JP2010273481A - Power quality evaluation system - Google Patents

Power quality evaluation system Download PDF

Info

Publication number
JP2010273481A
JP2010273481A JP2009124417A JP2009124417A JP2010273481A JP 2010273481 A JP2010273481 A JP 2010273481A JP 2009124417 A JP2009124417 A JP 2009124417A JP 2009124417 A JP2009124417 A JP 2009124417A JP 2010273481 A JP2010273481 A JP 2010273481A
Authority
JP
Japan
Prior art keywords
harmonic
failure
component
abnormality
failure probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124417A
Other languages
Japanese (ja)
Other versions
JP5395509B2 (en
Inventor
Yasuhiro Taguchi
保博 田口
Yoshihiro Takei
義博 竹井
Takashi Miyabe
崇 宮部
Shinya Kazusawa
真也 數澤
Minoru Iino
穣 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009124417A priority Critical patent/JP5395509B2/en
Publication of JP2010273481A publication Critical patent/JP2010273481A/en
Application granted granted Critical
Publication of JP5395509B2 publication Critical patent/JP5395509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate a device failure that degrades power quality and an abnormal state as a sign thereof, from a failure probability of each component constituting the device. <P>SOLUTION: The power quality evaluation system includes: failure estimation devices 8a-8d which calculate a matching degree of harmonic component between an actually measured harmonic component calculation result obtained by waveform analysis of the electrical quantity acquired from each component of a device connected to a power grid, and a plurality of harmonic failure harmonic component comprising a harmonic failure pattern which is estimated as a failure of each component stored in advance as well as a harmonic failure representing an abnormal state as a sign thereof, and based on the matching degree of harmonic component, specifies a failure of each component and a harmonic failure pattern which is a sign of the failure and outputs it as a harmonic failure estimation result. The system also includes: a plurality of failure probability conversion process parts 10A which convert the harmonic failure estimation results output from the failure estimation devices to failure probabilities, and an entire failure probability estimation process part for estimating the entire failure estimation result of the device based on the converted failure probability of each component. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力系統に生じる高調波、電圧変動、電圧不平衡、瞬時電圧低下等による電力品質の悪化を評価する電力品質評価システムに関する。   The present invention relates to a power quality evaluation system that evaluates deterioration of power quality due to harmonics, voltage fluctuation, voltage imbalance, instantaneous voltage drop, and the like generated in a power system.

従来、電力系統に生じる高調波、電圧変動、電圧不平衡、瞬時電圧低下等の電力品質の程度を測定または解析する電力品質測定装置や電力品質解析装置は実用化されている。   2. Description of the Related Art Conventionally, a power quality measuring device and a power quality analyzing device that measure or analyze the degree of power quality such as harmonics, voltage fluctuation, voltage imbalance, and instantaneous voltage drop generated in a power system have been put into practical use.

その1つの技術は、予め模擬高圧配電線を用いて故障要因別波形のサンプルを収集し、各々のサンプル波形の所定次数までの高調波成分を解析する。そして、故障要因別に高調波含有率の次数毎の平均値の総和を求めた後、故障要因別の総和データの最大値及び最小値を算出して記憶する。実際の高圧配電線の地絡故障時、その零相に流れる電流波形が故障要因別の最大値と最小値の間に入るか否かに基づいて高圧配電線の地絡故障の原因を推定する(特許文献1)。   One technique is to collect samples of failure factor-specific waveforms in advance using a simulated high-voltage distribution line, and analyze harmonic components up to a predetermined order of each sample waveform. And after calculating | requiring the sum total of the average value for every order of a harmonic content rate according to a failure factor, the maximum value and minimum value of the sum total data according to a failure factor are calculated and memorize | stored. Estimate the cause of the ground fault of the high-voltage distribution line based on whether or not the current waveform flowing in the zero phase of the actual high-voltage distribution line is in the range between the maximum and minimum values for each failure factor (Patent Document 1).

他のもう1つの技術は、需要家の電源システムにおける基本波有効電力及び基本波無効電力の過度状態前後の変動有効分及び変動無効分を検出し、その変動分の大きさに基づいて需要家の負荷、力率改善コンデンサ、変圧器等の投入・停止といった運用状態を特定する。また、この技術は、電源システムの投入時の電流を周波数分析し、当該電源システムを構成する各装置毎に高調波成分の波形パターンが異なること、時間的に高調波成分比率が変化する変化パターンとなることを前提とし、需要家の電源システムの運用状態や障害発生装置を特定する(特許文献2)。   Another technique detects fluctuation active and fluctuation reactive parts before and after the transient state of the fundamental wave active power and fundamental wave reactive power in the consumer's power supply system, and the consumer is based on the magnitude of the fluctuation. Operating conditions such as turning on / off the load, power factor improving capacitor, transformer, etc. This technology also performs frequency analysis of the current when the power supply system is turned on, and the waveform pattern of the harmonic component differs for each device constituting the power supply system, and the change pattern in which the harmonic component ratio changes with time. Assuming that the situation is satisfied, the operating state of the power supply system of the consumer and the failure generating device are specified (Patent Document 2).

特開平06−287451号公報Japanese Patent Laid-Open No. 06-287451 特許第31052355号Japanese Patent No. 31052355

しかしながら、前者の技術は高圧配電線の地絡故障の原因を特定するだけであり、後者の技術は主に需要家の電源システムの投入・停止の運用状態を特定するものであって、高調波の異常状態から電力系統に接続される装置の故障やその前兆となる異常を推定する電力品質評価システムではない。   However, the former technology only identifies the cause of the ground fault of the high-voltage distribution line, and the latter technology mainly identifies the operating state of the customer's power supply system on / off, It is not a power quality evaluation system that estimates a failure of a device connected to the power system from the abnormal state or an abnormality that is a precursor.

本発明は上記事情に鑑みてなされたもので、電力系統に接続される装置を構成する各部品に供給される電圧、電流等の電気量を取り込み、個々の部品の故障確率等を考慮しながら、前記装置の故障やその前兆となる異常を推定する電力品質評価システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, taking in electric quantities such as voltage and current supplied to each component constituting a device connected to the power system, while considering the failure probability of each component. An object of the present invention is to provide a power quality evaluation system for estimating a failure of the apparatus or an abnormality that is a precursor thereof.

上記課題を解決するために、本発明に係る電力品質評価システムは、電力系統に接続される各種の装置、例えば無停電電源装置、発電機、負荷設備などの個別装置を構成する主要部品から取り出す電圧、電流等の電気量をそれぞれ波形分析して得られる実測高調波成分計算結果と予め記憶される前記各主要部品の故障やその前兆となる異常を示す高調波異常と推定される高調波異常パターンからなる複数の高調波異常高調波成分との高調波成分一致度を計算し、各高調波成分一致度から前記各主要部品の故障や前兆となる異常を示す高調波異常パターンを特定し、高調波異常推定結果として出力する前記主要部品毎の故障推定装置と、各故障推定装置から出力される高調波異常推定結果をそれぞれ故障確率に変換する複数の故障確率変換処理手段と、各故障確率変換処理手段によって得られる各主要部品の故障確率から前記装置の故障やその前兆となる異常を推定する全体故障確率推定処理手段とを備えた構成である。   In order to solve the above-mentioned problems, the power quality evaluation system according to the present invention is extracted from various components connected to the power system, for example, main components constituting individual devices such as an uninterruptible power supply, a generator, and load equipment. Harmonic abnormalities that are estimated to be harmonic abnormalities that indicate the failure of each major part that is stored in advance and the abnormalities that are precursors to it, as well as the actual harmonic component calculation results obtained by analyzing waveforms of electrical quantities such as voltage and current. Calculate the harmonic component coincidence with a plurality of harmonic abnormal harmonic components consisting of patterns, and identify the harmonic anomaly pattern that indicates the malfunction and precursor abnormality of each major component from each harmonic component coincidence, A failure estimation device for each major part that is output as a harmonic abnormality estimation result, and a plurality of failure probability conversion processes that convert the harmonic abnormality estimation results output from each failure estimation device into failure probabilities, respectively. Stage and a configuration in which a total failure probability estimation processing unit for estimating the abnormality as a failure or its precursors of the device from the failure probability of each major part obtained by each failure probability conversion processing means.

なお、前記主要部品毎の故障推定装置としては、電力系統に接続される装置を構成する複数の主要部品に供給される電圧、電流等の電気量をそれぞれ波形分析し、高調波成分を計算する高調波成分計算手段と、予め前記各主要部品の故障やその前兆となる異常を示す高調波異常と推定される複数の高調波異常高調波成分を記憶する高調波異常データベースと、前記高調波成分計算手段で得られる実測高調波成分計算結果と前記高調波異常データベースに記憶される複数の高調波異常高調波成分との高調波成分一致度を計算する高調波成分一致度計算手段と、この高調波成分一致度計算手段で算出された各高調波成分一致度から前記各主要部品の故障やその前兆となる異常を示す高調波異常パターンを特定し、高調波異常推定結果として出力する高調波異常推定手段とを有する構成である。   In addition, as the failure estimation apparatus for each main part, the amount of electricity such as voltage and current supplied to a plurality of main parts constituting the apparatus connected to the power system is analyzed, and the harmonic component is calculated. Harmonic component calculation means, a harmonic abnormality database that stores a plurality of harmonic abnormal harmonic components that are estimated in advance as a harmonic abnormality indicating a failure of each main part or an abnormality that is a precursor thereof, and the harmonic component Harmonic component coincidence calculation means for calculating the harmonic component coincidence between the actual harmonic component calculation result obtained by the calculation means and a plurality of harmonic abnormal harmonic components stored in the harmonic abnormality database; From the harmonic component coincidence calculated by the wave component coincidence calculation means, a harmonic abnormality pattern indicating a failure of each major component or an abnormality that is a precursor thereof is identified and output as a harmonic abnormality estimation result. A configuration and a harmonic abnormality estimation means.

また、本発明に係る電力品質評価システムは、前記装置を構成する複数の主要部品毎の高調波成分一致度の高い調波異常高調波成分をもつ高調波異常パターンについて、高調波成分一致度が高い高調波異常パターンの順番に表示する構成である。   Further, the power quality evaluation system according to the present invention has a harmonic component coincidence degree with respect to a harmonic abnormality pattern having a harmonic abnormality harmonic component having a high harmonic component coincidence degree for each of a plurality of main components constituting the device. It is the structure which displays in order of a high harmonic abnormality pattern.

さらに、本発明に係る電力品質評価システムは、前記高調波異常推定手段に代えて、前記高調波成分一致度計算手段から高調波異常パターン毎の高調波成分一致度を表示装置に表示するとともに、所定の時間毎に繰り返し前記高調波成分一致度を計算して前記表示装置に前記高調波異常パターンと高調波成分一致度との時系列的な変化を表示する結果表示制御手段を設けた構成である。   Furthermore, the power quality evaluation system according to the present invention displays the harmonic component coincidence for each harmonic abnormality pattern from the harmonic component coincidence calculating unit on the display device instead of the harmonic abnormality estimating unit, and In a configuration provided with a result display control means for repeatedly calculating the harmonic component coincidence every predetermined time and displaying a time-series change between the harmonic abnormality pattern and the harmonic component coincidence on the display device. is there.

本発明によれば、電力系統に接続される装置を構成する各部品に供給される電圧、電流等の電気量を取り込んで波形分析により得られる高調波成分から各部品の故障確率及びこれら故障確率から装置の故障やその前兆となる異常を推定できる電力品質評価システムを提供できる。   According to the present invention, the failure probability of each component and the failure probability of each component from the harmonic component obtained by waveform analysis by taking in electric quantities such as voltage and current supplied to each component constituting the apparatus connected to the power system. Therefore, it is possible to provide a power quality evaluation system that can estimate a failure of a device and an abnormality that is a precursor thereof.

本発明に係る電力品質評価システムを適用した需要家の電源システムの系統概念図。The system conceptual diagram of the power supply system of the consumer which applied the electric power quality evaluation system which concerns on this invention. 本発明に係る電力品質評価システムの第1の実施形態を示す概略構成図。The schematic block diagram which shows 1st Embodiment of the electric power quality evaluation system which concerns on this invention. 装置を構成する各主要部品と電気量との関係を説明する図。The figure explaining the relationship between each principal component which comprises an apparatus, and the amount of electricity. 図2の装置異常推定装置の一具体例を示す構成図。The block diagram which shows one specific example of the apparatus abnormality estimation apparatus of FIG. 図2に示す装置異常推定装置の作用を説明するための説明図。Explanatory drawing for demonstrating the effect | action of the apparatus abnormality estimation apparatus shown in FIG. 図4に示す全体故障確率推定処理部の作用を説明するための説明図。Explanatory drawing for demonstrating the effect | action of the whole failure probability estimation process part shown in FIG. 図2に示す故障推定装置の一具体例を示す構成図。The block diagram which shows one specific example of the failure estimation apparatus shown in FIG. 電気量の一例である例えば線間2相分の電圧波形例を説明する図。The figure explaining the voltage waveform example for two phases between lines which is an example of the amount of electricity. 高調波成分計算手段の一具体例であるFFT処理部を用いた構成図。The block diagram which used the FFT process part which is a specific example of a harmonic component calculation means. 高調波成分計算手段で計算された実測高調波成分結果の一例を示す図。The figure which shows an example of the measurement harmonic component result calculated by the harmonic component calculation means. 高調波異常データベースに記憶される高調波異常と推定される複数次数からなる複数の高調波異常パターンの例を示す説明図。Explanatory drawing which shows the example of the several harmonic abnormality pattern which consists of multiple orders estimated with the harmonic abnormality memorize | stored in a harmonic abnormality database. 高調波成分一致度計算手段の機能ブロック及び処理内容を説明する図。The figure explaining the functional block and processing content of a harmonic component coincidence calculation means. 高調波成分一致度計算手段による高調波成分の規格化を説明する図。The figure explaining normalization of the harmonic component by a harmonic component coincidence calculation means. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一致している例を説明する図。The figure explaining the example in which the normalized measurement harmonic component result and the normalized harmonic generator harmonic component correspond. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが全く一致していない例を説明する図。The figure explaining the example in which the normalized actual harmonic component result and the normalized harmonic generator harmonic component are not in agreement at all. 規格化された実測高調波成分結果と規格化された高調波発生機器高調波成分とが一部一致している例を説明する図。The figure explaining the example in which the normalized actual harmonic component result and the normalized harmonic generator harmonic component partially correspond. 規格化実測高調波成分計算結果と規格化高調波異常高調波成分との一致度の程度と規格化差合計値との関係を表わす図。The figure showing the relationship between the degree of coincidence of the standardization measurement harmonic component calculation result and the standardization harmonic abnormal harmonic component, and the standardization difference total value. 高調波成分一致度と規格化差分合計値との関係を別の観点から表わした図。The figure showing the relationship between a harmonic component coincidence degree and the standardization difference total value from another viewpoint. 図7に示す高調波異常推定手段の一具体例を示す構成図。The block diagram which shows a specific example of the harmonic abnormality estimation means shown in FIG. 高調波異常高調波成分と高調波成分一致度との関係を説明する図。The figure explaining the relationship between a harmonic abnormal harmonic component and a harmonic component coincidence degree. 高調波成分一致度と高調波異常パターンとの表示例を示す図。The figure which shows the example of a display of a harmonic component coincidence degree and a harmonic abnormal pattern. 本発明に係る電力品質評価システムの第2の実施形態を説明する故障推定装置の他の構成例図。The other structural example figure of the failure estimation apparatus explaining 2nd Embodiment of the electric power quality evaluation system which concerns on this invention. 一定時間毎に取得した複数の高調波異常パターン毎の高調波成分一致度の時系列的な変化の表示例を示す図。The figure which shows the example of a display of the time-sequential change of the harmonic component coincidence for every several harmonic abnormal pattern acquired for every fixed time. 本発明に係る電力品質評価システムの第3の実施形態を示す概略構成図。The schematic block diagram which shows 3rd Embodiment of the electric power quality evaluation system which concerns on this invention. 装置を構成する主要部品の故障確率と装置の故障確率の一表示例を示す図。The figure which shows the example of 1 display of the failure probability of the main components which comprise an apparatus, and the failure probability of an apparatus. 装置を構成する主要部品の故障確率と当該装置の故障確率を、予め定められた時間間隔をもって時系列的な変化として表示した例を示す図。The figure which shows the example which displayed the failure probability of the main components which comprise an apparatus, and the failure probability of the said apparatus as a time-sequential change with a predetermined time interval. 装置を構成する主要部品の故障確率と当該装置の故障確率が予め定められた規定値より大きいときにアラーム情報を出力する例を説明する図。The figure explaining the example which outputs alarm information, when the failure probability of the main components which comprise an apparatus, and the failure probability of the said apparatus are larger than the predetermined value defined beforehand. 装置を構成する主要部品の故障確率と当該装置の故障確率から将来の故障確率を予報する例を説明する図。The figure explaining the example which forecasts a future failure probability from the failure probability of the main components which comprise an apparatus, and the failure probability of the said apparatus.

以下、本発明の実施の形態について図面を参照して説明するに先立ち、本願発明を実現するに至った経緯を説明する。   Prior to the description of embodiments of the present invention with reference to the drawings, the background to the realization of the present invention will be described below.

上位の商用電力系統に接続される需要家の電力系統母線には電源システムを構成する各種の装置(例えば無停電電源装置(UPS)、発電機、負荷設備など)が接続されている。このような電源システムの電力品質を評価する場合、ある装置が正常であっても、別の装置が故障やその前兆となる異常を有する場合、電力品質が悪化し、電源システム全体から見たとき、将来的には運用停止といった大きなダメージを蒙る可能性がある。   Various devices (for example, an uninterruptible power supply (UPS), a generator, a load facility, etc.) constituting a power supply system are connected to a power system bus of a consumer connected to a higher-level commercial power system. When evaluating the power quality of such a power supply system, even if one device is normal, if another device has a failure or an anomaly that is a precursor, the power quality deteriorates and is viewed from the power supply system as a whole In the future, there is a possibility of suffering major damage such as operation suspension.

さらに、装置が故障やその前兆となる異常を有する場合、その装置を構成する主要部品の故障ないしその前兆異常となっている例が多い。そのため、装置を構成する主要部品の故障、異常の可能性を把握することが必要であり、ひいては装置の故障やその前兆となる異常をより正確に推定することが可能であると考える。   Furthermore, when a device has a failure or an abnormality that is a precursor thereof, there are many examples in which a major component constituting the device has a failure or a precursor abnormality. For this reason, it is necessary to grasp the possibility of failure or abnormality of the main components constituting the apparatus, and as a result, it is possible to more accurately estimate the failure of the apparatus or the abnormality that is a precursor.

そこで、本発明者等は以上の状況を踏まえ、電力品質を適切に評価するシステムを実現するものである。   Therefore, the present inventors realize a system for appropriately evaluating the power quality based on the above situation.

(第1の実施の形態)
図1は本発明に係る電力品質評価システムを電力系統に適用した一例を示す系統概念図である。
上位電力系統から供給される電力を受電する母線1には、需要家に応じて異なる各種の装置,例えば無停電電源装置(以下、UPSと呼ぶ)2a、発電機2b、負荷設備2cその他多くの装置が接続されている。
(First embodiment)
FIG. 1 is a system conceptual diagram showing an example in which the power quality evaluation system according to the present invention is applied to a power system.
The bus 1 that receives power supplied from the upper power system includes various devices that vary depending on the customer, for example, an uninterruptible power supply (hereinafter referred to as UPS) 2a, a generator 2b, a load facility 2c, and many others. The device is connected.

ところで、UPS2aを例に挙げると、例えばフアン,コンデンサ,D/Dコンバータ,基板,電池等の主要部品11a〜11dで構成され、これら何れか1つの主要部品11a〜11dに故障ないしその前兆となる異常が生じている場合、電力品質を悪化させる原因となる。   By way of example, UPS 2a is composed of main parts 11a to 11d such as a fan, a capacitor, a D / D converter, a substrate, and a battery, and any one of these main parts 11a to 11d is broken or a precursor. If an abnormality has occurred, it will cause the power quality to deteriorate.

そこで、主要部品11a〜11dにそれぞれ測定装置3a,3b,3c,3dを接続し、これら主要部品11a〜11dに供給される電圧及び電流を含む電気量4a,4b,4c,4dを測定し、伝送系5a,5b,5c,5dを通じて電力品質評価システム6に伝送する。電力品質評価システム6は、電圧及び電流に重畳される高調波成分を計算し、この計算された実測高調波成分計算結果と予め記憶される高調波異常高調波成分とに基づいて装置2aの故障やその前兆となる異常を推定する。   Therefore, the measuring devices 3a, 3b, 3c, and 3d are connected to the main parts 11a to 11d, respectively, and the electric quantities 4a, 4b, 4c, and 4d including the voltage and current supplied to the main parts 11a to 11d are measured, The data is transmitted to the power quality evaluation system 6 through the transmission systems 5a, 5b, 5c and 5d. The power quality evaluation system 6 calculates the harmonic component superimposed on the voltage and current, and based on the calculated actual harmonic component calculation result and the harmonic abnormal harmonic component stored in advance, the failure of the device 2a And anomalies that are precursors.

なお、各主要部品11a〜11dに個別に測定装置3a,3b,3c,3dを接続したが、例えば1つの測定装置を各主要部品11a〜11dに選択的に接続し、所要とする電気量を取得する構成であってもよい。   In addition, although measuring device 3a, 3b, 3c, 3d was connected to each main component 11a-11d separately, for example, one measuring device is selectively connected to each main component 11a-11d, and the required electric quantity is obtained. The structure which acquires may be sufficient.

図2は本発明に係る電力品質評価システム6の第1の実施形態を示す概略構成図である。なお、図2ないし図4は請求項1に対応する。
電力品質評価システム6は、測定装置3a,3b,3c,3dから伝送系5a,5b,5c,5dを通じて送られてくる電気量4a,4b,4c,4dを解析し、高調波異常推定結果7a,7b,7c,7dを取り出す故障推定装置8a,8b,8c,8dと、これら高調波異常推定結果7a,7b,7c,7dから装置異常推定値9を出力する装置異常推定装置10とで構成される。
FIG. 2 is a schematic configuration diagram showing the first embodiment of the power quality evaluation system 6 according to the present invention. 2 to 4 correspond to the first aspect.
The power quality evaluation system 6 analyzes the electric quantities 4a, 4b, 4c, 4d sent from the measuring devices 3a, 3b, 3c, 3d through the transmission systems 5a, 5b, 5c, 5d, and the harmonic abnormality estimation result 7a. , 7b, 7c, 7d, and a failure estimation device 8a, 8b, 8c, 8d, and a device abnormality estimation device 10 that outputs a device abnormality estimation value 9 from these harmonic abnormality estimation results 7a, 7b, 7c, 7d. Is done.

ここで、装置2(例えばUPS2a)が図3に示すように例えば主要部品11a,11b,11c,11dで構成されている場合、これら主要部品11a,11b,11c,11dの入・出力に現れる電気量4a,4b,4c,4dを、それぞれ対応する故障推定装置8a,8b,8c,8dで取り込んだ後、それぞれ電気量4a,4b,4c,4dを波形分析して得られる高調波成分から高調波異常推定結果7a,7b,7c,7dを取り出し、装置異常推定装置10に渡す。   Here, when the apparatus 2 (for example, UPS 2a) is composed of, for example, main parts 11a, 11b, 11c, and 11d as shown in FIG. 3, the electricity appearing at the input / output of these main parts 11a, 11b, 11c, and 11d. After the quantities 4a, 4b, 4c, and 4d are captured by the corresponding failure estimation devices 8a, 8b, 8c, and 8d, the electrical quantities 4a, 4b, 4c, and 4d are respectively analyzed from the harmonic components obtained by waveform analysis. The wave abnormality estimation results 7a, 7b, 7c, and 7d are taken out and passed to the apparatus abnormality estimation apparatus 10.

装置異常推定装置10は、高調波異常推定結果7a,7b,7c,7dから主要部品11a,11b,11c,11dの故障確率に変換し、これら主要部品11a,11b,11c,11dの故障確率から装置2全体の故障確率となる装置異常推定値9を出力する。   The apparatus abnormality estimation device 10 converts the harmonic abnormality estimation results 7a, 7b, 7c, and 7d into failure probabilities of the main parts 11a, 11b, 11c, and 11d, and from the failure probabilities of these main parts 11a, 11b, 11c, and 11d. An apparatus abnormality estimated value 9 that is the failure probability of the entire apparatus 2 is output.

各故障推定装置8a,8b,8c,8dは、具体的にはそれぞれ後記する図7に示すように構成される。   Each failure estimation apparatus 8a, 8b, 8c, 8d is specifically configured as shown in FIG.

故障推定装置8aは、装置2を構成する主要部品11aに対応する測定装置3aから当該主要部品11aの入力電圧、入力電流、出力電圧、出力電流等の電気量4aを取り込み、主要部品11aの故障やその前兆となる異常を推定し、高調波異常推定結果7aを出力する。同様に、故障推定装置8bは、装置2を構成する主要部品11bに対応する測定装置3bから当該主要部品11bの入力電圧、入力電流、出力電圧、出力電流等の電気量4bを取り込み、主要部品11bの故障やその前兆となる異常を推定し、高調波異常推定結果7bを出力する。故障推定装置8c,8dについても、同様に主要部品11c,11dに関する電気量4c,4dを取り込み、主要部品11c,11dの故障やその前兆となる異常を推定し、高調波異常推定結果7c,7dを出力する。   The failure estimation device 8a takes in an electric quantity 4a such as an input voltage, an input current, an output voltage, and an output current of the main component 11a from the measuring device 3a corresponding to the main component 11a constituting the device 2, and the failure of the main component 11a Or an anomaly that is a precursor thereof, and outputs a harmonic anomaly estimation result 7a. Similarly, the failure estimation device 8b takes in an electric quantity 4b such as an input voltage, an input current, an output voltage, and an output current of the main component 11b from the measuring device 3b corresponding to the main component 11b constituting the device 2, and the main component The failure of 11b and the abnormality that is a precursor thereof are estimated, and the harmonic abnormality estimation result 7b is output. Similarly, the failure estimation devices 8c and 8d take in the electric quantities 4c and 4d related to the main parts 11c and 11d, estimate the failure of the main parts 11c and 11d and the abnormality that is a precursor thereof, and the harmonic abnormality estimation results 7c and 7d. Is output.

一方、装置異常推定装置10は、図4に示すように各故障推定装置8a,8b,8c,8dから高調波異常推定結果7a,7b,7c,7dを受け取り、それぞれ高調波異常推定結果7a,7b,7c,7dから主要部品11a,11b,11c,11dの出荷後の経過年数と部品出荷から故障に至るまでの年数とから故障確率12a,12b,12c,12dに変換し出力する故障確率変換処理部10Aと、各故障確率12a,12b,12c,12dから全体故障確率となる装置異常推定値9を出力する全体故障確率推定処理部10Bとが設けられている。   On the other hand, the apparatus abnormality estimation apparatus 10 receives the harmonic abnormality estimation results 7a, 7b, 7c, 7d from the respective failure estimation apparatuses 8a, 8b, 8c, 8d as shown in FIG. Failure probability conversion for converting and outputting failure probabilities 12a, 12b, 12c, and 12d from 7b, 7c, and 7d to the main parts 11a, 11b, 11c, and 11d after shipping and the years from shipping to failure A processing unit 10A and a total failure probability estimation processing unit 10B that outputs an apparatus abnormality estimated value 9 that is a total failure probability from each failure probability 12a, 12b, 12c, and 12d are provided.

図5(a)は装置異常推定装置10の故障確率変換処理部10Aの作用を説明する図である。
同図において、横軸は将来的な経過期間(年)、縦軸は高調波異常推定結果7(7a〜7d)及び故障確率変換処理部10Aで得られる故障確率12(12a〜12d)を表している。高調波異常推定結果7(7a〜7d)や故障確率12(12a〜12d)は統計的に求めることができる。具体的には、主要部品例えば11aの出荷後の経過年数と出荷から故障に至るまでの年数と当該主要部品11aの出荷台数とから故障確率12aを求めることができ、また、主要部品11aの出荷からの年数の高調波異常推定結果の平均値から、故障確率に対応する高調波異常推定結果7aを求めることができる。
FIG. 5A is a diagram for explaining the operation of the failure probability conversion processing unit 10 </ b> A of the device abnormality estimation device 10.
In the figure, the horizontal axis represents the future elapsed period (year), and the vertical axis represents the harmonic abnormality estimation result 7 (7a to 7d) and the failure probability 12 (12a to 12d) obtained by the failure probability conversion processing unit 10A. ing. The harmonic abnormality estimation result 7 (7a to 7d) and the failure probability 12 (12a to 12d) can be obtained statistically. Specifically, the failure probability 12a can be obtained from the number of years since the shipment of the main part, for example, 11a, the number of years from shipment to failure, and the number of shipped main parts 11a, and the shipment of the main part 11a. The harmonic abnormality estimation result 7a corresponding to the failure probability can be obtained from the average value of the harmonic abnormality estimation results of years from.

図5(b)は装置異常推定装置10の全体故障確率推定処理部10Bの作用を説明する図である。
全体故障確率推定処理部10Bは、故障確率変換処理部10Aによって得られた各故障確率12a,12b,12c,12dの相互の関係から全体の故障確率12を求めることができる。
FIG. 5B is a diagram for explaining the operation of the total failure probability estimation processing unit 10B of the apparatus abnormality estimation apparatus 10.
The overall failure probability estimation processing unit 10B can obtain the overall failure probability 12 from the mutual relationship between the failure probabilities 12a, 12b, 12c, and 12d obtained by the failure probability conversion processing unit 10A.

例えば、図6(a)に示すように、全部の故障確率12a,12b,12c,12dがORの関係にあれば、全体の故障確率12は、下式(1−1)から求める。
全体の故障確率12=1−(1−故障確率12a)×(1−故障確率12b)
×(1−故障確率12c)×(1−故障確率12d) …(1−1)
また、図6(b)に示すように、全部の故障確率12a,12b,12c,12dがANDの関係にあれば、全体の故障確率12は、下式(1−2)から求める。
全体の故障確率12=故障確率12a×故障確率12b
×故障確率12c×故障確率12d …(1−2)
さらに、図6(c)に示すように、故障確率12a,12bがOR、故障確率12c,12dがOR、各OR出力をANDとする関係にあれば、全体の故障確率12は、下式(1−3)から求める。
全体の故障確率12={1−(1−故障確率12a)×(1−故障確率12b)}
×{1−(1−故障確率12c)×(1−故障確率12d)} …(1−3)
さらに、図6(d)に示すように、故障確率12a,12bがAND、故障確率12c,12dがAND、各AND出力をORとする関係にあれば、全体の故障確率12は、下式(1−4)から求める。
全体の故障確率12=1−(1−故障確率12a×故障確率12b)
×(1−故障確率12c×故障確率12d) …(1−4)
従って、全体故障確率推定処理部10Bは、以上のようにして全体の故障確率12を推定し、装置異常推定値9として出力する。
For example, as shown in FIG. 6A, if all failure probabilities 12a, 12b, 12c, and 12d are in an OR relationship, the entire failure probability 12 is obtained from the following equation (1-1).
Total failure probability 12 = 1− (1−failure probability 12a) × (1−failure probability 12b)
X (1-failure probability 12c) x (1-failure probability 12d) (1-1)
As shown in FIG. 6B, if all failure probabilities 12a, 12b, 12c, and 12d are in an AND relationship, the entire failure probability 12 is obtained from the following equation (1-2).
Total failure probability 12 = failure probability 12a × failure probability 12b
X Failure probability 12c x Failure probability 12d (1-2)
Furthermore, as shown in FIG. 6C, if the failure probabilities 12a and 12b are OR, the failure probabilities 12c and 12d are OR, and the OR outputs are ANDed, the overall failure probability 12 is expressed by the following formula ( Obtained from 1-3).
Overall failure probability 12 = {1− (1−failure probability 12a) × (1−failure probability 12b)}
X {1- (1-failure probability 12c) * (1-failure probability 12d)} (1-3)
Further, as shown in FIG. 6D, if the failure probabilities 12a and 12b are AND, the failure probabilities 12c and 12d are AND, and each AND output is OR, the overall failure probability 12 is expressed by the following formula ( Obtained from 1-4).
Total failure probability 12 = 1− (1−failure probability 12a × failure probability 12b)
X (1-failure probability 12c x failure probability 12d) (1-4)
Therefore, the overall failure probability estimation processing unit 10B estimates the overall failure probability 12 as described above, and outputs it as the apparatus abnormality estimated value 9.

図7は各故障推定装置8(8a,8b,8c,8d)の具体的な構成例を示す図であって、請求項2に対応する。
故障推定装置8(8a,8b,8c,8d)は、コンピュータを用いて、一定の処理手順に従ってソフトウエア的に処理するものであって、機能的には,高調波成分計算手段21と、データ記録手段22と、高調波成分一致度計算手段23と、高調波異常推定手段24とで構成される。
FIG. 7 is a diagram showing a specific configuration example of each failure estimation device 8 (8a, 8b, 8c, 8d), and corresponds to claim 2.
The failure estimation device 8 (8a, 8b, 8c, 8d) uses a computer to perform software processing according to a certain processing procedure. Functionally, the fault estimation device 8 and data The recording unit 22, the harmonic component coincidence calculation unit 23, and the harmonic abnormality estimation unit 24 are configured.

高調波成分計算手段21は、前述した電気量4(4a〜4d)を波形分析して高調波成分を計算し、実測高調波成分計算結果25を取得し、高調波成分一致度計算手段23に送出する。   The harmonic component calculation means 21 calculates the harmonic component by analyzing the waveform of the electric quantity 4 (4a to 4d) described above, obtains the actually measured harmonic component calculation result 25, and sends the harmonic component coincidence calculation means 23 to the harmonic component coincidence calculation means 23. Send it out.

データ記録手段22は、具体的には、高調波成分計算手段21で取得された実測高調波成分計算結果25を記憶する他、電力品質を評価するための各種のパターンデータを記憶する高調波異常データベース26が設けられている。高調波異常データベース26には予め各主要部品11a,11b,11c,11dの異常や故障の前兆となる高調波異常と推定される高調波成分(以下、高調波異常高調波成分と呼ぶ)27のパターン(以下、高調波異常パターンと呼ぶ)28(後記する図11参照)が記憶されている。   Specifically, the data recording unit 22 stores the actual harmonic component calculation result 25 acquired by the harmonic component calculating unit 21 and also stores harmonic abnormality that stores various pattern data for evaluating power quality. A database 26 is provided. The harmonic abnormality database 26 stores harmonic components (hereinafter referred to as harmonic abnormal harmonic components) 27 that are presumed to be harmonic abnormalities that are a precursor of abnormality or failure of the main components 11a, 11b, 11c, and 11d in advance. A pattern (hereinafter referred to as a harmonic abnormality pattern) 28 (see FIG. 11 described later) is stored.

