JPH04127820A - Method of judging the cause of the ground fault of high-voltage distribution line - Google Patents

Method of judging the cause of the ground fault of high-voltage distribution line

Info

Publication number
JPH04127820A
JPH04127820A JP2324426A JP32442690A JPH04127820A JP H04127820 A JPH04127820 A JP H04127820A JP 2324426 A JP2324426 A JP 2324426A JP 32442690 A JP32442690 A JP 32442690A JP H04127820 A JPH04127820 A JP H04127820A
Authority
JP
Japan
Prior art keywords
zero
voltage
cause
distribution line
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2324426A
Other languages
Japanese (ja)
Other versions
JP2719732B2 (en
Inventor
Kazuyuki Zaike
財家 和幸
Motohiko Shimada
元彦 嶋田
Tokuo Tsuji
辻 篤男
Hiroshi Horino
浩 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI TEC KK
Kansai Electric Power Co Inc
Toko Seiki Co Ltd
Original Assignee
KANSAI TEC KK
Kansai Electric Power Co Inc
Toko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI TEC KK, Kansai Electric Power Co Inc, Toko Seiki Co Ltd filed Critical KANSAI TEC KK
Priority to JP2324426A priority Critical patent/JP2719732B2/en
Publication of JPH04127820A publication Critical patent/JPH04127820A/en
Application granted granted Critical
Publication of JP2719732B2 publication Critical patent/JP2719732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To simplify and secure maintenance and inspection work by specifying the cause of a ground fault to a cable when the waveform of zero-phase voltage is a step form wave or in a rectangular wave and the pulse of 0.1-1mS in width appears in a zero-phase current. CONSTITUTION:If a ground fault occurs in one or two lines of nongrounded three-phase AC type high-voltage distribution lines 22, zero-phase voltage V0, through a GPT10, and zero-phase current I0, through the ZCT 18 of a corresponding feeder, are detected respectively. And the zero-phase voltage V0 and the zero-phase current I0 are inputted into a waveform recording and analyzing device 20, and there the waveform is recorded, and also the frequency is analyzed. Moreover, recorded each phase is displayed on the CRT screen of the waveform recording and analyzing device 20. Hereupon, making it a judgment condition that the waveform of the zero-phase voltage V0 is a step form wave or a rectangular wave, and that the pulse 0.1-1mS in width appears in the zero- phase current I0, the cause of the ground fault is specified to a feeder 14.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、非接地三相交流式高圧配電線の地絡故障原因
を判別する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining the cause of a ground fault in an ungrounded three-phase AC high voltage distribution line.

[従来の技術] 高圧配電線の供給信頼度は既に相当高いレベルにあるが
、ケーブル、高圧ピンがいし、柱上変圧器、避雷器等の
用品の故障が原因となって地絡事故が発生する場合があ
る。配電線充電部分に対する鳥獣、蛇等の動物の接触が
原因となる地絡故障もある。竹や杉等の樹木の接触が原
因となる場合もある。
[Prior art] Although the supply reliability of high-voltage distribution lines is already at a fairly high level, ground faults may occur due to failures in cables, high-voltage pin insulators, pole transformers, lightning arresters, and other equipment. There is. There are also ground faults caused by animals such as birds, animals, and snakes coming into contact with live parts of power distribution lines. Contact with trees such as bamboo or cedar may also be the cause.

三相交流式高圧配電線の1線又は2線に地絡故障が発生
すると、非接地系配電線であっても零相電圧と零相電流
とが発生するので、従来は地絡方向継電器(67G)や
地絡過電圧継電器(64G)でこれらの故障の発生を検
知していた。この検知に基づいて該当配電線の自動開閉
器が開かれる。一定時限の後に再閉路がなされ、永久故
障の場合には再閉路失敗事故として再び自動開閉器が開
く。故障が瞬時的であって再閉路が成功した場合には、
自動開閉器が閉じたまま給電を続ける。
When a ground fault occurs in one or two wires of a three-phase AC high-voltage distribution line, zero-sequence voltage and zero-sequence current are generated even in non-grounded distribution lines. 67G) and ground fault overvoltage relays (64G) were used to detect the occurrence of these failures. Based on this detection, the automatic switch of the corresponding distribution line is opened. The circuit will be reclosed after a certain period of time, and in the case of a permanent failure, the automatic switch will open again as a reclosing failure accident. If the failure is instantaneous and reclosing is successful,
Power continues to be supplied with the automatic switch closed.

[発明が解決しようとする課題] さて、再開路の成功・失敗を問わず故障発生時には、そ
の原因物を探査してこれを確実に除去する必要がある。
[Problems to be Solved by the Invention] When a failure occurs, regardless of whether the reopening is successful or not, it is necessary to search for the cause of the failure and reliably remove it.

ところが、従来は零相電圧と零相電流との大きさと位相
とに基づいて地絡故障発生の有無を検知していただけで
あって、故障原因の特定まではできながった。したがっ
て、実際は高圧ピンがいしの絶縁不良によって地絡故障
が発生した場合であっても、故障原因を究明するために
他の用品を含む全ての用品を巡視点検する必要があった
。つまり、高圧ピンがいしに限らず、全てのケーブル、
全ての柱上変圧器、全ての避雷器等について異常の有無
を残らず調査しなければならなかったわけである。
However, in the past, the presence or absence of a ground fault was only detected based on the magnitude and phase of the zero-sequence voltage and zero-sequence current, and it was not possible to identify the cause of the fault. Therefore, even if a ground fault actually occurs due to poor insulation of the high-voltage pin insulator, it is necessary to carry out a thorough inspection of all equipment, including other equipment, in order to determine the cause of the failure. In other words, all cables, not just high voltage pin insulators,
This meant that all pole transformers, all lightning arresters, etc. had to be thoroughly investigated for abnormalities.

また、配電線充電部分に対する動物の接触を原因とする
地絡故障の場合には故障発生後に原因物が他の動物によ
って持ち去られることがあり、巡視点検作業が徒労に帰
すことがしばしばあった。
Furthermore, in the case of a ground fault caused by an animal coming into contact with a live part of a power distribution line, the faulty object may be carried away by another animal after the fault occurs, and patrol inspection work often ends up being a waste of effort.

また、探査範囲が広過ぎたために再開路成功地絡故障の
原因となった用品を捜し当てることができず、これを放
置しておいたために、同じ原因物が再閉路失敗となる重
大な永久故障を後に引き起こす場合があった。
In addition, because the search range was too wide, it was not possible to find the item that caused the ground fault, and the item was left unattended, resulting in a serious permanent failure due to the same item causing the failure. This may later occur.

本発明は、以上の点に鑑みてなされたものであって、高
圧配電線の保守・点検業務の簡素化及び確実化をはかる
ことを目的として、地絡故障原因の判別方法を提供する
ものである。
The present invention has been made in view of the above points, and provides a method for determining the cause of a ground fault failure, with the aim of simplifying and ensuring maintenance and inspection work for high-voltage distribution lines. be.

[課題を解決するための手段] 本発明に係る高圧配電線の地絡故障原因判別方法では、
地絡故障原因をケーブルに特定する場合、零相電圧の波
形が階段波形状又は矩形波形状になり、かつ、零相電流
にパルス幅0.1〜1mSのパルスが現われることを判
別条件とする。周波数分析の手法を用いる場合には、零
相電圧に大きな奇数次調波が含まれ、かつ、零相電流の
高調波成分のうち第5、第7及び第9調波が大きいこと
を判別条件とする。
[Means for Solving the Problem] In the method for determining the cause of a ground fault in a high-voltage distribution line according to the present invention,
When identifying the cause of a ground fault failure in a cable, the conditions for determining this are that the waveform of the zero-sequence voltage becomes a staircase waveform or a rectangular waveform, and that a pulse with a pulse width of 0.1 to 1mS appears in the zero-sequence current. . When using the frequency analysis method, the discrimination conditions are that the zero-sequence voltage contains large odd harmonics and that the 5th, 7th, and 9th harmonics of the harmonic components of the zero-sequence current are large. shall be.

地絡故障原因を高圧ピンがいしに特定する場合には、零
相電流の波頭に尖りが現われることを判別条件とする。
When identifying the cause of a ground fault failure as a high-voltage pin insulator, the condition for determination is that a peak appears at the wavefront of the zero-sequence current.

周波数分析の手法を用いる場合には、零相電流の高調波
成分のうち第3調波が大きく、かつ、第5及び第7調波
が小さいことを判別条件とする。更に零相電圧の波形を
故障原因の特定に利用する場合には、零相電圧の高調波
成分が小さいことを、これらの判別条件に対する追加の
論理積条件とする。
When using the frequency analysis method, the discrimination condition is that the third harmonic among the harmonic components of the zero-sequence current is large and the fifth and seventh harmonics are small. Furthermore, when the waveform of the zero-sequence voltage is used to identify the cause of a failure, an additional AND condition for these discrimination conditions is that the harmonic component of the zero-sequence voltage is small.

地絡故障原因を柱上変圧器等の絶縁油を用いる配電線配
備用品内の絶縁油の絶縁破壊に特定する場合には、零相
電流の波頭に丸みが現われることを判別条件とする。
When identifying the cause of a ground fault failure as dielectric breakdown of the insulating oil in a distribution line equipment that uses insulating oil, such as a pole transformer, the condition for determining this is that the wave crest of the zero-sequence current appears rounded.

地絡故障原因を避雷器に特定する場合には、零相電流に
間欠的高周波振動が現われることを判別条件とする。周
波数分析の手法を用いる場合には、零相電流の高調波成
分のうち第7及び第9調波が間欠的に大きくなることを
判別条件とする。
When identifying the cause of a ground fault failure as a lightning arrester, the condition for determining is that intermittent high-frequency vibration appears in the zero-sequence current. When using the frequency analysis method, the determination condition is that the seventh and ninth harmonics among the harmonic components of the zero-sequence current become intermittently large.

地絡故障原因を配電線充電部分に対する動物の接触に特
定する場合には、零相電流の波頭に凹みが現われること
を判別条件とする。周波数分析の手法を用いる場合には
、零相電流の高調波成分のうち第3調波が大きく、かつ
、第3、第5及び第7調波の順に零相電流の高調波成分
が小さくなることを判別条件とする。更に零相電圧の波
形を故障原因の特定に利用する場合には、零相電圧の高
調波成分が小さいことを、これらの判別条件に対する追
加の論理積条件とする。
When identifying the cause of a ground fault failure as contact of an animal with a live part of a distribution line, the condition for determination is that a dent appears in the wave crest of the zero-sequence current. When using the frequency analysis method, the third harmonic among the harmonic components of the zero-sequence current is large, and the harmonic components of the zero-sequence current become smaller in the order of the third, fifth, and seventh harmonics. This is the determination condition. Furthermore, when the waveform of the zero-sequence voltage is used to identify the cause of a failure, an additional AND condition for these discrimination conditions is that the harmonic component of the zero-sequence voltage is small.

地絡故障原因を配電線光・型部分に対する樹木の接触に
特定する場合には、零相電圧及び零相電流のいずれも高
調波成分が小さいことを判別条件とする。
When identifying the cause of a ground fault as the contact of a tree with the light/form part of the distribution line, the discrimination condition is that the harmonic components of both the zero-sequence voltage and zero-sequence current are small.

[作 用] 本願発明者らは、配電用変電所での実際の地絡事故波形
の収集及び模擬高圧配電線での故障再現実験の実施を通
して得た零相電圧及び零相電流の波形データに周波数分
析及びクラスター分析を施した結果、両波形に地絡故障
原因の相違に基づく固有の特徴があることを見出だした
[Function] The inventors of the present application used waveform data of zero-sequence voltage and zero-sequence current obtained through collecting actual ground fault waveforms at distribution substations and conducting failure reproduction experiments on simulated high-voltage distribution lines. As a result of frequency analysis and cluster analysis, it was found that both waveforms have unique characteristics based on the differences in the causes of ground faults.

本発明に係る高圧配電線の地絡故障原因判別方法では、
この特徴に基づいて、地絡故障がケーブル、高圧ビンが
いし、柱上変圧器又は避雷器の各用品の故障に由来する
場合に故障原因を各用品に特定することができるだけで
なく、地絡故障が配電線充電部分に対する動物又は樹木
の接触に由来する場合でも故障原因を特定することがで
きる。
In the method for determining the cause of ground fault failure in high-voltage distribution lines according to the present invention,
Based on this characteristic, when a ground fault is caused by a fault in each component such as a cable, high-voltage bottle insulator, pole transformer, or lightning arrester, it is not only possible to identify the cause of the fault to each component, but also to identify the cause of the fault in each component. The cause of the failure can be identified even if it is caused by contact of an animal or tree with a live part of the distribution line.

[実施例] 第1図は、本発明の実施例に係る高圧配電線の地絡故障
原因判別方法が適用される非接地三相交流式高圧配電線
の例を示す単線結線図である。
[Example] FIG. 1 is a single line diagram showing an example of an ungrounded three-phase AC high voltage distribution line to which a method for determining the cause of a ground fault failure in a high voltage distribution line according to an example of the present invention is applied.

66kVの三相送電線2が配電用変電所4に導入されて
主変圧器6の1次側に接続される。
A 66 kV three-phase power transmission line 2 is introduced into a distribution substation 4 and connected to the primary side of a main transformer 6.

主変圧器6は、1次側、2次側とも巻線がデルタ結線で
あって、変圧比が66kV/6.6kVである。主変圧
器6の2次側には、変電所内の母線8が接続されるとと
もに、零相電圧V。
The main transformer 6 has delta-connected windings on both the primary and secondary sides, and has a transformation ratio of 66 kV/6.6 kV. A bus 8 in the substation is connected to the secondary side of the main transformer 6, and a zero-phase voltage V is connected to the secondary side of the main transformer 6.

の検出のためのGPTIOの1次側が接続される。The primary side of GPTIO for detection of is connected.

GPTIOの巻線は、1次側が中性点接地のスター結線
であり、2次側がプロークンデルタ結線である。この2
次側プロークンデルタ巻線は、抵抗器12で閉じられて
いる。母線8からは、複数のフィーダ14がそれぞれ自
動開閉器16を介して引き出されている。各フィーダ1
4には零相電流Ioの検出のためにZC718が設けら
れる。
The GPTIO winding has a star connection with a neutral point grounded on the primary side, and a broken delta connection on the secondary side. This 2
The next broken delta winding is closed with a resistor 12. A plurality of feeders 14 are drawn out from the bus bar 8 via automatic switches 16, respectively. Each feeder 1
4 is provided with a ZC718 for detecting the zero-phase current Io.

このZCTIIIの零相電流Ioの出力は、GPTlO
の2次側巻線に接続された抵抗器12の零相電圧V。の
出力とともに、波形記録分析装置20に入力される。各
フィーダー4は、高圧配電線22として変電所4から引
き出されている。高圧配電線22にはケーブル、高圧ピ
ンがいし、柱上変圧器、避雷器等の不図示の用品か使用
されている。
The output of the zero-sequence current Io of this ZCTIII is GPTlO
The zero-sequence voltage V of the resistor 12 connected to the secondary winding of. It is input to the waveform recording analysis device 20 along with the output of. Each feeder 4 is drawn out from the substation 4 as a high voltage distribution line 22. The high-voltage distribution line 22 uses cables, high-voltage pin insulators, pole transformers, lightning arresters, and other unillustrated equipment.

この非接地三相交流式高圧配電線22の1線又は2線に
地絡故障が発生する(地絡事故点を符号24で示す。)
と、G P T 10を通して零相電圧Voが、該当フ
ィーダー4のZCT18を通して零相電流工。がそれぞ
れ検出される。これらの零相電圧V 及び零相電流I。
A ground fault occurs in one or two wires of this ungrounded three-phase AC high-voltage distribution line 22 (the ground fault point is indicated by reference numeral 24).
Then, the zero-sequence voltage Vo is passed through the GPT 10, and the zero-sequence current is passed through the ZCT 18 of the corresponding feeder 4. are detected respectively. These zero-sequence voltage V and zero-sequence current I.

は、不図示の前記地絡方向継電器や地絡過電圧継電器に
入力されるだけでなく、波形記録分析装置20によって
波形が記録されるとともに周波数分析される。また、記
録された各波形が波形記録分析装置20のCRT画面に
表示される。
is not only input to the ground fault direction relay and ground fault overvoltage relay (not shown), but also its waveform is recorded and frequency analyzed by the waveform recording and analysis device 20. Further, each recorded waveform is displayed on the CRT screen of the waveform recording and analysis device 20.

第2図(a) (b)は、高圧配電線22におけるケー
ブル地絡故障の場合の零相電圧■。と零相電流Ioとの
波形図である。
FIGS. 2(a) and 2(b) show the zero-sequence voltage ■ in the case of a cable ground fault in the high-voltage distribution line 22. and a zero-sequence current Io.

同図(a) (b)に示すように零相電圧V。の波形が
階段波形状又は矩形波形状になり、かつ、零相電流■o
にパルス幅0.1〜1mSのパルスが現われることを判
別条件として地絡故障原因をケーブルに特定する。周波
数分析の手法を用いる場合には、零相電圧■。に大きな
奇数次調波か含まれ、かつ、零相電流1oの高調波成分
のうち第5、第7及び第9調波が大きいことを判別条件
とする。
As shown in (a) and (b) of the same figure, the zero-sequence voltage V. The waveform becomes a staircase waveform or a rectangular waveform, and the zero-sequence current ■o
The cause of the ground fault is identified in the cable, with the condition that a pulse with a pulse width of 0.1 to 1 mS appears in the cable. When using the frequency analysis method, the zero-sequence voltage■. The determination conditions are that the current 1o contains large odd-numbered harmonics, and that the fifth, seventh, and ninth harmonics among the harmonic components of the zero-sequence current 1o are large.

第3図(a)(b)は、高圧ピンがいしの地絡故障の場
合の零相電圧V と零相電流■。との波形図である。
Figures 3(a) and 3(b) show the zero-sequence voltage V and zero-sequence current in the case of a ground fault in the high-voltage pin insulator. FIG.

同図(b)に示すように零相電流I。の波頭に尖りが現
われることを判別条件として地絡故障原因を高圧ピンが
いしに特定する。周波数分析の手法を用いる場合には、
零相電流!。の高調波成分のうち第3調波が大きく、か
つ、第5及び第7調波が小さいことを判別条件とする。
As shown in the figure (b), the zero-sequence current I. The cause of the ground fault failure is identified in the high-voltage pin insulator, using the presence of a peak at the top of the wave as a discrimination condition. When using frequency analysis techniques,
Zero sequence current! . The determination condition is that the third harmonic among the harmonic components of is large and the fifth and seventh harmonics are small.

更に零相電圧■。の波形を故障原因の特定に利用する場
合には、零相電圧Voの高調波成分が小さいことを、こ
れらの判別条件に対する追加の論理積条件とする。
Furthermore, the zero-sequence voltage■. When using the waveform for identifying the cause of a failure, an additional AND condition for these discrimination conditions is that the harmonic component of the zero-phase voltage Vo is small.

第4図(a)(b)は、柱上変圧器中の絶縁油の絶縁破
壊による地絡故障の場合の零相電圧V。と零相電流■。
FIGS. 4(a) and 4(b) show the zero-sequence voltage V in the case of a ground fault caused by dielectric breakdown of the insulating oil in the pole transformer. and zero-sequence current■.

との波形図である。また、第5図(a) (b)は、そ
れぞれ第4図(a) (b)の時間軸拡大図である。
FIG. Moreover, FIGS. 5(a) and 5(b) are respectively enlarged time-axis views of FIGS. 4(a) and 4(b).

模擬高圧配電線を利用した次の方法によって、6.6k
V柱上変圧器内の絶縁油の絶縁破壊による地絡故障を再
現した。すなわち、容器内部に柱上変圧器内の劣化が進
んだ絶縁油600cCを採取し、これに若干量の水を加
えて絶縁抵抗を低下させたうえで容器内に一方を接地し
た2つの電極を装置し、これらの電極間に模擬変電所か
ら対地電圧3.8kVを課電して油中放電を発生させた
。この絶縁油の絶縁破壊が1線地絡故障となる。この故
障時の模擬変電所における零相電圧V と零相電流I。
6.6k by the following method using a simulated high-voltage distribution line.
A ground fault caused by dielectric breakdown of the insulating oil in a V-pole transformer was reproduced. In other words, 600 cC of the deteriorated insulating oil from the pole transformer was collected inside the container, a small amount of water was added to this to lower the insulation resistance, and two electrodes were placed in the container with one end grounded. A ground voltage of 3.8 kV was applied between these electrodes from a simulated substation to generate an oil discharge. This dielectric breakdown of the insulating oil causes a one-wire ground fault. Zero-sequence voltage V and zero-sequence current I in the simulated substation at the time of this failure.

との波形を記録した。たたし、他の全フィーダの高圧配
電線を模擬した母線側挿入静電容量C1を2.5μFと
し、当該フィーダの高圧配電線を模擬した線路側の挿入
静電容量C2を0.5μFとした。
The waveform was recorded. However, the insertion capacitance C1 on the bus bar side simulating the high voltage distribution lines of all other feeders is 2.5 μF, and the insertion capacitance C2 on the line side simulating the high voltage distribution lines of the feeder is 0.5 μF. did.

上記第4図(a) (b)及び第5図(aHb)は、こ
のようにして得られた絶縁油の絶縁破壊による地絡故障
の場合の零相電圧V と零相電流I。との波形図である
The above-mentioned FIGS. 4(a), (b) and 5(aHb) show the zero-sequence voltage V and zero-sequence current I in the case of a ground fault caused by dielectric breakdown of the insulating oil obtained in this way. FIG.

第4図(b)及び第5図(b)に示すように絶縁油の絶
縁破壊の場合の零相電流I。の波形は、第3図(b)に
示す高圧ピンがいしの地絡故障波形と非常に似通ってい
て判別が難しいが、高圧ピンがいしの場合は波頭が尖る
のに対して絶縁油の場合は波頭が丸みを帯びた独特の波
形になっている。つまり、零相電流loの波頭に丸みが
現われることを判別条件として地絡故障原因を絶縁油の
絶縁破壊に特定することができる。
Zero-sequence current I in the case of dielectric breakdown of insulating oil as shown in FIGS. 4(b) and 5(b). The waveform is very similar to the ground fault waveform of the high-voltage pin insulator shown in Figure 3 (b) and is difficult to distinguish, but in the case of the high-voltage pin insulator, the wave crest is sharp, whereas in the case of insulating oil, the wave crest is sharp. has a unique rounded waveform. In other words, the cause of the ground fault can be identified as dielectric breakdown of the insulating oil, using the appearance of roundness at the wavefront of the zero-sequence current lo as a discrimination condition.

第6図(a) (b)は、ギャップ付き避雷器の地絡故
障の場合の零相電圧V と零相電流■。との波形図であ
る。
Figures 6(a) and 6(b) show the zero-sequence voltage V and zero-sequence current in the case of a ground fault in a gap arrester. FIG.

同図(b)に示すように零相電流I。に5mS〜16m
5の継続時間の間欠的高周波振動が現われることを判別
条件として地絡故障原因を避雷器に特定する。周波数分
析の手法を用いる場合には、零相電流I。の高調波成分
のうち第7及び第9調波が間欠的に大きくなることを判
別条件とする。この間欠的高周波振動の発生は、避雷器
の故障の前兆であって、零相電流I。の大きさが100
mA〜数A程度の微小領域である。したがって、この避
雷器の微地絡は、従来の地絡方向継電器では検知できな
かった。ところが、本方法によれば、この微地絡でさえ
検知でき、両継電器が動作して停電に至る前に対処する
ことが可能になる。
As shown in the figure (b), the zero-sequence current I. 5mS to 16m
The cause of the ground fault failure is identified in the lightning arrester using the appearance of intermittent high-frequency vibrations with a duration of 5 as a discrimination condition. When using the frequency analysis method, the zero-sequence current I. The determination condition is that the 7th and 9th harmonics of the harmonic components become intermittently large. The occurrence of this intermittent high-frequency vibration is a sign of failure of the lightning arrester, and the zero-sequence current I. The size of is 100
It is a minute area of about mA to several A. Therefore, this slight ground fault in the lightning arrester could not be detected by the conventional ground fault directional relay. However, according to the present method, even this slight ground fault can be detected and can be dealt with before both relays operate and a power outage occurs.

第7図(a) (b)は、高圧配電線22の充電部分に
対する動物の接触を原因とする地絡故障の場合の零相電
圧V と零相電流I。との波形図である。
FIGS. 7(a) and 7(b) show the zero-sequence voltage V and the zero-sequence current I in the case of a ground fault caused by contact of an animal with a live part of the high-voltage distribution line 22. FIG.

同図(b)に示すように零相電流I。の波頭に凹みが現
われることを判別条件として、地絡故障原因を配電線充
電部分に対する動物の接触に特定する。周波数分析の手
法を用いる場合には、零相電流I。の高調波成分のうち
第3調波か大きく、かつ、第3、第5及び第7調波の順
に零相電流IOの高調波成分か小さくなることを判別条
件とする。更に零相電圧V。の波形を故障原因の特定に
利用する場合には、零相電圧V。
As shown in the figure (b), the zero-sequence current I. The cause of the ground fault is determined to be contact of an animal with a live part of the distribution line, using the presence of a dent in the crest of the wave. When using the frequency analysis method, the zero-sequence current I. The determination condition is that the third harmonic among the harmonic components of is larger, and the harmonic components of the zero-sequence current IO are smaller in the order of the third, fifth, and seventh harmonics. Furthermore, the zero-sequence voltage V. When using the waveform of V to identify the cause of failure, zero-sequence voltage V.

の高調波成分が小さいことを、これらの判別条件に対す
る追加の論理積条件とする。
An additional AND condition for these discrimination conditions is that the harmonic component of is small.

第8図(a) (b)は、高圧配電線22の充電部分に
対する樹木の接触を原因とする地絡故障の場合の零相電
圧V と零相電流I。との波形図である。
FIGS. 8(a) and 8(b) show the zero-sequence voltage V and zero-sequence current I in the case of a ground fault caused by a tree contacting a live part of the high-voltage distribution line 22. FIG.

同図(a) (b)に示すように零相電圧■。及び零相
電流IOのいずれも高調波成分が小さいことを判別条件
として、地絡故障原因を配電線充電部分に対する樹木の
接触に特定する。
As shown in (a) and (b) of the same figure, the zero-sequence voltage ■. The cause of the ground fault failure is determined to be contact of a tree with a live portion of the distribution line, using the condition that the harmonic components of both the zero-sequence current IO and the zero-sequence current IO are small.

なお、上記条件にしたがって波形記録分析装置20に故
障原因を自動判別させ、この判別結果に基づいて故障原
因ごとに設けたランプを点灯させでも良い。また、故障
発生時刻を表示すると好都合である。
Note that the waveform record analysis device 20 may automatically determine the cause of failure according to the above conditions, and a lamp provided for each cause of failure may be lit based on the determination result. It is also convenient to display the time when the failure occurred.

[発明の効果] 以上に説明したように、本発明に係る高圧配電線の地絡
故障原因判別方法は、地絡故障時に発生する零相電圧及
び零相電流の波形に故障原因の相違に基づく固有の特徴
があることを利用しているから、地絡故障がケーブル、
高圧ピンがいし、柱上変圧器又は避雷器の各用品の故障
に由来する場合に故障原因を各用品に特定することがで
きるだけでなく、地絡故障が配電線充電部分に対する動
物又は樹木の接触に由来する場合でも故障原因を特定す
ることができる。
[Effects of the Invention] As explained above, the method for determining the cause of a ground fault fault in a high-voltage distribution line according to the present invention is based on the difference in the cause of the fault in the waveforms of zero-sequence voltage and zero-sequence current that occur at the time of a ground fault fault. Because it takes advantage of its unique characteristics, ground faults can be caused by cables,
Not only can the cause of failure be identified to each item when it is caused by failure of each item such as high-voltage pin insulators, pole transformers, or lightning arresters, but also ground faults can be caused by contact of animals or trees with live parts of distribution lines. The cause of failure can be identified even when

したがって、本発明の方法によって例えば地絡故障の原
因を高圧ビンがいしに特定した場合には、どの高圧ピン
がいしに異常が発生したのかを探査するだけで良く、ケ
ーブル、柱上変圧器、避雷器等地の用品を巡視点検する
必要はない。また、本発明の方法によって地絡故障の原
因を配電線充電部分に対する動物又は樹木の接触に特定
した場合には、配電線上の用品を点検する必要がない。
Therefore, when the cause of a ground fault is determined to be a high-voltage pin insulator using the method of the present invention, it is only necessary to investigate which high-voltage pin has caused the abnormality, such as cables, pole transformers, lightning arresters, etc. There is no need to inspect local supplies. Furthermore, if the method of the present invention identifies the cause of the ground fault as contact of an animal or tree with a live portion of the distribution line, there is no need to inspect items on the distribution line.

このように故障原因の探査範囲の絞り込みができるので
、早期かつ容易に地絡故障の原因究明ができる。つまり
、保守・点検業務の簡素化及び確実化をはかることかで
き、ひいては重大故障の未然防止をはかることもてきる
。また、従来の継電器では検知できなかった微地絡でさ
え検知でき、この継電器の動作による停電の前にこれに
対処することが可能になる。
Since the investigation range for the cause of failure can be narrowed down in this way, the cause of the ground fault can be investigated quickly and easily. In other words, it is possible to simplify and ensure maintenance and inspection work, and it is also possible to prevent serious failures. Furthermore, it is possible to detect even slight ground faults that could not be detected with conventional relays, making it possible to deal with them before a power outage occurs due to the operation of this relay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る高圧配電線の地絡故障
原因判別方法が適用される非接地三相交流式高圧配電線
の例を示す単線結線図、第2図(a)(b)は、ケーブ
ル地絡故障の場合の零相電圧と零相電流との波形図、 第3図(a) (b)は、高圧ビンがいしの地絡故障の
場合の零相電圧と零相電流との波形図、第4図(a) 
(b)は柱上変圧器中の絶縁油の絶縁破壊による地絡故
障の場合の零相電圧と零相電流との波形図、 第5図(a) (b)は前回の波形図の時間軸拡大図、
第6図(a) (b)は、避雷器の地絡故障の場合の零
相電圧と零相電流との波形図、 第7図(a> (b)は、配電線充電部分に対する動物
の接触を原因とする地絡故障の場合の零相電圧と零相電
流との波形図、 第8図(a)(b)は、配電線充電部分に対する樹木の
接触を原因とする地絡故障の場合の零相電圧と零相電流
との波形図である。 符号の説明 2・・・送電線、4・・・配電用変電所、6・・・主変
圧器、10・・・GPTSlB・・・自動開閉器、I8
・・・ZCT。 20・・・波形記録分析装置、22・・・高圧配電線、
24・・・地絡事故点。 第2図 第5図 第6図
FIG. 1 is a single-line diagram showing an example of an ungrounded three-phase AC high-voltage distribution line to which the method for determining the cause of a ground fault failure in a high-voltage distribution line according to an embodiment of the present invention is applied, and FIG. b) is a waveform diagram of the zero-sequence voltage and zero-sequence current in the case of a cable ground fault, and Figure 3 (a) and (b) are the zero-sequence voltage and zero-sequence current in the case of a ground fault in the high-voltage bottle insulator. Waveform diagram with current, Figure 4 (a)
(b) is a waveform diagram of the zero-sequence voltage and zero-sequence current in the case of a ground fault caused by dielectric breakdown of the insulating oil in the pole transformer. Figure 5 (a) and (b) are the times of the previous waveform diagram. Enlarged view of the axis,
Figure 6 (a) and (b) are waveform diagrams of zero-sequence voltage and zero-sequence current in the case of a ground fault in a lightning arrester. Figure 8 (a) and (b) are waveform diagrams of zero-sequence voltage and zero-sequence current in the case of a ground fault caused by a ground fault. It is a waveform diagram of the zero-sequence voltage and zero-sequence current of. Explanation of symbols 2...Power transmission line, 4...Distribution substation, 6...Main transformer, 10...GPTSlB... Automatic switch, I8
...ZCT. 20... Waveform recording analysis device, 22... High voltage distribution line,
24... Ground fault point. Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、非接地三相交流式高圧配電線の零相電圧と零相電流
とを検出し、零相電圧の波形が階段波形状又は矩形波形
状になり、かつ、零相電流にパルス幅0.1〜1mSの
パルスが現われることを条件として、地絡故障原因をケ
ーブルに特定する高圧配電線の地絡故障原因判別方法。 2、非接地三相交流式高圧配電線の零相電圧と零相電流
とを検出し、零相電圧に大きな奇数次調波が含まれ、か
つ、零相電流の高調波成分のうち第5、第7及び第9調
波が大きいことを条件として、地絡故障原因をケーブル
に特定する高圧配電線の地絡故障原因判別方法。 3、非接地三相交流式高圧配電線の零相電流を検出し、
この零相電流の波頭に尖りが現われることを条件として
、地絡故障原因を高圧ピンがいしに特定する高圧配電線
の地絡故障原因判別方法。 4、非接地三相交流式高圧配電線の零相電流を検出し、
零相電流の高調波成分のうち第3調波が大きく、かつ、
第5及び第7調波が小さいことを条件として、地絡故障
原因を高圧ピンがいしに特定する高圧配電線の地絡故障
原因判別方法。 5、非接地三相交流式高圧配電線の零相電圧を更に検出
し、零相電圧の高調波成分が小さいことを、地絡故障原
因を高圧ピンがいしに特定するための追加の論理積条件
とする請求項3又は4に記載の高圧配電線の地絡故障原
因判別方法。 6、非接地三相交流式高圧配電線の零相電流を検出し、
この零相電流の波頭に丸みが現われることを条件として
、地絡故障原因を配電線配備用品内の絶縁油の絶縁破壊
に特定する高圧配電線の地絡故障原因判別方法。 7、非接地三相交流式高圧配電線の零相電流を検出し、
この零相電流に間欠的高周波振動が現われることを条件
として、地絡故障原因を避雷器に特定する高圧配電線の
地絡故障原因判別方法。 8、非接地三相交流式高圧配電線の零相電流を検出し、
零相電流の高調波成分のうち第7及び第9調波が間欠的
に大きくなることを条件として、地絡故障原因を避雷器
に特定する高圧配電線の地絡故障原因判別方法。 9、非接地三相交流式高圧配電線の零相電流を検出し、
この零相電流の波頭に凹みが現われることを条件として
、地絡故障原因を配電線充電部分に対する動物の接触に
特定する高圧配電線の地絡故障原因判別方法。 10、非接地三相交流式高圧配電線の零相電流を検出し
、零相電流の高調波成分のうち第3調波が大きく、かつ
、第3、第5及び第7調波の順に零相電流の高調波成分
が小さくなることを条件として、地絡故障原因を配電線
充電部分に対する動物の接触に特定する高圧配電線の地
絡故障原因判別方法。 11、非接地三相交流式高圧配電線の零相電圧を更に検
出し、零相電圧の高調波成分が小さいことを、地絡故障
原因を配電線充電部分に対する動物の接触に特定するた
めの追加の論理積条件とする請求項9又は10に記載の
高圧配電線の地絡故障原因判別方法。 12、非接地三相交流式高圧配電線の零相電圧と零相電
流とを検出し、零相電圧及び零相電流のいずれも高調波
成分が小さいことを条件として、地絡故障原因を配電線
充電部分に対する樹木の接触に特定する高圧配電線の地
絡故障原因判別方法。
[Claims] 1. Zero-sequence voltage and zero-sequence current of an ungrounded three-phase AC high-voltage distribution line are detected, and the waveform of the zero-sequence voltage has a staircase waveform or a rectangular waveform, and A method for determining the cause of a ground fault in a high-voltage distribution line, which identifies the cause of a ground fault in a cable, on the condition that a pulse with a pulse width of 0.1 to 1 mS appears in the current. 2. Detect the zero-sequence voltage and zero-sequence current of an ungrounded three-phase AC high-voltage distribution line, and detect if the zero-sequence voltage contains large odd harmonics and the fifth harmonic component of the zero-sequence current. , a method for determining the cause of a ground fault in a high-voltage distribution line, which identifies the cause of the fault in the cable, on the condition that the seventh and ninth harmonics are large. 3. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
A method for determining the cause of a ground fault in a high-voltage power distribution line, which identifies the cause of the fault as a high-voltage pin insulator, on the condition that a peak appears at the wave crest of this zero-sequence current. 4. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
The third harmonic among the harmonic components of the zero-sequence current is large, and
A method for determining the cause of a ground fault in a high-voltage power distribution line, which identifies the cause of the fault as a high-voltage pin insulator, on the condition that the fifth and seventh harmonics are small. 5. Further detect the zero-sequence voltage of the ungrounded three-phase AC high-voltage distribution line, and if the harmonic component of the zero-sequence voltage is small, add an additional logical product condition to identify the cause of the ground fault failure as the high-voltage pin interlock. The method for determining the cause of a ground fault in a high-voltage distribution line according to claim 3 or 4. 6. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
A method for determining the cause of a ground fault in a high-voltage distribution line, which specifies the cause of the ground fault as dielectric breakdown of insulating oil in the distribution line equipment, on the condition that a roundness appears in the wave crest of this zero-sequence current. 7. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
A method for determining the cause of a ground fault in a high-voltage distribution line, which identifies the cause of the fault in a lightning arrester on the condition that intermittent high-frequency vibration appears in this zero-sequence current. 8. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
A method for determining the cause of a ground fault in a high-voltage power distribution line, in which the cause of the fault in a ground fault is identified as a lightning arrester, on the condition that the seventh and ninth harmonics among the harmonic components of a zero-sequence current become intermittently large. 9. Detect the zero-sequence current of the ungrounded three-phase AC high-voltage distribution line,
A method for determining the cause of a ground fault in a high-voltage power distribution line, which identifies the cause of the fault as an animal contacting a live part of the power distribution line, on the condition that a dent appears in the wavefront of this zero-sequence current. 10. Detect the zero-sequence current of an ungrounded three-phase AC high-voltage power distribution line, and determine if the third harmonic among the harmonic components of the zero-sequence current is large and the third, fifth, and seventh harmonics are zero in that order. A method for determining the cause of a ground fault in a high-voltage power distribution line, which identifies the cause of the fault as an animal's contact with a live part of the power distribution line, on the condition that the harmonic components of the phase current become small. 11. Further detect the zero-sequence voltage of the ungrounded three-phase AC high-voltage distribution line, and confirm that the harmonic component of the zero-sequence voltage is small in order to identify the cause of the ground fault failure as an animal contacting the live part of the distribution line. 11. The method for determining the cause of a ground fault in a high-voltage distribution line according to claim 9 or 10, wherein an additional AND condition is used. 12. Detect the zero-sequence voltage and zero-sequence current of an ungrounded three-phase AC high-voltage distribution line, and determine the cause of the ground fault on the condition that the harmonic components of both the zero-sequence voltage and zero-sequence current are small. A method for determining the cause of ground faults in high-voltage distribution lines by identifying the contact of trees with live parts of the wires.
JP2324426A 1990-06-06 1990-11-26 Method and apparatus for determining ground fault failure cause in high-voltage distribution line Expired - Lifetime JP2719732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324426A JP2719732B2 (en) 1990-06-06 1990-11-26 Method and apparatus for determining ground fault failure cause in high-voltage distribution line

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-148148 1990-06-06
JP14814890 1990-06-06
JP2324426A JP2719732B2 (en) 1990-06-06 1990-11-26 Method and apparatus for determining ground fault failure cause in high-voltage distribution line

Publications (2)

Publication Number Publication Date
JPH04127820A true JPH04127820A (en) 1992-04-28
JP2719732B2 JP2719732B2 (en) 1998-02-25

Family

ID=26478460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324426A Expired - Lifetime JP2719732B2 (en) 1990-06-06 1990-11-26 Method and apparatus for determining ground fault failure cause in high-voltage distribution line

Country Status (1)

Country Link
JP (1) JP2719732B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
JP2010029003A (en) * 2008-07-22 2010-02-04 Toshiba Corp Power quality evaluation system
JP2012108080A (en) * 2010-11-19 2012-06-07 Hasegawa Denki Kogyo Kk Ground fault detector for ungrounded ac circuit
JP2017131006A (en) * 2016-01-19 2017-07-27 東京電力ホールディングス株式会社 Power system accident cause estimation device
JP2018125912A (en) * 2017-01-30 2018-08-09 学校法人鶴学園 Ground fault factor discrimination device
CN111751659A (en) * 2020-06-29 2020-10-09 深圳供电局有限公司 Zero-phase current wiring method and system for judging wave recorder based on power grid fault wave recording diagram

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378420A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Device for monitoring abnormal state of distribution line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378420A (en) * 1989-08-17 1991-04-03 Kyushu Electric Power Co Inc Device for monitoring abnormal state of distribution line

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
JP2010029003A (en) * 2008-07-22 2010-02-04 Toshiba Corp Power quality evaluation system
JP2012108080A (en) * 2010-11-19 2012-06-07 Hasegawa Denki Kogyo Kk Ground fault detector for ungrounded ac circuit
JP2017131006A (en) * 2016-01-19 2017-07-27 東京電力ホールディングス株式会社 Power system accident cause estimation device
JP2018125912A (en) * 2017-01-30 2018-08-09 学校法人鶴学園 Ground fault factor discrimination device
CN111751659A (en) * 2020-06-29 2020-10-09 深圳供电局有限公司 Zero-phase current wiring method and system for judging wave recorder based on power grid fault wave recording diagram

Also Published As

Publication number Publication date
JP2719732B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
CN201408236Y (en) Power distribution network failure locating device
CN200953470Y (en) Small current grounding wire selecting device for neutral point non-effective ground connection system
CN108376966B (en) Method and system for analyzing correlation relationship between misoperation-preventive locking logic intervals of intelligent substation
CN103474981B (en) A kind of distribution network single-phase ground protection method based on the multistage differential transformation direction of zero-sequence current
CN105743072A (en) High-voltage electric circuit protection system for electric motor train unit
Tavares et al. Voltage harmonic content of long artificially generated electrical arc in out-door experiment at 500 kV towers
JP2000050488A (en) Method for discrimination cause of ground failure of high-voltage power distribution line
CN202486278U (en) Power distribution network cable insulation detection system
JPH04127820A (en) Method of judging the cause of the ground fault of high-voltage distribution line
JP2019032315A (en) Grounding factor determination method
CN103983890B (en) Search method for fault points generated due to the influence of alternating current crosstalk on relay and test circuit
Hanninen et al. Earth faults and related disturbances in distribution networks
CN206096309U (en) Ferroresonance detects and prevention and cure combined test platform
CN211236182U (en) Device for searching generator stator bar ground fault point
JPH06217451A (en) Ground fault cause decision method for high voltage distribution line
CN110618343A (en) Device and method for searching generator stator bar ground fault point
CN100539353C (en) Be applicable to the selection method of fast automatic arc suppression coil earthing system
JPH0698457A (en) Cause judgment method of ground fault of high-voltage distribution line
Sonwane et al. Fault detection and autoline distribution system with Gsm module
Patterson et al. A practical improvement to stator ground fault protection using negative sequence current
JP3649365B2 (en) Unipolar intermittent arc optical ground fault test equipment
CN110007187A (en) The line selection apparatus of intelligence tripping outlet
CN219552603U (en) Synchronous wave recording system of gas turbine generator and steam turbine generator
Stewart et al. Conducted immunity requirements for equipment operational during high voltage network switching operations
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime