WO2022070241A1 - Single-phase/three-phase shared power regulator and three-phase six arm phase control method - Google Patents

Single-phase/three-phase shared power regulator and three-phase six arm phase control method Download PDF

Info

Publication number
WO2022070241A1
WO2022070241A1 PCT/JP2020/036841 JP2020036841W WO2022070241A1 WO 2022070241 A1 WO2022070241 A1 WO 2022070241A1 JP 2020036841 W JP2020036841 W JP 2020036841W WO 2022070241 A1 WO2022070241 A1 WO 2022070241A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power supply
trigger
angle
power
Prior art date
Application number
PCT/JP2020/036841
Other languages
French (fr)
Japanese (ja)
Inventor
茂文 後藤
裕久 吉川
遼平 古橋
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2022553248A priority Critical patent/JP7332847B2/en
Priority to PCT/JP2020/036841 priority patent/WO2022070241A1/en
Publication of WO2022070241A1 publication Critical patent/WO2022070241A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the present invention relates to a power regulator that controls the power supply to a load from an AC power source by phase control and a three-phase 6-arm phase control method using the power regulator.
  • Patent Document 1 discloses a technique relating to a phase control method for three-phase alternating current.
  • Patent Document 1 is for three-phase AC. Example).
  • the present invention is a power regulator that controls the power supply to the load from the AC power source by phase control, and can be used for both single-phase AC and three-phase AC.
  • the purpose is to provide a power regulator.
  • (Structure 1) It is a power regulator that controls the power supply to the load from the AC power supply by phase control, and the power supply phase acquisition unit that acquires the phase information of the line voltage of the AC power supply and the unidirectional current control element are antiparallel.
  • the AC current control circuit connected to the AC power supply and the half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point, starting from the starting 0V point (0 °) and ending at the latter 0V point (180 °).
  • the trigger angle is defined as °
  • the trigger angles corresponding to the target load factor of 0% are 180 ° and 100% as the trigger angles corresponding to the target load factor of 0% to 100% in the single phase control mode.
  • the phase angle corresponding to the target load factor between 0 ° and the trigger angle corresponding to the target load factor of 0 ° is calculated, and the trigger angle corresponding to the target load factor of 0% to 100% in the three-phase control mode is 0%.
  • the trigger angle calculation unit that calculates the phase angle corresponding to the target load factor between the trigger angle 180 ° corresponding to the target load factor of 100% and the trigger angle 30 ° corresponding to the target load factor of 100%, and the single-phase control mode.
  • a first trigger signal for the unidirectional current control element matching the polarity of the phase information is output based on the phase information and the trigger angle for the single-phase AC power supply, and in the three-phase control mode, For the unidirectional current control element that matches the polarity of the phase information, the second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply, and the phase angle of 60 ° from the second trigger signal.
  • the trigger control unit that outputs a third trigger signal at a delayed time, it is possible to switch between phase control for a single-phase AC power supply and phase control for a three-phase AC power supply.
  • a single-phase / three-phase shared power regulator characterized by being present.
  • the second trigger signal and the third trigger signal are one continuous trigger signal, and the phase angle is 180 after the end of the signal is delayed by a phase angle of 60 ° from the output time of the second trigger signal.
  • a three-phase six-arm phase control method comprising operating each of the three power regulators in the three-phase control mode.
  • the single-phase / three-phase shared power regulator of the present invention can be used for both single-phase AC and three-phase AC.
  • Block diagram when the power regulator of the embodiment is used for the three-phase load A flowchart showing the processing concept of the power regulator of the embodiment.
  • Diagram showing simulation conditions in a circuit simulator Diagram showing simulation results Diagram showing simulation results Diagram showing simulation results Diagram showing simulation results Diagram showing simulation results Diagram showing simulation results Diagram showing simulation results.
  • FIG. 1 is a block diagram showing an outline of the configuration of a portion of the single-phase / three-phase shared power regulator according to the present invention of the embodiment.
  • the power regulator 1 of the present embodiment is a power regulator that controls the power supply to the load by phase control, and is a phase control for a single-phase AC power supply and a phase control for a three-phase AC power supply (three-phase six arms). It is a single-phase / three-phase shared power regulator that can switch between phase control).
  • FIG. 1 shows a wiring diagram in the case of a single phase
  • FIG. 2 shows a wiring diagram in the case of a three phase.
  • the power regulator 1 of the present embodiment is A power supply waveform acquisition unit 12 that also functions as a power supply phase acquisition unit that acquires the waveform of the line voltage of an AC power supply and acquires the phase information of the line voltage.
  • An alternating current control circuit 13 in which unidirectional current control elements (131, 132) are connected in antiparallel, and It is a control unit that performs various control processes, and in the single-phase control mode, the trigger angles corresponding to the target load factor of 0% to 100% are 180 ° and 100%, which correspond to the target load factor of 0%.
  • the phase angle corresponding to the target load factor between 0 ° and the trigger angle corresponding to the target load factor of 0 ° is calculated, and the trigger angle corresponding to the target load factor of 0% to 100% in the three-phase control mode is 0%.
  • Trigger angle calculation unit that calculates the phase angle corresponding to the target load factor between the trigger angle 180 ° corresponding to the target load factor of and the trigger angle 30 ° corresponding to the target load factor of 100%, and the single-phase control mode.
  • the first trigger signal for the unidirectional current control element matching the polarity of the phase information is output based on the phase information and the trigger angle for the single-phase AC power supply, and the polarity of the phase information is output in the three-phase control mode.
  • the second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply and the time point when the phase angle is delayed by 60 ° from the second trigger signal with respect to the unidirectional current control element (131, 132) conforming to the above.
  • a control unit 11 that also functions as a trigger control unit that outputs the third trigger signal of To prepare for.
  • the trigger angle is a half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point, the starting point 0V is the starting point (0 °), and the subsequent 0V point is the ending point (180 °).
  • the power regulator 1 has main circuit connection terminals 16a and 16b for wiring as terminals for wiring from the AC power supply to the load, and connection lines for the power supply waveform acquisition unit 12.
  • the input power supply terminals 15a and 15b for which the wiring is performed are provided.
  • the alternating current control circuit 13 of the present embodiment has a configuration in which unidirectional thyristors (131, 132), which are unidirectional current control elements, are connected in antiparallel.
  • the control unit 11 and the power supply waveform acquisition unit 12 are provided separately, but the functional units are not limited to being individually configured in terms of hardware.
  • all the functions may be implemented by software on one device such as a microcomputer.
  • any or all of each functional unit may be implemented in hardware by a dedicated circuit or the like, and the function described as the process executed by software on the control unit 11 in the present embodiment.
  • a part or all of (trigger angle calculation unit and trigger control unit) may be implemented in hardware.
  • the basic function of the power regulator 1 is from the AC power supply 3 for the heater, which is the load 2, based on the target load factor (0 to 100%) input from the temperature regulator (not shown), which is an external device. It controls the power supply of. That is, the target load factor is calculated by feedback control such as PID control based on the deviation between the heater temperature and the target temperature in the temperature controller, and this is input to the power regulator 1.
  • the control unit 11 of the power regulator 1 calculates a target power value (or target voltage value, target current value, etc.) using the input target load factor, and this target power value (or target voltage value, target). The trigger angle is calculated based on the current value, etc.).
  • a trigger signal is output to each of the thyristor 131 and the thyristor 132 according to the power waveform (polarity of the AC power supply) to control the power supply to the load 2.
  • the power waveform polarity of the AC power supply
  • the power regulator 1 is a power regulator capable of switching between phase control for a single-phase AC power supply and phase control for a three-phase AC power supply (three-phase six-arm phase control).
  • the main circuit connection terminals 16a and 16b are connected to the power supply line from the AC power supply 3 (single-phase) to the load 2, and the AC power supply 3 (AC power supply 3 (single-phase)).
  • the input power supply terminals 15a and 15b are connected so that the voltage waveform of (single-phase) is acquired, and the power regulator 1 is operated in the single-phase control mode.
  • the operation of the power regulator 1 in the single-phase control mode is the same as that of the conventional power regulator for single-phase AC, and as described above, the target load factor (0) input from the temperature regulator (not shown).
  • the trigger angle (180 ° to 0 °) for the single-phase AC power supply is calculated from ( ⁇ 100%), and the thyristor (either 131 or 132), which is the direction to conduct this, is set according to the polarity of the power supply. Trigger with the trigger angle for single-phase AC power supply (output the first trigger signal). As a result, the output that matches the target load factor is produced. Since the operation of the single-phase control mode is the same as that of the conventional power regulator for single-phase alternating current, further description thereof will be omitted here.
  • the power regulator 1 When the power regulator 1 is used for three-phase six-arm phase control, the power regulator 1 is provided for each of the power supply lines of each phase from the three-phase AC power supply 3'to the three-phase load 2'. One unit, a total of three units, are connected, and each of the three power regulators 1 is operated in the three-phase control mode. That is, as shown in FIG. 2, each of the power supply lines (4a, 4b, 4c) of each phase of the AC power supply 3'(three-phase) has each power regulator 1a to 1c (all power regulators 1). (Same configuration as) is connected.
  • the main circuit connection terminals 16a and 16b of the power regulator 1a are connected on the power supply line 4a of the R phase, and the input power supply terminals 15a and 15b of the power regulator 1a are the R phase and the S phase. It is connected to the power supply lines 4a and 4b so that the waveform of the line voltage VRS between them is acquired.
  • the power supply lines 4b and 4c so that the main circuit connection terminals 16a and 16b of the power regulator 1b acquire the waveform of the line voltage VST on the power supply line 4b and the input power supply terminals 15a and 15b acquire the waveform of the line voltage VST .
  • the main circuit connection terminals 16a and 16b of the power regulator 1c are connected to the power supply line 4c, and the input power supply terminals 15a and 15b acquire the waveform of the line voltage VT-R . It is connected to 4a.
  • the trigger angle (180 ° to 30 °) for the three-phase AC power supply is calculated from the target load factor (0 to 100%) input from the temperature controller, and is adjusted according to the polarity of the power supply.
  • the thyristor (either 131 or 132) in the direction of conducting this is triggered at the trigger angle for the three-phase AC power supply (outputs the second trigger signal). Further, the same thyristor is triggered at a phase angle 60 ° behind the trigger angle for the above-mentioned three-phase AC power supply (outputs a third trigger signal).
  • the "trigger angle for a three-phase AC power supply” has a phase angle in the range of 180 ° to 30 °, and when the target load factor is 0% (that is, the output is 0%), the target load is 180 °. When the rate is 100% (that is, the output is 100%), it becomes 30 °.
  • "Trigger angle for three-phase AC power supply” is a single-phase AC power supply by directly converting the trigger angle (180 ° to 0 °) for single-phase AC power supply into the trigger angle range of 180 ° to 30 °. It has been confirmed by simulation that control similar to control can be performed.
  • the "trigger at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply” is the same as that described as the "double pulse method" in Patent Document 1. That is, as is clear from FIG. 2, for example, in order to apply the line voltage VRS between the R phase and the S phase to the load 2', the power regulator 1a and the thyristor of the power regulator 1b are used. Must be turned on (one positive thylister and the other negative thylister turned on). In this way, the "trigger at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply” is the corresponding thyristor so that the power is supplied in the power control of the other power regulator (other phase). Is for turning on.
  • the three power regulators 1 may be operated independently of each other, and there is no need to perform special processing such as communicating with each other to coordinate or synchronize the controls. That is, in each power regulator 1, the trigger angle is calculated independently based on the input target load factor (the same value is input for each power regulator 1) and the phase information of the power supply. All you have to do is trigger the thyristor. Since each power regulator 1 performs control based on the phase of the power supply, as a result, the processing of each power regulator 1 is synchronized, and the trigger timing of each power regulator 1 to the thyristor is synchronized. become.
  • FIG. 4 is a diagram showing simulation conditions (when the trigger angle is 120 °)
  • FIGS. 5 to 9 are diagrams showing simulation results.
  • Figure 5 Trigger angle 150 °
  • Figure 6 Trigger angle 120 °
  • Figure 7 Trigger angle 90 °
  • Figure 8 Trigger angle 60 °
  • Figure 9 Simulation when the trigger angle is 30 °, respectively. The result.
  • the trigger angle in each figure relating to the simulation indicates a relative angle from 180 °, which is the later 0V point, in a half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point. That is, for example, FIG. 5 shows a case where the trigger angle is 150 °, but in the figure, it is expressed at 30 °, which is a relative angle from 180 °.
  • the three-phase AC power supply line voltage (V (L1, L2), V (L2, L3), V (L3, L1)) and the three-phase load are shown.
  • TR2p and TR2n have trigger angles of 150 °, 120 °, 90 °, 60 ° and 30 ° for a three-phase AC power supply (30 °, 60 ° and 90 in the notation in the figure).
  • °, 120 °, 150 °) trigger (second trigger signal)
  • the trigger TR2p is a trigger for the thyristor which is the direction to conduct this when the phase of the power supply is positive
  • the trigger TR2n is the power supply. It is a trigger for the thyristor, which is the direction to conduct the phase when the phase is negative.
  • TR3p and TR3n are triggers (third trigger signals) whose trigger angles are delayed by 60 ° from the trigger angles (TR2p, TR2n) for the three-phase AC power supply.
  • the trigger TR2p and the TR3n of the other phase, and the trigger TR2n and the TR3p of the other phase are always output in synchronization, whereby an appropriate power output is performed.
  • the output increases as the trigger angle increases, and when the trigger angle is 30 ° (FIG. 9: 150 ° in the notation in the figure), the output is 100%. It has been confirmed that it will be.
  • FIG. 3 is a flowchart showing an outline of the processing operation of the power regulator 1.
  • step 301 it is determined whether the mode is the single-phase control mode or the three-phase control mode.
  • the mode is set by the user, for example, from the input unit provided in the device.
  • the process proceeds to step 302, and as described above, the target load factor (0 to 100%) is simply changed by the same processing as that of the conventional power regulator for single-phase AC.
  • the trigger angle 180 ° to 0 °
  • the thyristor either 131 or 132
  • Trigger at the corner output the first trigger signal). If there is an instruction to end the power supply, the process is terminated (step 303: Yes ⁇ end), and if not, the process of step 302 is continued (step 303: No ⁇ step 302).
  • step 304 the process proceeds to step 304, and as described above, the "trigger angle for a single-phase AC power supply" is proportionally converted into a trigger angle range of 180 ° to 30 °. , “Trigger angle for three-phase AC power supply” is calculated, and the thyristor (either 131 or 132), which is the direction to conduct this according to the polarity of the power supply, is triggered by the trigger angle for the three-phase AC power supply. (Output a second trigger signal). Further, the same thyristor is triggered at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply (the third trigger signal is output). If there is an instruction to end the power supply, the process is terminated (step 305: Yes ⁇ end), and if not, the process of step 304 is continued (step 305: No ⁇ step 304).
  • the power regulator 1 of the present embodiment can be used for both single-phase alternating current and three-phase alternating current. Since one type of power regulator can be used as a single-phase / three-phase power regulator, the supplier of the power regulator can focus on product development to one type, which imposes a burden on product development. Can be reduced. It also has the advantage of being able to unify the production line. Further, for the user (user), since the type of the power regulator prepared for maintenance can be one type, the merit that the maintenance cost can be reduced can be expected. In addition, it can be applied only by software changes without making hardware changes to the conventional single-phase AC power regulator, so it can be realized at low cost.
  • the trigger of the trigger angle for the three-phase AC power supply (second trigger signal) and the trigger of the phase angle 60 ° behind this (third trigger signal) are different trigger signals.
  • the second trigger signal and the third trigger signal may be used as one continuous trigger signal.
  • the end of the third trigger signal, i.e., the phase angle of the lag from the second trigger signal, needs to be less than 180 °.
  • the third trigger signal (TR3p, TR3n) Is not required (because the thyristor remains on). Therefore, after the trigger angle is less than 120 °, the third trigger signal (TR3p, TR3n) may not be output.
  • the three-phase AC power supply has a Y (star) connection and the load has a ⁇ connection as an example.
  • the power supply side or the load side has a Y (star) connection or a ⁇ connection.
  • the present invention can be applied regardless of the difference between the two.
  • the starting point (0 °) of the half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point is set as the starting point (0 °), and the subsequent 0V point is set as the ending point (180 °).
  • the zero crossing point on the back side of each of the positive half-cycle waveform and the negative half-cycle waveform of the line voltage is used as a reference (0 °) and traced back from there.
  • the trigger angle may be increased in this way (in this case, the trigger angle for the three-phase AC power supply is in the range of 0 ° to 150 °), and such a difference in expression is the difference in the present invention. It does not make a difference as a concept.
  • the load is a heater
  • the power supply to the heater is controlled based on the target load factor input from the temperature controller which is an external device.
  • the present invention is not limited to this, and can be applied to a power regulator that supplies power to an arbitrary load.

Abstract

This single-phase/three-phase shared power regulator includes: a power supply phase acquisition unit (power supply waveform acquisition unit 12) that acquires phase information of a line voltage of an AC power supply; an AC current control circuit 13 to which unidirectional current control elements (131, 132) are connected in anti-parallel; a trigger angle calculation unit that, in a single-phase control mode, calculates a trigger angle for a single-phase AC power supply and that, in a three-phase control mode, calculates a trigger angle for a three-phase AC power supply; and a trigger control unit that, in the single-phase control mode, outputs, on the basis of the phase information and the trigger angle for the single-phase AC power supply, a first trigger signal for the unidirectional current control element matching the polarity of the phase information and that, in the three-phase control mode, outputs a second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply and a third trigger signal delayed 60° from the second trigger signal to the unidirectional current control element matching the polarity of the phase information. Consequently, the single-phase/three-phase shared power regulator 1 can switch between control for the single-phase AC power supply and control for the three-phase AC power supply.

Description

単相/三相共用電力調整器及び三相6アーム位相制御方法Single-phase / three-phase shared power regulator and three-phase six-arm phase control method
 本発明は、交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器及び当該電力調整器を使用した三相6アーム位相制御方法に関する。 The present invention relates to a power regulator that controls the power supply to a load from an AC power source by phase control and a three-phase 6-arm phase control method using the power regulator.
 交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器が従来から利用されている。これに関し、特許文献1には、三相交流の位相制御方式に関する技術が開示されている。 Conventionally, a power regulator that controls the power supply to the load from the AC power supply by phase control has been used. In this regard, Patent Document 1 discloses a technique relating to a phase control method for three-phase alternating current.
特開平6-113545号公報Japanese Unexamined Patent Publication No. 6-113545
 従来の電力調整器は、単相交流用の電力調整器、三相交流用の電力調整器として、それぞれそれ専用に構成されているものしか存在していなかった(特許文献1は三相交流用の例)。 Conventional power regulators exist only as power regulators for single-phase AC and power regulators for three-phase AC, each of which is configured exclusively for them (Patent Document 1 is for three-phase AC). Example).
 本発明は、上記の点に鑑み、交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器であって、単相交流及び三相交流の何れに対しても利用することが可能な、電力調整器を提供することを目的とする。 In view of the above points, the present invention is a power regulator that controls the power supply to the load from the AC power source by phase control, and can be used for both single-phase AC and three-phase AC. The purpose is to provide a power regulator.
(構成1)
 交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器であって、前記交流電源の線間電圧の位相情報を取得する電源位相取得部と、単方向性電流制御素子が逆並列に接続された交流電流制御回路と、前記交流電源の線間電圧の0V点から始まり0V点で終わる半サイクルの、始まりの0V点を起点(0°)として、後の0V点を終点(180°)として、トリガ角を定義した際に、単相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角0°の間の目標負荷率に対応する位相角を算出し、三相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角30°の間の目標負荷率に対応する位相角を算出するトリガ角算出部と、前記単相制御モードにおいて、前記位相情報と前記単相交流電源用のトリガ角に基づいて、前記位相情報の極性に適合した前記単方向性電流制御素子に対する第1トリガ信号を出力し、前記三相制御モードにおいて、前記位相情報の極性に適合した前記単方向性電流制御素子に対して、前記位相情報と前記三相交流電源用のトリガ角に基づく第2トリガ信号と、当該第2トリガ信号から位相角60°遅れた時点の第3トリガ信号と、を出力する、トリガ制御部と、を備えることにより、単相交流電源用の位相制御と、三相交流電源用の位相制御を切り替えて行うことが可能であることを特徴とする単相/三相共用電力調整器。
(Structure 1)
It is a power regulator that controls the power supply to the load from the AC power supply by phase control, and the power supply phase acquisition unit that acquires the phase information of the line voltage of the AC power supply and the unidirectional current control element are antiparallel. The AC current control circuit connected to the AC power supply and the half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point, starting from the starting 0V point (0 °) and ending at the latter 0V point (180 °). When the trigger angle is defined as °), the trigger angles corresponding to the target load factor of 0% are 180 ° and 100% as the trigger angles corresponding to the target load factor of 0% to 100% in the single phase control mode. The phase angle corresponding to the target load factor between 0 ° and the trigger angle corresponding to the target load factor of 0 ° is calculated, and the trigger angle corresponding to the target load factor of 0% to 100% in the three-phase control mode is 0%. The trigger angle calculation unit that calculates the phase angle corresponding to the target load factor between the trigger angle 180 ° corresponding to the target load factor of 100% and the trigger angle 30 ° corresponding to the target load factor of 100%, and the single-phase control mode. In, a first trigger signal for the unidirectional current control element matching the polarity of the phase information is output based on the phase information and the trigger angle for the single-phase AC power supply, and in the three-phase control mode, For the unidirectional current control element that matches the polarity of the phase information, the second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply, and the phase angle of 60 ° from the second trigger signal. By providing a trigger control unit that outputs a third trigger signal at a delayed time, it is possible to switch between phase control for a single-phase AC power supply and phase control for a three-phase AC power supply. A single-phase / three-phase shared power regulator characterized by being present.
(構成2)
 前記第2トリガ信号と、前記第3トリガ信号が、連続した1つのトリガ信号であり、その信号の終期が、前記第2トリガ信号の出力時点から位相角60°遅れた時点以降、位相角180°未満の期間にあることを特徴とする構成1に記載の単相/三相共用電力調整器。
(Structure 2)
The second trigger signal and the third trigger signal are one continuous trigger signal, and the phase angle is 180 after the end of the signal is delayed by a phase angle of 60 ° from the output time of the second trigger signal. The single-phase / three-phase shared power regulator according to configuration 1, wherein the period is less than °.
(構成3)
 三相の交流電源と三相用負荷における各相の電源供給ラインのそれぞれに、構成1又は2に記載の単相/三相共用電力調整器を各1台、合計で3台接続し、当該3台の各電力調整器を前記三相制御モードで動作させることを特徴とする三相6アーム位相制御方法。
(Structure 3)
Connect one single-phase / three-phase shared power regulator according to configuration 1 or 2 to each of the three-phase AC power supply and the power supply line of each phase in the three-phase load, for a total of three units. A three-phase six-arm phase control method comprising operating each of the three power regulators in the three-phase control mode.
 本発明の単相/三相共用電力調整器によれば、単相交流及び三相交流の何れに対しても利用することが可能である。 According to the single-phase / three-phase shared power regulator of the present invention, it can be used for both single-phase AC and three-phase AC.
本発明に係る実施形態の電力調整器の構成の概略を示すブロック図A block diagram showing an outline of the configuration of the power regulator according to the embodiment of the present invention. 三相用負荷に実施形態の電力調整器を用いる場合のブロック図Block diagram when the power regulator of the embodiment is used for the three-phase load 実施形態の電力調整器の処理概念を示すフローチャートA flowchart showing the processing concept of the power regulator of the embodiment. 回路シミュレータにおけるシミュレーション条件を示す図Diagram showing simulation conditions in a circuit simulator シミュレーション結果を示す図Diagram showing simulation results シミュレーション結果を示す図Diagram showing simulation results シミュレーション結果を示す図Diagram showing simulation results シミュレーション結果を示す図Diagram showing simulation results シミュレーション結果を示す図Diagram showing simulation results
 以下、本発明の実施形態について、図面を参照しながら具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. It should be noted that the following embodiment is an embodiment of the present invention and does not limit the present invention to the scope thereof.
 図1は、実施形態の単相/三相共用電力調整器の、本発明に関する部分の構成の概略を示すブロック図である。本実施形態の電力調整器1は、負荷に対する電力供給の制御を位相制御によって行う電力調整器であり、単相交流電源用の位相制御と、三相交流電源用の位相制御(三相6アーム位相制御)を切り替えて行うことが可能な単相/三相共用電力調整器である。図1は単相の場合の配線図、図2は三相の場合の配線図をそれぞれ示している。何れも同一の単相/三相共用電力調整器が使用される(兼用される)ものであり、三相の場合には、3台の単相/三相共用電力調整器(1a~1c)が使用される。なお、三相4線式において、電力調整器を中性点と各相の何れかに接続する場合は、単相の位相制御と同様であり、図1の配線と同様である。
 本実施形態の電力調整器1は、
 交流電源の線間電圧の波形を取得し、線間電圧の位相情報を取得する電源位相取得部としても機能する電源波形取得部12と、
 単方向性電流制御素子(131、132)が逆並列に接続された交流電流制御回路13と、
 各種の制御処理を行う制御部であって、単相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角0°の間の目標負荷率に対応する位相角を算出し、三相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角30°の間の目標負荷率に対応する位相角を算出するトリガ角算出部、及び、単相制御モードにおいて、位相情報と単相交流電源用のトリガ角に基づいて、位相情報の極性に適合した単方向性電流制御素子に対する第1トリガ信号を出力し、三相制御モードにおいて、前記位相情報の極性に適合した前記単方向性電流制御素子(131、132)に対して、位相情報と三相交流電源用のトリガ角に基づく第2トリガ信号と、第2トリガ信号から位相角60°遅れた時点の第3トリガ信号と、を出力する、トリガ制御部としても機能する制御部11と、
 を備える。ここで、トリガ角は、交流電源の線間電圧の0V点から始まり0V点で終わる半サイクルの、始まりの0V点を起点(0°)として、後の0V点を終点(180°)とする。
 なお、電力調整器1には配線を行うための端子として、交流電源から負荷への電力供給ラインとしての配線が行われる主回路接続端子16a、16bと、電源波形取得部12への接続ラインとしての配線が行われる入力電源端子15a、15bを、備えている。
FIG. 1 is a block diagram showing an outline of the configuration of a portion of the single-phase / three-phase shared power regulator according to the present invention of the embodiment. The power regulator 1 of the present embodiment is a power regulator that controls the power supply to the load by phase control, and is a phase control for a single-phase AC power supply and a phase control for a three-phase AC power supply (three-phase six arms). It is a single-phase / three-phase shared power regulator that can switch between phase control). FIG. 1 shows a wiring diagram in the case of a single phase, and FIG. 2 shows a wiring diagram in the case of a three phase. In both cases, the same single-phase / three-phase shared power regulator is used (also used), and in the case of three-phase, three single-phase / three-phase shared power regulators (1a to 1c). Is used. In the three-phase four-wire system, when the power regulator is connected to any of the neutral point and each phase, it is the same as the single-phase phase control, and is the same as the wiring of FIG.
The power regulator 1 of the present embodiment is
A power supply waveform acquisition unit 12 that also functions as a power supply phase acquisition unit that acquires the waveform of the line voltage of an AC power supply and acquires the phase information of the line voltage.
An alternating current control circuit 13 in which unidirectional current control elements (131, 132) are connected in antiparallel, and
It is a control unit that performs various control processes, and in the single-phase control mode, the trigger angles corresponding to the target load factor of 0% to 100% are 180 ° and 100%, which correspond to the target load factor of 0%. The phase angle corresponding to the target load factor between 0 ° and the trigger angle corresponding to the target load factor of 0 ° is calculated, and the trigger angle corresponding to the target load factor of 0% to 100% in the three-phase control mode is 0%. Trigger angle calculation unit that calculates the phase angle corresponding to the target load factor between the trigger angle 180 ° corresponding to the target load factor of and the trigger angle 30 ° corresponding to the target load factor of 100%, and the single-phase control mode. In, the first trigger signal for the unidirectional current control element matching the polarity of the phase information is output based on the phase information and the trigger angle for the single-phase AC power supply, and the polarity of the phase information is output in the three-phase control mode. The second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply and the time point when the phase angle is delayed by 60 ° from the second trigger signal with respect to the unidirectional current control element (131, 132) conforming to the above. A control unit 11 that also functions as a trigger control unit that outputs the third trigger signal of
To prepare for. Here, the trigger angle is a half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point, the starting point 0V is the starting point (0 °), and the subsequent 0V point is the ending point (180 °). ..
The power regulator 1 has main circuit connection terminals 16a and 16b for wiring as terminals for wiring from the AC power supply to the load, and connection lines for the power supply waveform acquisition unit 12. The input power supply terminals 15a and 15b for which the wiring is performed are provided.
 本実施形態の交流電流制御回路13は、単方向性電流制御素子である単方向性サイリスタ(131、132)が逆並列に接続された構成を有する。
 なお、実施形態では、制御部11や電源波形取得部12を備えるものとして、区別して説明しているが、各機能部がハード的に個別に構成されることに限定するものではない。例えば、マイコンなどの1つのデバイス上で全ての機能がソフトウェア的に実装されるもの等であってもよい。逆に、各機能部の何れか若しくは全てを専用回路等によってハード的に実装するものであってもよく、本実施形態において制御部11上でソフトウェア的に実行される処理として説明している機能(トリガ角算出部やトリガ制御部)の一部若しくは全部をハード的に実装するもの等であってもよい。
The alternating current control circuit 13 of the present embodiment has a configuration in which unidirectional thyristors (131, 132), which are unidirectional current control elements, are connected in antiparallel.
In the embodiment, the control unit 11 and the power supply waveform acquisition unit 12 are provided separately, but the functional units are not limited to being individually configured in terms of hardware. For example, all the functions may be implemented by software on one device such as a microcomputer. On the contrary, any or all of each functional unit may be implemented in hardware by a dedicated circuit or the like, and the function described as the process executed by software on the control unit 11 in the present embodiment. A part or all of (trigger angle calculation unit and trigger control unit) may be implemented in hardware.
 電力調整器1の基本的な機能は、外部装置である温度調節器(図示せず)から入力される目標負荷率(0~100%)に基づいて、負荷2であるヒーターに対する交流電源3からの電力供給の制御を行うものである。即ち、温度調節器においてヒーターの温度と目標温度との偏差に基づくPID制御等のフィードバック制御によって目標負荷率が算出され、これが電力調整器1に入力される。電力調整器1の制御部11では、入力された目標負荷率を用いて目標電力値(若しくは、目標電圧値、目標電流値等)が算出され、この目標電力値(若しくは、目標電圧値、目標電流値等)に基づいてトリガ角が算出される。当該トリガ角に基づいて、サイリスタ131、サイリスタ132のそれぞれに対して、電源波形(交流電源の極性)に応じてトリガ信号が出力されることで、負荷2に対する電力供給の制御が行われるものである。当該位相制御に関する技術は、任意の各技術を利用できるものであるため、ここでのこれ以上の詳しい説明を省略する。 The basic function of the power regulator 1 is from the AC power supply 3 for the heater, which is the load 2, based on the target load factor (0 to 100%) input from the temperature regulator (not shown), which is an external device. It controls the power supply of. That is, the target load factor is calculated by feedback control such as PID control based on the deviation between the heater temperature and the target temperature in the temperature controller, and this is input to the power regulator 1. The control unit 11 of the power regulator 1 calculates a target power value (or target voltage value, target current value, etc.) using the input target load factor, and this target power value (or target voltage value, target). The trigger angle is calculated based on the current value, etc.). Based on the trigger angle, a trigger signal is output to each of the thyristor 131 and the thyristor 132 according to the power waveform (polarity of the AC power supply) to control the power supply to the load 2. be. Since any of the techniques related to the phase control can be used, further detailed description thereof will be omitted here.
 電力調整器1は、単相交流電源用の位相制御と、三相交流電源用の位相制御(三相6アーム位相制御)を切り替えて行うことが可能な電力調整器である。
 単相制御として用いる場合には、図1に示されるように、交流電源3(単相)から負荷2への電源供給ラインに主回路接続端子16a、16bを接続し、また、交流電源3(単相)の電圧波形が取得されるように入力電源端子15a、15bを接続して、単相制御モードにて電力調整器1を動作させる。
 単相制御モードの電力調整器1の動作は、従来の単相交流用の電力調整器と同様であり、上述したように、温度調節器(図示せず)から入力された目標負荷率(0~100%)から、単相交流電源用のトリガ角(180°~0°)が算出され、電源の極性に合わせて、これを導通させる方向であるサイリスタ(131、132の何れか)を、単相交流電源用のトリガ角でトリガする(第1のトリガ信号を出力する)。これによって、目標負荷率にあった出力がなされるものである。単相制御モードの動作は、従来の単相交流用の電力調整器と同様であるため、ここでのこれ以上の説明を省略する。
The power regulator 1 is a power regulator capable of switching between phase control for a single-phase AC power supply and phase control for a three-phase AC power supply (three-phase six-arm phase control).
When used for single-phase control, as shown in FIG. 1, the main circuit connection terminals 16a and 16b are connected to the power supply line from the AC power supply 3 (single-phase) to the load 2, and the AC power supply 3 (AC power supply 3 (single-phase)). The input power supply terminals 15a and 15b are connected so that the voltage waveform of (single-phase) is acquired, and the power regulator 1 is operated in the single-phase control mode.
The operation of the power regulator 1 in the single-phase control mode is the same as that of the conventional power regulator for single-phase AC, and as described above, the target load factor (0) input from the temperature regulator (not shown). The trigger angle (180 ° to 0 °) for the single-phase AC power supply is calculated from (~ 100%), and the thyristor (either 131 or 132), which is the direction to conduct this, is set according to the polarity of the power supply. Trigger with the trigger angle for single-phase AC power supply (output the first trigger signal). As a result, the output that matches the target load factor is produced. Since the operation of the single-phase control mode is the same as that of the conventional power regulator for single-phase alternating current, further description thereof will be omitted here.
 電力調整器1を、三相6アーム位相制御で用いる場合には、三相の交流電源3´から三相用負荷2´への各相の電源供給ラインのそれぞれに、電力調整器1を各1台、合計で3台接続し、当該3台の各電力調整器1を三相制御モードで動作させる。即ち、図2に示されるように、交流電源3´(三相)の各相の電源供給ライン(4a、4b、4c)のそれぞれに、各電力調整器1a~1c(何れも電力調整器1と同一構成)を接続する。より具体的には、電力調整器1aの主回路接続端子16a、16bが、R相の電源供給ライン4a上に接続され、電力調整器1aの入力電源端子15a、15bは、R相とS相の間の線間電圧VR-Sの波形が取得されるように電源供給ライン4a、4bに接続される。同様に、電力調整器1bの主回路接続端子16a、16bが電源供給ライン4b上に、入力電源端子15a、15bが線間電圧VS-Tの波形を取得するように電源供給ライン4b、4cに接続され、電力調整器1cの主回路接続端子16a、16bが電源供給ライン4c上に、入力電源端子15a、15bが線間電圧VT-Rの波形を取得するように電源供給ライン4c、4aに接続される。 When the power regulator 1 is used for three-phase six-arm phase control, the power regulator 1 is provided for each of the power supply lines of each phase from the three-phase AC power supply 3'to the three-phase load 2'. One unit, a total of three units, are connected, and each of the three power regulators 1 is operated in the three-phase control mode. That is, as shown in FIG. 2, each of the power supply lines (4a, 4b, 4c) of each phase of the AC power supply 3'(three-phase) has each power regulator 1a to 1c (all power regulators 1). (Same configuration as) is connected. More specifically, the main circuit connection terminals 16a and 16b of the power regulator 1a are connected on the power supply line 4a of the R phase, and the input power supply terminals 15a and 15b of the power regulator 1a are the R phase and the S phase. It is connected to the power supply lines 4a and 4b so that the waveform of the line voltage VRS between them is acquired. Similarly, the power supply lines 4b and 4c so that the main circuit connection terminals 16a and 16b of the power regulator 1b acquire the waveform of the line voltage VST on the power supply line 4b and the input power supply terminals 15a and 15b acquire the waveform of the line voltage VST . The main circuit connection terminals 16a and 16b of the power regulator 1c are connected to the power supply line 4c, and the input power supply terminals 15a and 15b acquire the waveform of the line voltage VT-R . It is connected to 4a.
 三相制御モードでは、温度調節器から入力された目標負荷率(0~100%)から、三相交流電源用のトリガ角(180°~30°)が算出され、電源の極性に合わせて、これを導通させる方向であるサイリスタ(131、132の何れか)を、三相交流電源用のトリガ角でトリガする(第2のトリガ信号を出力する)。また、同じサイリスタに対して、前述の三相交流電源用のトリガ角から60°遅れた位相角でトリガする(第3のトリガ信号を出力する)。 In the three-phase control mode, the trigger angle (180 ° to 30 °) for the three-phase AC power supply is calculated from the target load factor (0 to 100%) input from the temperature controller, and is adjusted according to the polarity of the power supply. The thyristor (either 131 or 132) in the direction of conducting this is triggered at the trigger angle for the three-phase AC power supply (outputs the second trigger signal). Further, the same thyristor is triggered at a phase angle 60 ° behind the trigger angle for the above-mentioned three-phase AC power supply (outputs a third trigger signal).
 “三相交流電源用のトリガ角”は、その位相角が180°~30°の範囲となるものであり、目標負荷率が0%(即ち、出力0%)の場合に180°、目標負荷率が100%(即ち、出力100%)の場合に30°となる。
 “三相交流電源用のトリガ角”は、単相交流電源用のトリガ角(180°~0°)を、そのまま比例的に180°~30°のトリガ角範囲に変換することで、単相制御と同様の制御を行うことができることをシミュレーションで確認している。即ち、例えば、単相交流電源用のトリガ角に対して、150/180=5/6の値をかけて、30°を加算することによって、三相交流電源用のトリガ角を算出することができる。
 よって、従来の単相交流用の電力調整器においてトリガ角を算出する任意の方法を使用して、“単相交流電源用のトリガ角”を算出し、これを比例的に180°~30°のトリガ角範囲に変換することで、“三相交流電源用のトリガ角”を得ることができる。
The "trigger angle for a three-phase AC power supply" has a phase angle in the range of 180 ° to 30 °, and when the target load factor is 0% (that is, the output is 0%), the target load is 180 °. When the rate is 100% (that is, the output is 100%), it becomes 30 °.
"Trigger angle for three-phase AC power supply" is a single-phase AC power supply by directly converting the trigger angle (180 ° to 0 °) for single-phase AC power supply into the trigger angle range of 180 ° to 30 °. It has been confirmed by simulation that control similar to control can be performed. That is, for example, the trigger angle for a three-phase AC power supply can be calculated by multiplying the trigger angle for a single-phase AC power supply by a value of 150/180 = 5/6 and adding 30 °. can.
Therefore, the "trigger angle for single-phase AC power supply" is calculated using an arbitrary method for calculating the trigger angle in the conventional power regulator for single-phase AC, and this is proportionally 180 ° to 30 °. By converting to the trigger angle range of, "trigger angle for three-phase AC power supply" can be obtained.
 “三相交流電源用のトリガ角から60°遅れた位相角でトリガ”は、特許文献1において“ダブルパルス方式”として説明されているものと同様のものである。
 即ち、図2からも明らかなように、例えばR相とS相の間の線間電圧VR-Sを負荷2´に印可するためには、電力調整器1aと、電力調整器1bのサイリスタをオンにする(一方の正側のサイリスタと、他方の負側のサイリスタをオンにする)必要がある。このように、“三相交流電源用のトリガ角から60°遅れた位相角でトリガ”は、他の電力調整器(他の相)の電力制御における電力供給が行われるように、該当のサイリスタをオンにするためのものである。
 なお、3台の電力調整器1は、それぞれ独立して動作させればよく、例えば相互に通信をして制御を連携させたり同期させるなどの処理を特別に行う必要は無い。即ち、各電力調整器1では、入力された目標負荷率(各電力調整器1に対して同じ値が入力される)と、電源の位相情報に基づいて、それぞれ独立にトリガ角を算出してサイリスタをトリガするのみでよい。各電力調整器1では、電源の位相に基づいた制御が行われるため、結果的には各電力調整器1の処理が同期され、各電力調整器1のサイリスタへのトリガタイミングが同期されることになる。
The "trigger at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply" is the same as that described as the "double pulse method" in Patent Document 1.
That is, as is clear from FIG. 2, for example, in order to apply the line voltage VRS between the R phase and the S phase to the load 2', the power regulator 1a and the thyristor of the power regulator 1b are used. Must be turned on (one positive thylister and the other negative thylister turned on). In this way, the "trigger at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply" is the corresponding thyristor so that the power is supplied in the power control of the other power regulator (other phase). Is for turning on.
It should be noted that the three power regulators 1 may be operated independently of each other, and there is no need to perform special processing such as communicating with each other to coordinate or synchronize the controls. That is, in each power regulator 1, the trigger angle is calculated independently based on the input target load factor (the same value is input for each power regulator 1) and the phase information of the power supply. All you have to do is trigger the thyristor. Since each power regulator 1 performs control based on the phase of the power supply, as a result, the processing of each power regulator 1 is synchronized, and the trigger timing of each power regulator 1 to the thyristor is synchronized. become.
 本実施形態の電力調整器1に関し、図2の構成とした場合(三相6アーム位相制御)について、回路シミュレータによるシミュレーションを行った。
 図4はシミュレーション条件を示す図(トリガ角が120°の場合のもの)であり、図5~9はシミュレーション結果を示す図である。それぞれ、図5:トリガ角が150°、図6:トリガ角が120°、図7:トリガ角が90°、図8:トリガ角が60°、図9:トリガ角が30°の場合のシミュレーション結果である。なお、シミュレーションに関する各図中のトリガ角は、交流電源の線間電圧の0V点から始まり0V点で終わる半サイクルの、後の0V点である180°からの相対角度を示している。即ち、例えば、図5はトリガ角が150°の場合であるが、図中では、180°からの相対角度である30°での表記としている。
 図5~9のシミュレーション結果では、三相交流電源の各線間電圧(V(L1,L2), V(L2,L3), V(L3,L1))と、三相用負荷の3つの負荷のそれぞれの両端電圧(V(U,V), V(V,W), V(W,U))と、線電流(I(Ru), I(Rv), I(Rw))と、三相用負荷の3つの負荷のそれぞれの負荷電流(I(Ruv), I(Rvw), I(Rwu))を示している。
Regarding the power regulator 1 of the present embodiment, a simulation was performed by a circuit simulator in the case of the configuration shown in FIG. 2 (three-phase six-arm phase control).
FIG. 4 is a diagram showing simulation conditions (when the trigger angle is 120 °), and FIGS. 5 to 9 are diagrams showing simulation results. Figure 5: Trigger angle 150 °, Figure 6: Trigger angle 120 °, Figure 7: Trigger angle 90 °, Figure 8: Trigger angle 60 °, Figure 9: Simulation when the trigger angle is 30 °, respectively. The result. The trigger angle in each figure relating to the simulation indicates a relative angle from 180 °, which is the later 0V point, in a half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point. That is, for example, FIG. 5 shows a case where the trigger angle is 150 °, but in the figure, it is expressed at 30 °, which is a relative angle from 180 °.
In the simulation results shown in FIGS. 5 to 9, the three-phase AC power supply line voltage (V (L1, L2), V (L2, L3), V (L3, L1)) and the three-phase load are shown. Three-phase with each voltage across (V (U, V), V (V, W), V (W, U)) and line current (I (Ru), I (Rv), I (Rw)) The load currents (I (Ruv), I (Rvw), I (Rwu)) of each of the three loads of the load are shown.
 図5~9を参照して、TR2pとTR2nは、三相交流電源用のトリガ角150°、120°、90°、60°、30°(図中の表記では、30°、60°、90°、120°、150°)のトリガ(第2のトリガ信号)であり、トリガTR2pは、電源の位相が正である場合にこれを導通させる方向であるサイリスタに対するトリガ、トリガTR2nは、電源の位相が負である場合にこれを導通させる方向であるサイリスタに対するトリガである。
 TR3pとTR3nは、三相交流電源用のトリガ角(TR2p、TR2n)から60°遅れたトリガ角のトリガ(第3のトリガ信号)である。
 図5~9から理解されるように、トリガTR2pと他の相のTR3n、トリガTR2nと他の相のTR3pが必ず同期されて出力されており、これによって適切な電力出力が行われている。
 また、図5~9から理解されるように、トリガ角の増大に伴って出力が増大し、トリガ角が30°(図9:図中の表記では150°)の際に、100%出力となることが確かめられている。
With reference to FIGS. 5-9, TR2p and TR2n have trigger angles of 150 °, 120 °, 90 °, 60 ° and 30 ° for a three-phase AC power supply (30 °, 60 ° and 90 in the notation in the figure). °, 120 °, 150 °) trigger (second trigger signal), the trigger TR2p is a trigger for the thyristor which is the direction to conduct this when the phase of the power supply is positive, and the trigger TR2n is the power supply. It is a trigger for the thyristor, which is the direction to conduct the phase when the phase is negative.
TR3p and TR3n are triggers (third trigger signals) whose trigger angles are delayed by 60 ° from the trigger angles (TR2p, TR2n) for the three-phase AC power supply.
As can be understood from FIGS. 5 to 9, the trigger TR2p and the TR3n of the other phase, and the trigger TR2n and the TR3p of the other phase are always output in synchronization, whereby an appropriate power output is performed.
Further, as can be understood from FIGS. 5 to 9, the output increases as the trigger angle increases, and when the trigger angle is 30 ° (FIG. 9: 150 ° in the notation in the figure), the output is 100%. It has been confirmed that it will be.
 図3は、電力調整器1の処理動作の概略を示すフローチャートである。
 ステップ301では、モードが単相制御モードであるか三相制御モードであるかを判別する。なお、モードの設定は、例えば装置に備えられる入力部からユーザが設定をすることで行われる。
 単相制御モードである場合には、ステップ302へと移行し、上述したように、従来の単相交流用の電力調整器と同様の処理によって、目標負荷率(0~100%)から、単相交流電源用のトリガ角(180°~0°)を算出し、電源の極性に合わせて、これを導通させる方向であるサイリスタ(131、132の何れか)を、単相交流電源用のトリガ角でトリガする(第1のトリガ信号を出力する)。
 電源供給の終了指示等があった場合には、処理を終了し(ステップ303:Yes→終了)、終了でない場合は、ステップ302の処理を継続して行う(ステップ303:No→ステップ302)。
FIG. 3 is a flowchart showing an outline of the processing operation of the power regulator 1.
In step 301, it is determined whether the mode is the single-phase control mode or the three-phase control mode. The mode is set by the user, for example, from the input unit provided in the device.
In the case of the single-phase control mode, the process proceeds to step 302, and as described above, the target load factor (0 to 100%) is simply changed by the same processing as that of the conventional power regulator for single-phase AC. The trigger angle (180 ° to 0 °) for the phase / AC power supply is calculated, and the thyristor (either 131 or 132), which is the direction to conduct this, is set to the trigger for the single-phase AC power supply according to the polarity of the power supply. Trigger at the corner (output the first trigger signal).
If there is an instruction to end the power supply, the process is terminated (step 303: Yes → end), and if not, the process of step 302 is continued (step 303: No → step 302).
 三相制御モードである場合には、ステップ304へと移行し、上述したように、“単相交流電源用のトリガ角”を比例的に180°~30°のトリガ角範囲に変換することで、“三相交流電源用のトリガ角”を算出し、電源の極性に合わせてこれを導通させる方向であるサイリスタ(131、132の何れか)を、当該三相交流電源用のトリガ角でトリガする(第2のトリガ信号を出力する)。また、同じサイリスタに対して、三相交流電源用のトリガ角から60°遅れた位相角でトリガする(第3のトリガ信号を出力する)。
 電源供給の終了指示等があった場合には、処理を終了し(ステップ305:Yes→終了)、終了でない場合は、ステップ304の処理を継続して行う(ステップ305:No→ステップ304)。
In the case of the three-phase control mode, the process proceeds to step 304, and as described above, the "trigger angle for a single-phase AC power supply" is proportionally converted into a trigger angle range of 180 ° to 30 °. , "Trigger angle for three-phase AC power supply" is calculated, and the thyristor (either 131 or 132), which is the direction to conduct this according to the polarity of the power supply, is triggered by the trigger angle for the three-phase AC power supply. (Output a second trigger signal). Further, the same thyristor is triggered at a phase angle 60 ° behind the trigger angle for the three-phase AC power supply (the third trigger signal is output).
If there is an instruction to end the power supply, the process is terminated (step 305: Yes → end), and if not, the process of step 304 is continued (step 305: No → step 304).
 以上のごとく、本実施形態の電力調整器1によれば、単相交流及び三相交流の何れに対しても利用することが可能である。1種類の電力調整器を単相・三相兼用の電力調整器として使用できるので、電力調整器の供給者にとっては、製品開発を1品種に絞って開発すればよいため、製品開発の負担を軽減できる。また、生産ラインの一本化ができるメリットもある。また、使用者(ユーザ)にとっては、メンテ用に用意する電力調整器の種類を1種類に出来るため、メンテナンスコストを低減できると言うメリットが期待できる。
 また、従来の単相交流用の電力調整器に対してハード的な変更をすることなく、ソフト的な変更のみで適用することもできるため、低コストにて実現可能である。
As described above, according to the power regulator 1 of the present embodiment, it can be used for both single-phase alternating current and three-phase alternating current. Since one type of power regulator can be used as a single-phase / three-phase power regulator, the supplier of the power regulator can focus on product development to one type, which imposes a burden on product development. Can be reduced. It also has the advantage of being able to unify the production line. Further, for the user (user), since the type of the power regulator prepared for maintenance can be one type, the merit that the maintenance cost can be reduced can be expected.
In addition, it can be applied only by software changes without making hardware changes to the conventional single-phase AC power regulator, so it can be realized at low cost.
 本実施形態では、三相交流電源用のトリガ角のトリガ(第2のトリガ信号)と、これから60°遅れた位相角のトリガ(第3のトリガ信号)を、それぞれ別のトリガ信号としているが、第2トリガ信号と第3トリガ信号を、連続した1つのトリガ信号としてもよい。第3トリガ信号の終期、即ち、第2のトリガ信号からの遅れの位相角は、180°未満である必要がある。
 なお、図6~9からも理解されるように、トリガ角が120°を下回った後は(図中の表記では、60°を超えた後は)、第3のトリガ信号(TR3p、TR3n)は必要ない(該当のサイリスタがオン状態のままであるため)。よって、トリガ角が120°を下回った後は、第3のトリガ信号(TR3p、TR3n)を出力しないようにするものであってもよい。
In the present embodiment, the trigger of the trigger angle for the three-phase AC power supply (second trigger signal) and the trigger of the phase angle 60 ° behind this (third trigger signal) are different trigger signals. , The second trigger signal and the third trigger signal may be used as one continuous trigger signal. The end of the third trigger signal, i.e., the phase angle of the lag from the second trigger signal, needs to be less than 180 °.
As can be understood from FIGS. 6 to 9, after the trigger angle falls below 120 ° (in the notation in the figure, after exceeding 60 °), the third trigger signal (TR3p, TR3n) Is not required (because the thyristor remains on). Therefore, after the trigger angle is less than 120 °, the third trigger signal (TR3p, TR3n) may not be output.
 本実施形態では、三相交流電源がY(スター)結線、負荷がΔ結線であるものを例としているが、電源側、負荷側の何れについても、Y(スター)結線かΔ結線であるかの相違に関係なく、本発明を適用することができる。 In this embodiment, the three-phase AC power supply has a Y (star) connection and the load has a Δ connection as an example. However, whether the power supply side or the load side has a Y (star) connection or a Δ connection. The present invention can be applied regardless of the difference between the two.
 なお、トリガ角の表現において、交流電源の線間電圧の0V点から始まり0V点で終わる半サイクルの、始まりの0V点を起点(0°)として、後の0V点を終点(180°)としているが、別の表現を用いても構わない。例えば、図5~9で用いたように、線間電圧の正側の半サイクルの波形と負側の半サイクルの波形のそれぞれの後ろ側のゼロクロス点を基準(0°)とし、そこから遡るようにしてトリガ角が増加するものであってもよく(この場合、三相交流電源用のトリガ角は、0°~150°の範囲となる)、このような表現の相違は、本発明の概念としての相違にはならない。 In the expression of the trigger angle, the starting point (0 °) of the half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point is set as the starting point (0 °), and the subsequent 0V point is set as the ending point (180 °). However, you may use another expression. For example, as used in FIGS. 5 to 9, the zero crossing point on the back side of each of the positive half-cycle waveform and the negative half-cycle waveform of the line voltage is used as a reference (0 °) and traced back from there. The trigger angle may be increased in this way (in this case, the trigger angle for the three-phase AC power supply is in the range of 0 ° to 150 °), and such a difference in expression is the difference in the present invention. It does not make a difference as a concept.
 実施形態では、電力調整器として、負荷がヒーターで、外部装置である温度調節器から入力される目標負荷率に基づいて、ヒーターに対する電力供給の制御を行うものを例としたが、本発明をこれに限るものではなく、任意の負荷に対して電力供給を行う電力調整器に適用することができる。 In the embodiment, as an example, as the power regulator, the load is a heater, and the power supply to the heater is controlled based on the target load factor input from the temperature controller which is an external device. The present invention is not limited to this, and can be applied to a power regulator that supplies power to an arbitrary load.
 1...電力調整器(単相/三相共用電力調整器)
  11...制御部(トリガ角算出部、トリガ制御部)
  12...電源波形取得部(電源位相取得部)
  13...交流電流制御回路
   131、132...電流制御素子
 2...負荷
 2´...三相用負荷
 3...交流電源
 3´...三相交流電源
1. 1. .. .. Power regulator (single-phase / three-phase shared power regulator)
11. .. .. Control unit (trigger angle calculation unit, trigger control unit)
12. .. .. Power waveform acquisition unit (power supply phase acquisition unit)
13. .. .. AC current control circuit 131, 132. .. .. Current control element 2. .. .. Load 2'. .. .. Three-phase load 3. .. .. AC power supply 3'. .. .. Three-phase AC power supply

Claims (3)

  1.  交流電源からの負荷に対する電力供給の制御を位相制御によって行う電力調整器であって、
     前記交流電源の線間電圧の位相情報を取得する電源位相取得部と、
     単方向性電流制御素子が逆並列に接続された交流電流制御回路と、
     前記交流電源の線間電圧の0V点から始まり0V点で終わる半サイクルの、始まりの0V点を起点(0°)として、後の0V点を終点(180°)として、トリガ角を定義した際に、単相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角0°の間の目標負荷率に対応する位相角を算出し、三相制御モードにおいて、0%から100%の目標負荷率に対応するトリガ角として、0%の目標負荷率に対応するトリガ角180°と100%の目標負荷率に対応するトリガ角30°の間の目標負荷率に対応する位相角を算出するトリガ角算出部と、
     前記単相制御モードにおいて、前記位相情報と前記単相交流電源用のトリガ角に基づいて、前記位相情報の極性に適合した前記単方向性電流制御素子に対する第1トリガ信号を出力し、前記三相制御モードにおいて、前記位相情報の極性に適合した前記単方向性電流制御素子に対して、前記位相情報と前記三相交流電源用のトリガ角に基づく第2トリガ信号と、当該第2トリガ信号から位相角60°遅れた時点の第3トリガ信号と、を出力する、トリガ制御部と、
     を備えることにより、単相交流電源用の位相制御と、三相交流電源用の位相制御を切り替えて行うことが可能であることを特徴とする単相/三相共用電力調整器。
    It is a power regulator that controls the power supply to the load from the AC power supply by phase control.
    A power supply phase acquisition unit that acquires phase information of the line voltage of the AC power supply, and
    An AC current control circuit in which unidirectional current control elements are connected in antiparallel,
    When the trigger angle is defined with the starting 0V point as the starting point (0 °) and the subsequent 0V point as the ending point (180 °) of the half cycle starting from the 0V point of the line voltage of the AC power supply and ending at the 0V point. In addition, in the single-phase control mode, the trigger angle corresponding to the target load factor of 0% to 100% is 180 ° corresponding to the target load factor of 0% and the trigger angle 0 corresponding to the target load factor of 100%. The phase angle corresponding to the target load factor between ° is calculated, and in the three-phase control mode, the trigger angle corresponding to the target load factor of 0% is 180 as the trigger angle corresponding to the target load factor of 0% to 100%. Trigger angle calculation unit that calculates the phase angle corresponding to the target load factor between ° and the trigger angle 30 ° corresponding to the target load factor of 100%,
    In the single-phase control mode, a first trigger signal for the unidirectional current control element matching the polarity of the phase information is output based on the phase information and the trigger angle for the single-phase AC power supply, and the third In the phase control mode, for the unidirectional current control element that matches the polarity of the phase information, the second trigger signal based on the phase information and the trigger angle for the three-phase AC power supply, and the second trigger signal. The trigger control unit that outputs the third trigger signal at the time when the phase angle is delayed by 60 ° from the above.
    A single-phase / three-phase shared power regulator characterized in that it is possible to switch between phase control for a single-phase AC power supply and phase control for a three-phase AC power supply.
  2.  前記第2トリガ信号と、前記第3トリガ信号が、連続した1つのトリガ信号であり、その信号の終期が、前記第2トリガ信号の出力時点から位相角60°遅れた時点以降、位相角180°未満の期間にあることを特徴とする請求項1に記載の単相/三相共用電力調整器。 The second trigger signal and the third trigger signal are one continuous trigger signal, and the phase angle is 180 after the end of the signal is delayed by a phase angle of 60 ° from the output time of the second trigger signal. The single-phase / three-phase shared power regulator according to claim 1, wherein the period is less than °.
  3.  三相の交流電源と三相用負荷における各相の電源供給ラインのそれぞれに、請求項1又は2に記載の単相/三相共用電力調整器を各1台、合計で3台接続し、当該3台の各電力調整器を前記三相制御モードで動作させることを特徴とする三相6アーム位相制御方法。 Connect one single-phase / three-phase shared power regulator according to claim 1 or 2 to each of the three-phase AC power supply and the power supply line of each phase in the three-phase load, for a total of three units. A three-phase six-arm phase control method comprising operating each of the three power regulators in the three-phase control mode.
PCT/JP2020/036841 2020-09-29 2020-09-29 Single-phase/three-phase shared power regulator and three-phase six arm phase control method WO2022070241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022553248A JP7332847B2 (en) 2020-09-29 2020-09-29 Single-phase/three-phase common power regulator and three-phase six-arm phase control method
PCT/JP2020/036841 WO2022070241A1 (en) 2020-09-29 2020-09-29 Single-phase/three-phase shared power regulator and three-phase six arm phase control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036841 WO2022070241A1 (en) 2020-09-29 2020-09-29 Single-phase/three-phase shared power regulator and three-phase six arm phase control method

Publications (1)

Publication Number Publication Date
WO2022070241A1 true WO2022070241A1 (en) 2022-04-07

Family

ID=80951496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036841 WO2022070241A1 (en) 2020-09-29 2020-09-29 Single-phase/three-phase shared power regulator and three-phase six arm phase control method

Country Status (2)

Country Link
JP (1) JP7332847B2 (en)
WO (1) WO2022070241A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755767A (en) * 1980-09-17 1982-04-02 Toshiba Corp Regulator for power
JPH08223912A (en) * 1995-02-17 1996-08-30 Omron Corp Method and apparatus for digital phase control
JPH08228468A (en) * 1995-02-20 1996-09-03 Omron Corp Three-phase electric power adjuster
JPH08317690A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755767A (en) * 1980-09-17 1982-04-02 Toshiba Corp Regulator for power
JPH08223912A (en) * 1995-02-17 1996-08-30 Omron Corp Method and apparatus for digital phase control
JPH08228468A (en) * 1995-02-20 1996-09-03 Omron Corp Three-phase electric power adjuster
JPH08317690A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
JP7332847B2 (en) 2023-08-24
JPWO2022070241A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
KR960000802B1 (en) Parallel operation system of ac output inverters
JP2002142464A (en) Method of connecting auxiliary power source to power grid and synchronizing it
JPH01303060A (en) Parallel operation equipment for ac output converter
JPH04248368A (en) Method and device for symmetrizing three phase system
JP2015231264A (en) Inverter power generation system and inverter power generator
WO2022070241A1 (en) Single-phase/three-phase shared power regulator and three-phase six arm phase control method
US9906162B2 (en) Method to control three-phase inverter voltage
WO2023195078A1 (en) Power adjustment device and power adjustment control program
JP2887013B2 (en) Parallel operation control device for three-phase AC output converter
US20010036094A1 (en) Power factor corrector
WO2015125540A1 (en) Inverter control method and inverter
JPH0515070A (en) Parallel operation control device
JPH04248369A (en) Method and device for symmetrizing three phase system
CN107222114B (en) A kind of unified control method of rectifier and inverter
RU2512886C1 (en) Device to compensate high harmonics and correct grid power ratio
WO2019026141A1 (en) Power conversion device
JPH0640742B2 (en) Converter device
RU161102U1 (en) THREE PHASE ACTIVE VOLTAGE RECTIFIER
JPS6338945B2 (en)
WO2023243034A1 (en) Power adjuster and program
CA3224209A1 (en) Common dc bus and common ac bus power electronics systems and methods
JP2916092B2 (en) Control device for voltage-source converter that obtains DC from polyphase AC
SU655021A1 (en) Reactive power control arrangement
JPH03145970A (en) Inverter controller
JP3419177B2 (en) DC voltage fluctuation compensation circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553248

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956171

Country of ref document: EP

Kind code of ref document: A1