JP3649365B2 - Unipolar intermittent arc optical ground fault test equipment - Google Patents

Unipolar intermittent arc optical ground fault test equipment Download PDF

Info

Publication number
JP3649365B2
JP3649365B2 JP17788297A JP17788297A JP3649365B2 JP 3649365 B2 JP3649365 B2 JP 3649365B2 JP 17788297 A JP17788297 A JP 17788297A JP 17788297 A JP17788297 A JP 17788297A JP 3649365 B2 JP3649365 B2 JP 3649365B2
Authority
JP
Japan
Prior art keywords
ground fault
distribution line
unipolar
ground
intermittent arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17788297A
Other languages
Japanese (ja)
Other versions
JPH1123639A (en
Inventor
勝 後上
守 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Electric Corp
Original Assignee
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Electric Corp filed Critical Toko Electric Corp
Priority to JP17788297A priority Critical patent/JP3649365B2/en
Publication of JPH1123639A publication Critical patent/JPH1123639A/en
Application granted granted Critical
Publication of JP3649365B2 publication Critical patent/JP3649365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、模擬配電線に人工的に片極間欠弧光地絡を発生させて各種受電設備機器の地絡事故試験を実施する片極間欠弧光地絡試験装置に関する。
【0002】
【従来の技術】
従来、電力会社と需要家の責任分界点に設置される高圧受電用設備では、需要家内の事故の発生にもとづく波及事故を防ぐため、地絡検出機能付機器を使用することが推奨されている。
図4はその一例を示すもので、51は引込開閉器、52は過電流ロック形高圧気中開閉器(GR付PAS)、53はケーブル、60は高圧の自家用受電設備、61は計器用変圧変流器(VCT)、62は遮断器、63はコンデンサ、64はトランスである。この例では、GR付PAS52が地絡検出機能を持っており、需要家側で地絡事故が発生すると電力会社の変電所の遮断器よりも先にGR付PAS52が開放されるため、波及事故を防いで他の需要家の停電を防止することができる。
ところで、地絡には間欠的に地絡電流が流れる間欠弧光地絡がある。さらに、非接地系統配電線に発生する地絡事故では、接地形計器用変圧器(EVT)の鉄心飽和に起因して零相電流が正負何れかの一方しかない半波整流波形が発生し、しかも鋸歯状の波形となることがある。このように、零相電圧・零相電流が複雑な波形となる場合は、地絡検出がより困難となる。しかも、これら検出の困難な零相電圧・零相電流に対しても上記地絡検出機能付機器は確実に地絡事故を検出しかつ事故点の位置を正確に特定する機能が要求されている。そのため、配電線上に設置される事故検出機器や事故検出システムについては、実使用を想定して性能を検証する必要がある。そこで従来は、それらの供試機器を模擬配電線路に接続して、人工的に各種地絡を発生させて試験を実施している。ところで、従来は、地絡試験のために間欠弧光地絡現象を人工的に再現しようとする場合、地絡点にケーブル、碍子、ギャップ等を用いて発生させていた。
【0003】
【発明が解決しようとする課題】
しかしながら、これら間欠弧光地絡等は、線路定数により発生する頻度が異なる等、偶然による要素が多く、発生についての再現性が低いというのが実情である。そのため、模擬配電線路に配電線事故検出の機器やシステムを設置して、間欠弧光地絡についての検証試験を実施する場合に、なかなか地絡に至らなかったり、あるいは直ちに地絡してしまう等再現性が極めて悪く、データ蓄積するのに多数回行なう必要があり、その実施に多大な時間と労力を費やしていた。また、従来多用されていた、エナメル線と電源の間にダイオードを直列に多段接続して碍子に交流電圧の半波のみを印加する「片側碍子アーク」の方法では、人手を多く必要とし、そのために危険性が増すという問題があった。
【0004】
【課題を解決するための手段】
そこで上記課題を解決するために、請求項1の発明は、被試験機器の一次側に接続される一次側配電線と、一次側配電線に接続されて変電所を模擬した電圧を印加する電源回路と、一次側配電線と大地間に接続された模擬配電線容量と、被試験機器の二次側に接続される二次側配電線と、二次側配電線と大地間に接続された模擬配電線容量と、二次側配電線と大地間を接続する地絡線路と、地絡線路に互いに直列に接続された整流素子、開閉器および事故点発生機材とを備えたことを特徴とする。
ここで、事故点発生機材として亀裂を有する高圧ピン碍子を用いることが好ましい。
【0005】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。
図1は本発明の実施形態の構成を示す図である。図示されるように、この装置は、電力会社変電所を模擬して電源を供給する電源回路であるところの模擬変電所1と、模擬変電所1に接続されて、供試機器2の一次側に接続される一次側配電線3と、一次側配電線3と大地間に接続される模擬配電線容量4と、供試機器2の二次側に接続される二次側配電線5と、二次側配電線5と大地間に接続される模擬配電線容量6と、二次側配電線5のR相と大地間に形成された地絡線路7と、地絡線路7上に接続された整流素子であるところのダイオード8と、同じく地絡線路7上に事故点として接続された亀裂を有する高圧ピン碍子9と、同じく地絡線路7上に接続された事故点投入用の開閉器10とから構成されている。
【0006】
従来、単に亀裂が入れられた高圧ピン碍子等を介して配電線に地絡を発生させようとすると、片側放電がランダムに発生し、地絡期間における片側放電の発生率を制御することができなかったことに対して、この実施形態では、事故点の部分に直列にダイオードを接続することで、片側のみに放電現象が発生するようにしたものである。すなわち、地絡線路7上の開閉器10を閉じることで、二次側配電線5のR相からダイオード8を経て大地への方向にのみ地絡電流が流れ、片極間欠弧光地絡を確実に再現することができる。この状態で、接続されている供試機器2についての地絡検出性能の検査が実施可能となる。
【0007】
また、この実施形態では、ダイオード8の接続方向を反転することで、地絡電流の方向を反転させて試験を実行することも可能である。さらに、ダイオード8の代わりに半導体スイッチ(GTO)を使用すると、片極放電の継続時間も制御可能である。同様に、開閉器10についても、図示しない制御装置を設置しておき、予め設定した開閉タイミングにより開閉動作を実行させることも可能である。
【0008】
図2は、模擬配電線のバンク静電容量と片側放電発生率の関係を示すグラフであり、片側放電発生率はバンク静電容量に関係して変化することが確認されている。図では、バンク静電容量が小さいほど発生率が増し、1相当たりのバンク静電容量が0.7μF以下では、片側放電がほぼ100%発生することが示されている。
【0009】
図3は、供試機器として、需要家構内の電柱に設置されるGR付PASの地絡検出性能試験を実施する場合の接続例を示す回路図である。図中の開閉器本体521の左側の電源側に、図1の一次側配電線3が接続され、同じく右側の負荷側に二次側配電線5が接続される。さらに、本体下部の各端子が11心ケーブル522を介して、制御装置523に接続される。この状態で負荷側に片極間欠弧光地絡を発生させることで、開閉器本体521の地絡試験が実施され、開閉器本体521の地絡検出機能が判定される。
なお、開閉器本体521の構成は周知であるため詳述を省略するが、図においてZCTは零相変流器、Sは連動スイッチ、TCは引き外しコイル、CTは変流器、ZPDは零相電圧検出器である。
【0010】
上述したように、本発明では、片極間欠弧光地絡を確実に発生することを可能にしたことで、再現性のある定量的な人工片極間欠弧光地絡試験の実施が可能になるとともに、その実施に要する時間と労力が大幅に削減され、あわせて試験の安全性も向上される。
【0011】
【発明の効果】
以上述べたように本発明によれば、被試験機器の二次側配電線に接続される地絡線路に整流素子、開閉器および事故点発生機材を接続しておき、その開閉器を閉じることで、片極間欠弧光地絡を確実に発生させ、再現性、安全性にすぐれた地絡試験の実施が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示す図である。
【図2】図1の実施形態におけるバンク静電容量と片側放電発生率の関係を示すグラフである。
【図3】図1の実施形態における具体的な接続例を示す回路図である。
【図4】電力会社と需要家の責任分界点に設置される高圧受電用設備の設置例を示す図である。
【符号の説明】
1 模擬変電所
2 供試機器
3 一次側配電線
4 模擬配電線容量
5 二次側配電線
6 模擬配電線容量
7 地絡線路
8 ダイオード
9 高圧ピン碍子
10 開閉器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a unipolar intermittent arc light ground fault test apparatus for artificially generating a unipolar intermittent arc light ground fault in a simulated distribution line and performing a ground fault accident test of various power receiving equipment.
[0002]
[Prior art]
Conventionally, in high-voltage power receiving equipment installed at the demarcation point between electric power companies and customers, it has been recommended to use equipment with a ground fault detection function in order to prevent spillovers based on the occurrence of accidents within customers. .
FIG. 4 shows an example of such a case, 51 is a lead-in switch, 52 is an overcurrent lock type high-pressure air switch (GRS with PAS), 53 is a cable, 60 is a high-voltage power receiving facility, and 61 is a voltage transformer. A current transformer (VCT), 62 is a circuit breaker, 63 is a capacitor, and 64 is a transformer. In this example, the PAS 52 with GR has a ground fault detection function. When a ground fault occurs on the customer side, the PAS 52 with GR is opened before the circuit breaker of the power company's substation. It is possible to prevent the power outage of other customers.
By the way, the ground fault includes an intermittent arc light ground fault in which a ground fault current flows intermittently. Furthermore, in the case of a ground fault occurring in the ungrounded distribution line, a half-wave rectified waveform with only one of positive and negative zero-phase current is generated due to the core saturation of the grounded instrument transformer (EVT), In addition, there may be a sawtooth waveform. As described above, when the zero-phase voltage and the zero-phase current have complicated waveforms, it becomes more difficult to detect the ground fault. Moreover, even with these difficult-to-detect zero-phase voltages and zero-phase currents, the above-mentioned equipment with a ground fault detection function is required to have a function of reliably detecting a ground fault and accurately identifying the position of the fault point. . For this reason, it is necessary to verify the performance of accident detection devices and accident detection systems installed on distribution lines assuming actual use. Therefore, in the past, these test equipments were connected to a simulated distribution line, and various ground faults were artificially generated for testing. By the way, conventionally, when attempting to artificially reproduce the intermittent arc light ground fault phenomenon for the ground fault test, it has been generated using a cable, insulator, gap or the like at the ground fault point.
[0003]
[Problems to be solved by the invention]
However, the actual situation is that these intermittent arc light ground faults, etc. have many elements due to chance, such as the frequency of occurrence depending on the line constant, and the reproducibility of the occurrence is low. Therefore, when installing a distribution line accident detection device or system on a simulated distribution line and conducting a verification test on an intermittent arc light ground fault, it is difficult to reach a ground fault or immediately cause a ground fault. It is extremely poor in performance and needs to be repeated many times to accumulate data, and a great deal of time and labor has been spent on its implementation. In addition, the “single-sided insulator arc” method, in which diodes are connected in series in multiple stages between the enameled wire and the power supply, and only half the AC voltage is applied to the insulator, requires a lot of manpower. There was a problem that the danger increased.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 is directed to a primary side distribution line connected to a primary side of a device under test, and a power source that applies a voltage imitating a substation connected to the primary side distribution line. Circuit, simulated distribution line capacity connected between primary side distribution line and ground, secondary side distribution line connected to secondary side of device under test, connected between secondary side distribution line and ground It is equipped with a simulated distribution line capacity, a ground fault line connecting the secondary side distribution line and the ground, and a rectifying element, a switch and an accident point generating equipment connected in series to the ground fault line. To do.
Here, it is preferable to use a high-pressure pin insulator having a crack as the accident point occurrence equipment.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. As shown in the figure, this apparatus is a power supply circuit that simulates a power company substation and supplies power, and is connected to the simulated substation 1 and the primary side of the EUT 2. A primary distribution line 3 connected to the primary distribution line 3, a simulated distribution line capacity 4 connected between the primary distribution line 3 and the ground, a secondary distribution line 5 connected to the secondary side of the EUT 2, The simulated distribution line capacity 6 connected between the secondary distribution line 5 and the ground, the ground fault line 7 formed between the R phase of the secondary distribution line 5 and the ground, and the ground fault line 7 are connected. A rectifier element 8, a high-voltage pin insulator 9 having a crack connected to the ground fault line 7 as an accident point, and a fault point switching switch connected to the ground fault line 7. 10.
[0006]
Conventionally, when a ground fault is generated in a distribution line via a cracked high-voltage pin insulator or the like, one-side discharge is randomly generated, and the rate of one-side discharge during the ground fault period can be controlled. In contrast to this, in this embodiment, a diode is connected in series with the part of the accident point so that a discharge phenomenon occurs only on one side. That is, by closing the switch 10 on the ground fault line 7, a ground fault current flows only in the direction from the R phase of the secondary distribution line 5 to the ground through the diode 8, and the unipolar intermittent arc optical ground fault is ensured. Can be reproduced. In this state, the ground fault detection performance of the connected EUT 2 can be inspected.
[0007]
Moreover, in this embodiment, it is also possible to perform a test by reversing the direction of the ground fault current by reversing the connection direction of the diode 8. Furthermore, if a semiconductor switch (GTO) is used instead of the diode 8, the duration of unipolar discharge can be controlled. Similarly, for the switch 10, it is also possible to install a control device (not shown) and execute an opening / closing operation at a preset opening / closing timing.
[0008]
FIG. 2 is a graph showing the relationship between the bank capacitance of the simulated distribution line and the one-side discharge occurrence rate, and it has been confirmed that the one-side discharge occurrence rate changes in relation to the bank capacitance. In the figure, the smaller the bank capacitance, the higher the occurrence rate, and it is shown that when the bank capacitance per phase is 0.7 μF or less, almost one-sided discharge occurs.
[0009]
FIG. 3 is a circuit diagram showing a connection example in the case of performing a ground fault detection performance test of a PAS with GR installed on a utility pole in a customer premises as a test equipment. The primary side distribution line 3 in FIG. 1 is connected to the power supply side on the left side of the switch body 521 in the figure, and the secondary side distribution line 5 is also connected to the right load side. Further, each terminal at the lower part of the main body is connected to the control device 523 via the 11-core cable 522. By generating a unipolar intermittent arc light ground fault on the load side in this state, the ground fault test of the switch body 521 is performed, and the ground fault detection function of the switch body 521 is determined.
The configuration of the switch body 521 is well known and will not be described in detail. In the figure, ZCT is a zero-phase current transformer, S is an interlocking switch, TC is a tripping coil, CT is a current transformer, and ZPD is zero. Phase voltage detector.
[0010]
As described above, in the present invention, it is possible to reliably generate a unipolar intermittent arc light ground fault, thereby enabling a reproducible and quantitative artificial unipolar intermittent arc light ground fault test to be performed. This significantly reduces the time and effort required to implement it, and also improves test safety.
[0011]
【The invention's effect】
As described above, according to the present invention, the rectifier, the switch, and the accident point occurrence equipment are connected to the ground fault line connected to the secondary distribution line of the device under test, and the switch is closed. Therefore, it is possible to reliably generate a single-pole intermittent arc light ground fault and to perform a ground fault test with excellent reproducibility and safety.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an exemplary embodiment of the present invention.
2 is a graph showing the relationship between the bank capacitance and the one-side discharge occurrence rate in the embodiment of FIG.
FIG. 3 is a circuit diagram showing a specific connection example in the embodiment of FIG. 1;
FIG. 4 is a diagram illustrating an installation example of a high-voltage power receiving facility installed at a demarcation point between a power company and a customer.
[Explanation of symbols]
1 Simulated substation 2 EUT 3 Primary distribution line 4 Simulated distribution line capacity 5 Secondary distribution line 6 Simulated distribution line capacity 7 Ground fault line 8 Diode 9 High voltage pin insulator 10 Switch

Claims (2)

被試験機器の一次側に接続される一次側配電線と、
一次側配電線に接続されて変電所を模擬した電圧を印加する電源回路と、
一次側配電線と大地間に接続された模擬配電線容量と、
被試験機器の二次側に接続される二次側配電線と、
二次側配電線と大地間に接続された模擬配電線容量と、
二次側配電線と大地間を接続する地絡線路と、
地絡線路に互いに直列に接続された整流素子、開閉器および事故点発生機材と、
を備えたことを特徴とする片極間欠弧光地絡試験装置。
A primary distribution line connected to the primary side of the device under test;
A power circuit connected to the primary distribution line and applying a voltage simulating a substation;
A simulated distribution line capacity connected between the primary distribution line and the ground;
A secondary distribution line connected to the secondary side of the device under test;
The simulated distribution line capacity connected between the secondary distribution line and the ground,
A ground fault line connecting the secondary distribution line and the ground,
Rectifying element, switch and accident point occurrence equipment connected in series to the ground fault line,
A unipolar intermittent arc optical ground fault testing apparatus comprising:
請求項1記載の片極間欠弧光地絡試験装置において、
事故点発生機材として亀裂を有する高圧ピン碍子を用いた片極間欠弧光地絡試験装置。
In the unipolar intermittent arc optical ground fault testing apparatus according to claim 1,
Unipolar intermittent arc light ground fault test equipment using a high-pressure pin insulator with cracks as the accident point occurrence equipment.
JP17788297A 1997-07-03 1997-07-03 Unipolar intermittent arc optical ground fault test equipment Expired - Fee Related JP3649365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17788297A JP3649365B2 (en) 1997-07-03 1997-07-03 Unipolar intermittent arc optical ground fault test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17788297A JP3649365B2 (en) 1997-07-03 1997-07-03 Unipolar intermittent arc optical ground fault test equipment

Publications (2)

Publication Number Publication Date
JPH1123639A JPH1123639A (en) 1999-01-29
JP3649365B2 true JP3649365B2 (en) 2005-05-18

Family

ID=16038712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17788297A Expired - Fee Related JP3649365B2 (en) 1997-07-03 1997-07-03 Unipolar intermittent arc optical ground fault test equipment

Country Status (1)

Country Link
JP (1) JP3649365B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518178B1 (en) 2016-02-15 2017-08-15 Omicron Electronics Gmbh Test device for testing a control unit of a switching device of a switchgear
CN108761231A (en) * 2018-05-22 2018-11-06 李景禄 A kind of the intelligent checking method and instrument of automatic arc-suppressing device and line-selected earthing device
CN112595928B (en) * 2020-12-09 2022-07-05 天津大学 Flexible-direct system ground fault distance measurement method suitable for monopolar ground operation
CN115184729B (en) * 2022-07-20 2023-07-11 国网辽宁省电力有限公司电力科学研究院 Simulation system and method for automatically detecting and processing intermittent arc ground faults

Also Published As

Publication number Publication date
JPH1123639A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
Novitskiy et al. Measurements and analysis of supraharmonic influences in a MV/LV network containing renewable energy sources
JP2004170093A (en) Testing device and testing method for electric equipment protection circuit
JP3649365B2 (en) Unipolar intermittent arc optical ground fault test equipment
Lee et al. Prevention of covered conductor burndown on distribution circuits-Arcing Protection devices
RU2254586C1 (en) Method of finding feeder with single-phase arc fault to ground in radial distribution cable circuits
AU2003200300B2 (en) Diagnostic wiring verification tester
CN113162040A (en) System and method for non-pressure nuclear phase of high-voltage station power supply of power plant
Fedotov et al. Single-Phase Ground Fault Test of Overhead Power Lines in Ungrounded Power Grids of 6-10 kV
WO2021109833A1 (en) Portable automatic phase sequence detection device
CN113866526A (en) One-time simulation live test system and method for intelligent substation
RU2676270C1 (en) Demagnetization device and the transformer core demagnetization method
JPH04127820A (en) Method of judging the cause of the ground fault of high-voltage distribution line
JP3197000B2 (en) Field test method for special high-voltage line using switching surge
CN209389686U (en) A kind of earth leakage protective device of the electric vehicle alternating-current charging pile with self-checking function
RU2105987C1 (en) Serviceability check technique for current transformer secondary circuits
Tine et al. Improved distribution system reliability at Northeast Utilities: a case history
JP2003255005A (en) Protection circuit testing apparatus for on-site power supply facilities
Schacht et al. Design & analysis of an improved fault localization scheme for secondary substation automation
TW552756B (en) Insulation diagnosis device
JPH0735831A (en) Method and apparatus for testing breaker
JPH05133996A (en) Method for diagnosing insulation of power cable line
Jojo Development of noise testing equipment and noise withstand capability tests for existing protective relays
CN114236432A (en) Method for rapidly checking wiring correctness of voltage transformer by using relay protection tester
POLAJŽER et al. CHAPTER FIVE DETECTING THE SOURCES OF ASYMMETRICAL VOLTAGE SAGS USING STATIONARY PHASORS

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees