 1A is realized by, for example, cooperation between a computer as hardware and a program as software that evaluates power quality from the viewpoint of distortion.

図1に示されるように、需要家2の母線5と電気的に接続されたフィーダ3に少なくとも電流および電圧を含む電気的物理量の情報(以下、電気物理量情報とする)6を取得する測定装置7が設置されている。第1の電力品質評価システム1Aは、測定装置7から取得した電気物理量情報6に基づき、電流および電圧に高調波が重畳している場合、当該高調波の発生要因を推定する。   As shown in FIG. 1, a measuring device that acquires electrical physical quantity information (hereinafter referred to as electrical physical quantity information) 6 including at least current and voltage in a feeder 3 electrically connected to a bus 5 of a customer 2. 7 is installed. Based on the electrophysical quantity information 6 acquired from the measuring device 7, the first power quality evaluation system 1 </ b> A estimates the generation factor of the harmonic when the harmonic is superimposed on the current and voltage.

図2は、第1の電力品質評価システム1Aの構成および機能を示す概略図である。   FIG. 2 is a schematic diagram showing the configuration and functions of the first power quality evaluation system 1A.

第1の電力品質評価システム1Aは、図2に示されるように、高調波成分計算手段8、データ記録手段9、高調波成分一致度計算手段10、高調波推定手段11および出力手段としての表示手段12を具備する。   As shown in FIG. 2, the first power quality evaluation system 1A includes harmonic component calculation means 8, data recording means 9, harmonic component coincidence calculation means 10, harmonic estimation means 11 and display as output means. Means 12 are provided.

高調波成分計算手段8は、測定装置7が測定した電気物理量情報6を取得して波形分析を行う。そして、測定される電気的物理量の高調波成分を算出する。高調波とは、基本波に重畳する基本波のn倍(nは2以上の整数)の周波数を持つ正弦波であって、高調波成分が重畳する電気的物理量の波形は、商用周波数を基本周波数とする基本波と周波数が基本周波数のn倍(周期は1/n)となる各正弦波(高調波成分)との和で表される。以下の説明では、基本波を1次成分、周期が基本波の1/2(周波数は2倍)となる正弦波を2次成分、周期が基本波の1/3(周波数は3倍)となる正弦波を3次成分とし、以下同様にして周期が基本波の1/n(周波数はn倍)となる正弦波をn次成分と称する。   The harmonic component calculation means 8 acquires the electrophysical quantity information 6 measured by the measuring device 7 and performs waveform analysis. Then, the harmonic component of the measured electrical physical quantity is calculated. A harmonic is a sine wave having a frequency n times (n is an integer of 2 or more) of the fundamental wave superimposed on the fundamental wave, and the waveform of the electrical physical quantity on which the harmonic component is superimposed is based on the commercial frequency. It is represented by the sum of a fundamental wave as a frequency and each sine wave (harmonic component) whose frequency is n times the fundamental frequency (cycle is 1 / n). In the following description, the fundamental wave is a primary component, the sine wave whose period is 1/2 of the fundamental wave (frequency is twice), the secondary component, and the period is 1/3 of the fundamental wave (frequency is 3 times). A sine wave having a period of 1 / n (frequency is n times) of the fundamental wave is referred to as an n-order component.

データ記録手段9は、電子情報を記録し格納する記憶領域である。このデータ記録手段9には、高調波成分計算手段8が計算した結果を表す情報(以下、実測高調波成分計算結果とする)14が必要に応じて記録され保存される。また、データ記録手段9には、高調波成分一致度計算手段10が計算の際に参照する情報を予めデータベース(以下、DBと省略する)化した高調波発生機器DB15が格納される。高調波発生機器DB15は、高調波を発生させる主要因となり得る多種の高調波発生機器と各々の高調波発生機器が発生する高調波成分の情報が関連付けられている。つまり、高調波成分のパターンが特定されると一義的に高調波発生機器を特定することができる。   The data recording means 9 is a storage area for recording and storing electronic information. In this data recording means 9, information (hereinafter referred to as an actual harmonic component calculation result) 14 representing the result calculated by the harmonic component calculation means 8 is recorded and stored as necessary. Further, the data recording means 9 stores a harmonic generator DB 15 in which information referred to by the harmonic component coincidence calculating means 10 in the calculation is made into a database (hereinafter abbreviated as DB) in advance. The harmonic generator DB 15 associates various types of harmonic generators that can be the main factors that generate harmonics with information on harmonic components generated by each harmonic generator. That is, when the pattern of the harmonic component is specified, the harmonic generation device can be uniquely specified.

高調波成分一致度計算手段10は、実測高調波成分計算結果14と高調波発生機器DB15を参照して得られる各々の高調波成分パターンとを比較して一致度を算出する。一致度の算出結果を表す情報(以下、高調波成分一致度計算結果とする)16は、高調波要因推定手段11へ送られる。   The harmonic component coincidence calculation means 10 compares the actual harmonic component calculation result 14 with each harmonic component pattern obtained by referring to the harmonic generator DB 15 to calculate the coincidence. Information (hereinafter referred to as harmonic component coincidence calculation result) 16 representing the coincidence calculation result is sent to the harmonic factor estimating means 11.

高調波要因推定手段11は、受け取った高調波成分一致度計算結果16に基づき一致度の最も高い高調波成分パターンを発生させる高調波発生機器を高調波の主要因と推定する。そして、推定結果を表す情報(以下、高調波要因推定結果とする)17を出力手段としての表示手段12へ送る。   Based on the received harmonic component coincidence calculation result 16, the harmonic factor estimating means 11 estimates the harmonic generation device that generates the harmonic component pattern having the highest coincidence as the main factor of the harmonic. And the information (henceforth harmonic factor estimation result) 17 showing an estimation result is sent to the display means 12 as an output means.

表示手段12は、例えば、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)、またはPDP(Plasma Display Panel)等のユーザへ評価結果を視覚的に表示する手段である。表示手段12は、高調波要因推定結果17を受け取ると、高調波要因推定結果17の内容を画像表示する。   The display unit 12 is a unit that visually displays an evaluation result to a user such as a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or a PDP (Plasma Display Panel). When receiving the harmonic factor estimation result 17, the display unit 12 displays the content of the harmonic factor estimation result 17 as an image.

尚、図2に示される第1の電力品質評価システム1Aは、評価結果を含む必要な情報をユーザが認識できる形式で出力する出力手段としての表示手段12を具備しているが、表示手段12の代わりに、例えば、印字手段等の他の出力手段を具備していても構わない。また、第1の電力品質評価システム1Aは、表示手段12を具備していなくても構わない。すなわち、第1の電力品質評価システム1Aは、高調波要因推定結果17のみを第1の電力品質評価システム1Aの外部の出力手段へ出力する場合もある。   The first power quality evaluation system 1A shown in FIG. 2 includes a display unit 12 as an output unit that outputs necessary information including an evaluation result in a format that can be recognized by the user. Instead of this, for example, other output means such as printing means may be provided. Also, the first power quality evaluation system 1A may not include the display unit 12. That is, the first power quality evaluation system 1A may output only the harmonic factor estimation result 17 to an output unit outside the first power quality evaluation system 1A.

次に、第1の電力品質評価システム1Aの作用を説明する。   Next, the operation of the first power quality evaluation system 1A will be described.

図3は、測定装置7が実測した電気的物理量の波形の一例として線間2相分の電圧波形を概略的に示したグラフである。   FIG. 3 is a graph schematically showing a voltage waveform for two phases between lines as an example of the waveform of the electrical physical quantity actually measured by the measuring device 7.

例えば、第1の電力品質評価システム1A等の本発明に係る電力品質評価システムでは、図3に示されるような電気的物理量の波形を表す情報を取得し、取得した波形の情報に基づいて高調波成分計算手段8が高調波成分の算出を行う。ここで、図2に示されるグラフの横軸は時間であり、縦軸は電圧である。また、Vabとは3相(a相、b相およびc相)のa相とb相間の線間電圧をいい、Vbcとはb相とc相間の線間電圧をいう。   For example, in the power quality evaluation system according to the present invention such as the first power quality evaluation system 1A, information representing the waveform of the electrical physical quantity as shown in FIG. 3 is acquired, and the harmonics are obtained based on the acquired waveform information. The wave component calculation means 8 calculates the harmonic component. Here, the horizontal axis of the graph shown in FIG. 2 is time, and the vertical axis is voltage. Vab is a line voltage between a phase and b phase of three phases (a phase, b phase and c phase), and Vbc is a line voltage between b phase and c phase.

図3に示されるVabおよびVbcは、理想的には、商用周波数の正弦波である。この商用周波数の正弦波(基本波)に何らかの要因で高調波が入る(高調波が重畳する)と、VabおよびVbcは、歪んでいると称される。   Vab and Vbc shown in FIG. 3 are ideally sine waves at commercial frequencies. When a harmonic enters into this commercial frequency sine wave (fundamental wave) for some reason (a harmonic is superimposed), Vab and Vbc are said to be distorted.

図4は、第1の電力品質評価システム1Aにおける高調波成分計算手段8の一例を示す説明図である。   FIG. 4 is an explanatory diagram showing an example of the harmonic component calculation means 8 in the first power quality evaluation system 1A.

高調波成分計算手段8は、高調波を各次数成分の和とみなし、次数毎の成分を計算する。高調波成分はフーリエ変換等で求めることができる。高調波成分を計算する最も一般的な手法の一つとしては、高速フーリエ変換(Fast Fourier Transformation:FFT)が知られている。FFTのうち、離散信号から高調波成分を求める手法(離散型フーリエ変換)を離散型FFTという。   The harmonic component calculation means 8 regards the harmonic as the sum of each order component and calculates a component for each order. The harmonic component can be obtained by Fourier transform or the like. As one of the most common methods for calculating harmonic components, Fast Fourier Transform (FFT) is known. Of the FFT, a technique (discrete Fourier transform) for obtaining a harmonic component from a discrete signal is referred to as a discrete FFT.

高調波成分計算手段8は、電気物理量情報6を時間的に連続する連続信号としてではなく、情報量削減の観点から所定の時間間隔でサンプリングした離散信号として取得する。これは、電気物理量情報6の情報量削減のためである。尚、サンプリング周波数は、標本化定理に基づくナイキスト周波数(基本波の周波数の2倍)よりも大きな任意の周波数であり、サンプリング値から波形の再現が可能な周波数である。   The harmonic component calculation means 8 acquires the electrophysical quantity information 6 as a discrete signal sampled at a predetermined time interval from the viewpoint of reducing the information quantity, not as a continuous signal that is temporally continuous. This is to reduce the information amount of the electrophysical quantity information 6. The sampling frequency is an arbitrary frequency higher than the Nyquist frequency (twice the frequency of the fundamental wave) based on the sampling theorem, and is a frequency at which the waveform can be reproduced from the sampled value.