高調波成分一致度計算手段23は、実測高調波成分計算結果25と高調波異常データベース26に保存される複数の次数からなる複数の高調波異常パターン28を持つ高調波異常高調波成分27とから高調波成分一致度29を計算する機能を持っている。   The harmonic component coincidence calculation means 23 is based on the actually measured harmonic component calculation result 25 and the harmonic abnormal harmonic component 27 having a plurality of harmonic abnormality patterns 28 having a plurality of orders stored in the harmonic abnormality database 26. It has a function to calculate the harmonic component coincidence 29.

高調波異常推定手段24は、高調波成分一致度計算手段23で算出された高調波成分一致度29の中から高調波成分一致度29が高い高調波異常パターン28を、高調波異常の可能性が高い高調波異常パターン28と推定し、この推定された高調波異常パターン28を高調波異常推定結果7(7a,7b,7c,7d)として出力する。   The harmonic abnormality estimation unit 24 converts the harmonic abnormality pattern 28 having a higher harmonic component coincidence 29 from the harmonic component coincidence 29 calculated by the harmonic component coincidence calculation unit 23 to the possibility of harmonic abnormality. Is estimated as a higher harmonic abnormality pattern 28, and the estimated higher harmonic abnormality pattern 28 is output as a higher harmonic abnormality estimation result 7 (7a, 7b, 7c, 7d).

高調波異常推定結果7の出力形式としては、例えば、表示装置に表示するとか、プリンタから印字出力し、あるいはデータ記録手段22または別個の記憶手段に記憶し、あるいは専用伝送回線等を介して外部の出力装置に出力する形式などがある。   The output format of the harmonic abnormality estimation result 7 is, for example, displayed on a display device, printed out from a printer, stored in the data recording unit 22 or a separate storage unit, or externally via a dedicated transmission line or the like. There are formats to output to the output device.

次に、以上のような故障推定装置8(8a,8b,8c,8d)の作用を説明する。
図8は電気量4の一例である例えば線間2相分の電圧波形例を説明する図である。
Next, the operation of the failure estimation apparatus 8 (8a, 8b, 8c, 8d) as described above will be described.
FIG. 8 is a diagram for explaining an example of a voltage waveform for two phases between lines, which is an example of the electric quantity 4.

同図において、横軸は時間、縦軸は電圧を表わす。今、3相分の電圧をVa、Vb、Vcとすると、3相分の線間電圧はVab、Vbc、Vcaとなる。2相分の例では、線間電圧はVab、Vbcとなる。   In the figure, the horizontal axis represents time, and the vertical axis represents voltage. Now, assuming that the voltages for the three phases are Va, Vb, and Vc, the line voltages for the three phases are Vab, Vbc, and Vca. In the example for two phases, the line voltages are Vab and Vbc.

先ず、高調波成分計算手段21は、装置2を構成する主要部品例えば11aに入出力される電圧、電流等の電気量4aを取り込み、あるいは測定装置3aから伝送系5aを通じて伝送されてくる電気量4aを受信し、当該電気量4aに含む基本電圧波に含まれる高調波の次数毎の成分を計算する。すなわち、高調波成分計算手段21は、高調波成分を各次数成分の和とみなし、次数毎の高調波成分を計算する。   First, the harmonic component calculation means 21 takes in an electric quantity 4a such as a voltage and a current input / output to / from a main component constituting the apparatus 2, or an electric quantity transmitted from the measuring apparatus 3a through the transmission system 5a. 4a is received and the component for every order of the harmonic contained in the fundamental voltage wave contained in the said electric quantity 4a is calculated. That is, the harmonic component calculation means 21 regards the harmonic component as the sum of each order component, and calculates the harmonic component for each order.

高調波の次数毎の成分を計算する手法は、最も一般的に使用されている高速フーリェ変換(FFT:Fast Fourier Transformation)が知られているが、本実施の形態では、一例として図9に示す高速フーリェ変換機能を持つFFT処理部21aを用いて高調波成分の計算処理を実行する。   The most commonly used fast Fourier transformation (FFT) is known as a method for calculating the components for each harmonic order. In the present embodiment, an example is shown in FIG. Harmonic component calculation processing is executed using an FFT processing unit 21a having a high-speed Fourier transform function.

高速フーリェ変換機能を持つFFT処理部21aを用いる理由は次の通りである。
高調波は、一定の周期を持つ周期の異なる正弦波の集まりとして表される。基本波を一次とすると、周期が基本波の1/2(周波数は2倍)を2次、周期が基本波の1/3(周波数は3倍)を3次、基本波の1/n(周波数はn倍)をn次と呼ぶ。
The reason for using the FFT processing unit 21a having a high-speed Fourier transform function is as follows.
The harmonics are represented as a collection of sine waves having a constant period and different periods. Assuming that the fundamental wave is primary, the period is 1/2 of the fundamental wave (frequency is twice), the period is 1/3 of the fundamental wave (frequency is 3 times), the third is fundamental, and the fundamental wave is 1 / n ( The frequency is n times) is called the nth order.

商用周波数に高調波が入ると、商用周波数が歪んでいると呼ばれ、フーリェ変換等により高調波成分を求めているが、観測データ(測定データ)が装置2や部品の動作特性から離散的なサンプリングデータである場合があり得る。このようなサンプリングデータから高調波成分を求める場合、離散型フーリェ変換と呼ばれる手法を用いる必要がある。その点、高速フーリェ変換機能を持つFFT処理部21aは、離散型フーリェ変換を高速に解けるように工夫された変換手法であり、連続的または離散的なサンプリングデータの何れにも対応でき、高調波解析に最も汎用的なものといえる。   When harmonics enter the commercial frequency, it is said that the commercial frequency is distorted, and the harmonic component is obtained by Fourier transform or the like, but the observation data (measurement data) is discrete from the operating characteristics of the device 2 and parts. There may be sampling data. When obtaining harmonic components from such sampling data, it is necessary to use a technique called discrete Fourier transform. In this respect, the FFT processing unit 21a having a high-speed Fourier transform function is a conversion method devised so as to solve the discrete Fourier transform at high speed, and can deal with either continuous or discrete sampling data. It can be said that it is the most versatile one for analysis.

そこで、FFT処理部21aは、電気量4aを波形分析し、当該電気量4aに含まれる次数毎の高調波成分を取り出す。電気量4b,4c,4dについても同様に波形分析し、各電気量4b,4c,4dに含まれる次数毎の高調波成分を取り出す。   Therefore, the FFT processing unit 21a analyzes the waveform of the electric quantity 4a and extracts a harmonic component for each order included in the electric quantity 4a. Waveform analysis is similarly performed for the electric quantities 4b, 4c, and 4d, and harmonic components for each order included in the electric quantities 4b, 4c, and 4d are extracted.

図10は線間2相分の電圧波形について、高調波成分計算手段21で計算された実測高調波成分結果の一例を示す図である。具体的には、図8に示される電気量4について、FFT処理部21aを用いて、高調波の次数毎の高調波成分を計算した例である。この例では、Vab、Vbcの高調波含有率を示している。同図において、横軸は高調波の次数、縦軸は高調波含有率を表わしている。   FIG. 10 is a diagram showing an example of the actually measured harmonic component result calculated by the harmonic component calculating means 21 for the voltage waveform for two phases between lines. Specifically, it is an example in which the harmonic component for each order of the harmonic is calculated for the quantity of electricity 4 shown in FIG. 8 using the FFT processing unit 21a. In this example, the harmonic content of Vab and Vbc is shown. In the figure, the horizontal axis represents the harmonic order, and the vertical axis represents the harmonic content.

ここで、高調波含有率は、高調波の次数毎に計算されるもので、下式で表わされる。
高調波含有率(次数)=高調波の大きさ(次数)÷基本波の大きさ ……(2)
一方、高調波異常データベース26には前述したように高調波異常高調波成分27が記憶されているが、高調波異常高調波成分27としては図11に示すように複数の次数成分及びそれら各次数成分の大きさ(高調波含有率)からなる高調波異常パターン28で表わされ、それぞれ高調波異常と推定される次数成分の組み合わせで構成されるパターンに特徴を持っている。
Here, the harmonic content is calculated for each order of harmonics and is expressed by the following equation.
Harmonic content (order) = Harmonic magnitude (order) ÷ Fundamental wave magnitude (2)
On the other hand, as described above, the harmonic abnormal harmonic component 27 is stored in the harmonic abnormal database 26. As shown in FIG. 11, the harmonic abnormal harmonic component 27 includes a plurality of order components and their respective orders. It is represented by a harmonic anomaly pattern 28 made up of component magnitudes (harmonic content), each having a characteristic pattern composed of combinations of order components estimated to be harmonic anomalies.

ところで、高調波異常は、装置2を構成する主要部品11a,11b,11c,11dの異常だけでなく、当該主要部品11a,11b,11c,11dの故障の前兆となっている場合が多い。そのため、高調波異常データベース26には、図11に示すように装置2を構成する各主要部品11a,11b,11c,11dの異常の他、故障の前兆となる次数成分の組み合わせ及び各次数成分の含有率からなる複数の高調波異常パターン28A、28B、28Cが保存されている。   By the way, the harmonic abnormality is not only an abnormality of the main parts 11a, 11b, 11c, and 11d constituting the apparatus 2, but is often a precursor of a failure of the main parts 11a, 11b, 11c, and 11d. Therefore, in the harmonic abnormality database 26, as shown in FIG. 11, in addition to the abnormality of the main parts 11a, 11b, 11c, and 11d constituting the apparatus 2, the combination of the order components and the order components that are precursors to the failure are stored. A plurality of harmonic abnormality patterns 28A, 28B, and 28C having a content rate are stored.

ここで、図11において、横軸は高調波の次数、縦軸は高調波含有率で表わしており、この高調波含有率は前述したように高調波の次数毎に式(2)で計算される。   Here, in FIG. 11, the horizontal axis represents the harmonic order, and the vertical axis represents the harmonic content, and this harmonic content is calculated by Equation (2) for each harmonic order as described above. The

図12は高調波成分一致度計算手段23の機能ブロック及び処理内容を説明する図である。   FIG. 12 is a diagram for explaining the functional blocks and processing contents of the harmonic component coincidence calculation means 23.

高調波成分一致度計算手段23は、実測高調波成分計算結果25の合計が1となるように規格化する処理を実行する規格化計算処理部23aと、この規格化計算処理部23aで得られた実測高調波成分計算結果25の規格化結果(規格化した値)と高調波異常データベース26に格納される高調波異常高調波成分27毎に高調波成分の合計が1となるように規格化した値との一致度を計算する一致度計算処理部23bとが設けられている。   The harmonic component coincidence calculation means 23 is obtained by the normalization calculation processing unit 23a that executes a process of normalizing so that the total of the actual harmonic component calculation results 25 becomes 1, and the normalization calculation processing unit 23a. Normalization result (normalized value) of the measured harmonic component calculation result 25 and the harmonic abnormality harmonic component 27 stored in the harmonic abnormality database 26 are normalized so that the sum of the harmonic components becomes 1. A coincidence calculation processing unit 23b is provided for calculating the coincidence with the obtained value.

高調波成分一致度計算手段23は、実測高調波成分計算結果25を受け取ると、規格化計算処理部23aが規格化処理を実行し、実測高調波成分計算結果25に含む各次数の高調波成分の合計が1になるように規格化する。   When the harmonic component coincidence calculation means 23 receives the measured harmonic component calculation result 25, the normalization calculation processing unit 23 a executes the normalization process, and the harmonic components of the respective orders included in the measured harmonic component calculation result 25. Is normalized so that the sum of 1 becomes 1.

規格化に際しては、次の式(3)を用いて、規格化後のj次(jは2以上の自然数)の成分を算出する。   In normalization, a j-th order component (j is a natural number of 2 or more) after normalization is calculated using the following equation (3).

規格化後のj次の成分=規格化前j次の高調波成分/規格化前の高調波成分の合計値
……(3)
図13は高調波成分の規格化を説明する図である。
J-order component after normalization = j-th harmonic component before normalization / total value of harmonic components before normalization
...... (3)
FIG. 13 is a diagram illustrating normalization of harmonic components.

高調波成分としては、高調波異常データベース26にある高調波異常高調波成分27の最大次数と、実測高調波成分計算結果25の高調波成分の最大次数が一致していない場合がある。例えば、実測高調波成分計算結果25の高調波成分の最大次数が25次まであるが、高調波異常高調波成分27の最大次数が例えば20次までしかない場合がある。このようなとき、両者の次数のうち低い次数、すなわち,最大次数の低い高調波異常高調波成分27の最大次数20次に一致させ、両者とも20次までの高調波成分を抽出し規格化する。その結果、前記式(3)の分母は規格化前の高調波成分の20次までの合計値となる。   As the harmonic component, the maximum order of the harmonic abnormal harmonic component 27 in the harmonic abnormal database 26 may not match the maximum order of the harmonic component of the actually measured harmonic component calculation result 25. For example, although the maximum order of the harmonic component of the actually measured harmonic component calculation result 25 is up to the 25th order, the maximum order of the harmonic abnormal harmonic component 27 may be only up to the 20th order, for example. In such a case, the lower order of both orders, that is, the maximum order 20 of the harmonic anomalous harmonic component 27 having the lowest maximum order is matched, and both harmonic components up to the 20th order are extracted and normalized. . As a result, the denominator of the equation (3) is the total value up to the 20th order of the harmonic components before normalization.

一致度計算処理部23bは、実測高調波成分計算結果25の規格後の値(以下、規格化実測高調波成分計算結果32と呼ぶ。図14(a)参照)と、高調波異常データベース17に格納される高調波異常高調波成分27の規格後の値(以下、規格化高調波異常高調波成分33と呼ぶ。図14(b)参照)との差分の絶対値を次数ごとに取り、式(4)のように合計値(以下、規格化差分合計値34と呼ぶ)を計算する。   The degree-of-match calculation processing unit 23b stores the value after the standardization of the actual harmonic component calculation result 25 (hereinafter referred to as a standardized actual harmonic component calculation result 32; see FIG. 14A) and the harmonic abnormality database 17. The absolute value of the difference from the value after the standardization of the stored harmonic abnormal harmonic component 27 (hereinafter referred to as the normalized harmonic abnormal harmonic component 33; see FIG. 14B) is taken for each order, and the equation The total value (hereinafter referred to as the normalized difference total value 34) is calculated as in (4).

規格化差分合計値34=|規格化後の2次の成分(実測高調波成分計算結果25)−規格化後の2次の成分(高調波異常高調波成分27)|+|規格化後の3次の成分(実測高調波成分計算結果25)−規格化後の3次の成分(高調波異常高調波成分27)|+ …… +|規格化後のn次の成分(実測高調波成分計算結果25)−規格化後のn次の成分(高調波異常高調波成分27)|
=|2次の成分(規格化実測高調波成分計算結果32)−2次の成分(規格化高調波異常高調波成分33)|+|3次の成分(規格化実測高調波成分計算結果32)−3次の成分(規格化高調波異常高調波成分33)|+ …… +|n次の成分(規格化実測高調波成分計算結果32)−n次の成分(規格化高調波異常高調波成分33)|
…(4)
この式(4)から、規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33が完全に一致している場合、規格化差分合計値34はゼロとなる。
Total normalized difference 34 = | Second-order component after normalization (actually measured harmonic component calculation result 25) -Second-order component after normalization (harmonic abnormal harmonic component 27) | + | Third-order component (measured harmonic component calculation result 25) -normalized third-order component (harmonic abnormal harmonic component 27) | + …… + | n-th normalized component (measured harmonic component) Calculation result 25) -n-order component after normalization (harmonic abnormal harmonic component 27) |
= | Second order component (standardized measured harmonic component calculation result 32) -second order component (standardized harmonic abnormal harmonic component 33) | + | third order component (standardized measured harmonic component calculated result 32) ) -3rd order component (standardized harmonic abnormal harmonic component 33) | +... + | Nth order component (standardized measured harmonic component calculation result 32) -nth order component (standardized harmonic abnormal harmonic component) Wave component 33) |
... (4)
From this equation (4), when the normalized measured harmonic component calculation result 32 and the normalized harmonic abnormal harmonic component 33 completely coincide, the normalized difference total value 34 becomes zero.

図14は規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33とが完全に一致している例を示す図である。すなわち、一致度計算処理部23bは、式(4)に基づき、規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33とが完全に一致している場合、規格化差分合計値34がゼロとなる。   FIG. 14 is a diagram illustrating an example in which the standardized actual harmonic component calculation result 32 and the standardized harmonic abnormal harmonic component 33 completely match. That is, the coincidence calculation processing unit 23b, based on the formula (4), calculates the normalized difference sum when the normalized measured harmonic component calculation result 32 and the normalized harmonic abnormal harmonic component 33 completely match. The value 34 is zero.

一方、式(4)に基づき、規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33とが完全に一致していない場合、規格化実測高調波成分計算結果32の合計値と、規格化高調波異常高調波成分33の合計値がそれぞれ1であることから、規格化差分合計値34は2となる。例えば、図15に示すように、3次、5次の高調波成分を含む規格化実測高調波成分計算結果32と、7次、10次の高調波成分を含む規格化高調波異常高調波成分33との場合、各次数が完全不一致となる。しかし、両者とも規格化されているので、それぞれ複数次数の合計値は1となる。その結果、規格化差分絶対値の合計値34は2となる。   On the other hand, if the normalized measured harmonic component calculation result 32 and the normalized harmonic abnormal harmonic component 33 do not completely match based on the equation (4), the total value of the normalized measured harmonic component calculated result 32 Since the total value of the normalized harmonic abnormal harmonic components 33 is 1, the normalized difference total value 34 is 2. For example, as shown in FIG. 15, a normalized measured harmonic component calculation result 32 including third and fifth harmonic components, and a normalized harmonic abnormal harmonic component including seventh and tenth harmonic components. In the case of 33, the orders are completely inconsistent. However, since both are standardized, the total value of the multiple orders is 1, respectively. As a result, the total value 34 of the normalized difference absolute value is 2.

図16は規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33とが一部一致している例を示す図である。この例は、5次の高調波成分が一致しているが、他の次数の高調波成分は一致していない。このような場合、規格化実測高調波成分計算結果32の合計値1のうち、一致していない3次の高調波成分をもつ規格化実測高調波成分計算結果32が0.6であり、規格化高調波異常高調波成分33の合計値1のうち、一致していない7次の高調波成分をもつ規格化高調波異常高調波成分32が0.6である。その結果、規格化差分絶対値の合計値34は、0.6+0.6=1.2となる。   FIG. 16 is a diagram illustrating an example in which the normalized actual harmonic component calculation result 32 and the normalized harmonic abnormal harmonic component 33 partially match. In this example, the fifth-order harmonic components match, but the other-order harmonic components do not match. In such a case, out of the total value 1 of the normalized measured harmonic component calculation results 32, the normalized measured harmonic component calculation result 32 having a third harmonic component that does not match is 0.6. Of the total value 1 of the normalized harmonic abnormal harmonic component 33, the normalized harmonic abnormal harmonic component 32 having a seventh harmonic component that does not match is 0.6. As a result, the total value 34 of the normalized difference absolute values is 0.6 + 0.6 = 1.2.

従って、以上のように規格化実測高調波成分計算結果32と、規格化高調波異常高調波成分33との一致の度合いは、全く一致していない場合から、全く一致している場合までは、規格化差分合計値34が2(全く一致してない場合)から0(全く一致している場合)までの値で表されることが分かる。   Therefore, as described above, the degree of coincidence between the standardized actual harmonic component calculation result 32 and the standardized harmonic abnormal harmonic component 33 does not match at all, or does not match at all. It can be seen that the normalized difference total value 34 is represented by a value from 2 (when not matching at all) to 0 (when matching at all).

図17は規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33との一致度の程度と規格化差合計値34との関係を示す図である。この図から明らかなように、全く一致していない場合の規格化差分合計値34は2、完全に一致している場合の規格化差分合計値34は0となり、部分的に一致している場合はその中間の値となることを表わしている。   FIG. 17 is a diagram showing the relationship between the degree of coincidence between the normalized actual harmonic component calculation result 32 and the normalized harmonic abnormal harmonic component 33 and the normalized difference total value 34. As is clear from this figure, the standardized difference total value 34 when there is no coincidence is 2, and the standardization difference total value 34 when there is a complete coincidence is 0, which is a partial match. Represents an intermediate value.

ここで、高調波成分一致度29の定義について考える。
今、規格化実測高調波成分計算結果32と規格化高調波異常高調波成分33が完全に一致している場合を100%、全く一致していない場合を−100%、中間を0%となる様にすると、図18に示すように表わすことができ、理解し易くなる。
Here, the definition of the harmonic component coincidence 29 is considered.
Now, when the normalized measured harmonic component calculation result 32 and the normalized harmonic anomalous harmonic component 33 are completely matched, it is 100%, when they are not matched at all, it is -100%, and the middle is 0%. In this way, it can be expressed as shown in FIG.

そこで、図18に示す高調波成分一致度29と規格化差分合計値34との間の変換式は、式(5)で表わせる。その結果、式(5)で計算された結果が高調波成分一致度29と定義できる。
高調波成分一致度29=(1−規格化差分合計値34)×100(%) ……(5)
すなわち、一致度計算処理部23bは、高調波異常高調波成分27ごとに、実測高調波成分計算結果25との高調波成分一致度29を式(5)によって計算し、高調波異常推定手段24に渡す。
Therefore, a conversion equation between the harmonic component coincidence 29 and the normalized difference total value 34 shown in FIG. 18 can be expressed by equation (5). As a result, the result calculated by Equation (5) can be defined as the harmonic component coincidence 29.
Harmonic component coincidence 29 = (1−standardized difference total value 34) × 100 (%) (5)
That is, the coincidence calculation processing unit 23b calculates the harmonic component coincidence 29 with the actually measured harmonic component calculation result 25 for each harmonic abnormal harmonic component 27 according to the equation (5). To pass.

高調波異常推定手段24は、高調波成分一致度計算手段23から受け取った高調波異常高調波成分27ごとの高調波成分一致度29をもとに、高調波異常となる高調波異常パターン例えば28A,28B,28Cを推定する。   Based on the harmonic component coincidence 29 for each harmonic abnormal harmonic component 27 received from the harmonic component coincidence calculating unit 23, the harmonic abnormality estimating unit 24 generates a harmonic abnormality pattern, for example, 28A. , 28B, 28C are estimated.

図19は高調波異常推定手段24の機能ブロック及び処理内容を説明する図である。   FIG. 19 is a diagram for explaining functional blocks and processing contents of the harmonic abnormality estimation means 24.

高調波異常推定手段24は一致度並び替え処理部24aと高調波異常抽出部24bで構成される。   The harmonic abnormality estimation means 24 includes a matching degree rearrangement processing unit 24a and a harmonic abnormality extraction unit 24b.

一致度並び替え処理部24aは、高調波異常高調波成分27の高調波成分一致度29をもとに当該高調波異常高調波成分27を並び替える処理を行うものであって、例えば高調波成分一致度29の高いものから順に並び替える処理を実行する。   The matching degree rearrangement processing unit 24a performs processing for rearranging the harmonic abnormal harmonic component 27 based on the harmonic component matching degree 29 of the harmonic abnormal harmonic component 27, for example, a harmonic component. A process of rearranging in descending order of the degree of coincidence 29 is executed.

高調波異常抽出部24bは、高調波成分一致度29の高いものから順に並び替えた高調波異常高調波成分27をもつ高調波異常パターン28の中から、高調波異常と推定されるパターン28を抽出し、高調波異常推定結果7として出力する。   The harmonic abnormality extraction unit 24b selects a pattern 28 that is estimated to be a harmonic abnormality from the harmonic abnormality patterns 28 having the harmonic abnormality harmonic components 27 that are rearranged in order from the highest harmonic component matching degree 29. Extracted and output as harmonic abnormality estimation result 7.

図20は高調波異常高調波成分27と高調波成分一致度29との関係を説明する図である。   FIG. 20 is a diagram for explaining the relationship between the harmonic abnormal harmonic component 27 and the harmonic component coincidence 29.

高調波異常推定手段24は、一致度並び替え処理部24aが高調波異常高調波成分27に対応する高調波異常パターン28を、高調波成分一致度29の高いものから順に左側から並べていくと、図20に示すように高調波成分一致度29が100%から−100%の間に収まり、左側にあるほど高調波異常が高く、右側にあるほどほど高調波異常が低いと考えることができる。   The harmonic abnormality estimation means 24 arranges the harmonic abnormality patterns 28 corresponding to the harmonic abnormal harmonic components 27 in order from the left in order from the highest harmonic component coincidence 29 when the matching degree rearrangement processing unit 24a arranges the harmonic abnormality patterns 28 from the left side. As shown in FIG. 20, it can be considered that the harmonic component coincidence 29 falls within the range of 100% to −100%, the higher the harmonic anomaly is, the lower the harmonic anomaly is.

従って、高調波異常推定手段24の高調波異常抽出部24bでは、実験の積み重ねや経験等を通して電力の品質に影響を与える可能性を考慮しつつ高調波異常抽出しきい値35を設定し、高調波成分一致度29が高調波異常抽出しきい値35よりも高い高調波異常高調波成分27をもつ高調波異常パターン28を高調波異常として抽出することが可能である。つまり、高調波異常抽出部24bは、図20に示すように高調波異常抽出しきい値35より上側に存在する高調波異常高調波成分27を高調波異常推定結果7として出力する。   Accordingly, the harmonic abnormality extraction unit 24b of the harmonic abnormality estimation means 24 sets the harmonic abnormality extraction threshold 35 in consideration of the possibility of affecting the power quality through the accumulation of experiments and experience. It is possible to extract a harmonic abnormality pattern 28 having a harmonic abnormality harmonic component 27 having a wave component matching degree 29 higher than the harmonic abnormality extraction threshold 35 as a harmonic abnormality. That is, the harmonic abnormality extraction unit 24b outputs the harmonic abnormality harmonic component 27 existing above the harmonic abnormality extraction threshold 35 as the harmonic abnormality estimation result 7 as shown in FIG.

なお、高調波異常推定手段24としては、高調波異常抽出しきい値35を設けることなく、高調波成分一致度29の高い順に並べ替えて高調波異常推定結果7として出力してもよい。   Note that the harmonic abnormality estimation means 24 may output the harmonic abnormality estimation result 7 by rearranging the harmonic component coincidence 29 in descending order without providing the harmonic abnormality extraction threshold 35.

図21は、高調波異常抽出しきい値35を設けずに高調波異常推定結果7を表示装置に表示した一例を示す図である。同図において、縦軸が高調波成分一致度29、横軸が高調波異常パターン28であって、高調波成分一致度29の高い順番に左側から右側に並べた表示例である。請求項3に対応する。   FIG. 21 is a diagram illustrating an example in which the harmonic abnormality estimation result 7 is displayed on the display device without providing the harmonic abnormality extraction threshold 35. In the figure, the vertical axis represents the harmonic component coincidence 29 and the horizontal axis represents the harmonic abnormality pattern 28, which is a display example arranged from left to right in the descending order of the harmonic component coincidence 29. This corresponds to claim 3.

従って、以上のような実施の形態によれば、電力系統に接続される装置2の各主要部品11a〜11dより取得される電圧、電流等の電気量4a〜4dから電力品質の一つである高調波成分を取り出し、これら実測高調波成分と予め記憶される異常ないし故障の前兆となる高調波異常パターン28を持つ高調波異常高調波成分27との一致度を計算し、一致度の高い高調波異常パターン28の高調波成分をそれぞれの主要部品11a〜11dの高調波異常推定結果とした後、これら高調波異常推定結果7a〜7dから各主要部品11a〜11dの故障確率を取り出し、最終的に装置2全体の異常推定値(故障確率)12を取り出すので、何れの主要部品11a〜11dの故障確率が高いか、ひいては何れの主要部品11a〜11dに異常ないし故障となる前兆が生じているかを推定できる。   Therefore, according to the above embodiment, it is one of the power quality from the electric quantities 4a to 4d such as voltage and current acquired from the main components 11a to 11d of the device 2 connected to the power system. Harmonic components are extracted, and the degree of coincidence between these actually measured harmonic components and the harmonic abnormal harmonic component 27 having the harmonic abnormal pattern 28 that is a precursor of abnormality or failure that is stored in advance is calculated. After the harmonic components of the wave abnormality pattern 28 are used as the harmonic abnormality estimation results of the main components 11a to 11d, the failure probabilities of the main components 11a to 11d are extracted from the harmonic abnormality estimation results 7a to 7d. Since the abnormal estimated value (failure probability) 12 of the entire apparatus 2 is taken out, which of the main components 11a to 11d has a high failure probability, and thus which of the main components 11a to 11d is not abnormal. It can be estimated whether the aura to be a failure has occurred.

これにより、装置2自体の異常や故障の前兆が何れの主要部品11a〜11dに基づくものであるかなどを正確に推定できる。   As a result, it is possible to accurately estimate which of the main parts 11a to 11d the abnormality of the device 2 itself or a sign of failure is based on.

(第2の実施の形態:請求項4に対応)
図22は電力品質評価システム6における故障推定装置8(8a〜8d)の機能構成を示す図であって、特に前述した高調波異常推定手段24に代えて、結果表示制御手段41を設けた図である。
(Second embodiment: corresponding to claim 4)
FIG. 22 is a diagram illustrating a functional configuration of the failure estimation device 8 (8a to 8d) in the power quality evaluation system 6, and particularly a diagram in which a result display control unit 41 is provided in place of the harmonic abnormality estimation unit 24 described above. It is.

すなわち、電力品質評価システム6は、高調波成分計算手段21にて実測高調波成分計算結果25を計算し、高調波成分一致度計算手段23に渡す。高調波成分一致度計算手段23は、各高調波異常パターン28毎の高調波成分一致度29を計算し、例えばデータ記録手段22の所定の領域に記憶し、出力する。   That is, the power quality evaluation system 6 calculates the actual harmonic component calculation result 25 by the harmonic component calculation means 21 and passes it to the harmonic component coincidence calculation means 23. The harmonic component coincidence calculation means 23 calculates the harmonic component coincidence 29 for each harmonic abnormality pattern 28, and stores and outputs it in a predetermined area of the data recording means 22, for example.

結果表示制御手段41は、高調波成分一致度計算手段23から出力される各高調波異常パターン28毎の高調波成分一致度29を表示装置42に表示するとともに、一定時間毎に高調波成分計算手段21に戻り、各構成手段21,23,41による処理を繰り返し実行する。その結果、データ記録手段22の所定の記録領域には、所要とする期間(例えば24時間)にわたって各時間毎の各高調波異常パターン28毎の高調波成分一致度29が時系列的に記憶される。   The result display control means 41 displays the harmonic component coincidence 29 for each harmonic abnormality pattern 28 output from the harmonic component coincidence calculating means 23 on the display device 42 and calculates the harmonic component at regular intervals. Returning to the means 21, the processes by the constituent means 21, 23, 41 are repeatedly executed. As a result, in the predetermined recording area of the data recording means 22, the harmonic component matching degree 29 for each harmonic abnormality pattern 28 for each time is stored in a time series over a required period (for example, 24 hours). The

図23は、結果表示制御手段41によって高調波異常パターン28A、28B、28C、28D毎の高調波成分一致度29の表示例を示す図である。縦軸は高調波成分一致度29、横軸は時間である。   FIG. 23 is a diagram showing a display example of the harmonic component coincidence 29 for each of the harmonic abnormality patterns 28A, 28B, 28C, 28D by the result display control means 41. The vertical axis represents harmonic component coincidence 29, and the horizontal axis represents time.

図23の例は、一日24時間分の表示例である。すなわち、高調波成分一致度計算手段23は、高調波異常パターン28A、28B、28C、28Dの高調波成分一致度29を一日24時間分にわたって時系列的に蓄積し、結果表示制御手段41にて表示した例である。   The example of FIG. 23 is a display example for 24 hours a day. That is, the harmonic component coincidence calculation means 23 accumulates the harmonic component coincidence 29 of the harmonic abnormality patterns 28A, 28B, 28C, and 28D in a time series for 24 hours a day, and the result display control means 41 It is an example displayed.

この実施の形態によれば、第1の実施の形態と同様の効果を奏する他、所要とする期間にわたって所定時間毎の各高調波異常パターン28毎の高調波成分一致度29の変化を表示できるので、各高調波異常パターン28の時間的な変化の推移を把握でき、特定の高調波異常パターン28が何れの時間帯に大きく異常となるかなどを判断することができる。   According to this embodiment, in addition to the same effects as those of the first embodiment, it is possible to display a change in the harmonic component coincidence 29 for each harmonic abnormality pattern 28 for each predetermined time over a required period. Therefore, the transition of the temporal change of each harmonic abnormality pattern 28 can be grasped, and it can be determined in which time zone the specific harmonic abnormality pattern 28 becomes significantly abnormal.

(第3の実施の形態)
図24は本発明に係る電力品質評価システム6の第3の実施形態を示す概略構成図であって、請求項5に対応する。
(Third embodiment)
FIG. 24 is a schematic configuration diagram showing a third embodiment of the power quality evaluation system 6 according to the present invention, and corresponds to claim 5.

この実施の形態は、図4に示す故障確率変換処理部10A及び全体故障確率推定処理部10Bの出力側にデータ収集処理部43及び表示制御部44を設け、データ収集処理部43は、所定時間ごとあるいは所定月ごとに各主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の故障確率12を収集し、データ記録手段22あるいは適宜な記憶手段に時系列的に記憶していく。表示制御部44は、データ記録手段22から各主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の故障確率12を読み出し、予め決められた表示形態に従って表示装置42に表示する機能を有している。   In this embodiment, a data collection processing unit 43 and a display control unit 44 are provided on the output side of the failure probability conversion processing unit 10A and the total failure probability estimation processing unit 10B shown in FIG. Or failure probability 12a, 12b, 12c, 12d of each main part 11a, 11b, 11c, 11d and failure probability 12 of the apparatus 2 are collected every time or every predetermined month and stored in time series in the data recording means 22 or appropriate storage means. To remember. The display control unit 44 reads out the failure probabilities 12a, 12b, 12c, 12d of the main components 11a, 11b, 11c, 11d and the failure probability 12 of the device 2 from the data recording means 22, and displays the display device according to a predetermined display form. 42 is displayed.

図25は予め決められた1つの表示形態を示す図である。すなわち、データ収集処理部43は、所定時間ごとに各主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の故障確率12を収集し、データ記録手段22の所定の記憶領域に格納するとともに、表示制御部44に送出する。ここで、表示制御部44は、図25に示すように予め装置2を構成する主要部品11a,11b,11c,11dの接続に従って部品名を表示するとともに、部品名の近傍に故障確率を書き込む表示領域が形成され、データ収集処理部43から送られてくる各主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の装置全体故障確率12を対応表示領域に順次書き込むことにより、表示装置42に表示する例である。   FIG. 25 is a diagram showing one predetermined display form. That is, the data collection processing unit 43 collects the failure probabilities 12a, 12b, 12c, 12d of the main components 11a, 11b, 11c, 11d and the failure probability 12 of the apparatus 2 at predetermined time intervals, And is sent to the display control unit 44. Here, as shown in FIG. 25, the display control unit 44 displays the part name according to the connection of the main parts 11a, 11b, 11c, and 11d constituting the device 2 in advance, and displays the failure probability in the vicinity of the part name. An area is formed, and the failure probabilities 12a, 12b, 12c, 12d of the main components 11a, 11b, 11c, 11d and the entire apparatus failure probability 12 of the apparatus 2 sent from the data collection processing unit 43 are sequentially displayed in the corresponding display area. This is an example of displaying on the display device 42 by writing.

この構成によれば、予め決められた時間ごとに各主要部品11a,11b,11c,11d及び装置2に対応付けて主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の装置全体故障確率12を表示するので、装置2及び装置2を構成する主要部品11a,11b,11c,11dの現在の状況を的確に把握できる。   According to this configuration, the failure probabilities 12a, 12b, 12c, 12d of the main parts 11a, 11b, 11c, 11d are associated with the main parts 11a, 11b, 11c, 11d and the apparatus 2 at predetermined times. Since the overall device failure probability 12 of the device 2 is displayed, the current status of the main components 11a, 11b, 11c and 11d constituting the device 2 and the device 2 can be accurately grasped.

図26(a),(b)は予め決められた他の表示形態を説明する図であって、請求項6に対応する。   FIGS. 26A and 26B are diagrams for explaining other predetermined display modes, and correspond to claim 6.

データ記録手段22の所定領域には所定時間ごとに例えば24時間分または各月ごとに所定年分(例えば10年分)に亘って、主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の装置全体故障確率12に関するデータが時系列的に蓄積されているので、表示制御部44は、図26(a)に示すように横軸が時間(例えば一日24時間)、縦軸が故障確率とし、データ記録手段22から主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の装置全体故障確率12に関するデータを読み出し、表示装置42に折れ線グラフにより表示する例である。   In a predetermined area of the data recording means 22, the failure probabilities 12a, 12b of the main components 11a, 11b, 11c, 11d are provided every predetermined time, for example, for 24 hours or every month for a predetermined year (for example, 10 years). , 12c, 12d and the data on the overall device failure probability 12 of the device 2 are accumulated in time series, the display control unit 44 indicates that the horizontal axis is time (for example, 24 days a day) as shown in FIG. Time), the vertical axis is the failure probability, and data relating to the failure probability 12a, 12b, 12c, 12d of the main parts 11a, 11b, 11c, 11d and the overall failure probability 12 of the device 2 is read from the data recording means 22 and displayed. In this example, a line graph is displayed at 42.

図26(b)は、横軸が年(例えば10年)、縦軸が故障確率とし、図26(a)と同様にデータ記録手段22から10年分に亘って、主要部品11a,11b,11c,11dの故障確率12a,12b,12c,12d及び装置2の装置全体故障確率12に関するデータを読み出し、表示装置42に折れ線グラフにより表示した例である。   In FIG. 26B, the horizontal axis is the year (for example, 10 years), the vertical axis is the failure probability, and the main components 11a, 11b, 10 years from the data recording means 22 as in FIG. In this example, data relating to the failure probabilities 12a, 12b, 12c, 12d of 11c and 11d and the overall failure probability 12 of the device 2 are read and displayed on the display device 42 as a line graph.

さらに、図27(a),(b)は表示制御部44による更に異なる表示形態を説明する図であって、請求項7に対応する。   Further, FIGS. 27A and 27B are views for explaining different display modes by the display control unit 44, and correspond to claim 7. FIG.

すなわち、表示制御部44は、主要部品7a,7b,…の故障確率や装置2の故障確率について図26に示すように表示するが、予めアラーム規定値45を設定し、主要部品7a,7b,…の故障確率12a,12b,12c,12dや装置2の故障確率12がアラーム規定値45より大きくなったとき、注意を喚起するためのアラーム情報を出力する例である。   That is, the display control unit 44 displays the failure probability of the main parts 7a, 7b,... And the failure probability of the apparatus 2 as shown in FIG. 26, but sets the alarm specified value 45 in advance and sets the main parts 7a, 7b,. This is an example of outputting alarm information for calling attention when the failure probabilities 12a, 12b, 12c, 12d of... And the failure probability 12 of the device 2 become larger than the alarm specified value 45.

さらに、図28は、装置2を構成する主要部品11a〜11dや当該装置2の将来の故障確率を、データ記録手段22などに記録される過去の故障確率から予測し、予報するための表示例である。請求項8に対応する。   Further, FIG. 28 shows a display example for predicting and forecasting the future failure probability of the main components 11a to 11d constituting the device 2 and the future failure probability recorded in the data recording means 22 or the like. It is. This corresponds to claim 8.

予め図4で示す装置異常推定装置10で得られた所定期間ごとに各主要部品11a〜11dの故障確率をデータ記録手段22に記録しておけば、最小二乗法を用いて、記録されている過去の故障確率から下記式(6−1)の係数a,b、または下記式(6−2)の係数aとbとc、または下記式(6−3)の係数aを求めて式(6−1)または式(6−2)に将来の年を代入することにより、将来の故障確率を求めることができる。   If the failure probabilities of the main components 11a to 11d are recorded in advance in the data recording means 22 for each predetermined period obtained by the apparatus abnormality estimation apparatus 10 shown in FIG. 4, they are recorded using the least square method. From the past failure probabilities, the coefficients a and b in the following formula (6-1), the coefficients a and b and c in the following formula (6-2), or the coefficient a in the following formula (6-3) are obtained and the formula ( A future failure probability can be obtained by substituting a future year into (6-1) or (6-2).

将来の故障確率=(a×年+b)×100(%) …(6−1)
将来の故障確率=(a×年2+b×年+c)×100(%) …(6−2)
将来の故障確率=(1・exp(−a×年))×100(%) …(6−3)
すなわち、故障確率変換処理部10Aで得られた各部品の過去の故障確率及び全体故障確率推定処理部10Bで得られた装置の異常推定結果である過去の故障確率のうち、少なくとも当該装置の過去の故障確率を当該装置の将来の故障確率とし、当該装置の現在の故障確率の変化から前記将来の故障確率への到達を予測し、表示装置42などに表示し予報することにより、電力品質の悪化を未然に回避することができる。
Future failure probability = (a × year + b) × 100 (%) (6-1)
Future failure probability = (a × year 2 + b × year + c) × 100 (%) (6-2)
Future failure probability = (1 · exp (−a × year)) × 100 (%) (6-3)
That is, at least the past failure probability of the past failure probability which is the failure estimation result of the device obtained by the failure probability conversion processing unit 10A and the failure failure estimation result of the device obtained by the overall failure probability estimation processing unit 10B. Is assumed as the future failure probability of the device, the arrival of the future failure probability is predicted from the change in the current failure probability of the device, and is displayed on the display device 42 or the like to predict the power quality. Deterioration can be avoided in advance.

従って、この構成によれば、過去の故障確率から将来の故障確率を設定し、期間の経過とともに変化してくる現在の装置2の故障確率から当該装置2の異常や故障の前兆を的確に予測し、予報情報として出力することができる。   Therefore, according to this configuration, the future failure probability is set from the past failure probability, and an abnormality or a precursor of the failure of the device 2 is accurately predicted from the failure probability of the current device 2 that changes with the passage of time. And can be output as forecast information.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

例えば上記実施の形態では、装置2を構成する主要部品に供給される電電圧・電流の電気量に重畳される高調波から装置2の異常や故障の前兆を推定するが、この高調波に加えて、装置2や主要部品11a〜11dの動作を特長付ける例えば振動,回転数、騒音等を検知し、装置2の異常や故障の前兆を推定する際の補助データとして加えてもよい。   For example, in the above-described embodiment, an anomaly or a failure sign of the apparatus 2 is estimated from harmonics superimposed on the electric quantity of electric voltage / current supplied to the main components constituting the apparatus 2. Thus, for example, vibrations, rotation speeds, noises, and the like that characterize the operation of the device 2 and the main components 11a to 11d may be detected and added as auxiliary data when estimating an abnormality or a failure sign of the device 2.

2…負荷装置、3(3a,3b,3c,3d)…測定装置、4(4a,4b,4c,4d)…電圧、電流等の電気量、5(5a,5b,5c,5d)…伝送系、6…電力品質評価システム、7(7a,7b,7c,7d)…高調波異常推定結果、8(8a,8b,8c,8d)…故障推定装置、10…装置異常推定装置、10A…故障確率変換処理部、10B…全体故障確率推定処理部、11(11a,11b,11c,11d)…主要部品、21…高調波成分計算手段、21a…FFT処理部、22…データ記録手段、23…高調波成分一致度計算手段、23a…規格化計算処理部、23b…一致度計算処理部、24…高調波異常推定手段、24a…一致度並び替え処理部、24b…高調波異常抽出部、25…実測高調波成分計算結果、26…高調波異常データベース、27…高調波異常高調波成分、28…高調波異常パターン、29…高調波成分一致度、41…結果表示制御手段、42…表示装置、43…データ収集処理部、44…表示制御部、45…アラーム規定値。   2 ... load device, 3 (3a, 3b, 3c, 3d) ... measuring device, 4 (4a, 4b, 4c, 4d) ... electric quantity such as voltage and current, 5 (5a, 5b, 5c, 5d) ... transmission System 6 ... Power quality evaluation system 7 (7a, 7b, 7c, 7d) ... Harmonic abnormality estimation result, 8 (8a, 8b, 8c, 8d) ... Failure estimation device, 10 ... Device abnormality estimation device, 10A ... Failure probability conversion processing unit, 10B... Overall failure probability estimation processing unit, 11 (11a, 11b, 11c, 11d)... Main parts, 21... Harmonic component calculation means, 21a. ... harmonic component coincidence calculation means, 23a ... standardization calculation processing section, 23b ... coincidence degree calculation processing section, 24 ... harmonic abnormality estimation means, 24a ... coincidence rearrangement processing section, 24b ... harmonic abnormality extraction section, 25 ... Calculated harmonic component calculation result, 2 ... harmonic abnormality database, 27 ... harmonic abnormality harmonic component, 28 ... harmonic abnormality pattern, 29 ... harmonic component coincidence, 41 ... result display control means, 42 ... display device, 43 ... data collection processing unit, 44 ... Display control unit, 45 ... Alarm specified value.

