WO2023243034A1 - Power adjuster and program - Google Patents

Power adjuster and program Download PDF

Info

Publication number
WO2023243034A1
WO2023243034A1 PCT/JP2022/024112 JP2022024112W WO2023243034A1 WO 2023243034 A1 WO2023243034 A1 WO 2023243034A1 JP 2022024112 W JP2022024112 W JP 2022024112W WO 2023243034 A1 WO2023243034 A1 WO 2023243034A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger angle
phase control
current
harmonic
harmonic component
Prior art date
Application number
PCT/JP2022/024112
Other languages
French (fr)
Japanese (ja)
Inventor
茂文 後藤
康二 木村
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2022/024112 priority Critical patent/WO2023243034A1/en
Publication of WO2023243034A1 publication Critical patent/WO2023243034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power regulator that calculates and displays harmonic current in a control current while controlling power supply from an AC power source to a load using phase control.
  • Patent Document 1 discloses a device that calculates the fundamental frequency of an analog input signal and calculates harmonic components by performing FFT calculation using the AD-converted analog input signal and interpolation data.
  • the present invention calculates the harmonic components of each order from the effective value of the output current (phase control current), which is generally measured by a power regulator, and the ratio of harmonics to the output current.
  • the purpose is to provide a power regulator and program that can perform calculations.
  • a power regulator that controls power supply to a load from an AC power source by phase control, a current measurement unit that measures the current value at the output current; a trigger angle calculation unit that calculates a trigger angle corresponding to a target load factor and a phase control method; a harmonic component calculation unit that calculates a harmonic component in the current value based on the phase control method, the current value, the trigger angle, and a ratio between a harmonic current and an output current corresponding to the trigger angle; , A power regulator.
  • the harmonic component calculation unit calculates the harmonic component based on a table representing a correspondence relationship between the phase control method, the trigger angle, and a ratio of harmonic current to output current corresponding to the trigger angle.
  • the power regulator according to Configuration 1.
  • (Configuration 4) A program executed in a power regulator that controls power supply to a load from an AC power source by phase control, a current measurement step of measuring a current value at the output current; a trigger angle calculation step of calculating a trigger angle corresponding to the target load factor and the phase control method; a harmonic component calculation step of calculating a harmonic component in the current value based on the current value, the trigger angle, and a ratio of harmonic current and output current corresponding to the trigger angle; A program with.
  • FIG. 1 is a schematic configuration diagram showing a temperature regulator of Embodiment 1 according to the present invention. An example of a table in the case of single-phase control according to the present invention is shown.
  • FIG. 3 is a schematic diagram showing the operation of an embodiment according to the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of a portion related to the present invention of a power regulator according to an embodiment.
  • the power regulator 1 of this embodiment is a power regulator that controls power supply to a load by phase control, including phase control for three-phase six arms, phase control for single-phase or three-phase four-wire Phase control for four-phase wires is the same phase control as single-layer phase control, so below we will only describe the single-phase type), or power adjustment that can perform either phase control for three-phase three-arm use. It is a vessel.
  • the control unit 120 includes a current control element, and includes, for example, a unidirectional thyristor.
  • the current measurement unit 130 includes a current measurement element, for example, a current sensor.
  • the display unit 150 includes a display device, for example, an LED display.
  • the power regulator 100 also includes an input terminal and an output terminal (not shown) as terminals for wiring. Further, one of the input terminal and the output terminal may be configured to be a common input/output terminal.
  • the trigger angle calculation section 110, the control section 120, and the harmonic component calculation section 140 are not limited to having each functional section configured individually in terms of hardware. For example, all functions may be implemented as a program or software on one device such as a microcomputer. Conversely, any or all of the functional units may be implemented in hardware using a dedicated circuit or the like.
  • the power adjustment function of the power regulator 100 is to adjust the power from the AC power source to the heater, which is the load, based on a target load factor (0 to 100%) input from a temperature controller (not shown), which is an external device. It controls supply. That is, a target load factor (manipulated amount MV) is calculated in the temperature regulator by feedback control such as PID control based on the deviation between the heater temperature and the target temperature, and this is input to the power regulator 100. In the control unit 120 of the power regulator 100, a target power value (or target voltage value, target current value, etc.) is calculated using the input target load factor, and this target power value (or target voltage value, target The trigger angle is calculated based on the current value, etc.).
  • a target load factor manipulated amount MV
  • a trigger signal is output to each thyristor in each AC current control circuit according to the power supply waveform (polarity and phase of the AC power supply), thereby controlling the power supply to the load. It is something that can be done. Since any technique related to the phase control can be used, any further detailed explanation will be omitted here.
  • n-th harmonic current has a value corresponding to each n-th Fourier coefficient.
  • the relationship between the Fourier coefficient and the trigger angle ⁇ can be uniquely determined by expanding the theoretical formula of Fourier series expansion.
  • the present embodiment is configured to easily calculate harmonic components by preparing a table containing the relationship between the Fourier coefficients determined in this way and the trigger angle ⁇ .
  • the harmonic current value in this case changes depending on the amplitude of the phase control waveform. Therefore, by normalizing the relationship between the Fourier coefficient and the trigger angle ⁇ using the first-order sine wave component in the Fourier series expansion, it is possible to calculate it only from the effective current value. That is, each value in the table stores a proportional coefficient with respect to the first-order sine wave component (peak current value of effective current).
  • the harmonic components of the desired order are generally calculated by performing arbitrary calculations such as FFT on the output waveform itself. It was difficult to calculate the wave components.
  • FFT Fast Fourier transform
  • a table can be created by calculating . Note that in the case of a phase control waveform, even-order values are basically 0, so it is sufficient to calculate odd-order values from 3rd to 39th orders.
  • the table is created in advance by an external computer based on the above-mentioned theoretical formulas 1 to 3, but any method may be used. For example, a table can be created using methods such as the Fourier analysis function in circuit simulation software, sequential calculations using a spreadsheet program, or using arbitrary order values measured with a harmonic current measuring device. Good too.
  • the trigger angle for the target load factor is the value normalized from 0 to 100% of the trigger angle, and if the reference (0V point) for the trigger angle determined from the current waveform is 0°, it will be 0 in the case of single-phase control. ° to 180°, 30° to 240° in the case of three-phase three-arm control, and 30° to 180° in the case of three-phase six-arm control.
  • the target load factor is 50%
  • the trigger angles are 90°, 135°, and 105°, respectively.
  • the second value is a value between 0 and 210.
  • the second value is an integer value, but it may be set to any value, such as in steps of 0.5, depending on the degree of discretization.
  • the harmonic component calculation section 140 is configured to receive the target load factor as an input and display harmonics of arbitrary orders on the display section 150 according to the phase control method.
  • the current value of a desired harmonic component is displayed by inputting an arbitrary order using an external input device or the like.
  • the display unit 150 may be configured to display not only the harmonic components of a desired order but also the current value total harmonic distortion factor or the like using any method. Note that in this embodiment, only the target load factor is input, but the invention is not limited to this.
  • the phase control method may be input to switch tables, the order of harmonics desired to be displayed, etc.
  • the display section 150 may be an external device, and the harmonic component calculation section may be configured to output a signal necessary for display.
  • step S350 the display unit 150 displays the calculated harmonic components. Thereafter, the process is in a standby state until there is an instruction to display the harmonic components, and if there is an instruction to display the harmonic components, the process starts from step S310. Further, if there is an instruction to end the power supply (step S360: Yes), the control is ended.
  • the trigger angle 0 to 180° is 0 to 100%
  • the trigger angle is 0 to 100%
  • 30° to 180° is set to 0 to 100%, thereby unifying the calculation method depending on the control method.
  • such a difference in expression does not constitute a difference in the concept of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

By using only this power adjuster, a harmonic component is easily calculated and displayed. This power adjuster which controls, through phase control, power supply from an AC power source to a load comprises: a current measurement unit that measures a current value of output current; a trigger angle calculation unit that calculates a trigger angle corresponding to a phase control method and a target load rate; a harmonic component calculation unit that calculates a harmonic component in the output current on the basis of the phase control method, the trigger angle, the current value, and a Fourier coefficient corresponding to the phase control method and the trigger angle; and a display unit that displays the harmonic component.

Description

電力調整器及びプログラムPower regulator and program
 この発明は、交流電源からの負荷に対する電力供給の制御を位相制御によって行いつつ、制御電流における高調波電流を算出及び表示する電力調整器に関するものである。 The present invention relates to a power regulator that calculates and displays harmonic current in a control current while controlling power supply from an AC power source to a load using phase control.
 近年、高調波電流が電源に与える影響が問題になり、高調波電流に対して様々な規制が加えられるようになっている。大きな電力を使用する工場は高調波の総量を計算して報告する事を要求される場合もある。 In recent years, the influence of harmonic currents on power supplies has become a problem, and various regulations have been imposed on harmonic currents. Factories that use large amounts of power may be required to calculate and report the total amount of harmonics.
 従来よりFFT演算を行い、高調波電流を測定する装置が利用されている。これに関し、特許文献1にはアナログ入力信号の基本周波数を算出し、AD変換したアナログ入力信号及び補間データを用いてFFT演算をすることで高調波成分を演算する装置が開示されている。 Conventionally, devices have been used that perform FFT calculations and measure harmonic currents. Regarding this, Patent Document 1 discloses a device that calculates the fundamental frequency of an analog input signal and calculates harmonic components by performing FFT calculation using the AD-converted analog input signal and interpolation data.
特開2012-112762号公報Japanese Patent Application Publication No. 2012-112762
 特許文献1に開示のように、一般的に高調波電流を測定するためには、高速のAD変換を行いFFT演算を行う必要が有るが、この方法は、高度な演算処理が必要であり、特許文献1では、FPGAを使用して演算を行っている。FPGA等を使用することは生産コストの上昇に繋がる。このように、高調波電流の演算は計算コストがかかるため電力調整器で使用するようなMCUで処理する事は難しく、生産コストの観点からも簡易な演算方法が望まれていた。 As disclosed in Patent Document 1, in order to generally measure harmonic current, it is necessary to perform high-speed AD conversion and perform FFT calculation, but this method requires advanced calculation processing. In Patent Document 1, calculations are performed using an FPGA. Using FPGA etc. leads to an increase in production costs. As described above, calculation of harmonic current requires calculation cost and is difficult to be processed by an MCU such as that used in a power regulator, and a simple calculation method has been desired from the viewpoint of production cost.
 本考案は、上記の点に鑑み、電力調整器で一般的に測定している出力電流(位相制御電流)の実効値と、出力電流に対する高調波の比から、各次数毎の高調波成分を算出することが可能な電力調整器及びプログラムを提供することを目的とする。 In view of the above points, the present invention calculates the harmonic components of each order from the effective value of the output current (phase control current), which is generally measured by a power regulator, and the ratio of harmonics to the output current. The purpose is to provide a power regulator and program that can perform calculations.
  (構成1)
 交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器であって、
 出力電流における電流値を測定する電流測定部と、
 目標負荷率、及び位相制御方式に対応するトリガ角を算出するトリガ角算出部と、
 前記位相制御方式と、前記電流値と、前記トリガ角と、前記トリガ角に対応する高調波電流と出力電流の比率に基づき、前記電流値における高調波成分を算出する、高調波成分算出部と、
 を備える、電力調整器。
(Configuration 1)
A power regulator that controls power supply to a load from an AC power source by phase control,
a current measurement unit that measures the current value at the output current;
a trigger angle calculation unit that calculates a trigger angle corresponding to a target load factor and a phase control method;
a harmonic component calculation unit that calculates a harmonic component in the current value based on the phase control method, the current value, the trigger angle, and a ratio between a harmonic current and an output current corresponding to the trigger angle; ,
A power regulator.
  (構成2)
 前記高調波成分算出部が、前記位相制御方式と、前記トリガ角と、前記トリガ角に対応する、高調波電流と出力電流の比率との対応関係を表すテーブルに基づき、前記高調波成分を算出する、構成1に記載の電力調整器。
(Configuration 2)
The harmonic component calculation unit calculates the harmonic component based on a table representing a correspondence relationship between the phase control method, the trigger angle, and a ratio of harmonic current to output current corresponding to the trigger angle. The power regulator according to Configuration 1.
  (構成3)
 前記高調波成分を表示する表示部を備える構成1又は2に記載の電力調整器。
(Configuration 3)
The power regulator according to configuration 1 or 2, including a display section that displays the harmonic components.
  (構成4)
 交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器において実行されるプログラムであって、
 出力電流における電流値を測定する電流測定ステップと、
 目標負荷率、及び位相制御方式に対応するトリガ角を算出するトリガ角算出ステップと、
 前記電流値と、前記トリガ角と、前記トリガ角に対応する高調波電流と出力電流の比率に基づき、前記電流値における高調波成分を算出する、高調波成分算出ステップと、
 を備える、プログラム。
(Configuration 4)
A program executed in a power regulator that controls power supply to a load from an AC power source by phase control,
a current measurement step of measuring a current value at the output current;
a trigger angle calculation step of calculating a trigger angle corresponding to the target load factor and the phase control method;
a harmonic component calculation step of calculating a harmonic component in the current value based on the current value, the trigger angle, and a ratio of harmonic current and output current corresponding to the trigger angle;
A program with.
 本発明の電力調整器及びプログラムによれば、電力調整器において、簡易に出力波形における高調波成分を算出及び表示する事が可能である。 According to the power regulator and program of the present invention, it is possible to easily calculate and display harmonic components in the output waveform in the power regulator.
本発明に係る実施形態1の温度調整器を示す概略構成図である。1 is a schematic configuration diagram showing a temperature regulator of Embodiment 1 according to the present invention. 本発明に係る単相制御の場合のテーブル例を示す。An example of a table in the case of single-phase control according to the present invention is shown. 本発明に係る実施形態の動作を示す概略図である。FIG. 3 is a schematic diagram showing the operation of an embodiment according to the present invention.
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. Note that the following embodiment is one form of embodying the present invention, and does not limit the present invention within its scope.
<実施形態>
 図1は、実施形態の電力調整器の、本発明に関する部分の構成の概略を示すブロック図である。本実施形態の電力調整器1は、負荷に対する電力供給の制御を位相制御によって行う電力調整器であり、三相6アーム用の位相制御、単相用又は三相4線用の位相制御(三相4線の位相制御は単層位相制御と同様の位相制御となるため、以下では単相用についてのみ記載する)、三相3アーム用の位相制御の何れかを行うことが可能な電力調整器である。
 本実施形態の電力調整器100は、
 交流電源の線間電圧の波形を取得し、位相情報を取得し、目標負荷率に対応するトリガ角を算出するトリガ角算出部であって、三相6アーム制御におけるトリガ角の算出、単相制御における単相用トリガ角の算出、三相3アーム制御における三相3アーム用トリガ角の算出を行うトリガ角算出部110と、
 トリガ角及び目標負荷率に応じて電力を制御する制御部120と、
 出力電流の電流値を測定する電流測定部130と、
 位相制御方式、出力電流値、トリガ角、及び、前記トリガ角に対応する高調波電流と出力電流の比率に基づき、出力波形における所望の高調波成分を算出する、高調波成分算出部140(詳細については後述する)と、
 出力波形における所望の高調波成分を表示する表示部150と、
 を備えている。
<Embodiment>
FIG. 1 is a block diagram schematically showing the configuration of a portion related to the present invention of a power regulator according to an embodiment. The power regulator 1 of this embodiment is a power regulator that controls power supply to a load by phase control, including phase control for three-phase six arms, phase control for single-phase or three-phase four-wire Phase control for four-phase wires is the same phase control as single-layer phase control, so below we will only describe the single-phase type), or power adjustment that can perform either phase control for three-phase three-arm use. It is a vessel.
The power regulator 100 of this embodiment is
A trigger angle calculation unit that acquires the line voltage waveform of an AC power supply, acquires phase information, and calculates a trigger angle corresponding to a target load factor, and is capable of calculating trigger angles in three-phase six-arm control, single-phase a trigger angle calculation unit 110 that calculates a single-phase trigger angle in control and a three-phase three-arm trigger angle in three-phase three-arm control;
a control unit 120 that controls power according to a trigger angle and a target load factor;
a current measuring section 130 that measures the current value of the output current;
A harmonic component calculation unit 140 (details (described later) and
a display unit 150 that displays desired harmonic components in the output waveform;
It is equipped with
 制御部120は、電流制御素子を備え、例えば単方向性サイリスタを有する。
 電流測定部130は電流測定素子を備え、例えば電流センサを有する。
 表示部150は表示装置を備え、例えばLEDによる表示器を有する。
 また、電力調整器100は配線を行うための端子として、入力端子及び出力端子を備えている(不図示)。また、入力端子及び出力端子の1端子は入出力共通の端子となるように構成されていてもよい。
 本実施形態においてはトリガ角算出部110、制御部120や高調波成分算出部140は、各機能部がハード的に個別に構成されることに限定するものではない。例えば、マイコンなどの1つのデバイス上で全ての機能がプログラムとして、ソフトウェア的に実装されるもの等であってもよい。逆に、各機能部の何れか若しくは全てを専用回路等によってハード的に実装するものであってもよい。
The control unit 120 includes a current control element, and includes, for example, a unidirectional thyristor.
The current measurement unit 130 includes a current measurement element, for example, a current sensor.
The display unit 150 includes a display device, for example, an LED display.
The power regulator 100 also includes an input terminal and an output terminal (not shown) as terminals for wiring. Further, one of the input terminal and the output terminal may be configured to be a common input/output terminal.
In this embodiment, the trigger angle calculation section 110, the control section 120, and the harmonic component calculation section 140 are not limited to having each functional section configured individually in terms of hardware. For example, all functions may be implemented as a program or software on one device such as a microcomputer. Conversely, any or all of the functional units may be implemented in hardware using a dedicated circuit or the like.
 電力調整器100の電力調整に関する機能は、外部装置である温度調節器(図示せず)から入力される目標負荷率(0~100%)に基づいて、負荷であるヒーターに対する交流電源からの電力供給の制御を行うものである。即ち、温度調節器においてヒーターの温度と目標温度との偏差に基づくPID制御等のフィードバック制御によって目標負荷率(操作量MV)が算出され、これが電力調整器100に入力される。電力調整器100の制御部120では、入力された目標負荷率を用いて目標電力値(若しくは、目標電圧値、目標電流値等)が算出され、この目標電力値(若しくは、目標電圧値、目標電流値等)に基づいてトリガ角が算出される。当該トリガ角に基づいて、各交流電流制御回路内のサイリスタそれぞれに対して、電源波形(交流電源の極性や位相)に応じてトリガ信号が出力されることで、負荷に対する電力供給の制御が行われるものである。当該位相制御に関する技術は、任意の各技術を利用できるものであるため、ここでのこれ以上の詳しい説明を省略する。 The power adjustment function of the power regulator 100 is to adjust the power from the AC power source to the heater, which is the load, based on a target load factor (0 to 100%) input from a temperature controller (not shown), which is an external device. It controls supply. That is, a target load factor (manipulated amount MV) is calculated in the temperature regulator by feedback control such as PID control based on the deviation between the heater temperature and the target temperature, and this is input to the power regulator 100. In the control unit 120 of the power regulator 100, a target power value (or target voltage value, target current value, etc.) is calculated using the input target load factor, and this target power value (or target voltage value, target The trigger angle is calculated based on the current value, etc.). Based on the trigger angle, a trigger signal is output to each thyristor in each AC current control circuit according to the power supply waveform (polarity and phase of the AC power supply), thereby controlling the power supply to the load. It is something that can be done. Since any technique related to the phase control can be used, any further detailed explanation will be omitted here.
<高調波成分の算出>
 以下、本実施形態における高調波成分の算出方法について説明する。
 出力波形をフーリエ級数展開した場合の出力波形の周期関数をf(θ)とすると、
<Calculation of harmonic components>
Hereinafter, a method for calculating harmonic components in this embodiment will be explained.
If the periodic function of the output waveform when the output waveform is expanded into a Fourier series is f(θ),
Figure JPOXMLDOC01-appb-M000001
 となる。an及びbnはn次のフーリエ係数である。
 なお、各フーリエ係数は、
Figure JPOXMLDOC01-appb-M000001
becomes. an and bn are nth-order Fourier coefficients.
In addition, each Fourier coefficient is
Figure JPOXMLDOC01-appb-M000002
 k=0,1,2,3…
 となる。
 また、n次の高調波電流は、n次の各フーリエ係数に相当する値になる。
Figure JPOXMLDOC01-appb-M000002
k=0,1,2,3…
becomes.
Further, the n-th harmonic current has a value corresponding to each n-th Fourier coefficient.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 従って、これらのフーリエ係数がわかれば、任意の高調波電流値を算出することが可能となる。従来の高調波成分の算出においては、FFTにより、高調波電流を直接算出していたため、高性能な演算を行う必要があり、計算コストが高くなってしまっていた。
 そこで、本発明においては、位相制御によって出力を制御する場合は、その制御方式(単相、三相4線、三相3アーム、三相6アーム)を決定し、トリガ角φを決定すると、位相制御波形が一義的に決定されことを利用し、簡易に高調波成分を算出することを考案した。
Therefore, if these Fourier coefficients are known, it becomes possible to calculate any harmonic current value. In conventional calculations of harmonic components, harmonic currents were directly calculated using FFT, which required high-performance calculations and increased calculation costs.
Therefore, in the present invention, when controlling the output by phase control, the control method (single phase, three-phase four-wire, three-phase three-arm, three-phase six-arm) is determined, and the trigger angle φ is determined. We devised a method to easily calculate harmonic components by taking advantage of the fact that the phase control waveform is uniquely determined.
 すなわち、位相制御波形が一義的に決まることで、フーリエ級数展開の理論式を展開することにより、フーリエ係数と、トリガ角φとの関係が一義的に決定されることを見出した。
 本実施形態においては、そのように決定されるフーリエ係数とトリガ角φとの関係をテーブルとして用意しておくことで、簡易に高調波成分を算出するように構成されている。
 なお、この場合の高調波電流値は、位相制御波形の振幅により変化する。そのため、フーリエ係数とトリガ角φとの関係を、フーリエ級数展開における1次の正弦波成分により正規化することにより、電流実効値のみから算出可能としている。すなわち、テーブルの各値は1次の正弦波成分(実効電流のピーク電流値)に対する、比例係数を収納したものとなる。
In other words, it has been found that by uniquely determining the phase control waveform, the relationship between the Fourier coefficient and the trigger angle φ can be uniquely determined by expanding the theoretical formula of Fourier series expansion.
The present embodiment is configured to easily calculate harmonic components by preparing a table containing the relationship between the Fourier coefficients determined in this way and the trigger angle φ.
Note that the harmonic current value in this case changes depending on the amplitude of the phase control waveform. Therefore, by normalizing the relationship between the Fourier coefficient and the trigger angle φ using the first-order sine wave component in the Fourier series expansion, it is possible to calculate it only from the effective current value. That is, each value in the table stores a proportional coefficient with respect to the first-order sine wave component (peak current value of effective current).
 前述のとおり、高調波成分を測定する場合は一般的に、出力波形そのものに対してFFTなどの任意の演算を行い、所望の次数の高調波成分を算出しており、電力調整器のみで高調波成分を算出することが難しかった。
 従来の手法においては、特許文献1に開示の発明のように所望の高調波成分を算出する場合には、出力波形ごとにFFTを行う必要があり、温度調節計において算出することは現実的ではなかった。
 しかし、本手法においては、本実施形態における電力調整器は、位相制御用の装置であるため、位相制御方式及びトリガ角が決定することにより出力波形が一意に決定されることに着目し、任意の波形をフーリエ変換することなく、簡易に任意の高調波成分を算出することが可能となった。
As mentioned above, when measuring harmonic components, the harmonic components of the desired order are generally calculated by performing arbitrary calculations such as FFT on the output waveform itself. It was difficult to calculate the wave components.
In conventional methods, when calculating a desired harmonic component as in the invention disclosed in Patent Document 1, it is necessary to perform FFT for each output waveform, and it is not realistic to calculate it in a temperature controller. There wasn't.
However, in this method, since the power regulator in this embodiment is a device for phase control, we focus on the fact that the output waveform is uniquely determined by determining the phase control method and trigger angle. It is now possible to easily calculate arbitrary harmonic components without Fourier transform of the waveform.
<フーリエ係数テーブル>
 前述のとおり、本実施形態における高調波成分算出部140は、FFT等の複雑な計算をすることなく、位相制御方式及びトリガ角に基づくフーリエ係数を用いて、任意の次数の高調波成分を算出することができる。その際に、位相制御方式及びトリガ角ごとの任意の次数のフーリエ係数を事前に計算したものをテーブルとして格納しておき、高調波成分の算出の際に参照することで、更に計算コストを低下することができる。
 図2にこのようにして求めたテーブルの、単相制御の場合における一例を示す。
 本実施形態においては、図2に示すようなテーブルは、外部計算機等により、本手法を適用する環境に合わせて事前に算出しておくものとする。
<Fourier coefficient table>
As described above, the harmonic component calculation unit 140 in this embodiment calculates harmonic components of any order using the phase control method and Fourier coefficients based on the trigger angle, without performing complex calculations such as FFT. can do. At that time, the calculation cost can be further reduced by storing the pre-calculated Fourier coefficients of arbitrary orders for each phase control method and trigger angle as a table and referring to it when calculating harmonic components. can do.
FIG. 2 shows an example of the table obtained in this manner in the case of single-phase control.
In this embodiment, it is assumed that a table as shown in FIG. 2 is calculated in advance by an external computer or the like in accordance with the environment to which this method is applied.
<テーブルの算出>
 テーブルにおける各値については、上述の数1~3に基づき算出することが可能である。数1については、a0については、交流波形には直流成分がないため、0となるり、数2及び3については、通常40次までを高調波とするため、k=2~40の値を計算することにより、テーブルを作成することができる。なお、位相制御波形の場合は基本的に偶数次の値は0になるため、3次~39次までの奇数次の値を算出すればよい。
 本実施形態においては、テーブルの作成は外部計算機により上記の数1~3の理論式に基づき事前に作成しておくこととしたが、任意の手法を用いてもよい。
 例えば回路シミュレーションソフトにおけるフーリエ解析機能や、表計算プログラム等による逐次的算出、高調波電流の測定器にて測定した任意の次数の値を使用する、等の手法を使用してテーブルを作成してもよい。
<Table calculation>
Each value in the table can be calculated based on Equations 1 to 3 above. For Equation 1, a 0 is 0 because there is no DC component in the AC waveform, and for Equations 2 and 3, the harmonics are usually up to the 40th order, so k = 2 to 40. A table can be created by calculating . Note that in the case of a phase control waveform, even-order values are basically 0, so it is sufficient to calculate odd-order values from 3rd to 39th orders.
In this embodiment, the table is created in advance by an external computer based on the above-mentioned theoretical formulas 1 to 3, but any method may be used.
For example, a table can be created using methods such as the Fourier analysis function in circuit simulation software, sequential calculations using a spreadsheet program, or using arbitrary order values measured with a harmonic current measuring device. Good too.
 本実施形態における位相制御は、単相制御、三相3アーム制御、三相6アーム制御のいずれかを行うものであるが、本実施形態のフーリエ係数テーブルは各制御方式に共通のものである。例えば3×トリガ角の各値×各次数におけるフーリエ係数の値が格納されており、第1値は、位相制御方式が単相制御の場合には0、三相3アーム制御の場合には1、三相6アーム制御の場合には2が格納される。
 また、第2値はトリガ角である。目標負荷率に対するトリガ角はトリガ角を0~100%で正規化した値であり、電流波形から求めたトリガ角の基準(0V点)を0°とした場合は、単相制御の場合は0°~180°、三相3アーム制御の場合には30°~240°、三相6アーム制御の場合には30°~180°である。例えば目標負荷率が50%であった場合は、それぞれ、トリガ角は90°、135°、105°となる。このように、第2値は0から210の値となる。本実施形態では第2値を整数値としたが、例えば0.5刻みなど、離散化の程度にあわせて任意の値としてもよい。
 第3値については各次数におけるトリガ角に対応するフーリエ係数である。なお、図2における「1st」の列は基本波に対応し、「3rd」以降が高調波成分に対応する。高調波成分に対応する次数として、本実施形態では40次までとしているが、ユーザの要求にあわせて任意の値としてよい。なお、図2における「1st」の列については説明のために記載しているのみであり、実際にテーブルの値として格納する必要はない。
 なお、本実施形態ではフーリエ係数テーブルを用いる例について説明したが、算出する高調波の次数や、制御の方式が固定されている場合は、事前に固定値として設定するように構成されていてもよい。また、都度外部入力装置等により入力されるように構成されていてもよい。
The phase control in this embodiment performs either single-phase control, three-phase three-arm control, or three-phase six-arm control, but the Fourier coefficient table in this embodiment is common to each control method. . For example, 3 x each value of the trigger angle x the value of the Fourier coefficient for each order is stored, and the first value is 0 if the phase control method is single-phase control, and 1 if the phase control method is single-phase control. , 2 is stored in the case of three-phase six-arm control.
Further, the second value is the trigger angle. The trigger angle for the target load factor is the value normalized from 0 to 100% of the trigger angle, and if the reference (0V point) for the trigger angle determined from the current waveform is 0°, it will be 0 in the case of single-phase control. ° to 180°, 30° to 240° in the case of three-phase three-arm control, and 30° to 180° in the case of three-phase six-arm control. For example, when the target load factor is 50%, the trigger angles are 90°, 135°, and 105°, respectively. Thus, the second value is a value between 0 and 210. In this embodiment, the second value is an integer value, but it may be set to any value, such as in steps of 0.5, depending on the degree of discretization.
The third value is a Fourier coefficient corresponding to the trigger angle in each order. Note that the "1st" column in FIG. 2 corresponds to the fundamental wave, and the "3rd" and subsequent columns correspond to harmonic components. In this embodiment, the order corresponding to the harmonic component is up to the 40th order, but it may be set to any value according to the user's request. Note that the "1st" column in FIG. 2 is only shown for explanation, and there is no need to actually store it as a table value.
In this embodiment, an example using a Fourier coefficient table has been described, but if the order of the harmonics to be calculated or the control method is fixed, even if it is configured to be set as a fixed value in advance. good. Alternatively, the information may be configured to be input each time using an external input device or the like.
<高調波成分の表示>
 高調波成分算出部140は、目標負荷率を入力として、位相制御方式に応じて任意の次数の高調波を、表示部150に表示するように構成されている。本実施形態においては、外部入力装置等により任意の次数を入力することにより、所望の高調波成分の電流値が表示されるように構成されている。
 また、表示部150に表示する際は、所望の次数の高調波成分のみでなく、電流値全高調波ひずみ率など、任意の方法にて表示するように構成されていてもよい。
 なお、本実施形態では目標負荷率のみを入力としていたが、これに限るものではない。例えば、テーブルの切り替えのため位相制御方式を入力するようにしてもよいし、表示を希望する高調波の次数等についても外部装置により入力されるように構成されていてもよいし、高調波の表示について必要な情報は全て固定値として設定されていてもよい。
 また、表示部150が外部の機器であり、表示に必要な信号を、高調波成分算出部が出力するように構成されていてもよい。
<Display of harmonic components>
The harmonic component calculation section 140 is configured to receive the target load factor as an input and display harmonics of arbitrary orders on the display section 150 according to the phase control method. In this embodiment, the current value of a desired harmonic component is displayed by inputting an arbitrary order using an external input device or the like.
Further, when displaying on the display unit 150, the display unit 150 may be configured to display not only the harmonic components of a desired order but also the current value total harmonic distortion factor or the like using any method.
Note that in this embodiment, only the target load factor is input, but the invention is not limited to this. For example, the phase control method may be input to switch tables, the order of harmonics desired to be displayed, etc. may be input from an external device, or the order of harmonics desired to be displayed may be input from an external device. All information necessary for display may be set as fixed values.
Further, the display section 150 may be an external device, and the harmonic component calculation section may be configured to output a signal necessary for display.
<動作>
 次に、図3のフローチャートを参照しつつ、実施形態1の電力調整器100の本発明に関する処理動作について説明する。
 ステップS300では、電力調整器100に目標負荷率が入力され制御部120により電力の制御が開始される。本実施形態においては位相制御である。なお、位相制御方式(三相6アーム、単相、三相3アームの何れか)については、当然であるが、電力調整器100が実行する位相制御方式となる。
 ステップS310において、高調波成分の表示指示があった場合、高調波成分の計算を開始する(ステップS310:Yes→ステップS320)。高調波成分の表示指示がない場合、電力制御を継続し(ステップS310:No→制御継続)、電源供給の終了指示等があった場合は、制御を終了する。
 次に、ステップS320において、トリガ角算出部110が、位相制御方式及び目標負荷率に応じて、トリガ角を算出する。
 次に、ステップS330において、電流測定部130が出力電流の実効値を測定する。
 次に、ステップS340において、高調波成分算出部120が位相制御方式、トリガ角、出力電流の実効値、及び、高調波成分の表示指示における、所望の次数や、ひずみ率の表示の指示に応じて、高調波成分を算出する。本実施形態においては、事前に算出されたフーリエ係数テーブルの値を参照し、高調波成分を算出する。
 次に、ステップS350において表示部150が算出された高調波成分を表示する。
 その後、高調波成分の表示指示があるまで待機状態となり、高調波成分の表示指示があった場合、ステップS310から処理を開始する。また、電源供給の終了指示等(ステップS360:Yes)があった場合は制御を終了する。
<Operation>
Next, processing operations related to the present invention of the power regulator 100 of the first embodiment will be described with reference to the flowchart of FIG. 3.
In step S300, the target load factor is input to the power regulator 100, and the control unit 120 starts controlling the power. In this embodiment, phase control is used. Note that the phase control method (one of three-phase six-arm, single-phase, and three-phase three-arm) is, of course, a phase control method executed by the power regulator 100.
In step S310, if there is an instruction to display harmonic components, calculation of harmonic components is started (step S310: Yes→step S320). If there is no instruction to display harmonic components, power control is continued (step S310: No → continue control), and if there is an instruction to terminate power supply, etc., control is terminated.
Next, in step S320, the trigger angle calculation unit 110 calculates the trigger angle according to the phase control method and the target load factor.
Next, in step S330, the current measuring section 130 measures the effective value of the output current.
Next, in step S340, the harmonic component calculation unit 120 responds to the phase control method, trigger angle, effective value of the output current, and instructions to display a desired order and distortion rate in the instruction to display the harmonic components. Then, calculate the harmonic components. In this embodiment, harmonic components are calculated by referring to values in a Fourier coefficient table calculated in advance.
Next, in step S350, the display unit 150 displays the calculated harmonic components.
Thereafter, the process is in a standby state until there is an instruction to display the harmonic components, and if there is an instruction to display the harmonic components, the process starts from step S310. Further, if there is an instruction to end the power supply (step S360: Yes), the control is ended.
<効果>
 以上のように、本実施形態1の電源調整器100によれば、フーリエ係数とトリガ角との関係を用いて、FFT等の複雑な演算をすることなく、低計算コストでの高調波成分の計算が可能となる。
 また、制御方式ごとのトリガ角とフーリエ係数との対応関係を表すテーブルを使用して高調波成分の計算が可能であるため、MCU等の低コストの演算素子を用いて高調波成分を算出することが可能となる。
 また、トリガ角算出部110が、位相制御方式及び目標負荷率に応じて、トリガ角を算出するように構成されているため、制御方式ごとに対応したテーブルとトリガ角から高調波成分を算出することが可能である。
 また、表示部によって所望の形式により高調波成分を表示することができるため、高調波成分の報告義務等のユーザのニーズに柔軟に応じることが可能となる。
<Effect>
As described above, according to the power supply regulator 100 of the first embodiment, harmonic components can be calculated at low calculation cost by using the relationship between the Fourier coefficient and the trigger angle, without performing complex calculations such as FFT. Calculations become possible.
In addition, harmonic components can be calculated using a table showing the correspondence between trigger angles and Fourier coefficients for each control method, so harmonic components can be calculated using low-cost arithmetic elements such as MCUs. becomes possible.
Furthermore, since the trigger angle calculation unit 110 is configured to calculate the trigger angle according to the phase control method and target load factor, harmonic components are calculated from the table and trigger angle corresponding to each control method. Is possible.
Further, since the harmonic components can be displayed in a desired format by the display unit, it is possible to flexibly meet user needs such as the obligation to report harmonic components.
 なお、トリガ角の表現において、本実施形態においては交流電源の0V点から始まり0V点で終わる半サイクルの、始まりの0V点を起点(0°)として、後の0V点を180°としているが、別の表現を用いても構わない。例えば、線間電圧の正側の半サイクルの波形と負側の半サイクルの波形のそれぞれの後ろ側のゼロクロス点を基準(0°)とし、そこから遡るようにしてトリガ角が増加するものであってもよい。また、本実施形態においては、トリガ角の正規化については、単相制御の場合はトリガ角0~180°を0~100%、三相3アーム制御では30°~240°を0~100%、三相6アーム制御では30°~180°を0~100%とし、これにより、制御方式による計算方法の統一を図っている。しかし、このような表現の相違は、本発明の概念としての相違にはならない。 In the expression of the trigger angle, in this embodiment, the starting 0V point of a half cycle that starts from the 0V point of the AC power supply and ends at the 0V point is taken as the starting point (0°), and the later 0V point is taken as 180°. , another expression may be used. For example, the trigger angle is set as the reference (0°) at the rear zero-crossing point of the positive half-cycle waveform and the negative half-cycle waveform of the line voltage, and the trigger angle increases as you work backwards from there. There may be. In addition, in this embodiment, regarding normalization of the trigger angle, in the case of single-phase control, the trigger angle 0 to 180° is 0 to 100%, and in the case of three-phase three-arm control, the trigger angle is 0 to 100%, 30° to 240° In the three-phase six-arm control, 30° to 180° is set to 0 to 100%, thereby unifying the calculation method depending on the control method. However, such a difference in expression does not constitute a difference in the concept of the present invention.
 本実施形態では、電力調整器として、負荷がヒーターで、外部装置である温度調節器から入力される目標負荷率に基づいて、ヒーターに対する電力供給の制御を行うものを例としたが、本発明をこれに限るものではなく、任意の負荷に対して電力供給を行う電力調整器に適用することができる。 In this embodiment, the power regulator is exemplified as one in which the load is a heater and the power supply to the heater is controlled based on the target load factor input from the temperature controller, which is an external device. The present invention is not limited to this, and can be applied to a power regulator that supplies power to any load.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the embodiments described above. Regarding the configuration and operation of the present invention, various changes can be made that can be understood by those skilled in the art without departing from the spirit of the present invention.
100…電力調整器
110…トリガ角算出部
120…制御部
130…電流測定部
140…高調波成分算出部
150…表示部
DESCRIPTION OF SYMBOLS 100...Power regulator 110...Trigger angle calculation part 120...Control part 130...Current measurement part 140...Harmonic component calculation part 150...Display part

Claims (4)

  1.  交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器であって、
     出力電流における電流値を測定する電流測定部と、
     目標負荷率、及び位相制御方式に対応するトリガ角を算出するトリガ角算出部と、
     前記位相制御方式と、前記電流値と、前記トリガ角と、前記トリガ角に対応する、高調波電流と出力電流の比率に基づき、前記電流値における高調波成分を算出する、高調波成分算出部と、
     を備える、電力調整器。
    A power regulator that controls power supply to a load from an AC power source by phase control,
    a current measurement unit that measures the current value at the output current;
    a trigger angle calculation unit that calculates a trigger angle corresponding to a target load factor and a phase control method;
    a harmonic component calculation unit that calculates a harmonic component in the current value based on the phase control method, the current value, the trigger angle, and a ratio of harmonic current to output current corresponding to the trigger angle; and,
    A power regulator.
  2.  前記高調波成分算出部が、前記位相制御方式と、前記トリガ角と、前記トリガ角に対応する高調波電流と出力電流の比率との対応関係を表すテーブルに基づき、前記高調波成分を算出する、請求項1に記載の電力調整器。 The harmonic component calculation unit calculates the harmonic component based on a table representing a correspondence relationship between the phase control method, the trigger angle, and a ratio of harmonic current to output current corresponding to the trigger angle. , A power regulator according to claim 1.
  3.  前記高調波成分を表示する表示部を備える請求項1又は2に記載の電力調整器。 The power regulator according to claim 1 or 2, further comprising a display section that displays the harmonic components.
  4.  交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器において実行されるプログラムであって、
     出力電流における電流値を測定する電流測定ステップと、
     目標負荷率、及び位相制御方式に対応するトリガ角を算出するトリガ角算出ステップと、
     前記電流値と、前記トリガ角と、前記トリガ角に対応する、高調波電流と出力電流の比率に基づき、前記電流値における高調波成分を算出する、高調波成分算出ステップと、
     を備える、プログラム。
    A program executed in a power regulator that controls power supply to a load from an AC power source by phase control,
    a current measurement step of measuring a current value at the output current;
    a trigger angle calculation step of calculating a trigger angle corresponding to the target load factor and the phase control method;
    a harmonic component calculation step of calculating a harmonic component in the current value based on the current value, the trigger angle, and a ratio of harmonic current to output current corresponding to the trigger angle;
    A program with.
PCT/JP2022/024112 2022-06-16 2022-06-16 Power adjuster and program WO2023243034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024112 WO2023243034A1 (en) 2022-06-16 2022-06-16 Power adjuster and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024112 WO2023243034A1 (en) 2022-06-16 2022-06-16 Power adjuster and program

Publications (1)

Publication Number Publication Date
WO2023243034A1 true WO2023243034A1 (en) 2023-12-21

Family

ID=89192483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024112 WO2023243034A1 (en) 2022-06-16 2022-06-16 Power adjuster and program

Country Status (1)

Country Link
WO (1) WO2023243034A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133717A (en) * 1995-11-09 1997-05-20 Iwatsu Electric Co Ltd Higher harmonics analysis method and device for power system
JP2002022784A (en) * 2000-07-07 2002-01-23 Chubu Electric Power Co Inc Method and device for measuring harmonic in power system
JP2006325307A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Power controller, power control method, and program for executing it
JP2008191108A (en) * 2007-02-07 2008-08-21 Toshiba Corp System for evaluating quality of electric power
WO2010150217A2 (en) * 2009-06-26 2010-12-29 Axa Power Aps A ground power unit with reduced harmonic distortion
KR20150094253A (en) * 2014-02-11 2015-08-19 주식회사 하이텍이피씨 The apparatus for feed forward compensation in compensation of voltage-dip
JP2017174139A (en) * 2016-03-23 2017-09-28 アイシン精機株式会社 Power control device
WO2019097835A1 (en) * 2017-11-14 2019-05-23 三菱電機株式会社 Power conversion device
CN210608551U (en) * 2019-11-18 2020-05-22 上海英同电气有限公司 Mixed type dynamic filtering compensation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133717A (en) * 1995-11-09 1997-05-20 Iwatsu Electric Co Ltd Higher harmonics analysis method and device for power system
JP2002022784A (en) * 2000-07-07 2002-01-23 Chubu Electric Power Co Inc Method and device for measuring harmonic in power system
JP2006325307A (en) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd Power controller, power control method, and program for executing it
JP2008191108A (en) * 2007-02-07 2008-08-21 Toshiba Corp System for evaluating quality of electric power
WO2010150217A2 (en) * 2009-06-26 2010-12-29 Axa Power Aps A ground power unit with reduced harmonic distortion
KR20150094253A (en) * 2014-02-11 2015-08-19 주식회사 하이텍이피씨 The apparatus for feed forward compensation in compensation of voltage-dip
JP2017174139A (en) * 2016-03-23 2017-09-28 アイシン精機株式会社 Power control device
WO2019097835A1 (en) * 2017-11-14 2019-05-23 三菱電機株式会社 Power conversion device
CN210608551U (en) * 2019-11-18 2020-05-22 上海英同电气有限公司 Mixed type dynamic filtering compensation device

Similar Documents

Publication Publication Date Title
Gonzalez et al. Harmonic computation technique suitable for active power filters
CN107943121B (en) Permanent magnet synchronous motor simulator considering nonlinear characteristics and control method thereof
CN110601627B (en) FCS-MPDTC control system and method for expanding voltage space vector output of PMSM
WO2023243034A1 (en) Power adjuster and program
JP2016082655A (en) Phase-locked loop, power conversion device and phase synchronization method
JP4763329B2 (en) Control device for power converter
Kayisli et al. A novel power factor correction system based on sliding mode fuzzy control
KR101172748B1 (en) Control Device and Method for Making Unbalanced Three Phase Voltage at AC Power Source
JP2015195682A (en) inverter device
Bellini et al. A digital filter for speed noise reduction in drives using an electromagnetic resolver
JP2924601B2 (en) Power converter
EP3477313A1 (en) Power analysis method and device
CN104215924B (en) Synchronous demodulator, power standard source comprising synchronous demodulator and control method of power standard source
CN204065387U (en) A kind of synchronous demodulator and comprise the power standard source of this synchronous demodulator
JP4415832B2 (en) Motor drive device
WO2021082036A1 (en) Power system frequency measurement method, bus voltage correction method and devices
WO2019130685A1 (en) Power supply voltage waveform calculation method, circuit coupled magnetic field analysis method, program, and recording medium having program recorded therein
JP2015089335A (en) Phase compensation device of inverter output voltage
JPS6222075A (en) Ac measuring instrument
WO2022070241A1 (en) Single-phase/three-phase shared power regulator and three-phase six arm phase control method
JP2000028658A (en) Digital power meter
JP2006121860A (en) Motor drive
Dimitrijevic et al. Non-Linear Load Characterisation Using Orthogonal Apparent Power Decompositions
JP6521174B2 (en) AC power regulator and AC power control method
TW565992B (en) On-line parameter estimation method of induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946851

Country of ref document: EP

Kind code of ref document: A1