高調波成分計算手段8は、FFTを行うFFT処理部20を備える。FFT処理部20は、FFT機能(高速フーリエ変換を行う機能)を有し、このFFT機能により取得した電気物理量情報6が示す電気的物理量の離散信号について離散型FFTを行う。そして、電気物理量情報6に基づく電気的物理量の高調波成分を計算する。   The harmonic component calculation means 8 includes an FFT processing unit 20 that performs FFT. The FFT processing unit 20 has an FFT function (function to perform fast Fourier transform), and performs discrete FFT on the discrete signal of the electrical physical quantity indicated by the electrical physical quantity information 6 acquired by the FFT function. Then, the harmonic component of the electrical physical quantity based on the electrical physical quantity information 6 is calculated.

図5は高調波成分計算手段8が図3に示された電気物理量情報6、すなわち、Vab、Vbcについて高調波成分を計算した実測高調波成分計算結果14の一例を示す説明図である。尚、図5における縦軸は、高調波含有率、横軸は高調波の次数を示している。   FIG. 5 is an explanatory diagram showing an example of the actual harmonic component calculation result 14 in which the harmonic component calculation means 8 calculates the harmonic component for the electrophysical quantity information 6 shown in FIG. 3, that is, Vab and Vbc. In addition, the vertical axis | shaft in FIG. 5 has shown the harmonic content rate, and the horizontal axis has shown the order of the harmonic.

図5に示される実測高調波成分計算結果14は、高調波成分計算手段8のFFT処理部20がFFT機能を使い、図3に示されたVab、Vbcについて算出した高調波の次数毎の成分(含有率)を示す。高調波含有率は、高調波の次数毎に計算され、以下の式(1)に基づいて計算される。   The measured harmonic component calculation result 14 shown in FIG. 5 is a component for each order of harmonics calculated by the FFT processing unit 20 of the harmonic component calculation means 8 using the FFT function for Vab and Vbc shown in FIG. (Content). The harmonic content is calculated for each order of harmonics, and is calculated based on the following equation (1).

[数1]
高調波含有率(次数)=高調波の大きさ(次数)÷基本波の大きさ ……(1)
[Equation 1]
Harmonic content (order) = Harmonic magnitude (order) ÷ Fundamental wave size (1)

図6〜図9は、高調波発生機器が発生する高調波の次数とその成分(含有率)との関係(以下、高調波パターンとする)を表した説明図である。より具体的に説明すると、図6では電力変換装置(6相)、図7ではアーク炉、図8ではエアコン、図9では一般照明を高調波発生機器の一例とした場合における高調波パターンを表した説明図である。   6-9 is explanatory drawing showing the relationship (henceforth a harmonic pattern) with the order of the harmonic which a harmonic generator produces | generates, and its component (content rate). More specifically, FIG. 6 shows a power converter (6-phase), FIG. 7 shows an arc furnace, FIG. 8 shows an air conditioner, and FIG. 9 shows a harmonic pattern in the case where general lighting is an example of a harmonic generator. FIG.

図6〜図9に示されるように、機器によって高調波の含有率が多くなる次数が異なり、高調波パターンは異なる。つまり、高調波パターンと高調波発生機器とは1対1の関係にあるので、高調波パターンがわかれば、当該高調波パターンと一致度が高い高調波パターンをもつ機器が高調波発生機器であると推定することができる。   As shown in FIGS. 6 to 9, the order in which the harmonic content increases is different depending on the device, and the harmonic pattern is different. That is, since the harmonic pattern and the harmonic generation device have a one-to-one relationship, if the harmonic pattern is known, a device having a harmonic pattern having a high degree of coincidence with the harmonic pattern is a harmonic generation device. Can be estimated.

図10は、高調波成分一致度計算手段10の機能および処理内容を示す説明図である。   FIG. 10 is an explanatory diagram showing functions and processing contents of the harmonic component coincidence calculation means 10.

高調波成分一致度計算手段10は、実測高調波成分計算結果14の高調波成分の合計が1になる様に規格化する機能(以下、規格化計算機能とする)を有する規格化計算処理部21と、実測高調波成分計算結果14を規格化した結果と高調波発生機器DB15に格納される高調波発生機器の高調波成分(規格化した値)との一致度を計算する機能(以下、高調波パターン一致度計算機能とする)を有する高調波パターン一致度計算処理部22とを備える。   The harmonic component coincidence calculation means 10 has a normalization calculation processing unit having a function (hereinafter referred to as a normalization calculation function) for normalizing so that the sum of the harmonic components of the actually measured harmonic component calculation result 14 becomes 1. 21 and a function for calculating the degree of coincidence between the result of normalizing the measured harmonic component calculation result 14 and the harmonic component (standardized value) of the harmonic generating device stored in the harmonic generating device DB 15 (hereinafter, A harmonic pattern matching degree calculation processing unit 22 having a harmonic pattern matching degree calculation function).

高調波成分一致度計算手段10は、実測高調波成分計算結果14を受け取ると、まず、規格化計算処理部21が規格化計算機能を用いて、実測高調波成分計算結果14の高調波成分の合計が1になる様に規格化する。規格化に際しては、以下の式(2)を用いて規格化後のj次(jは2以上の自然数)の成分を算出する。

Figure 2008191108
When the harmonic component coincidence calculation means 10 receives the measured harmonic component calculation result 14, first, the normalization calculation processing unit 21 uses the normalization calculation function to calculate the harmonic component of the measured harmonic component calculation result 14. Standardize so that the total is 1. At the time of normalization, a j-th order component (j is a natural number of 2 or more) after normalization is calculated using the following equation (2).
Figure 2008191108

尚、高調波発生機器DB15にある高調波発生機器の高調波成分の最大次数と、実測高調波成分計算結果14における高調波の最大次数が一致していない場合もある。この場合、上記(2)式の分母である「規格化前の高調波成分の合計値」が高調波発生機器DB15に格納される高調波発生機器の高調波成分と実測高調波成分計算結果14とで異なってしまい、高調波成分の一致度を計算する上で好ましくない。   In some cases, the maximum order of the harmonic components of the harmonic generation device in the harmonic generation device DB 15 does not match the maximum order of the harmonics in the actually measured harmonic component calculation result 14. In this case, the “total value of harmonic components before normalization” that is the denominator of the above equation (2) is stored in the harmonic generator DB 15 and the harmonic component of the harmonic generator and the actually measured harmonic component calculation result 14 are stored. This is not preferable in calculating the degree of coincidence of harmonic components.

そこで、高調波発生機器DB15にある高調波発生機器高調波成分の最大次数と、実測高調波成分計算結果14における高調波の最大次数が一致していない場合には、高調波の最大次数が低い方に高調波の最大次数を一致させる。尚、どちらの最大次数も設計事項として予め決定することが可能なため、最大次数を一致させることは問題ない。   Therefore, when the maximum order of the harmonic components in the harmonic generator DB 15 and the maximum order of the harmonics in the measured harmonic component calculation result 14 do not match, the maximum order of the harmonics is low. The maximum order of harmonics is made to match. Note that since either maximum order can be determined in advance as a design item, there is no problem in matching the maximum orders.

図11は、高調波発生機器DB15にある高調波発生機器高調波成分の最大次数と実測高調波成分計算結果14における高調波の最大次数が一致していない場合における高調波成分の規格化の概要を示した説明図である。   FIG. 11 shows an outline of normalization of harmonic components when the maximum order of harmonic components in the harmonic generator DB 15 and the maximum order of harmonics in the measured harmonic component calculation result 14 do not match. It is explanatory drawing which showed.

図11によれば、高調波発生機器DB15にある高調波発生機器高調波成分の最大次数が25次の場合が例示されている。図11に例示される場合において、例えば、実測高調波成分計算結果14における高調波の最大次数が20次までの場合、規格する最大次数を両者のうち低い次数、すなわち、実測高調波成分計算結果14の高調波の最大次数の20次に一致させ、規格化は両方とも20次までの高調波成分を抽出して行う。この場合、上記式(2)の分母は、規格化前の高調波成分の20次までの合計値となる。   FIG. 11 illustrates a case where the maximum order of the harmonic generator harmonic component in the harmonic generator DB 15 is 25th. In the case illustrated in FIG. 11, for example, when the maximum order of harmonics in the measured harmonic component calculation result 14 is up to the 20th order, the standardized maximum order is set to a lower order, that is, the measured harmonic component calculation result. The normalization is performed by extracting harmonic components up to the 20th order, with the 20th order of the maximum order of 14 harmonics being matched. In this case, the denominator of the above equation (2) is the total value up to the 20th order of the harmonic components before normalization.

また、図11に示される場合と逆の場合、すなわち、高調波発生機器DB15にある高調波発生機器高調波成分の最大次数の方が実測高調波成分計算結果14における高調波の最大次数よりも低い場合には、高調波発生機器DB15にある高調波発生機器高調波成分の最大次数に合わせる。   Further, in the case opposite to the case shown in FIG. 11, that is, the maximum order of the harmonic generator harmonic component in the harmonic generator DB 15 is higher than the maximum harmonic order in the measured harmonic component calculation result 14. When the frequency is low, it is adjusted to the maximum order of the harmonic components in the harmonic generator DB 15.

高調波成分一致度計算手段10が実測高調波成分計算結果14の高調波成分について規格化すると、続いて、高調波パターン一致度計算処理部22が高調波パターン一致度計算処理機能を用いて規格化した実測高調波成分計算結果(以下、規格化実測高調波成分計算結果とする)23と高調波発生機器DB15に格納される高調波発生機器の規格化した高調波成分(以下、規格化高調波発生機器高調波成分とする)24に基づいて高調波成分一致度を計算する。   When the harmonic component coincidence calculation means 10 normalizes the harmonic components of the actually measured harmonic component calculation result 14, the harmonic pattern coincidence calculation processing unit 22 then uses the harmonic pattern coincidence calculation processing function to perform the standardization. Normalized harmonic component calculation results (hereinafter referred to as normalized measured harmonic component calculation results) 23 and normalized harmonic components (hereinafter referred to as normalized harmonics) of the harmonic generation device stored in the harmonic generation device DB 15 Harmonic component coincidence is calculated based on 24.

高調波発生機器DB15に格納される高調波発生機器の高調波成分は、高調波成分の合計が1になる様に規格化されている。このため、高調波成分一致度計算手段10は、規格化実測高調波成分計算結果23と高調波発生機器DB15に格納される高調波発生機器の高調波成分との一致度(以下、高調波パターン一致度とする)を計算できる。   The harmonic components of the harmonic generator stored in the harmonic generator DB 15 are standardized so that the sum of the harmonic components is 1. For this reason, the harmonic component coincidence calculation means 10 determines the degree of coincidence (hereinafter referred to as a harmonic pattern) between the normalized measurement harmonic component calculation result 23 and the harmonic component of the harmonic generator stored in the harmonic generator DB 15. The degree of coincidence can be calculated.

高調波パターン一致度の計算では、まず、規格化実測高調波成分計算結果23と高調波発生機器DB15にある高調波発生機器の高調波成分の規格化した値との差分の絶対値を次数毎にとり、式(3)に示す様に合計値(以下、規格化差分合計値)を計算する。   In the calculation of the harmonic pattern coincidence, first, the absolute value of the difference between the normalized measurement harmonic component calculation result 23 and the normalized value of the harmonic component of the harmonic generation device in the harmonic generation device DB 15 is calculated for each order. Then, the total value (hereinafter referred to as the normalized difference total value) is calculated as shown in Equation (3).

[数3]
規格化差分合計値=|規格化後の2次成分(実測高調波成分計算結果14)−高調波発生機器の高調波の2次成分|+|規格化後の3次成分(実測高調波成分計算結果14)−高調波発生機器の高調波の3次成分|+・・・+|規格化後のn次成分(実測高調波成分計算結果14)−高調波発生機器の高調波のn次成分|=|規格化実測高調波成分計算結果23の2次成分−規格化高調波発生機器高調波成分24の2次成分|+|規格化実測高調波成分計算結果23の3次成分−規格化高調波発生機器高調波成分24の3次成分|+・・・|規格化実測高調波成分計算結果23のn次成分−規格化高調波発生機器高調波成分24のn次成分| ……(3)
[Equation 3]
Normalized difference total value = | Second-order component after normalization (measured harmonic component calculation result 14) -Second-order component of harmonic of harmonic generation device | + | Third-order component after normalization (measured harmonic component) Calculation result 14)-Third-order component of harmonic of harmonic generation device + + ... + | n-order component after normalization (measured harmonic component calculation result 14)-n-th order of harmonic of harmonic generation device Component | = | Second-order component of normalized measured harmonic component calculation result 23 -Secondary component of normalized harmonic generation device harmonic component 24 | + | Third component of normalized measured harmonic component calculation result 23-Standard Third-order component of normalized harmonic generator harmonic component 24 | +... N-order component of normalized measured harmonic component calculation result 23 −n-order component of normalized harmonic generator harmonic component 24 | (3)

規格化差分合計値を算出すると、続いて、算出した規格化差分合計値に基づいて高調波パターン一致度を計算する。規格化差分合計値と高調波パターン一致度とは一定の関係を有するので、高調波パターン一致度は規格化差分合計値を用いて算出することができる。ここで、図12〜図16を引用して上記式(3)に示される規格化差分合計値と高調波パターン一致度との関係および高調波成分一致度について説明する。   When the normalized difference total value is calculated, the harmonic pattern matching degree is calculated based on the calculated normalized difference total value. Since the normalized difference total value and the harmonic pattern matching degree have a certain relationship, the harmonic pattern matching degree can be calculated using the normalized difference total value. Here, the relationship between the normalized difference total value and the harmonic pattern matching degree shown in the above formula (3) and the harmonic component matching degree will be described with reference to FIGS.

図12〜図14は、規格化差分合計値の計算の具体例を示した説明図であり、図15は、規格化差分合計値と高調波パターン一致度との関係を概略的に示した説明図である。   12 to 14 are explanatory diagrams showing specific examples of the calculation of the normalized difference total value, and FIG. 15 is an explanation schematically showing the relationship between the normalized difference total value and the harmonic pattern matching degree. FIG.

図12は、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24が完全に一致している場合を示している。図12に示されるように、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24が完全に一致している場合、すなわち、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24の各次成分(図12においては3次、5次および7次成分)が全て一致している場合、上記式(3)からも明らかなように規格化差分合計値は0となる。   FIG. 12 shows a case where the normalized measured harmonic component calculation result 23 and the normalized harmonic generation device harmonic component 24 completely match. As shown in FIG. 12, when the normalized measured harmonic component calculation result 23 and the normalized harmonic generation device harmonic component 24 completely match, that is, the normalized measured harmonic component calculated result 23 and the standard. When all the order components (third order, fifth order, and seventh order components in FIG. 12) of the harmonic component generator harmonic component 24 coincide with each other, the normalized difference is apparent from the above equation (3). The total value is zero.

図13は、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24が完全に一致していない場合を示している。図13に示されるように、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24が完全に一致していない場合(全てが不一致の場合)、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24の各次成分(図13においては3次、5次および7次成分)が全てにおいて不一致となるので、規格化差分合計値は全成分の和となり2となる。   FIG. 13 shows a case where the normalized measured harmonic component calculation result 23 and the normalized harmonic generation device harmonic component 24 do not completely match. As shown in FIG. 13, when the normalized measured harmonic component calculation result 23 and the normalized harmonic generator harmonic component 24 do not completely match (when all do not match), the normalized measured harmonic component Since each order component (third order, fifth order, and seventh order component in FIG. 13) of the calculation result 23 and the normalized harmonic generator harmonic component 24 does not coincide with each other, the normalized difference total value is the sum of all components. Sum and 2

図14は、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24が部分的に一致している場合を示している。図14に示されるように、規格化実測高調波成分計算結果23と規格化高調波発生機器高調波成分24のある次数成分が一致し、その他の次数成分が一致しない場合の規格化差分合計値は、図12に示される場合と図13に示される場合との間の範囲、すなわち、0から2の範囲をとる。図14に示される例を具体的に計算すれば、上記式(3)の項のうち一致していない3次および7次成分の項が残り、|0.6−0|+|0−0.6|=0.6+0.6=1.2となる。   FIG. 14 shows a case where the normalized measurement harmonic component calculation result 23 and the normalized harmonic generation device harmonic component 24 partially match. As shown in FIG. 14, the normalized difference total value in the case where a certain order component of the normalized measured harmonic component calculation result 23 and the normalized harmonic generator harmonic component 24 match and the other order components do not match. Takes a range between the case shown in FIG. 12 and the case shown in FIG. 13, that is, a range from 0 to 2. If the example shown in FIG. 14 is specifically calculated, the terms of the third-order and seventh-order components that do not match among the terms of the above formula (3) remain, and | 0.6-0 | + | 0-0 .6 | = 0.6 + 0.6 = 1.2.

図12〜図14に示される結果をまとめたのが図15であり、図15では規格化差分合計値を横軸に、高調波パターン一致度[%]を縦軸にとって両者の関係が示されている。図15に示されるように、規格化差分合計値は、高調波パターン一致度100%(高調波の全ての次数で一致)の場合の0と、高調波パターン一致度0%(高調波の全ての次数で不一致)の場合の2とを結ぶ直線(一次関数)として表すことができる。   FIG. 15 summarizes the results shown in FIGS. 12 to 14. In FIG. 15, the relationship between the normalized difference total value is shown on the horizontal axis and the harmonic pattern matching degree [%] is shown on the vertical axis. ing. As shown in FIG. 15, the normalized difference total value is 0 when the harmonic pattern coincidence is 100% (matches at all orders of the harmonics) and the harmonic pattern coincidence is 0% (all harmonics are coincident). In the case of a mismatch in the order of 2), it can be expressed as a straight line (linear function) connecting 2 to 2.

しかしながら、実際の演算処理では、高調波パターン一致度を用いて0〜100%で表すよりも、高調波の全ての次数で一致する場合を+100%とし高調波の全ての次数で不一致の場合を−100%とした方が、高調波発生要因となり得るのか否かがより明確となる。そこで、全ての次数で一致する場合(高調波パターン一致度が100%の場合)を+100%とし全く一致しない場合(高調波パターン一致度が0%の場合)を−100%とした高調波成分一致度という概念を導入する。高調波成分一致度は以下の式(4)で表すことができる。   However, in actual calculation processing, when the harmonic pattern coincidence is used to represent 0 to 100%, the case where all the orders of the harmonics coincide with each other is set to + 100%, and the case where the orders of the harmonics do not coincide with each other. It becomes clearer whether -100% can be a harmonic generation factor. Therefore, a harmonic component in which all orders are matched (when the harmonic pattern matching degree is 100%) is + 100% and not matched at all (when the harmonic pattern matching degree is 0%) is set to -100%. Introduce the concept of coincidence. The harmonic component coincidence can be expressed by the following equation (4).

[数4]
高調波成分一致度(%)=(1−規格化差分合計値)×100 ……(4)
[Equation 4]
Harmonic component coincidence (%) = (1−normalized difference total value) × 100 (4)

図16は、規格化差分合計値と高調波成分一致度との関係を概略的に示した説明図である。規格化差分合計値を横軸に、高調波成分一致度[%]を縦軸にとって両者の関係を表すと、規格化差分合計値が0の場合(高調波の全ての次数で一致する)場合、高調波成分一致度は100%となり、規格化差分合計値が2の場合(高調波の全ての次数で不一致)場合、高調波成分一致度は−100%となる。高調波パターン一致度計算処理部22は、算出した規格化差分合計値を上記式(4)に代入し演算することで高調波成分一致度(%)を算出する。算出結果は、高調波成分一致度計算結果16として高調波要因推定手段11へ送られる。   FIG. 16 is an explanatory diagram schematically showing the relationship between the normalized difference total value and the harmonic component matching degree. When the normalized difference total value is 0 on the horizontal axis and the harmonic component match [%] is on the vertical axis, the relationship between the two is shown. When the normalized difference total value is 0 (matches in all orders of harmonics) The harmonic component coincidence is 100%, and when the standardized difference total value is 2 (non-coincidence for all orders of harmonics), the harmonic component coincidence is −100%. The harmonic pattern coincidence calculation processing unit 22 calculates the harmonic component coincidence (%) by substituting the calculated normalized difference total value into the above equation (4) and calculating. The calculation result is sent to the harmonic factor estimation means 11 as the harmonic component coincidence calculation result 16.

図17は、高調波要因推定手段11の機能および処理内容を示す説明図である。   FIG. 17 is an explanatory diagram showing functions and processing contents of the harmonic factor estimating means 11.

高調波要因推定手段11は、高調波成分一致度に応じて高調波発生機器(高調波要因)の表示位置を並び替える高調波一致度並び替え手段としての一致度並び替え処理部27と、高調波要因と推定される高調波発生機器を抽出する高調波要因抽出処理部28とを備える。   The harmonic factor estimating means 11 includes a matching degree rearrangement processing unit 27 as a harmonic matching degree rearranging means for rearranging the display positions of the harmonic generators (harmonic factors) according to the harmonic component matching degree, And a harmonic factor extraction processing unit 28 for extracting a harmonic generation device estimated as a wave factor.

一致度並び替え処理部27は、高調波発生機器の高調波成分一致度を予め定義した規則に則して並び替える機能を有する。一致度並び替え処理部27は、受信した各高調波発生機器の高調波成分一致度を、例えば、高調波成分一致度が高い順に並び替える。   The coincidence rearrangement processing unit 27 has a function of rearranging the harmonic component coincidence of the harmonic generators according to a rule defined in advance. The degree-of-match rearrangement processing unit 27 rearranges the received harmonic component coincidence of each harmonic generation device in descending order of harmonic component coincidence, for example.

高調波要因抽出処理部28は、高調波要因と推定される高調波発生機器を抽出する。高調波要因を抽出する際には、例えば、高調波成分一致度に対して閾値(しきいち)を設定しておき、この閾値を超える高調波成分一致度を持つ高調波発生機器を高調波要因と推定して抽出する。高調波要因抽出処理部28は、抽出した高調波発生機器を高調波要因推定結果17として表示手段12へ送る。尚、高調波要因抽出処理部28において、設定する閾値およびその個数は表示内容等により任意に設定可能である。   The harmonic factor extraction processing unit 28 extracts a harmonic generation device estimated as a harmonic factor. When extracting harmonic factors, for example, a threshold is set for the harmonic component coincidence, and a harmonic generator having a harmonic component coincidence exceeding this threshold is selected as the harmonic factor. To be extracted. The harmonic factor extraction processing unit 28 sends the extracted harmonic generation device to the display unit 12 as the harmonic factor estimation result 17. In the harmonic factor extraction processing unit 28, the threshold value to be set and the number of the threshold values can be arbitrarily set according to the display contents.

図18および図19は、高調波要因推定手段11から送られた高調波要因推定結果17が表示手段12に表示される一例を示した説明図である。   18 and 19 are explanatory diagrams showing an example in which the harmonic factor estimation result 17 sent from the harmonic factor estimating unit 11 is displayed on the display unit 12.

図18および図19に示されるように、例えば、高調波発生要因として推定される高調波発生機器が高調波成分一致度の高い順に左側から表示される。また、設定する閾値および規格化実測高調波成分計算結果23によっては、図18に示されるように、例えば8アイテム等抽出される高調波発生機器が多い場合もあれば、図19に示されるように、例えば3アイテム等抽出される高調波発生機器の個数が少ない場合もある。   As shown in FIGS. 18 and 19, for example, the harmonic generation devices estimated as the harmonic generation factors are displayed from the left side in descending order of harmonic component coincidence. Also, depending on the threshold value to be set and the normalized measured harmonic component calculation result 23, as shown in FIG. 18, there may be many harmonic generators extracted, for example, 8 items, as shown in FIG. In addition, for example, there are cases where the number of harmonic generation devices extracted, such as three items, is small.

第1の電力品質評価システム1Aによれば、電力系統から電力の供給を受ける需要家2に設置した測定装置7から電気物理量情報6を取得し、取得した電気物理量情報6に基づいて電力品質の一要素である歪みの観点から電力品質を評価することができる。具体的には、予め照合用の高調波パターン(規格化高調波発生機器高調波成分24)を高調波発生要因となり得る機器毎に用意し、取得した電気物理量情報6に基づいて得られた規格化実測高調波成分計算結果23と各機器の規格化高調波発生機器高調波成分24について高調波成分一致度を算出し高調波成分一致度の高い機器を高調波要因として推定することができる。   According to the first power quality evaluation system 1 </ b> A, the electrical physical quantity information 6 is acquired from the measuring device 7 installed in the consumer 2 that receives power supply from the power system, and the power quality information 6 is based on the acquired electrical physical quantity information 6. The power quality can be evaluated from the viewpoint of distortion, which is one factor. Specifically, a reference harmonic pattern (standardized harmonic generation equipment harmonic component 24) is prepared in advance for each equipment that can become a harmonic generation factor, and a standard obtained based on the acquired electrophysical quantity information 6 The harmonic component coincidence degree can be calculated for the normalized measurement harmonic component calculation result 23 and the normalized harmonic generation equipment harmonic component 24 of each device, and a device having a high degree of harmonic component coincidence can be estimated as a harmonic factor.

尚、電力品質評価システム1Aは、ユーザ等からの実行要求により電力品質評価を行うが、タイマー機能を付加し、所定の時間毎に電力品質評価(高調波要因の推定)の算出を繰り返すように電力品質評価システム1Aを構成しても良い。   The power quality evaluation system 1A performs power quality evaluation according to an execution request from a user or the like, but adds a timer function and repeats calculation of power quality evaluation (estimation of harmonic factors) every predetermined time. The power quality evaluation system 1A may be configured.

また、電力品質評価システム1Aでは、表示手段12に最終結果である高調波要因推定結果17が表示されると説明したが、途中経過である電気物理量情報6、実測高調波成分計算結果14および高調波成分一致度計算結果16やその他適宜必要な情報を表示することを妨げない。   Further, in the power quality evaluation system 1A, it has been described that the harmonic factor estimation result 17 which is the final result is displayed on the display unit 12. It does not preclude displaying the wave component coincidence calculation result 16 and other necessary information.

さらに、本実施形態では、電力品質評価システム1Aが高調波要因推定手段11を具備しているが、必ずしも具備している必要はない。一定の高調波成分一致度を持つ高調波発生機器を高調波要因として推定しない場合、例えば、全高調波発生機器に対する高調波成分一致度を表示手段12に表示したい場合、高調波要因を抽出する必要はなくなるからである。   Furthermore, in the present embodiment, the power quality evaluation system 1A includes the harmonic factor estimation means 11, but it does not necessarily have to be included. When a harmonic generation device having a certain harmonic component coincidence is not estimated as a harmonic factor, for example, when it is desired to display the harmonic component coincidence for all harmonic generation devices on the display means 12, the harmonic factor is extracted. This is because it is no longer necessary.

さらにまた、本実施形態では、高調波要因推定手段11が一致度並び替え処理部27を備えているが、一致度並び替え処理部27は高調波要因推定手段11と独立していても構わない。すなわち、高調波要因推定手段11が一致度並び替え処理部27を必ずしも備えている必要はない。さらにまた、電力品質評価システム1Aは、高調波一致度並び替え手段(一致度並び替え処理部27)を具備していなくても良い。出力手段としての表示手段12に高調波要因推定結果17を並び替えて表示しない場合、高調波発生機器の高調波成分一致度を並び替える機能は不要だからである。   Furthermore, in the present embodiment, the harmonic factor estimation unit 11 includes the matching degree rearrangement processing unit 27, but the matching degree rearrangement processing unit 27 may be independent of the harmonic factor estimation unit 11. . That is, the harmonic factor estimation means 11 does not necessarily need to include the matching degree rearrangement processing unit 27. Furthermore, the power quality evaluation system 1A may not include the harmonic matching degree sorting unit (matching degree sorting processing unit 27). This is because when the harmonic factor estimation result 17 is not rearranged and displayed on the display unit 12 as the output unit, the function of rearranging the harmonic component coincidence of the harmonic generation devices is unnecessary.

[第2の実施の形態]
第2の電力品質評価システム1Bは、測定装置7から電気物理量情報6を取得して高調波要因を推定するのに加えてさらに測定装置7を流れる電流の方向を計算するように構成される。第2の電力品質評価システム1Bの適用例は、基本的には第1の電力品質評価システム1Aと同様であり、図1において第1の電力品質評価システム1Aを第2の電力品質評価システム1Bと読み替えれば、読み替えた図1が第2の電力品質評価システム1Bの適用例を示す説明図となる。
[Second Embodiment]
The second power quality evaluation system 1B is configured to calculate the direction of the current flowing through the measuring device 7 in addition to obtaining the electrical physical quantity information 6 from the measuring device 7 and estimating the harmonic factor. An application example of the second power quality evaluation system 1B is basically the same as that of the first power quality evaluation system 1A. In FIG. 1, the first power quality evaluation system 1A is replaced with the second power quality evaluation system 1B. 1 is an explanatory diagram showing an application example of the second power quality evaluation system 1B.

また、第2の電力品質評価システム1Bは、図2に示される第1の電力品質評価システム1Aに対して、高調波成分計算手段8の代わりに測定装置7を流れる電流の方向を計算する機能を有する高調波成分計算手段30を具備する。すなわち、第2の電力品質評価システム1Bは、高調波成分計算手段30、データ記録手段9、高調波成分一致度計算手段10、高調波推定手段11および表示手段12を具備する点で異なる。しかしながら、その他の構成は実質的に異ならない。そこで、第2の電力品質評価システム1Bの説明では、第1の電力品質評価システム1Aにおける構成要素と実質的に相違しない構成要素には同じ符号を付して説明を省略する。   Further, the second power quality evaluation system 1B has a function of calculating the direction of the current flowing through the measuring device 7 instead of the harmonic component calculation means 8 with respect to the first power quality evaluation system 1A shown in FIG. The harmonic component calculation means 30 which has is provided. That is, the second power quality evaluation system 1B is different in that it includes a harmonic component calculation means 30, a data recording means 9, a harmonic component coincidence calculation means 10, a harmonic estimation means 11, and a display means 12. However, other configurations are not substantially different. Therefore, in the description of the second power quality evaluation system 1B, components that are not substantially different from the components in the first power quality evaluation system 1A are assigned the same reference numerals and description thereof is omitted.

図20は、第2の電力品質評価システム1Bが備える高調波成分計算手段30の一例を示す説明図である。   FIG. 20 is an explanatory diagram showing an example of the harmonic component calculation means 30 provided in the second power quality evaluation system 1B.

高調波成分計算手段30は、FFT処理部20と、測定装置7を流れる電流の方向を計算する機能を有する高調波電流方向計算手段としての電流方向計算処理部32を備える。すなわち、高調波成分計算手段30は、第1の電力品質評価システム1Aにおける高調波成分計算手段8にさらに測定装置7を流れる電流の方向を計算する機能を付加して構成される。   The harmonic component calculation unit 30 includes an FFT processing unit 20 and a current direction calculation processing unit 32 as a harmonic current direction calculation unit having a function of calculating the direction of the current flowing through the measuring device 7. That is, the harmonic component calculation means 30 is configured by adding a function for calculating the direction of the current flowing through the measuring device 7 to the harmonic component calculation means 8 in the first power quality evaluation system 1A.

電流方向計算処理部32は、ある次数の高調波であるk次(kは2以上n以下を満たす自然数)の高調波電圧の方向と高調波電流の方向とが同方向か逆方向かを電圧ベクトルと電流ベクトルとの位相差から判断する。   The current direction calculation processing unit 32 determines whether the direction of the harmonic voltage of the k-th order (k is a natural number satisfying 2 or more and n or less), which is a harmonic of a certain order, and the direction of the harmonic current are the same direction or the reverse direction. Judgment is made from the phase difference between the vector and the current vector.

図21は、電流方向計算処理部32が行う高調波電流の方向(電流ベクトル)の計算の概要を示した説明図である。   FIG. 21 is an explanatory diagram showing an outline of the calculation of the direction (current vector) of the harmonic current performed by the current direction calculation processing unit 32.

図21には、高調波k次の電圧ベクトルと電流ベクトル(第1の電流ベクトル〜第4の電流ベクトル)が示されている。電流ベクトルの向きが電圧ベクトルに対して同方向か逆方向かの判断は、電圧ベクトルの位相に対する電流ベクトルの位相の遅れまたは進み(位相差)が90度以内であれば同方向とし、位相差が90度を超えている場合には逆方向と判断する。従って、図21に示される第1の電流ベクトルおよび第2の電流ベクトルは同方向と判断し、第3の電流ベクトルおよび第4の電流ベクトルは逆方向と判断する。   FIG. 21 shows harmonic k-th order voltage vectors and current vectors (first current vector to fourth current vector). Whether the direction of the current vector is the same or opposite to the voltage vector is determined in the same direction if the phase or lag (phase difference) of the current vector with respect to the phase of the voltage vector is within 90 degrees. When the angle exceeds 90 degrees, it is determined that the direction is opposite. Accordingly, the first current vector and the second current vector shown in FIG. 21 are determined to be in the same direction, and the third current vector and the fourth current vector are determined to be in the reverse direction.

高調波成分計算手段30は、FFT処理部20が計算したFFTの結果を表す情報と電流方向計算処理部32が計算した高調波電流の方向の結果の情報をデータ記録手段9に保存したり、実測高調波計算結果14として高調波成分一致度計算手段10へ送る。以降の処理は第1の電力品質評価システム1Aと実質的に同様である。但し、高調波成分計算手段30から出力される実測高調波計算結果14には高調波電流の方向について算出した結果の情報が含まれるので、表示手段12に表示される表示内容には高調波電流の方向の情報が含まれる。   The harmonic component calculation means 30 stores information indicating the result of the FFT calculated by the FFT processing section 20 and information on the result of the harmonic current direction calculated by the current direction calculation processing section 32 in the data recording means 9, The measured harmonic calculation result 14 is sent to the harmonic component coincidence calculation means 10. The subsequent processing is substantially the same as that of the first power quality evaluation system 1A. However, since the measured harmonic calculation result 14 output from the harmonic component calculation means 30 includes information on the result calculated for the direction of the harmonic current, the display content displayed on the display means 12 includes the harmonic current. The direction information is included.

第2の電力品質評価システム1Bによれば、高調波電流の方向も判定するので、第1の電力品質評価システム1Aの作用および効果に加えて高調波発生要因がどちらの方向にあるかについても判断できる。従って、高調波発生要因を推定する精度を第1の電力品質評価システム1Aよりも向上させることができる。   According to the second power quality evaluation system 1B, since the direction of the harmonic current is also determined, in addition to the operation and effect of the first power quality evaluation system 1A, the direction of the generation factor of the harmonic is also determined. I can judge. Therefore, the accuracy of estimating the harmonic generation factor can be improved as compared with the first power quality evaluation system 1A.

尚、本実施形態では、高調波成分計算手段30が電流方向計算処理部32を備える場合を説明したが、電流方向計算処理部32は独立していても構わない。すなわち、第1の電力品質評価システム1Aに電流方向計算処理部32をさらに具備する第2の電力品質評価システム1Bを構成しても良い。   In the present embodiment, the case where the harmonic component calculation unit 30 includes the current direction calculation processing unit 32 has been described. However, the current direction calculation processing unit 32 may be independent. That is, you may comprise the 2nd power quality evaluation system 1B which further comprises the current direction calculation process part 32 in 1 A of 1st power quality evaluation systems.

[第3の実施の形態]
図22は、本発明の第3の実施の形態に係る電力品質評価システムの一例である第3の電力品質評価システム1Cの適用例を示す説明図である。
[Third Embodiment]
FIG. 22 is an explanatory diagram showing an application example of the third power quality evaluation system 1C which is an example of the power quality evaluation system according to the third embodiment of the present invention.

第3の電力品質評価システム1Cは、図22に示されるように、需要家2の電力系統において、上位電力系統側と母線5とを接続する送電線路33と複数(図22においては一例として2つの場合を示す)のフィーダ3a,3bにそれぞれ測定装置7a〜7cを設置して各測定装置7a〜7cから電気物理量情報6を取得して電力の品質評価を行うように構成される。尚、図22に示される符号Iは高調波電流を示す。   As shown in FIG. 22, the third power quality evaluation system 1 </ b> C has a plurality of power transmission lines 33 and a plurality of power transmission lines 33 (in FIG. 22, 2 as an example). The measuring devices 7a to 7c are installed in the feeders 3a and 3b, respectively, and the physical quantity information 6 is acquired from the measuring devices 7a to 7c to evaluate the quality of the power. In addition, the code | symbol I shown in FIG. 22 shows a harmonic current.

図23は、第3の電力品質評価システム1Cの構成および機能を示す概念図である。   FIG. 23 is a conceptual diagram showing the configuration and functions of the third power quality evaluation system 1C.

第3の電力品質評価システム1Cは、図23に示されるように、高調波成分計算手段30、データ記録手段9、高調波成分一致度計算手段10、高調波要因推定手段35、および表示手段12を具備する。第3の電力品質評価システム1Cは、各測定装置7a〜7cから取得される各々の電気物理量情報6を取得して高調波発生要因の推定、高調波電流の方向および高調波発生源となる負荷設備4の特定を行う。   As shown in FIG. 23, the third power quality evaluation system 1C includes harmonic component calculation means 30, data recording means 9, harmonic component coincidence calculation means 10, harmonic factor estimation means 35, and display means 12. It comprises. The third power quality evaluation system 1C acquires the respective electrical physical quantity information 6 acquired from each of the measuring devices 7a to 7c to estimate the harmonic generation factor, the direction of the harmonic current, and the load that becomes the harmonic generation source. The equipment 4 is specified.

図24は、第3の電力品質評価システム1Cが具備する高調波要因推定手段35の構成および機能を示す概念図である。   FIG. 24 is a conceptual diagram showing the configuration and functions of the harmonic factor estimating means 35 provided in the third power quality evaluation system 1C.

高調波要因推定手段35は、高調波要因推定手段11が備える一致度並び替え処理部27および高調波要因抽出処理部28に加え、各測定装置7a〜7cを流れる高調波電流の方向から高調波発生源を推定する高調波発生源推定手段としての高調波発生源特定処理部36をさらに備える。   In addition to the matching degree rearrangement processing unit 27 and the harmonic factor extraction processing unit 28 included in the harmonic factor estimation unit 11, the harmonic factor estimation unit 35 generates harmonics from the direction of the harmonic current flowing through the measuring devices 7 a to 7 c. A harmonic generation source specifying processing unit 36 as harmonic generation source estimation means for estimating the generation source is further provided.

高調波発生源特定処理部36は、高調波発生源から高調波電流が流れ込んでくるという点に着目して高調波発生源を絞り込む。例えば、図22に示される負荷設備4bに高調波発生源がある場合、高調波電流Iは、フィーダ3bおよび母線5を経由して送電線路33を通って上位電力系統へ流れ込むかフィーダ3aを通り負荷設備4aに流れ込むことになる。つまり、各測定装置7a〜7cで観測される高調波電流Iの方向がわかれば高調波発生源を絞り込むことができ、高調波発生源を推定することができる。高調波発生源特定処理部36が推定した高調波発生源の情報(高調波発生源推定結果)37は、高調波要因推定結果17とともに表示手段12へ出力される。   The harmonic generation source identification processing unit 36 narrows down the harmonic generation sources by paying attention to the point that harmonic current flows from the harmonic generation source. For example, when the load facility 4b shown in FIG. 22 has a harmonic generation source, the harmonic current I flows into the upper power system through the feeder 3b via the feeder 3b and the bus 5 or through the feeder 3a. It will flow into the load facility 4a. That is, if the direction of the harmonic current I observed by each of the measuring devices 7a to 7c is known, the harmonic generation source can be narrowed down and the harmonic generation source can be estimated. The harmonic generation source information (harmonic generation source estimation result) 37 estimated by the harmonic generation source identification processing unit 36 is output to the display unit 12 together with the harmonic factor estimation result 17.

図25は、高調波発生源特定処理部36が行う高調波発生源特定処理における判定ロジックを示した説明図である。   FIG. 25 is an explanatory diagram showing determination logic in the harmonic generation source identification process performed by the harmonic generation source identification processing unit 36.

高調波発生源特定処理部36は、まず、第1の高調波発生源特定ロジックに従い高調波発生源の特定を行う。第1の高調波発生源特定ロジックは、高調波発生が1箇所の場合に有効なロジックであり、各測定装置7a〜7cで測定された高調波電流Iが一定の条件となる場合、1箇所の高調波発生源が特定される。例えば、測定装置7aで観測される高調波電流Iの方向が母線5側(条件1)、かつ、測定装置7bで観測される高調波電流Iの方向が母線5側(条件2)、かつ、測定装置7cで観測される高調波電流Iの方向が上位電力系統側(条件3)の条件1から条件3の全条件が真ならば、高調波発生源が上位電力系統であると特定される。   The harmonic generation source identification processing unit 36 first identifies a harmonic generation source according to the first harmonic generation source identification logic. The first harmonic generation source specifying logic is a logic that is effective when the harmonic generation is performed at one place. When the harmonic current I measured by each of the measuring devices 7a to 7c is a constant condition, the first harmonic generation source specifying logic is provided at one place. Harmonic sources are identified. For example, the direction of the harmonic current I observed by the measuring device 7a is the bus 5 side (condition 1), the direction of the harmonic current I observed by the measuring device 7b is the bus 5 side (condition 2), and If the direction of the harmonic current I observed by the measuring device 7c is true for all conditions 1 to 3 on the higher power system side (condition 3), the harmonic generation source is specified to be the higher power system. .

但し、第1の高調波発生源特定ロジックで高調波発生源を特定できない場合がある。この場合には、続いて、第2の高調波発生源特定ロジックに従い高調波発生源の特定を行う。第1の高調波発生源特定ロジックで高調波発生源を特定できない場合には、高調波発生源が複数存在することを意味する。   However, the harmonic generation source may not be identified by the first harmonic generation source identification logic. In this case, subsequently, the harmonic generation source is specified according to the second harmonic generation source specifying logic. If the harmonic generation source cannot be specified by the first harmonic generation source specifying logic, it means that there are a plurality of harmonic generation sources.

第3の電力品質評価システム1Cによれば、第2の電力品質評価システム1Bの作用および効果に加えて、複数の測定装置7a〜7cを通る高調波電流Iの方向から、高調波発生源がどの設備にあるのかといったより具体的な特定をすることができる。   According to the third power quality evaluation system 1C, in addition to the operation and effect of the second power quality evaluation system 1B, a harmonic generation source is generated from the direction of the harmonic current I passing through the plurality of measuring devices 7a to 7c. More specific identification such as which equipment is present can be made.

尚、第3の電力品質評価システム1Cは、一致度並び替え処理部27および高調波要因抽出処理部28に加え高調波発生源推定手段としての高調波発生源特定処理部36をさらに備える高調波要因推定手段35を具備しているが、高調波要因推定手段35の代わりに、高調波要因推定手段11(一致度並び替え処理部27および高調波要因抽出処理部28)および高調波発生源推定手段(高調波発生源特定処理部36)を具備する構成にしても良い。   The third power quality evaluation system 1C further includes a harmonic generation source identification processing unit 36 as a harmonic generation source estimation unit in addition to the matching degree rearrangement processing unit 27 and the harmonic factor extraction processing unit 28. Although the factor estimating means 35 is provided, instead of the harmonic factor estimating means 35, the harmonic factor estimating means 11 (the matching degree rearrangement processing unit 27 and the harmonic factor extraction processing unit 28) and the harmonic generation source estimation. You may make it the structure which comprises a means (harmonic generation source specific process part 36).

[第4の実施形態]
図26は、本発明の第4の実施の形態に係る電力品質評価システムの一例である第4の電力品質評価システム1Dの適用例を示す説明図である。
[Fourth Embodiment]
FIG. 26 is an explanatory diagram showing an application example of the fourth power quality evaluation system 1D which is an example of the power quality evaluation system according to the fourth embodiment of the present invention.

第4の電力品質評価システム1Dは、需要家2の電力系統において、上位電力系統側と母線5とを接続する送電線路33と複数(図26においては一例として2つの場合を示す)のフィーダ3a,3bにそれぞれ測定装置7a〜7cを設置して各測定装置7a〜7cから電気物理量情報6を取得して電力の品質評価を行うように構成される。   The fourth power quality evaluation system 1D includes, in the power system of the customer 2, a power transmission line 33 that connects the higher power system side and the bus 5 and a plurality of feeders 3a (two cases are shown as an example in FIG. 26). , 3b, the measurement devices 7a to 7c are installed, the electrical physical quantity information 6 is acquired from the measurement devices 7a to 7c, and the power quality is evaluated.

また、第4の電力品質評価システム1Dは、負荷設備4a,4bと電気的に接続されており、負荷設備4a,4b内の負荷監視装置(図を省略)または高調波発生機器に対して高調波発生を警告するための情報(以下、アラーム情報とする)39や高調波発生機器を制御する制御信号40を伝送可能に構成される。   Further, the fourth power quality evaluation system 1D is electrically connected to the load facilities 4a and 4b, and has higher harmonics than the load monitoring devices (not shown) or the harmonic generators in the load facilities 4a and 4b. Information for warning of wave generation (hereinafter referred to as alarm information) 39 and a control signal 40 for controlling the harmonic generator are configured to be transmitted.

さらに、第4の電力品質評価システム1Dは、負荷設備4a,4bの監視および制御を行う監視制御センタ41と電気的に接続されており、アラーム情報39を伝送することができるように構成される。尚、図26に示される符号Iは高調波電流を示す。   Furthermore, the fourth power quality evaluation system 1D is electrically connected to a monitoring control center 41 that monitors and controls the load facilities 4a and 4b, and is configured to transmit alarm information 39. . Note that symbol I shown in FIG. 26 indicates a harmonic current.

図27は、第4の電力品質評価システム1Dの構成および機能を示す概念図である。   FIG. 27 is a conceptual diagram showing the configuration and functions of the fourth power quality evaluation system 1D.

第4の電力品質評価システム1Dは、図27に示されるように、高調波成分計算手段30、データ記録手段9、高調波成分一致度計算手段10、高調波要因推定手段35、表示手段12に加え、さらに、アラーム発生処理手段45と、制御指令発生処理手段46とを具備する。   As shown in FIG. 27, the fourth power quality evaluation system 1D includes harmonic component calculation means 30, data recording means 9, harmonic component coincidence calculation means 10, harmonic factor estimation means 35, and display means 12. In addition, an alarm generation processing unit 45 and a control command generation processing unit 46 are further provided.

アラーム発生処理手段45は、高調波の程度が任意に設定される一定水準(警告レベル)より大きい場合にアラーム情報39を生成する機能と生成したアラーム情報39を監視制御センタ41等の外部へ送信する機能を有する。また、制御指令発生処理手段46は、高調波の程度が任意の一定水準(強制制御レベル)より大きく、需要家2内の負荷設備4a,4bに存在する高調波発生機器が存在する場合、当該高調波発生機器を制御する制御信号40を生成する機能と生成した制御信号40を制御対象(負荷設備4a,4bに存在する高調波発生機器またはそのコントローラ)へ送信する機能を有する。尚、強制制御レベルは一般に警告レベルよりも高い水準に設定される。   The alarm generation processing means 45 transmits a function to generate alarm information 39 and the generated alarm information 39 to the outside of the monitoring control center 41 or the like when the degree of harmonics is higher than a predetermined level (warning level). It has the function to do. Further, the control command generation processing means 46 has a higher harmonic level than an arbitrary fixed level (forced control level), and when there is a harmonic generation device present in the load facilities 4a and 4b in the customer 2, It has a function of generating a control signal 40 for controlling the harmonic generator and a function of transmitting the generated control signal 40 to a control target (a harmonic generator present in the load facilities 4a and 4b or its controller). The forced control level is generally set to a level higher than the warning level.

第4の電力品質評価システム1Dは、各測定装置7a〜7cから取得される各々の電気物理量情報6を取得して高調波発生要因の推定、高調波電流の方向および高調波発生源を推定する。そして、高調波の程度が警告レベルを超えると、アラーム発生処理手段45が高調波発生を警告するアラーム情報39を生成して監視制御センタ41等の外部へ送信する。さらに、高調波発生源が需要家2の制御可能な機器であって、高調波の程度が警告レベルを超え強制制御レベル以上となっている場合、制御指令発生処理手段46が制御信号40を生成して制御対象へ送信することで高調波の発生を強制的な抑止を図る。   The 4th electric power quality evaluation system 1D acquires each electrophysical quantity information 6 acquired from each measuring device 7a-7c, presumes a harmonic generation factor, a harmonic current direction, and a harmonic generation source. . When the degree of harmonics exceeds the warning level, the alarm generation processing unit 45 generates alarm information 39 for warning the generation of harmonics and transmits it to the outside of the monitoring control center 41 and the like. Further, when the harmonic generation source is a device that can be controlled by the customer 2 and the degree of the harmonic exceeds the warning level and exceeds the forcible control level, the control command generation processing means 46 generates the control signal 40. Then, the generation of harmonics is forcibly suppressed by transmitting to the controlled object.

アラーム情報39および制御信号40の生成の要否を判断するためには、高調波の程度がどの程度かを判断する必要がある。そのため、第4の電力品質評価システム1Dでは、高調波の程度を示す指標の一例として総合ひずみ率を用いる。総合ひずみ率は、以下の式(5)で表される。   In order to determine whether it is necessary to generate the alarm information 39 and the control signal 40, it is necessary to determine the degree of harmonics. Therefore, in the fourth power quality evaluation system 1D, the total distortion rate is used as an example of an index indicating the degree of harmonics. The total strain rate is expressed by the following equation (5).

[数5]
総合ひずみ率=高調波分のみの実効値÷実効値 ……(5)
[Equation 5]
Total distortion factor = RMS value only for harmonics ÷ RMS value (5)

図28は、高調波の程度を示す一指標である総合ひずみ率の時間推移と、アラーム情報39および制御信号40の生成のタイミングとの関係を説明する説明図である。尚、図28において、横軸は時間、縦軸は総合ひずみ率である。   FIG. 28 is an explanatory diagram for explaining the relationship between the time transition of the total distortion rate, which is one index indicating the degree of harmonics, and the generation timing of the alarm information 39 and the control signal 40. In FIG. 28, the horizontal axis represents time, and the vertical axis represents the total strain rate.

第4の電力品質評価システム1Dでは、まず、警告レベルRa未満で推移していた総合ひずみ率が警告レベルRaに達すると、アラーム発生処理手段45は総合ひずみ率が警告レベルRaに達した時間tから総合ひずみ率が警告レベルRa未満となるまで時間のカウントを開始する。そして、カウントした時間が予め設定した所定時間ta(以下、アラーム発生時限値とする)以上となった場合、アラーム発生処理手段45はアラーム情報39を生成する。 In the fourth power quality evaluation system 1D, first, when the total distortion rate which has been changing below the warning level Ra reaches the warning level Ra, the alarm generation processing means 45 causes the time t when the total distortion rate reaches the warning level Ra. The time counting is started from 0 until the total distortion rate becomes less than the warning level Ra. When the counted time is equal to or longer than a predetermined time ta (hereinafter, referred to as an alarm occurrence time limit), the alarm generation processing unit 45 generates alarm information 39.

さらに、総合ひずみ率が上昇して強制制御レベルRcに達すると、制御指令発生処理手段46は総合ひずみ率が強制制御レベルRcに達した時間tから総合ひずみ率がレベルRc未満となるまで時間のカウントを開始する。そして、カウントした時間が予め設定した所定時間tc(以下、制御信号発生時限値とする)以上となった場合、制御指令発生処理手段46は制御信号40を生成する。 Furthermore, the total harmonic distortion reaches the forced control level Rc rises, the control command generating processing unit 46 time to total harmonic distortion is less than level Rc from time overall strain rate reaches the forced control level Rc t 1 Start counting. When the counted time becomes equal to or greater than a predetermined time tc (hereinafter referred to as a control signal generation time limit value) set in advance, the control command generation processing means 46 generates the control signal 40.

第4の電力品質評価システム1Dによれば、高調波の程度が任意に設定された警告レベルを超えた場合にアラーム情報39を生成して外部へ出力するアラーム発生処理手段45を具備するので、高調波発生源やその管理元に対して高調波発生の警告を発することができる。また、高調波の程度が任意に設定された強制制御レベルを超えた場合に制御信号40を生成して強制制御対象へ出力する制御指令発生処理手段46を具備するので、高調波発生源となる機器を強制的に制御して高調波の程度を低減または高調波の発生を抑えることができる。   According to the fourth power quality evaluation system 1D, the alarm generation processing unit 45 that generates the alarm information 39 and outputs the alarm information 39 when the degree of harmonics exceeds an arbitrarily set warning level is provided. A harmonic generation warning can be issued to the harmonic generation source and its management source. Further, since the control command generation processing means 46 that generates the control signal 40 and outputs the control signal 40 to the forced control target when the degree of harmonics exceeds the arbitrarily set forced control level, it becomes a harmonic generation source. The device can be forcibly controlled to reduce the degree of harmonics or suppress the generation of harmonics.

従って、第4の電力品質評価システム1Dは、第3の電力品質評価システム1Cの作用および効果に加えて、推定した高調波発生源に警告を発したり、強制的に制御したりすることができるので、従来の電力評価システムまたは第1〜第3の電力品質評価システム1A〜1Cに比べて高調波による災害の抑止力を高めることができる。   Therefore, the fourth power quality evaluation system 1D can issue a warning or forcibly control the estimated harmonic generation source in addition to the operation and effect of the third power quality evaluation system 1C. Therefore, the deterrence of disaster caused by harmonics can be increased as compared with the conventional power evaluation system or the first to third power quality evaluation systems 1A to 1C.

尚、第4の電力品質評価システム1Dは、アラーム発生処理手段45と、制御指令発生処理手段46とを具備すると説明したが、両方の手段45,46を具備している必要はない。すなわち、第3の電力品質評価システム1Cにアラーム発生処理手段45を具備した第4の電力品質評価システム1Dまたは、第3の電力品質評価システム1Cに制御指令発生処理手段46を具備した第4の電力品質評価システム1Dを構成しても良い。   Although the fourth power quality evaluation system 1D has been described as including the alarm generation processing unit 45 and the control command generation processing unit 46, it is not necessary to include both the units 45 and 46. That is, the fourth power quality evaluation system 1D provided with the alarm generation processing means 45 in the third power quality evaluation system 1C, or the fourth power quality evaluation system 1C provided with the control command generation processing means 46 in the third power quality evaluation system 1C. The power quality evaluation system 1D may be configured.

以上、本発明に係る電力品質評価システムによれば、上位の電力系統から電力の供給を受ける需要家2の電圧や電流等の電気物理量情報6を収集し、電力品質の一つである高調波の発生要因(発生させている機器の種類)および発生源(どの負荷設備または上位電力系統にあるのか)を推定することができる。また、高調波の影響により負荷設備4に災害等の危険が生じていると判断される場合には、高調波発生機器を強制的に制御することで、高調波による災害発生の未然防止を図ることができる。   As described above, according to the power quality evaluation system according to the present invention, the electrical physical quantity information 6 such as voltage and current of the consumer 2 that receives power supply from the upper power system is collected, and harmonics that are one of power quality are collected. It is possible to estimate the generation factor (the type of the device that is generating) and the generation source (which load facility or higher power system is present). In addition, when it is determined that a hazard such as a disaster has occurred in the load facility 4 due to the influence of harmonics, the harmonic generation device is forcibly controlled to prevent the occurrence of disasters due to the harmonics. be able to.

本発明の第1の実施の形態に係る電力品質評価システムの適用例を示す説明図。Explanatory drawing which shows the example of application of the electric power quality evaluation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る電力品質評価システムの構成および機能を説明する概略図。Schematic explaining the configuration and function of the power quality evaluation system according to the first embodiment of the present invention. 測定装置が実測した電気的物理量の波形の一例として線間2相分の電圧波形を概略的に示したグラフ。The graph which showed roughly the voltage waveform for two phases between lines as an example of the waveform of the electrical physical quantity which the measurement apparatus measured. 本発明の第1の実施の形態に係る電力品質評価システムにおける高調波成分計算手段の一例を示す説明図。Explanatory drawing which shows an example of the harmonic component calculation means in the electric power quality evaluation system which concerns on the 1st Embodiment of this invention. 本発明に係る電力品質評価システムにおける高調波成分計算手段が図3に示されるVab、Vbcについて高調波成分を計算した実測高調波成分計算結果の一例を示す説明図。Explanatory drawing which shows an example of the actual harmonic component calculation result which the harmonic component calculation means in the electric power quality evaluation system which concerns on this invention calculated the harmonic component about Vab and Vbc shown in FIG. 高調波発生機器の一例である電力変換装置(6相)の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the power converter device (6 phases) which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例であるアーク炉の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the arc furnace which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例であるエアコンの高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the air-conditioner which is an example of a harmonic generator, and its component (content rate). 高調波発生機器の一例である一般照明の高調波の次数とその成分(含有率)との関係を表した説明図。Explanatory drawing showing the relationship between the harmonic order of the general illumination which is an example of a harmonic generator, and its component (content rate). 本発明に係る電力品質評価システムの高調波成分一致度計算手段の機能および処理内容を示す説明図。Explanatory drawing which shows the function and process content of the harmonic component coincidence calculation means of the electric power quality evaluation system which concerns on this invention. 高調波発生機器DBにある高調波発生機器高調波成分の最大次数と実測高調波成分計算結果における高調波の最大次数が一致していない場合における高調波成分の規格化の概要を示した説明図。Explanatory diagram showing an outline of normalization of harmonic components when the maximum order of harmonic components in the harmonic generator DB does not match the maximum order of harmonics in the measured harmonic component calculation result . 規格化実測高調波成分計算結果と規格化高調波発生機器高調波成分が完全に一致している場合における規格化差分合計値の計算の具体例を示した説明図。Explanatory drawing which showed the specific example of calculation of the normalization difference total value in case the normalized measurement harmonic component calculation result and the normalized harmonic generation equipment harmonic component correspond completely. 規格化実測高調波成分計算結果と規格化高調波発生機器高調波成分が完全に一致していない場合(完全不一致の場合)における規格化差分合計値の計算の具体例を示した説明図。Explanatory drawing which showed the specific example of the calculation of the normalization difference total value in case the normalized measurement harmonic component calculation result and the normalized harmonic generator harmonic component do not completely match (in the case of complete mismatch). 規格化実測高調波成分計算結果と規格化高調波発生機器高調波成分が部分的に一致している場合における規格化差分合計値の計算の具体例を示した説明図。Explanatory drawing which showed the specific example of calculation of the normalization difference total value in case the normalized measurement harmonic component calculation result and the normalized harmonic generator harmonic component partially correspond. 規格化差分合計値と高調波パターン一致度との関係を概略的に示した説明図。Explanatory drawing which showed schematically the relationship between a normalized difference total value and a harmonic pattern coincidence degree. 規格化差分合計値と高調波成分一致度との関係を概略的に示した説明図。Explanatory drawing which showed schematically the relationship between a normalized difference total value and a harmonic component coincidence degree. 本発明の第1の実施の形態に係る電力品質評価システムにおける高調波要因推定手段の機能および処理内容を示す説明図。Explanatory drawing which shows the function and process content of the harmonic factor estimation means in the electric power quality evaluation system which concerns on the 1st Embodiment of this invention. 本発明に係る電力品質評価システムにおける評価結果(高調波要因推定結果)の表示例を示した説明図。Explanatory drawing which showed the example of a display of the evaluation result (harmonic factor estimation result) in the electric power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムにおける評価結果(高調波要因推定結果)の他の表示例を示した説明図。Explanatory drawing which showed the other example of an evaluation result (harmonic factor estimation result) in the electric power quality evaluation system which concerns on this invention. 本発明の第2の実施の形態に係る電力品質評価システムにおける高調波成分計算手段の一例を示す説明図。Explanatory drawing which shows an example of the harmonic component calculation means in the electric power quality evaluation system which concerns on the 2nd Embodiment of this invention. 本発明に係る電力品質評価システムの電流方向計算処理部が行う高調波電流の方向(電流ベクトル)の計算の概要を示した説明図。Explanatory drawing which showed the outline | summary of the calculation of the direction (current vector) of the harmonic current which the current direction calculation process part of the electric power quality evaluation system which concerns on this invention performs. 本発明の第3の実施の形態に係る電力品質評価システムの適用例を示す説明図。Explanatory drawing which shows the example of application of the electric power quality evaluation system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る電力品質評価システムの構成および機能を示す概念図。The conceptual diagram which shows the structure and function of the electric power quality evaluation system which concern on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る電力品質評価システムにおける高調波要因推定手段の構成および機能を示す概念図。The conceptual diagram which shows the structure and function of the harmonic factor estimation means in the electric power quality evaluation system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る電力品質評価システムにおける高調波要因推定手段の高調波発生源特定処理部が行う高調波発生源特定処理の判定ロジックを示した説明図。Explanatory drawing which showed the determination logic of the harmonic generation source specific process which the harmonic generation source specific process part of the harmonic factor estimation means in the electric power quality evaluation system which concerns on the 3rd Embodiment of this invention performs. 本発明の第4の実施の形態に係る電力品質評価システムの適用例を示す説明図。Explanatory drawing which shows the example of application of the electric power quality evaluation system which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る電力品質評価システムの構成および機能を示す概念図。The conceptual diagram which shows the structure and function of the electric power quality evaluation system which concern on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係る電力品質評価システムにおいて生成されるアラーム情報および制御信号の生成タイミングと高調波の程度を示す一指標である総合ひずみ率の時間推移との関係を説明する説明図。The relationship between the generation time of the alarm information and control signal generated in the power quality evaluation system according to the fourth embodiment of the present invention and the time transition of the total distortion rate, which is an index indicating the degree of harmonics, will be described. Illustration.

符号の説明Explanation of symbols

1A,1B,1C,1D 電力品質評価システム
2 需要家
3(3a,3b) フィーダ
4(4a,4b) 負荷設備
5 母線
7(7a,7b,7c) 測定装置
8 高調波成分計算手段
9 データ記録手段
10 高調波成分一致度計算手段
11 高調波推定手段
12 表示手段(出力手段)
15 高調波発生機器DB
20 FFT処理部
21 規格化計算処理部
22 高調波パターン一致度計算処理部
27 一致度並び替え処理部
28 高調波要因抽出処理部
30 高調波成分計算手段
32 電流方向計算処理部
33 送電線路
35 高調波要因推定手段
36 高調波発生源特定処理部
41 監視制御センタ
45 アラーム発生処理手段
46 制御指令発生処理手段
1A, 1B, 1C, 1D Power quality evaluation system 2 Customer 3 (3a, 3b) Feeder 4 (4a, 4b) Load facility 5 Bus 7 (7a, 7b, 7c) Measuring device 8 Harmonic component calculation means 9 Data recording Means 10 Harmonic component coincidence calculation means 11 Harmonic estimation means 12 Display means (output means)
15 Harmonic generator DB
20 FFT processing unit 21 Normalization calculation processing unit 22 Harmonic pattern matching degree calculation processing unit 27 Matching degree rearrangement processing unit 28 Harmonic factor extraction processing unit 30 Harmonic component calculation means 32 Current direction calculation processing unit 33 Transmission line 35 Harmonic Wave factor estimation means 36 Harmonic generation source identification processing unit 41 Monitoring control center 45 Alarm generation processing means 46 Control command generation processing means

Claims (9)

電力系統の少なくとも1箇所以上で測定された電流および電圧の少なくとも何れかを含む電気的物理量に基づき、測定された電気的物理量の高調波成分を前記測定箇所毎に計算する高調波成分計算手段と、
前記高調波成分計算手段が算出した前記測定箇所毎の高調波成分と、高調波を発生させる機器と当該機器の高調波成分とを対応させたデータとを照合して前記高調波成分計算手段が算出した高調波成分が前記データの高調波成分と一致する程度を計算する高調波成分一致度計算手段とを具備することを特徴とする電力品質評価システム。
Harmonic component calculation means for calculating a harmonic component of the measured electrical physical quantity for each measurement location based on an electrical physical quantity including at least one of current and voltage measured at at least one location of the power system; ,
The harmonic component calculation unit is configured to collate the harmonic component for each measurement location calculated by the harmonic component calculation unit with the data in which the harmonic generation device and the harmonic component of the device are associated with each other. A power quality evaluation system comprising: a harmonic component coincidence calculating unit that calculates a degree to which the calculated harmonic component matches the harmonic component of the data.
前記高調波成分一致度計算手段が計算した結果に基づき高調波発生要因となる機器および高調波発生要因とならない機器の少なくとも一方を絞り込む高調波要因推定手段をさらに具備することを特徴とする請求項1記載の電力品質評価システム。 The apparatus further comprises a harmonic factor estimating unit that narrows down at least one of a device that is a harmonic generation factor and a device that is not a harmonic generation factor based on a result calculated by the harmonic component coincidence calculation unit. 1. The power quality evaluation system according to 1. 前記高調波成分一致度計算手段が計算した結果を所定の順番に並び替える高調波一致度並び替え手段をさらに具備することを特徴とする請求項1または2記載の電力品質評価システム。 The power quality evaluation system according to claim 1, further comprising: a harmonic matching degree rearranging unit that rearranges the results calculated by the harmonic component matching degree calculating unit in a predetermined order. 前記測定箇所は複数であり、各測定個所で測定される電流および電圧に基づき、高調波電圧に対する高調波電流の方向を計算する機能を有する高調波電流方向計算手段をさらに具備することを特徴とする請求項1ないし3の何れかに記載の電力品質評価システム。 The measurement location is plural, and further comprises a harmonic current direction calculation means having a function of calculating the direction of the harmonic current with respect to the harmonic voltage based on the current and voltage measured at each measurement location. The power quality evaluation system according to any one of claims 1 to 3. 前記高調波電流方向計算手段が計算した各測定個所を流れる高調波電流の方向に基づいて、高調波発生源の方向を判断し、前記高調波発生源を推定する機能を有する高調波発生源推定手段をさらに具備することを特徴とする請求項4記載の電力品質評価システム。 Based on the direction of the harmonic current flowing through each measurement location calculated by the harmonic current direction calculation means, the direction of the harmonic generation source is determined, and the harmonic generation source estimation having the function of estimating the harmonic generation source The power quality evaluation system according to claim 4, further comprising means. 高調波の程度が任意に設定される一定水準よりも大きい場合、警告を示すアラーム情報を生成し外部へ送信する機能を有するアラーム発生処理手段を具備することを特徴とする請求項5記載の電力品質評価システム。 6. The electric power according to claim 5, further comprising alarm generation processing means having a function of generating alarm information indicating a warning and transmitting the alarm information to the outside when the degree of harmonics is higher than a predetermined fixed level. Quality evaluation system. 前記高調波発生源推定手段が推定した高調波発生源が自己制御可能な機器であり、高調波の程度が任意に設定される一定水準よりも大きい場合、前記高調波発生源となる機器を強制的に制御する制御信号を生成し、前記高調波発生源となる機器および当該機器を制御するコントローラへ生成した制御信号を送信する機能を有する制御指令発生処理手段を具備することを特徴とする請求項5または6記載の電力品質評価システム。 If the harmonic generation source estimated by the harmonic generation source estimation means is a self-controllable device and the degree of harmonics is greater than a certain level that is arbitrarily set, the device that becomes the harmonic generation source is forced A control command generation processing unit having a function of generating a control signal to be controlled automatically and transmitting the generated control signal to a device that is the harmonic generation source and a controller that controls the device is provided. Item 7. The power quality evaluation system according to Item 5 or 6. 前記高調波成分計算手段は、タイマー機能をさらに備え、前記測定箇所毎の高調波成分を所定の時間毎に算出し、前記高調波成分一致度計算手段は、前記高調波成分計算手段が所定の時間毎に算出した前記測定箇所毎の高調波成分と高調波を発生させる機器と当該機器の高調波成分とを対応させたデータとを照合して前記高調波成分計算手段が算出した高調波成分が前記データの高調波成分と一致する程度を計算するように構成されることを特徴とする請求項1記載の電力品質評価システム。 The harmonic component calculation means further comprises a timer function, calculates a harmonic component for each measurement location at a predetermined time, and the harmonic component coincidence calculation means has a predetermined harmonic component calculation means. Harmonic components calculated by the harmonic component calculation means by collating the harmonic components for each measurement location calculated for each time and the data corresponding to the devices generating the harmonics and the harmonic components of the devices. The power quality evaluation system according to claim 1, wherein the power quality evaluation system is configured to calculate a degree of coincidence with a harmonic component of the data. 少なくとも前記高調波成分一致度計算手段が算出した算出結果を含む必要な情報をユーザが認識できる形式で出力する出力手段をさらに具備する請求項1記載の電力品質評価システム。 The power quality evaluation system according to claim 1, further comprising output means for outputting necessary information including a calculation result calculated by at least the harmonic component coincidence calculating means in a format that can be recognized by a user.
JP2007028507A 2007-02-07 2007-02-07 Power quality evaluation system Active JP5665250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028507A JP5665250B2 (en) 2007-02-07 2007-02-07 Power quality evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007028507A JP5665250B2 (en) 2007-02-07 2007-02-07 Power quality evaluation system

Publications (2)

Publication Number Publication Date
JP2008191108A true JP2008191108A (en) 2008-08-21
JP5665250B2 JP5665250B2 (en) 2015-02-04

Family

ID=39751332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028507A Active JP5665250B2 (en) 2007-02-07 2007-02-07 Power quality evaluation system

Country Status (1)

Country Link
JP (1) JP5665250B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213545A (en) * 2009-03-12 2010-09-24 Toshiba Corp Power quality evaluation system
JP2010273481A (en) * 2009-05-22 2010-12-02 Toshiba Corp Power quality evaluation system
JP2011227545A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Information collection device, information collection method and program
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
CN104267258A (en) * 2014-10-28 2015-01-07 湖南工业大学 Harmonic instantaneous power calculating method utilizing incomplete S transform
CN105160445A (en) * 2015-01-19 2015-12-16 国家电网公司 Evaluation system and method for power supply reliability for important user
JP2017537324A (en) * 2014-12-09 2017-12-14 ローズマウント インコーポレイテッド Partial discharge detection system
WO2023243034A1 (en) * 2022-06-16 2023-12-21 理化工業株式会社 Power adjuster and program

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335132A (en) * 1986-07-30 1988-02-15 三菱電機株式会社 Distribution system harmonic control system
JPH0564372A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Specification of higher harmonic source of distribution system
JPH0743201A (en) * 1993-07-28 1995-02-14 Oki Systec Tokai:Kk Method and device for discriminating kind of vehicle
JPH08313572A (en) * 1995-05-22 1996-11-29 Hitachi Ltd Method for system monitoring
JPH08339746A (en) * 1995-06-12 1996-12-24 Omron Corp Photoelectric sensor
JPH0974660A (en) * 1995-09-04 1997-03-18 Nissin Electric Co Ltd Harmonic detector
JPH09229981A (en) * 1996-02-21 1997-09-05 Hitachi Ltd Monitoring device used for monitoring harmonics and harmonic monitoring system
JPH1189088A (en) * 1997-09-08 1999-03-30 Kansai Electric Power Co Inc:The Operation/control method of active filter
JP2000184359A (en) * 1998-12-11 2000-06-30 Mega Chips Corp Monitoring device and system therefor
JP2001004686A (en) * 1999-06-22 2001-01-12 Chubu Electric Power Co Inc Method for measuring harmonic characteristics of electric power system
JP2002199579A (en) * 2000-12-28 2002-07-12 Tokyo Electric Power Co Inc:The Monitoring method for power distribution system
JP2002345172A (en) * 2001-05-18 2002-11-29 Fuji Electric Co Ltd Harmonic-monitoring system in power system
JP2005024469A (en) * 2003-07-04 2005-01-27 Sharp Corp Higher harmonic monitoring system, and higher harmonic monitoring method
JP2006227564A (en) * 2005-01-20 2006-08-31 Advanced Telecommunication Research Institute International Sound evaluating device and program
JP2006343904A (en) * 2005-06-08 2006-12-21 Xanavi Informatics Corp Driving support device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335132A (en) * 1986-07-30 1988-02-15 三菱電機株式会社 Distribution system harmonic control system
JPH0564372A (en) * 1991-08-29 1993-03-12 Fuji Electric Co Ltd Specification of higher harmonic source of distribution system
JPH0743201A (en) * 1993-07-28 1995-02-14 Oki Systec Tokai:Kk Method and device for discriminating kind of vehicle
JPH08313572A (en) * 1995-05-22 1996-11-29 Hitachi Ltd Method for system monitoring
JPH08339746A (en) * 1995-06-12 1996-12-24 Omron Corp Photoelectric sensor
JPH0974660A (en) * 1995-09-04 1997-03-18 Nissin Electric Co Ltd Harmonic detector
JPH09229981A (en) * 1996-02-21 1997-09-05 Hitachi Ltd Monitoring device used for monitoring harmonics and harmonic monitoring system
JPH1189088A (en) * 1997-09-08 1999-03-30 Kansai Electric Power Co Inc:The Operation/control method of active filter
JP2000184359A (en) * 1998-12-11 2000-06-30 Mega Chips Corp Monitoring device and system therefor
JP2001004686A (en) * 1999-06-22 2001-01-12 Chubu Electric Power Co Inc Method for measuring harmonic characteristics of electric power system
JP2002199579A (en) * 2000-12-28 2002-07-12 Tokyo Electric Power Co Inc:The Monitoring method for power distribution system
JP2002345172A (en) * 2001-05-18 2002-11-29 Fuji Electric Co Ltd Harmonic-monitoring system in power system
JP2005024469A (en) * 2003-07-04 2005-01-27 Sharp Corp Higher harmonic monitoring system, and higher harmonic monitoring method
JP2006227564A (en) * 2005-01-20 2006-08-31 Advanced Telecommunication Research Institute International Sound evaluating device and program
JP2006343904A (en) * 2005-06-08 2006-12-21 Xanavi Informatics Corp Driving support device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213545A (en) * 2009-03-12 2010-09-24 Toshiba Corp Power quality evaluation system
JP2010273481A (en) * 2009-05-22 2010-12-02 Toshiba Corp Power quality evaluation system
JP2011227545A (en) * 2010-04-15 2011-11-10 Mitsubishi Electric Corp Information collection device, information collection method and program
JP2012039768A (en) * 2010-08-06 2012-02-23 Toshiba Corp Device failure evaluation system
CN104267258A (en) * 2014-10-28 2015-01-07 湖南工业大学 Harmonic instantaneous power calculating method utilizing incomplete S transform
JP2017537324A (en) * 2014-12-09 2017-12-14 ローズマウント インコーポレイテッド Partial discharge detection system
CN105160445A (en) * 2015-01-19 2015-12-16 国家电网公司 Evaluation system and method for power supply reliability for important user
WO2023243034A1 (en) * 2022-06-16 2023-12-21 理化工業株式会社 Power adjuster and program

Also Published As

Publication number Publication date
JP5665250B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5665250B2 (en) Power quality evaluation system
JP4802129B2 (en) Power quality evaluation system
US20180275199A1 (en) Fault Prediction System for Electrical Distribution Systems and Monitored Loads
US20210278832A1 (en) Maintenance plan formulation device, method, and non-transitory medium
US7024335B1 (en) Condition assessment and life expectancy prediction for devices
JP4565511B2 (en) Electrical equipment operating state estimation system
US9267971B2 (en) Energy consumption monitoring system, method, and computer program
WO2017047296A1 (en) Teacher data provision device, estimation device, estimation system, teacher data provision method, estimation method and program
JP2008061448A (en) Power quality monitor system and method
WO2019102545A1 (en) Equipment degradation diagnosis device
CN104535892B (en) A kind of fault detection method and equipment
JP4937205B2 (en) Power quality evaluation system
JP2010019638A (en) Power quality evaluation system
KR20120002291A (en) Power quality monitoring system and method thereof
US20220360076A1 (en) Systems and methods for automatically characterizing disturbances in an electrical system
JPH11514834A (en) Circuit and method for determining source of waveform distortion
JP4476832B2 (en) Power quality evaluation system and method
CN112213570A (en) Generation method of fault diagnosis rule base and fault diagnosis method thereof
JP2010273481A (en) Power quality evaluation system
JP5491751B2 (en) Power quality evaluation system
US10750251B2 (en) Information providing apparatus, information providing method, and storage medium
JP5840541B2 (en) POWER LOAD ESTIMATION DEVICE, POWER LOAD ESTIMATION METHOD, AND POWER LOAD ESTIMATION PROGRAM
JP2014170009A (en) Equipment failure evaluation system
US20120313432A1 (en) Power distribution system connecting apparatus
JP7273482B2 (en) Partial discharge detection device, partial discharge detection method, partial discharge detection system, and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131120

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R151 Written notification of patent or utility model registration

Ref document number: 5665250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151