Claims (8)

電力系統に接続される装置を構成する複数の部品から取り出す電圧、電流等の電気量をそれぞれ波形分析して得られる実測高調波成分計算結果と予め記憶される前記各部品の故障やその前兆となる異常を示す高調波異常と推定される高調波異常パターンからなる複数の高調波異常高調波成分との高調波成分一致度を計算し、各高調波成分一致度から前記各部品の故障やその前兆となる異常を示す高調波異常パターンを特定し、高調波異常推定結果として出力する部品対応の故障推定装置と、
各故障推定装置から出力される高調波異常推定結果をそれぞれ故障確率に変換する複数の故障確率変換処理手段と、
各故障確率変換処理手段によって変換された各部品の故障確率から前記装置の装置全体の異常推定値を取り出す全体故障確率推定処理手段と
を備えたことを特徴とする電力品質評価システム。
Measured harmonic component calculation results obtained by waveform analysis of electrical quantities such as voltages and currents taken out from a plurality of parts constituting a device connected to the power system, and failure of each part stored in advance and its precursor The harmonic component coincidence with a plurality of harmonic abnormality harmonic components composed of the harmonic abnormality pattern that is estimated to be a harmonic abnormality is calculated, and each component failure or its A fault estimation device corresponding to a component that identifies a harmonic abnormality pattern indicating an anomaly that is a precursor and outputs the harmonic abnormality estimation result;
A plurality of failure probability conversion processing means for converting the harmonic abnormality estimation results output from each failure estimation device into failure probabilities,
A power quality evaluation system, comprising: a total failure probability estimation processing means for extracting an abnormal estimated value of the entire apparatus from the failure probability of each part converted by each failure probability conversion processing means.
請求項1に記載の電力品質評価システムにおいて、
前記主要部品毎の故障推定装置は、電力系統から装置を構成する複数の部品から得られる電圧、電流等の電気量をそれぞれ波形分析し、高調波成分を計算する高調波成分計算手段と、予め前記各部品の故障やその前兆となる異常を示す高調波異常と推定される複数の高調波異常高調波成分を記憶する高調波異常データベースと、前記高調波成分計算手段で得られる実測高調波成分計算結果と前記高調波異常データベースに記憶される複数の高調波異常高調波成分との高調波成分一致度を計算する高調波成分一致度計算手段と、この高調波成分一致度計算手段で算出された各高調波成分一致度から前記各部品の故障やその前兆となる異常を示す高調波異常パターンを特定し、高調波異常推定結果として出力する高調波異常推定手段とを有することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1,
The failure estimation device for each major component is a harmonic component calculation means for analyzing the waveform of electric quantities such as voltage and current obtained from a plurality of components constituting the device from the power system, and calculating a harmonic component, Harmonic abnormality database storing a plurality of harmonic abnormal harmonic components estimated as harmonic abnormalities indicating failure of each component or abnormality that is a precursor thereof, and actually measured harmonic components obtained by the harmonic component calculating means The harmonic component coincidence calculating means for calculating the harmonic component coincidence between the calculation result and a plurality of harmonic abnormal harmonic components stored in the harmonic abnormality database, and the harmonic component coincidence calculating means Harmonic abnormality estimation means for identifying a harmonic abnormality pattern indicating a failure of each component or an abnormality that is a precursor thereof from each harmonic component coincidence and outputting the result as a harmonic abnormality estimation result. Power quality assessment system according to claim.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記部品毎の高調波成分一致度の高調波異常高調波成分をもつ高調波異常パターンについて、高調波成分一致度が高い高調波異常パターンの順番に表示装置に表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2,
About the harmonic abnormal pattern having harmonic abnormal harmonic components of the harmonic component matching degree for each component, the power quality is displayed on the display device in the order of the harmonic abnormal pattern having the higher harmonic component matching degree. Evaluation system.
請求項2に記載の電力品質評価システムにおいて、
前記高調波異常推定手段に代えて、前記高調波成分一致度計算手段から高調波異常パターン毎の高調波成分一致度を表示装置に表示するとともに、所定の時間毎に繰り返し前記高調波成分一致度を計算して前記表示装置に前記高調波異常パターンと高調波成分一致度との時系列的な変化を表示する結果表示制御手段を設けたことを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 2,
Instead of the harmonic abnormality estimation means, the harmonic component coincidence for each harmonic abnormality pattern is displayed on the display device from the harmonic component coincidence calculation means, and the harmonic component coincidence is repeated every predetermined time. And a result display control means for displaying a time-series change between the harmonic abnormality pattern and the harmonic component coincidence on the display device.
請求項1または請求項2に記載の電力品質評価システムにおいて、
前記故障確率変換処理手段で得られる各部品の故障確率及び前記全体故障確率推定処理手段で得られる前記装置の異常推定結果である故障確率をそれぞれ前記表示装置に表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 1 or 2,
The power quality, wherein the failure probability of each part obtained by the failure probability conversion processing means and the failure probability which is an abnormality estimation result of the device obtained by the overall failure probability estimation processing means are displayed on the display device, respectively. Evaluation system.
請求項5に記載の電力品質評価システムにおいて、
前記故障確率変換処理手段で得られる各部品の故障確率及び前記全体故障確率推定処理手段で得られる前記装置の異常推定結果である故障確率を、予め定められた期間に亘って折れ線グラフにより表示することを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 5,
The failure probability of each part obtained by the failure probability conversion processing means and the failure probability which is the abnormality estimation result of the device obtained by the overall failure probability estimation processing means are displayed in a line graph over a predetermined period. A power quality evaluation system characterized by this.
請求項5または請求項6に記載の電力品質評価システムにおいて、
前記故障確率変換処理手段で得られる各部品の故障確率及び前記全体故障確率推定処理手段で得られる前記装置の異常推定結果である故障確率のうち、少なくとも当該装置の故障確率が予め定められたアラーム規定値以上となったときに注意を喚起するアラーム情報を送出する手段を設けたことを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 5 or 6,
An alarm in which at least the failure probability of the device is determined in advance among the failure probability of each component obtained by the failure probability conversion processing means and the failure probability which is an abnormality estimation result of the device obtained by the overall failure probability estimation processing means An electric power quality evaluation system comprising means for sending alarm information to call attention when a specified value is exceeded.
請求項5または請求項6に記載の電力品質評価システムにおいて、
前記故障確率変換処理手段で得られた各部品の過去の故障確率及び前記全体故障確率推定処理手段で得られた前記装置の異常推定結果である過去の故障確率のうち、少なくとも当該装置の過去の故障確率を当該装置の将来の故障確率とし、当該装置の現在の故障確率の変化から前記将来の故障確率への到達を予測し出力する手段を設けたことを特徴とする電力品質評価システム。
In the electric power quality evaluation system according to claim 5 or 6,
Among the past failure probabilities of each device obtained by the failure probability conversion processing means and the past failure probability which is the abnormality estimation result of the device obtained by the overall failure probability estimation processing means, at least the past of the device A power quality evaluation system comprising a means for predicting and outputting the future failure probability from a change in the current failure probability of the device, with the failure probability as a future failure probability of the device.
JP2009124417A 2009-05-22 2009-05-22 Power quality evaluation system Expired - Fee Related JP5395509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124417A JP5395509B2 (en) 2009-05-22 2009-05-22 Power quality evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124417A JP5395509B2 (en) 2009-05-22 2009-05-22 Power quality evaluation system

Publications (2)

Publication Number Publication Date
JP2010273481A true JP2010273481A (en) 2010-12-02
JP5395509B2 JP5395509B2 (en) 2014-01-22

Family

ID=43421054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124417A Expired - Fee Related JP5395509B2 (en) 2009-05-22 2009-05-22 Power quality evaluation system

Country Status (1)

Country Link
JP (1) JP5395509B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345235A (en) * 2014-10-24 2015-02-11 国家电网公司 Method for judging whether distributed power supply connection public network model accords with national standard
CN104616090A (en) * 2014-11-19 2015-05-13 南昌大学 Risk evaluation based cable overhaul strategy method
KR20180078854A (en) * 2016-12-30 2018-07-10 동양대학교 산학협력단 Accident prevention system and preventive method of water distribution facility
CN112018760A (en) * 2020-08-27 2020-12-01 四川大学 Harmonic state estimation method based on asynchronous data
CN113346494A (en) * 2021-06-15 2021-09-03 国网河南省电力公司电力科学研究院 Locomotive probability load modeling method considering multiple harmonics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847660B (en) * 2018-06-06 2021-04-02 国电南瑞科技股份有限公司 Prevention control optimization decision method based on online checking of offline strategy of security control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217451A (en) * 1993-01-12 1994-08-05 Kansai Electric Power Co Inc:The Ground fault cause decision method for high voltage distribution line
JP2004341814A (en) * 2003-05-15 2004-12-02 Toshiba Corp Sil (safety-integrity levels) monitor and design supporting device using sil model
JP2005309077A (en) * 2004-04-21 2005-11-04 Fuji Xerox Co Ltd Fault diagnostic method, fault diagnostic system, transporting device, and image forming apparatus, and program and storage medium
JP2007323455A (en) * 2006-06-02 2007-12-13 Fuji Xerox Co Ltd System and method for supporting failure preventive diagnosis
JP2008191108A (en) * 2007-02-07 2008-08-21 Toshiba Corp System for evaluating quality of electric power
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217451A (en) * 1993-01-12 1994-08-05 Kansai Electric Power Co Inc:The Ground fault cause decision method for high voltage distribution line
JP2004341814A (en) * 2003-05-15 2004-12-02 Toshiba Corp Sil (safety-integrity levels) monitor and design supporting device using sil model
JP2005309077A (en) * 2004-04-21 2005-11-04 Fuji Xerox Co Ltd Fault diagnostic method, fault diagnostic system, transporting device, and image forming apparatus, and program and storage medium
JP2007323455A (en) * 2006-06-02 2007-12-13 Fuji Xerox Co Ltd System and method for supporting failure preventive diagnosis
JP2008191108A (en) * 2007-02-07 2008-08-21 Toshiba Corp System for evaluating quality of electric power
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345235A (en) * 2014-10-24 2015-02-11 国家电网公司 Method for judging whether distributed power supply connection public network model accords with national standard
CN104616090A (en) * 2014-11-19 2015-05-13 南昌大学 Risk evaluation based cable overhaul strategy method
CN104616090B (en) * 2014-11-19 2017-11-21 南昌大学 Cable Strategies of Maintenance method based on risk assessment
KR20180078854A (en) * 2016-12-30 2018-07-10 동양대학교 산학협력단 Accident prevention system and preventive method of water distribution facility
CN112018760A (en) * 2020-08-27 2020-12-01 四川大学 Harmonic state estimation method based on asynchronous data
CN113346494A (en) * 2021-06-15 2021-09-03 国网河南省电力公司电力科学研究院 Locomotive probability load modeling method considering multiple harmonics
CN113346494B (en) * 2021-06-15 2022-04-26 国网河南省电力公司电力科学研究院 Locomotive probability load modeling method considering multiple harmonics

Also Published As

Publication number Publication date
JP5395509B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5395509B2 (en) Power quality evaluation system
JP4751278B2 (en) Power quality monitoring system and method
Villalba et al. Hybrid demand model for load estimation and short term load forecasting in distribution electric systems
JP4061412B2 (en) System stability monitoring method and system for power system
JP4802129B2 (en) Power quality evaluation system
CN103828007A (en) Method and system for estimating transformer remaining life
DK2718673T3 (en) A method of analysis of the power consumption of a system having a plurality of electrical devices
JP4937205B2 (en) Power quality evaluation system
JP5127608B2 (en) Power quality evaluation system
JP5665250B2 (en) Power quality evaluation system
Music et al. Integrated power quality monitoring systems in smart distribution grids
CN110852509A (en) Fault prediction method and device of IGBT module and storage medium
Wang Estimating dynamic load parameters from ambient PMU measurements
Hassan et al. Comparative analysis of power quality monitoring systems
KR20120002291A (en) Power quality monitoring system and method thereof
JP5416668B2 (en) Monitoring system and monitoring method
JP4476832B2 (en) Power quality evaluation system and method
JP5578982B2 (en) Equipment failure evaluation system
Mao et al. A trend-oriented power system security analysis method based on load profile
JP5491751B2 (en) Power quality evaluation system
Sulla et al. Statistical analysis and forecasting of damping in the nordic power system
JP5932880B2 (en) Equipment failure evaluation equipment
JP2011122853A (en) Apparatus failure evaluation system
Mongiovì et al. Architectural criteria for a distributed energy monitoring system
Singh et al. Real-time automated event analysis and supervisory framework for power systems using synchrophasor measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R151 Written notification of patent or utility model registration

Ref document number: 5395509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees