JP2010027998A - Heat transmission surface structure having flat coil-like fin member and manufacturing method of the structure - Google Patents

Heat transmission surface structure having flat coil-like fin member and manufacturing method of the structure Download PDF

Info

Publication number
JP2010027998A
JP2010027998A JP2008190496A JP2008190496A JP2010027998A JP 2010027998 A JP2010027998 A JP 2010027998A JP 2008190496 A JP2008190496 A JP 2008190496A JP 2008190496 A JP2008190496 A JP 2008190496A JP 2010027998 A JP2010027998 A JP 2010027998A
Authority
JP
Japan
Prior art keywords
flat coil
heat transfer
coil member
flat
fitting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190496A
Other languages
Japanese (ja)
Other versions
JP5081757B2 (en
JP2010027998A5 (en
Inventor
Masayoshi Usui
正佳 臼井
Yasuaki Hashimoto
康明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2008190496A priority Critical patent/JP5081757B2/en
Publication of JP2010027998A publication Critical patent/JP2010027998A/en
Publication of JP2010027998A5 publication Critical patent/JP2010027998A5/ja
Application granted granted Critical
Publication of JP5081757B2 publication Critical patent/JP5081757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably fix a fin member on a substrate by a simple method, to easily position the fin member on the substrate and to easily manufacture a heat sink having a wide surface area in which many long edges are formed and having a high heat radiation property. <P>SOLUTION: A flat coil member 1 having a flat winding shape is formed by a wire material 2. An engagement groove 5 capable of engaging one side of the flat coil member 1 in a longitudinal axis direction is formed on a heat transmission surface 7 of a heat transmission substrate 6. By inserting and engaging the one side of the flat coil member 1 in the longitudinal axis direction into/with the engaging groove 5, the flat coil member 1 is fixed on the heat transmission surface 7 of the heat transmission substrate 6 to obtain a flat coil-like fin member 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子素子等の発熱体に接触配置して、発熱体の熱を放熱フィンにより放出して冷却したり、ヒートパイプの凝縮部に接続し、ヒートパイプにより移送される熱を外部に放出する伝熱面などの構造及びその製造方法に関するものである。   The present invention is arranged in contact with a heating element such as an electronic element, and the heat of the heating element is released by a radiation fin to cool it, or connected to a condensing part of a heat pipe, and the heat transferred by the heat pipe is externally provided. The present invention relates to a structure such as a heat transfer surface to be discharged and a manufacturing method thereof.

コンピュータ等の電子機器等では、半導体等の電子素子の発熱量が膨大であるため、この熱を効果的に冷却するために、下記特許文献1及び2に示す如く、従来よりヒートシンクを使用した熱交換器が広く用いられている。このヒートシンクは、例えば受熱部としての基板を電子素子等の発熱体の表面に直に配置し、ビス等の固定手段により発熱体に固定することにより使用している。また、この受熱部の表面には複数の板材を突出して放熱面積を広げている。   In an electronic device such as a computer, the amount of heat generated by an electronic element such as a semiconductor is enormous. Therefore, in order to effectively cool this heat, as shown in Patent Documents 1 and 2 below, Exchangers are widely used. This heat sink is used by, for example, arranging a substrate as a heat receiving portion directly on the surface of a heating element such as an electronic element and fixing it to the heating element with fixing means such as screws. In addition, a plurality of plate members protrude from the surface of the heat receiving portion to increase the heat radiation area.

このような従来のヒートシンクの中でも、特許文献3に示す如く、特許文献1及び2に示すものよりも表面積を広げ、放熱性を高めることを目的として、金属製の線材を矩形凹凸状に連続して折り曲げてフィン部材を形成し、このフィン部材を基板の表面に複数個配設したものが公知となっている。   Among such conventional heat sinks, as shown in Patent Document 3, a metal wire is continuously formed in a rectangular uneven shape for the purpose of expanding the surface area and improving heat dissipation than those shown in Patent Documents 1 and 2. A fin member is formed by bending and a plurality of fin members are disposed on the surface of the substrate.

しかしながら、特許文献3に示す如きフィン部材は、線材にて矩形状の凹凸を同一平面上に形成した平面的なものである。そのため倒れやすく、基板の表面に安定して配置することは困難であるとともに、このようなフィン部材を基板に密にあるいは多量に配置するのには手間がかかるため、基板にフィン部材を密に配置して、表面積を広げるとともに多数の長いエッヂを形成することは困難となっていた。   However, the fin member as shown in Patent Document 3 is a planar member in which rectangular irregularities are formed on the same plane with a wire rod. Therefore, it is easy to fall down, and it is difficult to stably arrange on the surface of the substrate, and it takes time to arrange such fin members densely or in a large amount on the substrate. It has been difficult to arrange and widen the surface area and to form many long edges.

そこで、特許文献4に示す如く、基板の表面にコイル状のフィン部材を配置したヒートシンクが開発されている。このヒートシンクに配置したフィン部材は、線材をコイル状に巻回した立体的な形状であるため、基板の表面にフィン部材を安定して配置可能なものとしている。また、このようなフィン部材を表面に密に配置することにより、ガイド部材などにより基板への接触面積を広げて多数の長いエッヂを形成可能としている。
特開2002−1511号公報 特開2002−190558号公報 特開2002−190557号公報 特開2007−165846号公報
Therefore, as shown in Patent Document 4, a heat sink in which a coiled fin member is arranged on the surface of a substrate has been developed. Since the fin member disposed on the heat sink has a three-dimensional shape obtained by winding a wire in a coil shape, the fin member can be stably disposed on the surface of the substrate. Further, by arranging such fin members densely on the surface, it is possible to form a large number of long edges by expanding the contact area to the substrate with a guide member or the like.
JP 2002-1511 A JP 2002-190558 A JP 2002-190557 A JP 2007-165846 A

しかしながら、特許文献4に示す如きヒートシンクは、平板状の基板にフィン部材を配置する際のフィン部材の位置決めを容易なものとするためには、基板にあらかじめガイド部材を配置する必要があり、位置決め作業に手間がかかるものとなっていた。また、基板の表面にフィン部材を固定するために、基板の表面とフィン部材との接触部をろう付け、接着、溶接などにより固定したり、基板の表面にあらかじめ線材又は帯材にて形成したガイド部材を固定配置し、このガイド部材に接触させてフィン部材を配置したり、基板にフィン部材を埋め込み配置することが必須の条件となっていた。従って、基板の表面にフィン部材を固定配置する製造工程が煩雑なものとなっていた。   However, the heat sink as shown in Patent Document 4 requires a guide member to be arranged on the substrate in advance in order to facilitate the positioning of the fin member when the fin member is arranged on the flat substrate. The work was time-consuming. In addition, in order to fix the fin member to the surface of the substrate, the contact portion between the surface of the substrate and the fin member is fixed by brazing, bonding, welding, or the like, or previously formed on the surface of the substrate with a wire or a strip. It has been an essential condition that the guide member is fixedly disposed and the fin member is disposed in contact with the guide member, or the fin member is embedded in the substrate. Therefore, the manufacturing process for fixing and arranging the fin member on the surface of the substrate is complicated.

そこで、本発明は上記の如き課題を解決しようとするものであって、簡易な方法により基板にフィン部材を安定して立設配置することを可能とするとともに、基板への位置決めが容易であり、且つ、表面積が広く、多数の長いエッヂを形成した放熱性の高い伝熱面構造を、容易に製造可能にしようとするものである。   In view of the above, the present invention is intended to solve the above-described problems, and enables a fin member to be stably erected and arranged on a substrate by a simple method, and positioning on the substrate is easy. In addition, an object of the present invention is to make it possible to easily manufacture a heat transfer surface structure having a large surface area and a large number of long edges and having a high heat dissipation property.

上述の課題を解決するため、第1発明は、1本の線材にて形成した巻回形状が扁平状の扁平コイル部材と、この扁平コイル部材の長軸方向の一側を嵌合可能とする嵌合溝を伝熱面に形成した伝熱基板とから成り、前記嵌合溝内に前記扁平コイル部材の長軸方向の一側を嵌合挿入することにより、伝熱基板の伝熱面に扁平コイル部材を固定配置して扁平コイル状フィン部材としている。   In order to solve the above-described problems, the first invention enables a flat coil member having a flat winding shape formed of one wire to be fitted to one side in the long axis direction of the flat coil member. A heat transfer board formed with a fitting groove on the heat transfer surface, and by fitting and inserting one side of the flat coil member in the long axis direction into the fitting groove, on the heat transfer surface of the heat transfer board A flat coil member is fixedly arranged to form a flat coil fin member.

また、第2発明は、上記第1発明の扁平コイル状フィン部材を備えた伝熱面の製造方法であって、1本の線材にて巻回形状が扁平状の扁平コイル部材を形成する工程と、この扁平コイル部材の長軸方向の一側を嵌合可能とする嵌合溝を伝熱基板の伝熱面に形成する工程と、前記嵌合溝内に前記扁平コイル部材の長軸方向の一側を嵌合して伝熱基板の伝熱面に扁平コイル部材を固定配置して扁平コイル状フィン部材とする工程とから成ることを特徴とする扁平コイル状フィン部材を備えている。   Moreover, 2nd invention is a manufacturing method of the heat-transfer surface provided with the flat coil-shaped fin member of the said 1st invention, Comprising: The process of forming the flat coil member whose winding shape is flat shape with one wire rod A step of forming a fitting groove on the heat transfer surface of the heat transfer board that allows one side of the flat coil member to be fitted in the long axis direction; and a long axis direction of the flat coil member in the fitting groove A flat coiled fin member characterized in that the flat coiled fin member comprises a step of fitting a flat coil member on the heat transfer surface of the heat transfer board and fixing the flat coil member to a flat coiled fin member.

また、伝熱基板は、伝熱面側の中央部が外方に突出した弧状曲面とし、この弧状曲面と同一曲率中心にて嵌合溝を弧状曲面に凹設したものであっても良い。これにより、扁平コイル部材を伝熱基板の伝熱面に固定配置した際に、扁平コイル部材が放射状に配置されるものとなり平坦な伝熱面に扁平コイル部材を配置した場合と比較して、たとえ嵌合溝内で線材が密着していても基板接触面積を大きくすることができ、且つ扁平コイル部材の先端側に流体の流通間隔を広く取ることが可能となる。そのため、特にフィン部材先端部での通気性を良好とすることができるため、扁平コイル部材からの吸放熱効果を良好なものとし、熱交換性能を更に高めることができる。   Further, the heat transfer board may be an arc-shaped curved surface with a central portion on the heat transfer surface side projecting outward, and a fitting groove may be provided in the arc-shaped curved surface at the same center of curvature as the arc-shaped curved surface. Thereby, when the flat coil member is fixedly arranged on the heat transfer surface of the heat transfer substrate, the flat coil member is arranged radially, compared to the case where the flat coil member is arranged on the flat heat transfer surface, Even if the wire is in close contact within the fitting groove, the substrate contact area can be increased, and a fluid flow interval can be widened on the distal end side of the flat coil member. For this reason, the air permeability at the tip of the fin member can be made good, so that the effect of absorbing and releasing heat from the flat coil member is made good, and the heat exchange performance can be further enhanced.

また、扁平コイル部材は、長軸方向の一側を圧入により前記嵌合溝内に固定配置しても良い。これにより、接着等の固定手段を用いることなく簡易な方法で扁平コイル部材を嵌合溝に固定配置することが可能となり、伝熱面の製造作業の作業性を向上させることが可能となる。   Further, the flat coil member may be fixedly disposed in the fitting groove by press-fitting one side in the long axis direction. Thereby, it becomes possible to fix and arrange the flat coil member in the fitting groove by a simple method without using fixing means such as adhesion, and it becomes possible to improve the workability of the manufacturing work of the heat transfer surface.

また、嵌合溝は、扁平コイル部材を挿入した後、嵌合溝間に形成した分割壁の表面をカシメ治具にて押圧して形成したカシメ変形部に、扁平コイル部材の一側を両側から押圧保持したものであっても良い。このように、カシメ変形部を形成して扁平コイル部材を押圧保持することにより、扁平コイル部材を嵌合溝内に容易にカシメ固定することができ、扁平コイル部材を嵌合溝内に強固に固定することが可能となる。   In addition, after inserting the flat coil member, the fitting groove is formed by pressing the surface of the dividing wall formed between the fitting grooves with a caulking jig on one side of the flat coil member. It may be one that is pressed and held. In this manner, the flat coil member can be easily caulked and fixed in the fitting groove by forming the caulking deformation portion and pressing and holding the flat coil member, and the flat coil member can be firmly fixed in the fitting groove. It can be fixed.

また、扁平コイル部材は、接着、カシメ、ろう付け、又は溶接のいずれか、又は組み合わせにより、前記嵌合溝に固定したものであっても良い。これにより、接着剤、ろう材、溶加材等によって扁平コイル部材と嵌合溝との接触面積が大きくなるため、扁平コイル状フィン部材と伝熱基板の間の熱伝達が良好となり吸放熱に優れるとともに、固定部の強度が向上して振動や熱応力などに対する耐久性に優れた伝熱面を得ることができる。   Further, the flat coil member may be fixed to the fitting groove by any one or a combination of adhesion, caulking, brazing, and welding. As a result, the contact area between the flat coil member and the fitting groove is increased by an adhesive, brazing material, filler metal, etc., so that heat transfer between the flat coil-shaped fin member and the heat transfer substrate is improved, thereby absorbing and releasing heat. In addition to being excellent, it is possible to obtain a heat transfer surface that is improved in strength of the fixing portion and excellent in durability against vibration and thermal stress.

また、扁平コイル部材は、嵌合溝内に接着剤を注入し、この接着剤に扁平コイル部材の一側を埋設して接着剤を固化させることにより、前記嵌合溝に固定したものであっても良い。これにより、扁平コイル部材を嵌合溝内に強固に固定することが可能となり、固定部の強度が向上して振動や熱応力などに対する耐久性に優れた伝熱面を得ることができる。また、熱伝導性の接着剤使用した場合には、扁平コイル状フィン部材と伝熱基板の間の熱伝達が良好となり吸放熱に優れたものとすることができる。   The flat coil member is fixed to the fitting groove by injecting an adhesive into the fitting groove and embedding one side of the flat coil member in the adhesive to solidify the adhesive. May be. As a result, the flat coil member can be firmly fixed in the fitting groove, and the strength of the fixing portion can be improved to obtain a heat transfer surface excellent in durability against vibration, thermal stress and the like. Further, when a heat conductive adhesive is used, heat transfer between the flat coiled fin member and the heat transfer substrate becomes good, so that heat absorption and heat dissipation can be improved.

本願の第1及び第2発明は上述の如く構成したものであって、嵌合溝に扁平コイル部材の長軸方向の一側を嵌合挿入することにより伝熱基板の伝熱面に扁平コイル部材を固定配置しているため、扁平コイル部材を伝熱基板に簡易な方法で固定配置することが可能となり、扁平コイル部材の伝熱面への固定作業の作業性を向上させることが可能となる。また、伝熱基板の伝熱面に予め形成した嵌合溝に扁平コイル部材の下端を挿入嵌合するため、扁平コイル部材の伝熱面への位置決めを容易なものとすることが可能となり、伝熱面の製造作業の作業性を向上させることが可能となる。   1st and 2nd invention of this application is comprised as mentioned above, Comprising: A flat coil is formed in the heat-transfer surface of a heat-transfer board | substrate by carrying out fitting insertion of the one side of the long axis direction of a flat coil member in a fitting groove. Since the members are fixedly arranged, the flat coil member can be fixedly arranged on the heat transfer board by a simple method, and the workability of fixing the flat coil member to the heat transfer surface can be improved. Become. In addition, since the lower end of the flat coil member is inserted and fitted into a fitting groove formed in advance on the heat transfer surface of the heat transfer substrate, it is possible to easily position the flat coil member on the heat transfer surface, It becomes possible to improve the workability of the manufacturing work of the heat transfer surface.

また、上記嵌合溝に扁平コイル部材を嵌合挿入することにより、扁平コイル部材の長さ方向への伸縮、特に伸びを抑制することが可能となるため、伝熱基板の伝熱面に配置した扁平コイル部材のピッチ間隔にバラツキが生じにくいものとなる。また、上記嵌合挿入により、扁平コイル部材を伝熱面上に一定の角度で安定して立設配置することが可能となるため、扁平コイル部材の各巻回毎の傾斜角度にバラツキが生じにくいものとなる。このように、扁平コイル部材のピッチ間隔及び各巻回毎の傾斜角度のバラツキを抑制することができるため、伝熱基板の伝熱面にフィン部材を効率よく密集させて配置することが可能となり、伝熱基板の熱交換性能を向上させることが可能となる。また、嵌合溝に扁平コイル部材の下端を挿入嵌合するものであるから、扁平コイル部材と伝熱基板との接触面積を大きくし、熱伝導効率を良好とすることが可能となる。   Further, since the flat coil member is fitted and inserted into the fitting groove, it is possible to suppress the expansion and contraction in the length direction of the flat coil member, in particular, the extension, and therefore the flat coil member is disposed on the heat transfer surface of the heat transfer board. Variations in the pitch interval of the flat coil member thus made are less likely to occur. In addition, since the flat coil member can be stably erected and arranged at a fixed angle on the heat transfer surface by the fitting and insertion, the inclination angle of each turn of the flat coil member does not easily vary. It will be a thing. Thus, since it is possible to suppress variations in the pitch interval of the flat coil member and the inclination angle for each winding, it becomes possible to efficiently arrange the fin members densely on the heat transfer surface of the heat transfer substrate, It becomes possible to improve the heat exchange performance of the heat transfer substrate. Further, since the lower end of the flat coil member is inserted and fitted into the fitting groove, the contact area between the flat coil member and the heat transfer substrate can be increased, and the heat conduction efficiency can be improved.

また、伝熱基板を、伝熱面側の中央部が外方に突出した弧状曲面とし、この弧状曲面と同一曲率中心にて嵌合溝を弧状曲面に凹設した場合には、扁平コイル部材を伝熱基板の伝熱面に固定配置した際に、扁平コイル部材が放射状に配置されるものとなり平坦な伝熱面に扁平コイル部材を配置した場合と比較して、たとえ嵌合溝内で線材が密着していても基板接触面積を大きくすることができ、且つ扁平コイル部材の先端側に流体の流通間隔を広く取ることが可能となる。そのため、特にフィン部材先端側での通気性を良好とすることができるため、扁平コイル部材からの吸放熱効果を良好なものとし、熱交換性能を更に高めることができる。   Further, when the heat transfer board is an arc-shaped curved surface with the central portion on the heat transfer surface protruding outward, and the fitting groove is recessed in the arc-shaped curved surface at the same center of curvature as the arc-shaped curved surface, a flat coil member Is fixed on the heat transfer surface of the heat transfer board, the flat coil member is arranged radially, and even if the flat coil member is arranged on the flat heat transfer surface, even in the fitting groove Even if the wire is in close contact, the substrate contact area can be increased, and a fluid flow interval can be widened on the distal end side of the flat coil member. For this reason, the air permeability at the tip end side of the fin member can be made good, so that the effect of absorbing and releasing heat from the flat coil member is made good, and the heat exchange performance can be further enhanced.

本願の第1発明及び第2発明の実施例1を図1〜図5に於いて説明すると、図1に示す如く、(1)は扁平コイル部材であって、1本のステンレス、アルミニウム、銅、ニッケル、鉄、及びこれ等基合金の線材(2)を、図1に示す如く扁平状となるように螺旋状に巻回して形成する。このように、扁平コイル部材(1)の巻回形状を扁平状とすることにより、扁平コイル部材(1)の各巻回毎に扁平な環状片(3)が形成され、この環状片(3)が扁平コイル部材(1)の軸方向に密集して連続するよう形成されるものとなる。この扁平な環状片(3)は、長円状に形成しても良いし、長方形の両端を弧状に形成したものであっても良い。   Embodiment 1 of the first invention and the second invention of the present application will be described with reference to FIGS. 1 to 5. As shown in FIG. 1, (1) is a flat coil member, which is made of one stainless steel, aluminum, copper. A wire rod (2) made of nickel, iron, or a base alloy thereof is formed by being spirally wound so as to be flat as shown in FIG. Thus, by making the winding shape of the flat coil member (1) flat, a flat annular piece (3) is formed for each winding of the flat coil member (1), and this annular piece (3) Are formed so as to be dense and continuous in the axial direction of the flat coil member (1). This flat annular piece (3) may be formed in an oval shape, or may be formed by arcing both ends of a rectangle.

また、上記扁平コイル部材(1)の長軸方向の一側(4)を嵌合可能とする嵌合溝(5)を、アルミニウム、銅、アルミ合金、銅合金、及びこれら金属の鋳物や圧延材等により形成した板状の伝熱基板(6)の伝熱面(7)に、切削、プレス、鍛造等にて図1に示す如く等間隔に複数列形成する。なお、本実施例に於いてはこのように、切削、プレス、鍛造等により伝熱基板(6)の伝熱面(7)に嵌合溝(5)を形成しているが、他の異なる実施例に於いては、嵌合溝(5)を有する伝熱基板(6)を押出成形等により成型しても良い。また、図4に示す如く、上記嵌合溝(5)を、底面(8)を平坦面とする断面略矩形に形成するとともに、その形成幅(10)を上記扁平コイル部材(1)の形成幅(11)とほぼ同一としている。   Further, the fitting groove (5) capable of fitting one side (4) in the long axis direction of the flat coil member (1) is made of aluminum, copper, aluminum alloy, copper alloy, and casting or rolling of these metals. On the heat transfer surface (7) of the plate-shaped heat transfer substrate (6) formed of a material or the like, a plurality of rows are formed at equal intervals as shown in FIG. 1 by cutting, pressing, forging or the like. In the present embodiment, the fitting groove (5) is formed in the heat transfer surface (7) of the heat transfer substrate (6) by cutting, pressing, forging, etc., as described above. In the embodiment, the heat transfer substrate (6) having the fitting groove (5) may be formed by extrusion molding or the like. Further, as shown in FIG. 4, the fitting groove (5) is formed in a substantially rectangular cross section with the bottom surface (8) as a flat surface, and the formation width (10) is formed in the flat coil member (1). It is almost the same as the width (11).

そして、上述の如く伝熱基板(6)の伝熱面(7)に等間隔で複数個形成した各嵌合溝(5)内に、図2に示す如く、扁平コイル部材(1)の長軸方向の一側(4)を嵌合挿入する。そして、この嵌合挿入により、伝熱基板(6)の伝熱面(7)に図2、図3に示す如く扁平コイル部材(1)が固定配置され、扁平コイル状フィン部材(12)が形成される。その際、本実施例に於いては、前述の如く嵌合溝(5)の形成幅(10)を扁平コイル部材(1)の巻回形状の形成幅(11)とほぼ同一としているから、扁平コイル部材(1)を嵌合溝(5)の底面(8)方向に一定の押圧力で押圧して、圧入により扁平コイル部材(1)を嵌合溝(5)に嵌合挿入する。このように圧入により扁平コイル部材(1)を嵌合溝(5)に嵌合挿入することにより、接着等の固定手段を用いることなく簡易な方法で扁平コイル部材(1)の長軸方向の一側(4)を嵌合溝(5)に固定配置することが可能となり、伝熱面(7)の製造作業の作業性を向上させることが可能となる。   Then, as shown in FIG. 2, the length of the flat coil member (1) is formed in each of the fitting grooves (5) formed in plural at equal intervals on the heat transfer surface (7) of the heat transfer substrate (6) as described above. One side (4) in the axial direction is fitted and inserted. And by this fitting insertion, the flat coil member (1) is fixedly disposed on the heat transfer surface (7) of the heat transfer substrate (6) as shown in FIGS. 2 and 3, and the flat coil-shaped fin member (12) is It is formed. At that time, in this embodiment, the formation width (10) of the fitting groove (5) is substantially the same as the formation width (11) of the winding shape of the flat coil member (1) as described above. The flat coil member (1) is pressed with a constant pressing force toward the bottom surface (8) of the fitting groove (5), and the flat coil member (1) is fitted and inserted into the fitting groove (5) by press-fitting. Thus, the flat coil member (1) is fitted and inserted into the fitting groove (5) by press-fitting, so that the flat coil member (1) in the long axis direction can be obtained in a simple manner without using fixing means such as adhesion. One side (4) can be fixedly arranged in the fitting groove (5), and the workability of the manufacturing work of the heat transfer surface (7) can be improved.

また、上述の如く嵌合溝(5)に扁平コイル部材(1)を嵌合挿入して伝熱基板(6)の伝熱面(7)に扁平コイル部材(1)を固定配置することにより、扁平コイル部材(1)を伝熱基板(6)に簡易な方法で固定配置することができるため、扁平コイル部材(1)の伝熱面(7)への固定作業の作業性を向上させることが可能となる。また、伝熱基板(6)の伝熱面(7)に予め形成した嵌合溝(5)に扁平コイル部材(1)の下端を挿入嵌合するため、扁平コイル部材(1)の伝熱面(7)への位置決めを容易なものとすることが可能となる。   Further, as described above, the flat coil member (1) is fitted and inserted into the fitting groove (5), and the flat coil member (1) is fixedly disposed on the heat transfer surface (7) of the heat transfer substrate (6). Since the flat coil member (1) can be fixed and arranged on the heat transfer substrate (6) by a simple method, the workability of fixing the flat coil member (1) to the heat transfer surface (7) is improved. It becomes possible. Moreover, since the lower end of the flat coil member (1) is inserted and fitted into the fitting groove (5) formed in advance on the heat transfer surface (7) of the heat transfer substrate (6), the heat transfer of the flat coil member (1). Positioning on the surface (7) can be facilitated.

また、上述の如く嵌合溝(5)に扁平コイル部材(1)を嵌合挿入することにより、扁平コイル部材(1)の長さ方向への伸縮、特に伸びを抑制することが可能となり、伝熱基板(6)の伝熱面(7)に配置した扁平コイル部材(1)のピッチ間隔にバラツキが生じにくいものとなる。また、上記嵌合挿入により、扁平コイル部材(1)を伝熱面(7)上に一定の角度で安定して立設配置することが可能となるため、扁平コイル部材(1)の各巻回毎の傾斜角度は矯正されてバラツキが生じにくいものとなる。このように、扁平コイル部材(1)のピッチ間隔及び各巻回毎の傾斜角度のバラツキを抑制することができるため、伝熱基板(6)の伝熱面(7)にフィン部材を効率よく密集させて正確に配置することが可能となり、伝熱基板(6)の熱交換性能を向上させることが可能となる。また、嵌合溝(5)に扁平コイル部材(1)の下端を挿入嵌合するものであるから、扁平コイル部材(1)と伝熱基板(6)との接触面積を大きくし、熱伝導効率を良好とすることが可能となる。   Further, by fitting and inserting the flat coil member (1) into the fitting groove (5) as described above, it is possible to suppress expansion and contraction in the length direction of the flat coil member (1), particularly elongation. It becomes difficult for the pitch interval of the flat coil member (1) disposed on the heat transfer surface (7) of the heat transfer substrate (6) to vary. Moreover, since the flat coil member (1) can be stably erected and arranged at a fixed angle on the heat transfer surface (7) by the fitting insertion, each winding of the flat coil member (1) can be performed. Each inclination angle is corrected, and variations are less likely to occur. Thus, since the variation in the pitch interval of the flat coil member (1) and the inclination angle for each winding can be suppressed, the fin members are efficiently concentrated on the heat transfer surface (7) of the heat transfer substrate (6). Therefore, it becomes possible to arrange accurately, and it becomes possible to improve the heat exchange performance of the heat transfer substrate (6). Further, since the lower end of the flat coil member (1) is inserted and fitted into the fitting groove (5), the contact area between the flat coil member (1) and the heat transfer substrate (6) is increased, and heat conduction is performed. The efficiency can be improved.

また、前述の如く、扁平コイル部材(1)の巻回形状を扁平状とすることにより、扁平な環状片(3)が扁平コイル部材(1)の軸方向に密に連続して形成されている。そのため、上述の如く扁平コイル部材(1)を伝熱基板(6)の伝熱面(7)に固定すると、上記環状片(3)が伝熱面(7)の上面に多数密集して配置されるものとなるから、伝熱面(7)の吸放熱表面積を容易に広くすることができる。また、上記環状片(3)によって長く膨大な数のエッヂを容易に形成することができるため、流体の流れに大きな乱れや渦を発生させることにより境界層を剥離させることができる。従って、上記の広い表面積と、連続する膨大な数のエッヂによるエッヂ効果とにより、伝熱面(7)の熱交換性能を飛躍的に高めることが可能となる。   In addition, as described above, the flat shape of the flat coil member (1) is made flat so that the flat annular piece (3) is formed densely and continuously in the axial direction of the flat coil member (1). Yes. Therefore, when the flat coil member (1) is fixed to the heat transfer surface (7) of the heat transfer substrate (6) as described above, a large number of the annular pieces (3) are densely arranged on the upper surface of the heat transfer surface (7). Therefore, the heat absorbing / dissipating surface area of the heat transfer surface (7) can be easily increased. Further, since the annular piece (3) can easily form a long and enormous number of edges, the boundary layer can be peeled off by generating a large turbulence or vortex in the fluid flow. Therefore, the heat exchange performance of the heat transfer surface (7) can be remarkably improved by the large surface area and the edge effect by a large number of continuous edges.

なお、本実施例に於いては、本実施例1及び以下の実施例2〜8では、図5 (a)に示す如く線材(2)の断面形状を円形としているが、他の異なる実施例においては、図5に示す如く、(b)楕円形、(c)正方形、(d)三角形、(e)菱形、(f)星形、(g)台形、(h)長円形、(i)長方形、(j)5角形等の如く任意の形状としても良い。また、線材(2)は大きさ、材質又は断面形状が異なるものを組み合わせて使用しても良い。また、本実施例及び後述の実施例2〜8に於いては、一つの嵌合溝(5)に扁平コイル部材(1)をそれぞれ一つずつ配置しているが、他の異なる実施例に於いては、一つの嵌合溝(5)に複数の扁平コイル部材(1)を配置することも可能である。   In this example, in Example 1 and Examples 2 to 8 below, the cross-sectional shape of the wire (2) is circular as shown in FIG. 5 (a), but other different examples are used. 5, (b) an ellipse, (c) a square, (d) a triangle, (e) a diamond, (f) a star, (g) a trapezoid, (h) an oval, (i) It may have an arbitrary shape such as a rectangle or (j) pentagon. Moreover, you may use combining a thing from which a magnitude | size, a material, or a cross-sectional shape differs for a wire (2). Further, in this embodiment and Examples 2 to 8 to be described later, one flat coil member (1) is arranged in each of the fitting grooves (5), but in other different embodiments. In this case, it is also possible to arrange a plurality of flat coil members (1) in one fitting groove (5).

また、上記実施例1では前述の如く、扁平コイル部材(1)の長軸方向の一側(4)を圧入により嵌合溝(5)に固定しているが、本実施例2では図6及び図7に示す如く、接着、ろう付け、又は溶接により扁平コイル部材(1)の長軸方向の一側(4)を前記嵌合溝(5)内に固定することも可能である。この場合には、扁平コイル部材(1)と嵌合溝(5)との接触面積が、接着剤、ろう材、溶加材等によって圧入の場合と比較して大きくなるため、扁平コイル状フィン部材(12)と伝熱基板(6)の間の熱伝達が良好となり吸放熱に優れるとともに、固定部の強度が向上して振動や熱応力などに対する耐久性に優れた伝熱面(7)を得ることができる。   In the first embodiment, as described above, one side (4) in the long axis direction of the flat coil member (1) is fixed to the fitting groove (5) by press fitting. In the second embodiment, FIG. As shown in FIG. 7, it is also possible to fix one side (4) of the flat coil member (1) in the long axis direction in the fitting groove (5) by bonding, brazing, or welding. In this case, the contact area between the flat coil member (1) and the fitting groove (5) becomes larger than that in the case of press-fitting with an adhesive, a brazing material, a filler material, etc. Heat transfer surface (7) with excellent heat transfer between the member (12) and the heat transfer substrate (6) and excellent heat absorption and radiation, and improved durability against vibrations and thermal stress by improving the strength of the fixed part. Can be obtained.

また、圧入したものを接着、ろう付け、又は溶接で固定することも勿論可能であり、この場合には、扁平コイル部材(1)と嵌合溝(5)とを更に強固に固定することが可能となる。尚、本実施例2では上記の如く、接着、ろう付け、又は溶接のいずれかにより扁平コイル部材(1)の長軸方向の一側(4)を前記嵌合溝(5)内に固定しているが、他の異なる実施例では、接着、カシメ、ろう付け、又は溶接を任意に組み合わせることにより、扁平コイル部材(1)を嵌合溝(5)に固定することも可能である。   In addition, it is of course possible to fix the press-fitted one by bonding, brazing, or welding. In this case, the flat coil member (1) and the fitting groove (5) can be more firmly fixed. It becomes possible. In the second embodiment, as described above, one side (4) in the long axis direction of the flat coil member (1) is fixed in the fitting groove (5) by any one of adhesion, brazing, and welding. However, in other different embodiments, the flat coil member (1) can be fixed to the fitting groove (5) by any combination of bonding, caulking, brazing, or welding.

また、上記実施例2では扁平コイル部材(1)と伝熱基板(6)の伝熱面(7)との接触部のみを接着、ろう付け、又は溶接により扁平コイル部材(1)の長軸方向の一側(4)を前記嵌合溝(5)内に固定しているが、本実施例3では、嵌合溝(5)内に接着剤を注入し、この接着剤に扁平コイル部材(1)の一端を埋設して接着剤を固化させることにより、図8に示す如く扁平コイル部材(1)を前記嵌合溝(5)に固定している。このように、接着剤に扁平コイル部材(1)の一端を埋設して扁平コイル部材(1)を嵌合溝(5)に固定配置することにより、扁平コイル部材(1)を嵌合溝(5)内に強固に固定することが可能となり、固定部の強度が向上して振動や熱応力などに対する耐久性に優れた伝熱面(7)を得ることができる。また、熱伝導性の接着剤使用した場合には、扁平コイル状フィン部材(12)と伝熱基板(6)の間の熱伝達が更に良好となり吸放熱により優れたものとすることができる。   In Example 2, the long axis of the flat coil member (1) is bonded, brazed, or welded only at the contact portion between the flat coil member (1) and the heat transfer surface (7) of the heat transfer substrate (6). One side (4) of the direction is fixed in the fitting groove (5). In Example 3, an adhesive is injected into the fitting groove (5), and a flat coil member is injected into the adhesive. By embedding one end of (1) and solidifying the adhesive, the flat coil member (1) is fixed to the fitting groove (5) as shown in FIG. Thus, by embedding one end of the flat coil member (1) in the adhesive and fixing the flat coil member (1) to the fitting groove (5), the flat coil member (1) is fitted into the fitting groove ( 5) It becomes possible to fix firmly in the inside, and the strength of the fixing part is improved, so that a heat transfer surface (7) excellent in durability against vibration, thermal stress and the like can be obtained. Further, when a heat conductive adhesive is used, heat transfer between the flat coiled fin member (12) and the heat transfer substrate (6) is further improved, and the heat absorption / dissipation can be improved.

また、上記実施例1〜3に於いては、嵌合溝(5)を断面コ時型に形成し、図1、図4に示す如く底面(8)を平坦面とているが、本実施例4では、図9に示す如く、嵌合溝(5)の底面(8)を扁平コイル部材(1)の一側(4)の外周形状に合わせて弧状に湾曲させている。このように嵌合溝(5)の底面(8)を弧状に湾曲させることにより、扁平コイル部材(1)を嵌合溝(5)に嵌合挿入した際に、扁平コイル部材(1)の一側(4)の外周が嵌合溝(5)と面接触するものとなり、扁平コイル状フィン部材(12)と嵌合溝(5)との接触面積を更に広くして、熱交換性能をより高めることが可能となる。   In Examples 1 to 3, the fitting groove (5) is formed in a cross-sectional shape and the bottom surface (8) is a flat surface as shown in FIGS. In Example 4, as shown in FIG. 9, the bottom surface (8) of the fitting groove (5) is curved in an arc shape in accordance with the outer peripheral shape of one side (4) of the flat coil member (1). Thus, when the flat coil member (1) is fitted and inserted into the fitting groove (5) by curving the bottom surface (8) of the fitting groove (5) in an arc shape, the flat coil member (1) The outer periphery of one side (4) is in surface contact with the fitting groove (5), and the contact area between the flat coiled fin member (12) and the fitting groove (5) is further increased to improve heat exchange performance. It becomes possible to raise more.

また、上記実施例1〜4では、圧入、接着、ろう付け、又は溶接により扁平コイル部材(1)の一側(4)を前記嵌合溝(5)内に固定しているが、本実施例5では、カシメにより扁平コイル部材(1)の一側(4)を、嵌合溝(5)に固定している。本実施例5について説明すると、まず、嵌合溝(5)に扁平コイル部材(1)の一側(4)を挿入配置する。尚、扁平コイル部材(1)は圧入により嵌合溝(5)内に挿入配置したものであっても良い。 Moreover, in the said Examples 1-4, although one side (4) of the flat coil member (1) is fixed in the said fitting groove (5) by press-fit, adhesion | attachment, brazing, or welding, this implementation In Example 5, one side (4) of the flat coil member (1) is fixed to the fitting groove (5) by caulking. The fifth embodiment will be described. First, one side (4) of the flat coil member (1) is inserted and disposed in the fitting groove (5). The flat coil member (1) may be inserted and arranged in the fitting groove (5) by press fitting.

このように扁平コイル部材(1)の一側(4)を嵌合溝(5)内に挿入配置した状態で、嵌合溝(5)間に形成した分割壁(13)の表面の幅方向中央部を、分割壁(13)の一端から他端まで連続的に先端がクサビ状のカシメ治具(図示せず)で押圧する。これにより、図10及び図11に示す如く、分割壁(13)上部がカシメ治具(図示せず)により断面クサビ状に2分割され、それぞれ離反方向である扁平コイル部材(1)側に傾斜してカシメ変形が生じるものとなる。そして、このカシメ変形部(14)によって扁平コイル部材(1)が両側から内方に押圧され、嵌合溝(5)内に押圧保持されるものとなる。これにより、扁平コイル部材(1)を嵌合溝(5)内にカシメ固定することが可能となる。このように、嵌合溝(5)内に扁平コイル部材(1)を挿入配置した状態で分割壁(13)をカシメ治具(図示せず)で押圧することにより、扁平コイル部材(1)を嵌合溝(5)に容易且つ強固に固定することが可能となる。   Thus, the width direction of the surface of the dividing wall (13) formed between the fitting grooves (5) in a state where one side (4) of the flat coil member (1) is inserted and arranged in the fitting groove (5). The central portion is continuously pressed from one end to the other end of the dividing wall (13) with a crimping jig (not shown) having a wedge-shaped tip. As a result, as shown in FIGS. 10 and 11, the upper part of the dividing wall (13) is divided into two in a wedge shape by a caulking jig (not shown), and each of them is inclined toward the flat coil member (1) which is the separating direction. As a result, caulking deformation occurs. Then, the flat coil member (1) is pressed inward from both sides by the crimping deformation portion (14), and is pressed and held in the fitting groove (5). Thereby, the flat coil member (1) can be caulked and fixed in the fitting groove (5). Thus, the flat coil member (1) is pressed by pressing the dividing wall (13) with a caulking jig (not shown) in a state where the flat coil member (1) is inserted and arranged in the fitting groove (5). Can be easily and firmly fixed to the fitting groove (5).

また、上記実施例5に於いては図10、図11に示す如く、カシメ変形部(14)を各分割壁(13)に連続して設けているが、本実施例6に於いては、図12に示す如く、カシメ変形部(14)を各分割壁(13)に一定の形成間隔(18)を介して形成している。このように形成することにより、カシメ変形部(14)を各分割壁(13)に連続して形成する場合と比較して、カシメ変形量を少なくしてカシメ変形の手間を少なくすることができるとともに、カシメ加工の作業性を向上させることが可能となるため、カシメ変形部(14)の形成を容易なものとすることが可能となる。また、カシメ変形部(14)を各分割壁(13)に連続して設ける場合と比較して、分割壁(13)の強度を良好に保つことが可能となる。   Further, in the fifth embodiment, as shown in FIGS. 10 and 11, the crimping deformation portion (14) is continuously provided on each dividing wall (13), but in the sixth embodiment, As shown in FIG. 12, the crimping deformation part (14) is formed in each dividing wall (13) via a fixed formation interval (18). By forming in this way, the amount of caulking deformation can be reduced and the amount of caulking deformation can be reduced compared with the case where the caulking deformation portion (14) is formed continuously on each dividing wall (13). At the same time, the workability of the caulking process can be improved, so that the caulking deformation part (14) can be easily formed. Moreover, compared with the case where the crimp deformation | transformation part (14) is continuously provided in each division wall (13), it becomes possible to maintain the intensity | strength of a division wall (13) favorable.

また、上記実施例5、6では、図10〜図12に示す如く嵌合溝(5)間に形成した全ての分割壁(13)の表面にカシメ変形を生じさせることにより扁平コイル部材(1)をカシメ固定しているが、本実施例7では、図13及び図14に示す如く、分割壁(13)を一つおきにカシメ変形させて、扁平コイル部材(1)を嵌合溝(5)にカシメ固定している。このように分割壁(13)を一つおきにカシメ変形させた場合にも、嵌合溝(5)内の扁平コイル部材(1)は、両側に隣接する分割壁(13)のうち、一方の分割壁(13)に生じたカシメ変形部(14)によって一側(4)が内方に押圧されるものとなる。そのため、上記実施例5、6と同様に扁平コイル部材(1)を嵌合溝(5)内に押圧保持することが可能となる。   Moreover, in the said Example 5, 6, as shown in FIGS. 10-12, a flat coil member (1 is produced by producing caulking deformation | transformation on the surface of all the division walls (13) formed between the fitting grooves (5). In this embodiment, as shown in FIGS. 13 and 14, every other dividing wall (13) is deformed by caulking, and the flat coil member (1) is fitted into the fitting groove ( It is fixed by caulking to 5). Thus, even when the dividing wall (13) is caulked and deformed every other, the flat coil member (1) in the fitting groove (5) is one of the dividing walls (13) adjacent to both sides. One side (4) is pressed inward by the caulking deformation part (14) generated in the dividing wall (13). Therefore, the flat coil member (1) can be pressed and held in the fitting groove (5) as in the fifth and sixth embodiments.

従って、扁平コイル部材(1)を嵌合溝(5)内にカシメ固定することが可能となり、扁平コイル部材(1)を嵌合溝(5)に容易且つ強固に固定することができる。また、分割壁(13)を一つおきにカシメ変形させているため、上記実施例5の如く全ての分割壁(13)をカシメ変形させる場合と比較してカシメ変形の手間を少なくすることができ、製造を容易なものとすることが可能となる。   Accordingly, the flat coil member (1) can be caulked and fixed in the fitting groove (5), and the flat coil member (1) can be easily and firmly fixed to the fitting groove (5). In addition, since every other dividing wall (13) is deformed by caulking, it is possible to reduce the trouble of caulking deformation as compared with the case where all the dividing walls (13) are caulked and deformed as in the fifth embodiment. Can be manufactured easily.

また、上記実施例1〜7では、伝熱面(7)が平坦な伝熱基板(6)を使用しているが、本実施例7では、図15、図16に示す如く伝熱面(7)側の中央部を外方に突出して弧状曲面(20)としたかまぼこ形状の伝熱基板(6)を用いており、このかまぼこ形状の伝熱基板(6)に、弧状曲面(20)と同一曲率中心にて嵌合溝(5)を、図17に示す如く一定間隔で凹設している。このように形成することにより、扁平コイル部材(1)を伝熱基板(6)の伝熱面(7)に固定配置した際に、扁平コイル部材(1)が図15に示す如く放射状に配置されるものとなり平坦な伝熱面(7)に扁平コイル部材(1)を配置した場合と比較して、扁平コイル部材(1)を嵌合溝(5)方向に長尺なものとし、且つ、扁平コイル部材(1)の先端側に流体の流通間隔(17)を広く取ることが可能となる。そのため、通気性を良好とすることができるため、扁平コイル部材(1)からの吸放熱効果を良好なものとし、熱交換性能を更に高めることができる。   Moreover, in the said Examples 1-7, although the heat-transfer surface (7) uses the flat heat-transfer board | substrate (6), in this Example 7, as shown to FIG. 15, FIG. 7) A kamaboko-shaped heat transfer substrate (6) having an arcuate curved surface (20) projecting outward at the center on the side is used, and the arc-shaped curved surface (20) is used on the kamaboko-shaped heat transfer substrate (6). The fitting grooves (5) are recessed at regular intervals at the same curvature center as shown in FIG. By forming in this way, when the flat coil member (1) is fixedly arranged on the heat transfer surface (7) of the heat transfer substrate (6), the flat coil member (1) is arranged radially as shown in FIG. Compared with the case where the flat coil member (1) is disposed on the flat heat transfer surface (7), the flat coil member (1) is elongated in the direction of the fitting groove (5), and The fluid flow interval (17) can be widened on the tip side of the flat coil member (1). Therefore, since air permeability can be made favorable, the effect of absorbing and releasing heat from the flat coil member (1) can be made good, and the heat exchange performance can be further enhanced.

また、前記実施例1〜7の如く、伝熱面(7)が平坦な伝熱基板(6)を使用する場合には、扁平コイル部材(1)の各環状片(3)の基端側を密着させると、各環状片(3)の先端側も密着して流通間隔(17)がなくなってしまうため、熱交換性能が低下するおそれがある。しかし、本実施例に於いては、前述の如く弧状に湾曲した嵌合溝(5)に扁平コイル部材(1)が放射状に配置されるものとなるため、図15及び図16に示す如く扁平コイル部材(1)の基端側をたとえ密着させても、扁平コイル部材(1)の先端側は密着せず、流通間隔(17)を確実に確保することが可能となる。そのため、扁平コイル部材(1)の基端側を密着させて伝熱面(7)の表面積を最大まで増大させた場合にも、扁平コイル状フィン部材(12)周りの流体の流れを良好に保つことが可能となり、熱交換性能を一層高めることができる。   Moreover, when using the heat-transfer board | substrate (6) with a flat heat-transfer surface (7) like the said Examples 1-7, the base end side of each annular piece (3) of a flat coil member (1) When the two are closely attached, the tip end side of each annular piece (3) is also brought into close contact and the flow interval (17) is lost, which may reduce the heat exchange performance. However, in this embodiment, since the flat coil member (1) is radially arranged in the fitting groove (5) curved in an arc shape as described above, the flat coil member (1) is flat as shown in FIGS. Even if the proximal end side of the coil member (1) is brought into close contact, the distal end side of the flat coil member (1) is not brought into close contact, and the flow interval (17) can be reliably ensured. Therefore, even when the proximal end side of the flat coil member (1) is closely attached to increase the surface area of the heat transfer surface (7) to the maximum, the fluid flow around the flat coil fin member (12) is improved. The heat exchange performance can be further enhanced.

また、本実施例8では図15に示す如く伝熱基板(6)の底面(16)を平坦なものとしているが、他の異なる実施例では図18に示す如く、底面(16)の肉厚が略一定となるよう断面逆U字型に凹設するなどして、発熱体(図示せず)の形状に対応させた形状としたものであっても良い。このように伝熱基板(6)の底面(16)側の形状を発熱体(図示せず)の形状に対応させることにより、発熱体(図示せず)を伝熱基板(6)の底面(16)に確実に面接触させることが可能となり、発熱体(図示せず)から伝熱基板(6)への伝熱効率を良好なものとすることができるため、放熱性を更に高めることができる。また、上述の如く伝熱基板(6)の底面(16)の肉厚を略一定とすることにより、発熱体(図示せず)との熱交換を、伝熱基板(6)全体で均等に行うことが可能となり、熱交換性能を一層高めることができる。
In the eighth embodiment, the bottom surface (16) of the heat transfer substrate (6) is flat as shown in FIG. 15, but in another different embodiment, the thickness of the bottom surface (16) is as shown in FIG. A shape corresponding to the shape of the heating element (not shown) may be formed by, for example, recessing in an inverted U-shaped cross section so that is constant. Thus, by making the shape of the bottom surface (16) side of the heat transfer substrate (6) correspond to the shape of the heat generating body (not shown), the heat generating body (not shown) is attached to the bottom surface (not shown) of the heat transfer substrate (6). 16) can be reliably brought into surface contact, and the heat transfer efficiency from the heating element (not shown) to the heat transfer substrate (6) can be improved, so that the heat dissipation can be further improved. . Further, by making the thickness of the bottom surface (16) of the heat transfer substrate (6) substantially constant as described above, heat exchange with the heating element (not shown) can be evenly distributed over the entire heat transfer substrate (6). This makes it possible to further enhance the heat exchange performance.

実施例1において伝熱面の製造過程を示す斜視図。FIG. 3 is a perspective view illustrating a manufacturing process of a heat transfer surface in the first embodiment. 伝熱面の斜視図。The perspective view of a heat-transfer surface. 図2の部分拡大平面図。FIG. 3 is a partially enlarged plan view of FIG. 2. 図3のA−A線断面図。AA line sectional view of Drawing 3. 本実施例の線材の断面図。Sectional drawing of the wire of a present Example. 実施例2を示す扁平コイル部材の嵌合溝への嵌合挿入部分の断面図。Sectional drawing of the fitting insertion part to the fitting groove | channel of the flat coil member which shows Example 2. FIG. 実施例2において、伝熱面及び嵌合溝内において扁平コイル部材をろう付けした状態を示す断面図。Sectional drawing which shows the state which brazed the flat coil member in the heat-transfer surface and the fitting groove in Example 2. FIG. 実施例3を示す扁平コイル部材の嵌合溝への嵌合挿入部分の断面図。Sectional drawing of the fitting insertion part to the fitting groove | channel of the flat coil member which shows Example 3. FIG. 実施例4において伝熱面の製造過程を示す斜視図。FIG. 9 is a perspective view showing a manufacturing process of a heat transfer surface in Example 4. 実施例5を示す伝熱面の斜視図。FIG. 10 is a perspective view of a heat transfer surface showing Example 5. 図10の部分拡大斜視図。FIG. 11 is a partially enlarged perspective view of FIG. 10. 実施例6を示す伝熱面の部分拡大斜視図。FIG. 12 is a partially enlarged perspective view of a heat transfer surface showing Example 6. 実施例7を示す伝熱面の斜視図。FIG. 11 is a perspective view of a heat transfer surface showing Example 7. 図13の部分拡大斜視図。FIG. 14 is a partially enlarged perspective view of FIG. 13. 実施例8を示す伝熱面の断面図。Sectional drawing of the heat-transfer surface which shows Example 8. FIG. 図15の部分拡大図。The elements on larger scale of FIG. 実施例8の伝熱基板を示す平面図。FIG. 9 is a plan view showing a heat transfer substrate of Example 8. 実施例8において、伝熱基板の底面側を断面逆U字型に形成した状態を示す断面図。In Example 8, sectional drawing which shows the state which formed the bottom face side of the heat-transfer board | substrate in the cross-sectional inverted U shape.

符号の説明Explanation of symbols

1 扁平コイル部材
2 線材
4 一側
5 嵌合溝
6 伝熱基板
7 伝熱面
12 扁平コイル状フィン部材
13 分割壁
14 カシメ変形部
1 flat coil member 2 wire rod
4 One side
5 Fitting groove
6 Heat transfer board
7 Heat transfer surface
12 flat coiled fin member 13 dividing wall 14 caulking deformation part

Claims (14)

線材にて形成した巻回形状が扁平状の扁平コイル部材と、この扁平コイル部材の長軸方向の一側を嵌合可能とする嵌合溝を伝熱面に形成した伝熱基板とから成り、前記嵌合溝内に前記扁平コイル部材の長軸方向の一側を嵌合挿入することにより、伝熱基板の伝熱面に扁平コイル部材を固定配置して扁平コイル状フィン部材としたことを特徴とする扁平コイル状フィン部材を備えた伝熱面構造。   A flat coil member having a flat winding shape formed of a wire, and a heat transfer substrate in which a fitting groove capable of fitting one side in the long axis direction of the flat coil member is formed on a heat transfer surface. The flat coil member is fixedly arranged on the heat transfer surface of the heat transfer board by fitting and inserting one side in the long axis direction of the flat coil member into the fitting groove to form a flat coil fin member. A heat transfer surface structure comprising a flat coiled fin member characterized by 線材にて巻回形状が扁平状の扁平コイル部材を形成する工程と、この扁平コイル部材の長軸方向の一側を嵌合可能とする嵌合溝を伝熱基板の伝熱面に形成する工程と、前記嵌合溝内に前記扁平コイル部材の長軸方向の一側を嵌合して伝熱基板の伝熱面に扁平コイル部材を固定配置して扁平コイル状フィン部材とする工程とから成ることを特徴とする扁平コイル状フィン部材を備えた伝熱面の製造方法。   A step of forming a flat coil member having a flat winding shape with a wire, and a fitting groove capable of fitting one side in the long axis direction of the flat coil member are formed on the heat transfer surface of the heat transfer substrate. And a step of fitting one side of the flat coil member in the long axis direction into the fitting groove to fix and arrange the flat coil member on the heat transfer surface of the heat transfer board, thereby forming a flat coil-shaped fin member; The manufacturing method of the heat-transfer surface provided with the flat coil-shaped fin member characterized by comprising. 伝熱基板は、伝熱面側の中央部が外方に突出した弧状曲面とし、この弧状曲面と同一曲率中心にて嵌合溝を弧状曲面に凹設したことを特徴とする請求項1の扁平コイル状フィン部材を備えた伝熱面構造。   The heat transfer board has an arcuate curved surface with a central portion on the heat transfer surface side protruding outward, and a fitting groove is recessed in the arcuate curved surface at the same center of curvature as the arcuate curved surface. A heat transfer surface structure provided with a flat coil fin member. 伝熱基板は、伝熱面側の中央部が外方に突出した弧状曲面とし、この弧状曲面と同一曲率中心にて嵌合溝を弧状曲面に凹設したことを特徴とする請求項2の扁平コイル状フィン部材を備えた伝熱面の製造方法。   The heat transfer board has an arcuate curved surface with a central portion on the heat transfer surface side protruding outward, and a fitting groove is provided in the arcuate curved surface at the same center of curvature as the arcuate curved surface. The manufacturing method of the heat-transfer surface provided with the flat coil-shaped fin member. 扁平コイル部材は、長軸方向の一側を圧入により前記嵌合溝内に固定配置したことを特徴とする請求項1の扁平コイル状フィン部材を備えた伝熱面構造。   The heat transfer surface structure provided with the flat coiled fin member according to claim 1, wherein the flat coil member is fixedly disposed in the fitting groove by press-fitting one side in the long axis direction. 扁平コイル部材は、長軸方向の一側を圧入により前記嵌合溝内に固定配置することを特徴とする請求項2の扁平コイル状フィン部材を備えた伝熱面の製造方法。   The method for manufacturing a heat transfer surface provided with the flat coiled fin member according to claim 2, wherein the flat coil member is fixedly arranged in the fitting groove by press-fitting one side in the long axis direction. 扁平コイル部材は、接着、カシメ、ろう付け、又は溶接のいずれか、又は組み合わせにより、前記嵌合溝に固定したことを特徴とする請求項1、または5の扁平コイル状フィン部材を備えた伝熱面構造。   The flat coil member is fixed to the fitting groove by any one of adhesion, caulking, brazing, welding, or a combination thereof, and the transmission provided with the flat coil-shaped fin member according to claim 1 or 5. Hot surface structure. 扁平コイル部材は、接着、カシメ、ろう付け、又は溶接のいずれか、又は組み合わせにより、前記嵌合溝に固定することを特徴とする請求項2、または6の扁平コイル状フィン部材を備えた伝熱面の製造方法。   The flat coil member is fixed to the fitting groove by any one of bonding, caulking, brazing, welding, or a combination thereof, and the transmission provided with the flat coiled fin member according to claim 2 or 6. Hot surface manufacturing method. 嵌合溝は、扁平コイル部材を挿入した後、嵌合溝間に形成した分割壁の表面をカシメ治具にて押圧して形成したカシメ変形部により、扁平コイル部材を両側から押圧保持したことを特徴とする請求項1、3、または5の扁平コイル状フィン部材を備えた伝熱面構造。   The fitting groove was pressed and held from both sides by a caulking deformation part formed by pressing the surface of the dividing wall formed between the fitting grooves with a caulking jig after inserting the flat coil member. A heat transfer surface structure comprising the flat coiled fin member according to claim 1, 3 or 5. 嵌合溝は、扁平コイル部材を挿入した後、嵌合溝間に形成した分割壁の表面にカシメ治具にて押圧してカシメ変形を生じさせ、このカシメ変形部により扁平コイル部材を両側から押圧保持したことを特徴とする請求項2、4、または6の扁平コイル状フィン部材を備えた伝熱面の製造方法。   After the flat coil member is inserted into the fitting groove, the surface of the dividing wall formed between the fitting grooves is pressed with a caulking jig to cause caulking deformation, and the caulking deformation portion causes the flat coil member to be moved from both sides. A method for producing a heat transfer surface comprising the flat coiled fin member according to claim 2, wherein the heat transfer surface is pressed and held. 扁平コイル部材は、接着、ろう付け、又は溶接のいずれか、又は組み合わせにより、前記嵌合溝に固定したことを特徴とする請求項9の扁平コイル状フィン部材を備えた伝熱面構造。   10. The heat transfer surface structure with a flat coiled fin member according to claim 9, wherein the flat coil member is fixed to the fitting groove by any one of bonding, brazing, welding, or combination. 扁平コイル部材は、接着、ろう付け、又は溶接のいずれか、又は組み合わせにより、前記嵌合溝に固定することを特徴とする請求項10の扁平コイル状フィン部材を備えた伝熱面の製造方法。   The method of manufacturing a heat transfer surface with a flat coiled fin member according to claim 10, wherein the flat coil member is fixed to the fitting groove by any one of bonding, brazing, welding, or a combination thereof. . 扁平コイル部材は、嵌合溝内に接着剤を注入し、この接着剤に扁平コイル部材の一端を埋設して接着剤を固化させることにより、前記嵌合溝に固定したことを特徴とする請求項1、5または7の扁平コイル状フィン部材を備えた伝熱面構造。   The flat coil member is fixed to the fitting groove by injecting an adhesive into the fitting groove and embedding one end of the flat coil member in the adhesive to solidify the adhesive. A heat transfer surface structure comprising the flat coiled fin member according to Item 1, 5 or 7. 扁平コイル部材は、嵌合溝内に接着剤を注入し、この接着剤に扁平コイル部材の一端を埋設して接着剤を固化させることにより、前記嵌合溝に固定することを特徴とする請求項2、6、または8の扁平コイル状フィン部材を備えた伝熱面の製造方法。
The flat coil member is fixed to the fitting groove by injecting an adhesive into the fitting groove and embedding one end of the flat coil member in the adhesive to solidify the adhesive. Item 9. A method for manufacturing a heat transfer surface comprising the flat coiled fin member according to Item 2, 6, or 8.
JP2008190496A 2008-07-24 2008-07-24 Heat transfer surface structure having flat coiled fin member and manufacturing method thereof Active JP5081757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190496A JP5081757B2 (en) 2008-07-24 2008-07-24 Heat transfer surface structure having flat coiled fin member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190496A JP5081757B2 (en) 2008-07-24 2008-07-24 Heat transfer surface structure having flat coiled fin member and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010027998A true JP2010027998A (en) 2010-02-04
JP2010027998A5 JP2010027998A5 (en) 2011-07-21
JP5081757B2 JP5081757B2 (en) 2012-11-28

Family

ID=41733511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190496A Active JP5081757B2 (en) 2008-07-24 2008-07-24 Heat transfer surface structure having flat coiled fin member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5081757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099390A1 (en) 2010-02-10 2011-08-18 Fujifilm Corporation Solar cell backsheet and solar cell module
WO2018159601A1 (en) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 Heat-exchange member
WO2024154240A1 (en) * 2023-01-18 2024-07-25 三菱電機株式会社 Heat exchanger and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026200A (en) * 2000-07-07 2002-01-25 Mizutani Denki Kogyo Kk Radiator for electronic component
JP2006114688A (en) * 2004-10-14 2006-04-27 Okano Electric Wire Co Ltd Heat sink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026200A (en) * 2000-07-07 2002-01-25 Mizutani Denki Kogyo Kk Radiator for electronic component
JP2006114688A (en) * 2004-10-14 2006-04-27 Okano Electric Wire Co Ltd Heat sink

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099390A1 (en) 2010-02-10 2011-08-18 Fujifilm Corporation Solar cell backsheet and solar cell module
WO2018159601A1 (en) * 2017-02-28 2018-09-07 三菱マテリアル株式会社 Heat-exchange member
JP2018141614A (en) * 2017-02-28 2018-09-13 三菱マテリアル株式会社 Heat exchange member
WO2024154240A1 (en) * 2023-01-18 2024-07-25 三菱電機株式会社 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JP5081757B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP3140755U (en) Corrugated fin type radiator
US20080060793A1 (en) Cooler device
US20140151012A1 (en) Heat sink with staggered heat exchange elements
JP2006308239A (en) Heat pipe type heat sink and its manufacturing method
WO2015098824A1 (en) Heat receiving structure and heat sink
JP2004311718A (en) Heat sink
JP5081757B2 (en) Heat transfer surface structure having flat coiled fin member and manufacturing method thereof
JP5645852B2 (en) Pipe joint, heat exchanger, and heat exchanger manufacturing method
JP2009088417A (en) Heat sink having heat-dissipation fin, and method of manufacturing the same
KR20120038621A (en) Manufacturing method of pipe using heat exchanger
JP2009186090A (en) Heat exchanger and its manufacturing method
JP2008232499A (en) Fin for heat exchanger
JP5203031B2 (en) Heat transfer surface structure having flat coiled fin member and manufacturing method thereof
JP2008051375A (en) Method of manufacturing heat exchanger
JP2013092335A (en) Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP4015146B2 (en) Heat sink with fins and method for manufacturing the same
JP3602806B2 (en) Method of manufacturing corrugated fin type heat sink
JP5869267B2 (en) Manufacturing method of liquid cooling heat sink
JP2006132850A (en) Cooling unit and its manufacturing method
RU184729U1 (en) RADIATOR FOR COOLING ELECTRONIC DEVICES
KR101001387B1 (en) Heat Sink using Welding
JPWO2020138223A1 (en) How to Make Heat Sinks, Heat Sink Assembly, Electronics, and Heat Sinks
WO2012127925A1 (en) Heat exchanger and manufacturing method therefor
KR200376365Y1 (en) Radiator
JP2002280773A (en) Heat sink and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150