JP2010025671A - Fluid film thickness measuring apparatus - Google Patents

Fluid film thickness measuring apparatus Download PDF

Info

Publication number
JP2010025671A
JP2010025671A JP2008185807A JP2008185807A JP2010025671A JP 2010025671 A JP2010025671 A JP 2010025671A JP 2008185807 A JP2008185807 A JP 2008185807A JP 2008185807 A JP2008185807 A JP 2008185807A JP 2010025671 A JP2010025671 A JP 2010025671A
Authority
JP
Japan
Prior art keywords
housing
excitation light
film thickness
seal member
face seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008185807A
Other languages
Japanese (ja)
Other versions
JP5037444B2 (en
Inventor
Yuichiro Tokunaga
雄一郎 徳永
Takeshi Hosoe
猛 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2008185807A priority Critical patent/JP5037444B2/en
Publication of JP2010025671A publication Critical patent/JP2010025671A/en
Application granted granted Critical
Publication of JP5037444B2 publication Critical patent/JP5037444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus which measures the two-dimensional distribution of the film thickness of a lubricant/sealing fluid interposed between the rotational sliding surfaces of an end face sealing member and an opposite member over the entire sliding surfaces with sub-micron order precision. <P>SOLUTION: The liquid film thickness measuring apparatus has: a housing which is rotatably coupled to a base and holds the end face sealing member; an opposite member which is arranged in a contactable manner with respect to the end face sealing member and has optical transparency; a fluid containing a fluorescent dye; a light source for applying excitation light; an optical axis adjustment mechanism; a stop; an optical filter holder; a linearization mechanism for diffusing the application shape of the excitation light from a point shape to a linear shape; an optical microscope provided with an objective and a beam splitter; an optical filter; a photographing unit for photographing a fluorescence image; and a rotational drive source for rotating the opposite member. The excitation light diffused to a linear shape is applied on one point on the circumference of the sliding surface of the end face sealing member in such a manner that it extends in the radial direction of the sliding surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、円周方向に変化する微小隙間をもつメカニカルシール等の端面シール部材について、静止時および回転時の流体膜厚を非接触で二次元的に測定する流体膜厚測定装置に関する。   TECHNICAL FIELD The present invention relates to a fluid film thickness measuring device that two-dimensionally measures a fluid film thickness at rest and during rotation in a contactless manner with respect to an end seal member such as a mechanical seal having a minute gap that changes in the circumferential direction.

メカニカルシールに代表される、円筒状軸端面と相手平面との接触により密封を行なういわゆる端面シールは、機械の潤滑油や各種作動流体などの漏洩防止を目的とした機械要素として広く使用されている。これら端面シールは、すべり接触をする回転環と固定環の両端面(密封面)同士をばね力などにより接触させることにより密封を行なう、いわゆる接触式シールである。この端面シールにおいて、良好な密封状態を長期間維持するためには、密封面間に密封流体による流体潤滑膜を形成し、密封面の摩耗、面荒れ等を防止する、すなわち密封と潤滑という相反する条件を両立させる必要がある。端面シールの密封機構は未だ完全な解明には至っていないが、回転環と固定環の接触により形成される微小隙間を満たす潤滑液膜の大小が密封性能に直接的に影響すると考えられており、シール性能の評価手法の確立による製品品質の向上ならびに端面シールの密封機構の解明に対し、この潤滑膜厚を測定することは最も有効な方策のひとつである。   So-called end face seals that are sealed by contact between the cylindrical shaft end face and the mating flat surface, represented by mechanical seals, are widely used as machine elements for the purpose of preventing leakage of machine lubricants and various working fluids. . These end face seals are so-called contact-type seals that perform sealing by bringing both end faces (sealing faces) of the rotating ring and the stationary ring in sliding contact into contact with each other by a spring force or the like. In this end face seal, in order to maintain a good sealing state for a long period of time, a fluid lubrication film is formed between the sealing faces by a sealing fluid to prevent wear and roughness of the sealing faces, that is, the conflict between sealing and lubrication. It is necessary to satisfy both conditions. The sealing mechanism of the end face seal has not yet been fully elucidated, but it is thought that the size of the lubricating liquid film that satisfies the minute gap formed by the contact between the rotating ring and the stationary ring directly affects the sealing performance. Measuring the lubrication film thickness is one of the most effective measures for improving product quality by establishing a sealing performance evaluation method and elucidating the sealing mechanism of end face seals.

シール部材の流体膜厚測定に関しては、下記特許文献1にて、主にオイルシールやOリングに代表される、ゴム等のエラストマー材で構成される密封装置に関して、蛍光法を用いた先行技術がある。ただしこの先行技術の場合、励起光であるレーザ光は点状に照射されるため、光学顕微鏡による観察面上のある一点の膜厚測定、あるいは点を一方向に走査した場合の複数点の膜厚測定のみに有効である。一般的にメカニカルシール等の端面シールは、密封端面の一方に微小振幅のうねりを持っており、摺動面円周方向に一定の隙間ではなく、隙間が変化する形状を持つ。そのためゴム材と異なり、その密封現象を正確に観察するためには、摺動面全周における液膜分布を測定する必要がある。この理由のため上記先行技術を端面シール部材にそのまま適用することはできない。一方、光源にレーザ光ではなくXeランプを用いた蛍光法は、二次元での液膜分布計測の先行技術があるが、測定対象である油膜厚さはミクロンオーダである。メカニカルシールの摺動面間の液膜厚さはサブミクロンオーダと類推され、このような薄い膜厚に対する測定には、よりエネルギー密度の高い光源と光源に最適な蛍光色素を用いる必要がある。   Regarding the measurement of the fluid film thickness of the seal member, in Patent Document 1 below, there is a prior art using a fluorescence method for a sealing device mainly composed of an elastomer material such as rubber represented by an oil seal or an O-ring. is there. However, in the case of this prior art, the laser beam that is the excitation light is irradiated in the form of a dot, so that the film thickness of one point on the observation surface by the optical microscope or the film of multiple points when the point is scanned in one direction Effective only for thickness measurement. In general, an end face seal such as a mechanical seal has a undulation with a minute amplitude on one of the sealed end faces, and has a shape in which the gap changes instead of a constant gap in the circumferential direction of the sliding surface. Therefore, unlike the rubber material, in order to accurately observe the sealing phenomenon, it is necessary to measure the liquid film distribution around the entire sliding surface. For this reason, the above prior art cannot be directly applied to the end face seal member. On the other hand, the fluorescence method using an Xe lamp instead of a laser beam as a light source has a prior art of two-dimensional liquid film distribution measurement, but the oil film thickness to be measured is on the order of microns. The liquid film thickness between the sliding surfaces of the mechanical seal can be inferred to be on the order of submicrons. For measurement of such a thin film thickness, it is necessary to use a light source having a higher energy density and a fluorescent dye optimal for the light source.

特開2001−264021号公報JP 2001-264221 A

本発明は、上記の問題の解決を目的としてなされたものである。すなわち本発明は、端面シール部材と相手部材との回転摺動面間に介在する潤滑・密封流体の膜厚に関して、摺動面全周に亙る二次元的な分布をサブミクロンオーダの精度で測定することのできる流体膜厚測定装置を提供することを目的とする。   The present invention has been made for the purpose of solving the above problems. That is, the present invention measures the two-dimensional distribution over the entire circumference of the sliding surface with submicron accuracy with respect to the film thickness of the lubricating / sealing fluid interposed between the rotational sliding surfaces of the end face seal member and the mating member. An object of the present invention is to provide a fluid film thickness measuring apparatus capable of performing the above.

上記目的を達成するため、本発明の請求項1による流体膜厚測定装置は、端面シール部材の摺動面における流体膜厚を測定する装置であって、基盤に回転可能に連結されるとともに供試体である端面シール部材を保持するハウジングと、前記ハウジングに保持された状態の端面シール部材に対し接触可能に配置されるとともに光透過性を有する相手部材と、前記ハウジングに収容され、前記端面シール部材および相手部材の接触により密封された状態となる蛍光色素を含む流体と、励起光を照射する光源と、励起光の光軸調整機構と、光軸調整のための絞りと、光学フィルタホルダと、励起光の照射形状を点状からライン状へ拡散させるライン化機構と、前記光源からの励起光を被計測領域である前記端面シール部材および相手部材の接触部へ導き、前記接触部に存在する流体から発せられる蛍光像を対物レンズを通し拡大しビームスプリッタへ導く光学顕微鏡と、前記励起光の波長の光を除去する光学フィルタと、前記光学フィルタにより得られる蛍光像を撮像する撮像装置と、前記端面シール部材および相手部材の接触部の摺動状態を実現すべく前記相手部材を回転させる回転駆動源と、を有し、前記ライン状に拡散される励起光は、前記端面シール部材の摺動面の円周上1箇所であってかつ前記摺動面の半径方向に沿って延びるかたちで照射されることを特徴とする。   In order to achieve the above object, a fluid film thickness measuring apparatus according to claim 1 of the present invention is an apparatus for measuring a fluid film thickness on a sliding surface of an end face seal member, and is rotatably connected to a base. A housing for holding an end face seal member as a specimen, a mating member disposed so as to be in contact with the end face seal member held in the housing and having light transmission properties, and housed in the housing, the end face seal A fluid containing a fluorescent dye that is sealed by contact between a member and a counterpart member, a light source that emits excitation light, an optical axis adjustment mechanism for excitation light, an aperture for optical axis adjustment, an optical filter holder, A line-forming mechanism for diffusing the irradiation shape of the excitation light from a dot shape to a line shape, and a contact portion between the end face seal member and the counterpart member that are the measurement target region of the excitation light from the light source An optical microscope for guiding and enlarging a fluorescence image emitted from the fluid existing in the contact portion through an objective lens and guiding it to a beam splitter; an optical filter for removing light having the wavelength of the excitation light; and fluorescence obtained by the optical filter Excitation light that has an imaging device that captures an image, and a rotational drive source that rotates the mating member to realize a sliding state of the contact portion between the end face seal member and the mating member, and is diffused in the line shape Is irradiated at one place on the circumference of the sliding surface of the end face seal member and extending along the radial direction of the sliding surface.

また、本発明の請求項2による流体膜厚測定装置は、上記した請求項1記載の流体膜厚測定装置において、ハウジングに保持された状態の端面シール部材における励起光被照射位置を円周上位置決めすべく前記ハウジングを一定ピッチで回転および停止させるハウジング回転制御手段が設けられていることを特徴とする。   A fluid film thickness measuring apparatus according to a second aspect of the present invention is the fluid film thickness measuring apparatus according to the first aspect described above, wherein the excitation light irradiated position on the end face seal member held in the housing is arranged on the circumference. Housing rotation control means for rotating and stopping the housing at a constant pitch for positioning is provided.

上記構成を有する本発明の請求項1による流体膜厚測定装置は、基盤に回転可能に連結されたハウジングを有しているので、先ずこのハウジングに供試体である端面シール部材を装着する。装着した端面シール部材はその密封摺動面が相手部材に接触した状態とし、一方これと前後してハウジングに蛍光色素を含む流体を収容する。以上の前準備が完了したら光源から励起光を照射する。光源から照射される励起光は、絞りを通過し、光学フィルタホルダに設置されたフィルタ類を透過して任意の強度に減衰または波長選択された後、ライン化機構により点状からライン状へとその照射形状が拡散され、ビームスプリッタにて反射され、光透過性を有する相手部材を透過し、端面シール部材および相手部材間の隙間に存在する蛍光色素を含む流体に照射される。ライン状に拡散された励起光が照射されるのは、環状の端面シール部材における摺動面の円周上1箇所であって、かつそのラインは環状の摺動面の半径方向に沿って延びるものとされる。流体中に含まれる蛍光色素は、ライン状に拡散された励起光により励起され、励起光波長と異なる波長の蛍光を発光する。蛍光像は、対物レンズを有する光学顕微鏡により拡大され、ビームスプリッタを通過し、光学フィルタにより蛍光波長以外の波長の光が除去され、撮像装置へと導かれ、蛍光画像が撮影される。得られた蛍光画像より蛍光強度を数値化し、予め測定済みの蛍光強度から膜厚への換算曲線を元に、膜厚を定量化する。以上によりライン状に拡散された励起光によるライン1本分の測定(円周上1箇所の測定)が行われる。尚、この測定に際し、相手部材を回転させなければ摺動面静止状態での測定が行われ、モータ等の回転駆動源により相手部材を回転させれば摺動面回転状態での測定が行われる。   Since the fluid film thickness measuring apparatus according to the first aspect of the present invention having the above-described configuration has a housing rotatably connected to the base, an end face seal member as a specimen is first attached to the housing. The mounted end face seal member is in a state in which the sealing sliding surface is in contact with the mating member, and on the other hand, the fluid containing the fluorescent dye is accommodated in the housing. When the above preparation is completed, excitation light is emitted from the light source. The excitation light emitted from the light source passes through the diaphragm, passes through the filters installed in the optical filter holder, and is attenuated or wavelength-selected to an arbitrary intensity. The irradiation shape is diffused, reflected by the beam splitter, transmitted through the light-transmitting counterpart member, and irradiated to the fluid containing the fluorescent dye existing in the gap between the end face seal member and the counterpart member. The excitation light diffused in a line shape is irradiated at one place on the circumference of the sliding surface of the annular end face seal member, and the line extends along the radial direction of the annular sliding surface. It is supposed to be. The fluorescent dye contained in the fluid is excited by excitation light diffused in a line shape, and emits fluorescence having a wavelength different from the excitation light wavelength. The fluorescence image is magnified by an optical microscope having an objective lens, passes through a beam splitter, light having a wavelength other than the fluorescence wavelength is removed by an optical filter, is guided to an imaging device, and a fluorescence image is photographed. The fluorescence intensity is digitized from the obtained fluorescence image, and the film thickness is quantified based on a conversion curve from the fluorescence intensity measured in advance to the film thickness. As described above, measurement of one line (measurement at one place on the circumference) by the excitation light diffused in a line shape is performed. In this measurement, if the mating member is not rotated, the measurement is performed in a stationary state of the sliding surface, and if the mating member is rotated by a rotational drive source such as a motor, the measurement is performed in the rotating state of the sliding surface. .

次いで、上記したようにハウジングは基盤に対し回転可能に連結されているので、ハウジングを所定の回転角度に亙って回転させる。上記光源や光学顕微鏡等の光学系要素は位置が一定であるので、常に一定の箇所へ向けて励起光を照射する。したがってハウジングを回転させれば、これが保持している端面シール部材も回転するので、上記1回目の測定とは円周上異なった位置での測定が行われ、これを必要回数(例えば100回)繰り返す。以上により端面シール部材の摺動面の全周、全面に亙る測定が行われる。   Next, since the housing is rotatably connected to the base as described above, the housing is rotated over a predetermined rotation angle. Since the optical system elements such as the light source and the optical microscope have a fixed position, the excitation light is always emitted toward a fixed portion. Therefore, if the housing is rotated, the end face sealing member held by the housing is also rotated. Therefore, the measurement is performed at a position different from the circumference of the first measurement, and this is performed the necessary number of times (for example, 100 times). repeat. As described above, measurement is performed over the entire circumference and entire surface of the sliding surface of the end face seal member.

尚、以上のように測定は何度も繰り返されるので、ハウジングを所定の回転角度回転させる際に、回転角度を定量化できれば(一定角度ごとに回転させることができれば)作業上至って便利である。そこで本発明の請求項2では、ハウジングに保持された状態の端面シール部材における励起光被照射位置を円周上位置決めすべく前記ハウジングを一定ピッチで回転および停止させるハウジング回転制御手段を設けることにした。この制御手段の具体例としては、サーボモータの自動回転が考えられるが、ハウジング側に設けられる歯車の歯と、基盤側に設けられ前記歯に噛み合うラチェット機構との組み合わせとしても良く、これによれば全周360度/歯数による定量化が実現される。   Since the measurement is repeated many times as described above, if the rotation angle can be quantified when the housing is rotated at a predetermined rotation angle (if it can be rotated at a constant angle), it is convenient for the work. Accordingly, in claim 2 of the present invention, there is provided housing rotation control means for rotating and stopping the housing at a constant pitch so as to position the excitation light irradiated position on the end face seal member held in the housing on the circumference. did. As a specific example of this control means, automatic rotation of a servo motor is conceivable, but a combination of a gear tooth provided on the housing side and a ratchet mechanism provided on the base side and meshing with the tooth may be used. For example, quantification by 360 degrees / tooth is possible.

励起光としては、レーザ光を使用するが、これに限定されるものではなく、例えば、LEDやその他の光源(蛍光顕微鏡の一般的な光源である超高圧水銀光源や、キセノン光源、メタルハライド光源、ハロゲン光源など)から発せられるものを使用することが考えられる。レーザ光は、指向性、集光性、単色性に優れている。これに対し、LEDは単色性に優れているが、指向性、集光性がレーザ光に比べ劣る。一般的な光源は指向性、集光性ともにレーザ光に劣るが、波長選択性を持つフィルタの使用により特定の波長を取り出すことができる。   As the excitation light, laser light is used, but is not limited thereto. For example, an LED or other light source (an ultra-high pressure mercury light source, a xenon light source, a metal halide light source, It is conceivable to use light emitted from a halogen light source. Laser light is excellent in directivity, light condensing property, and monochromaticity. On the other hand, although LED is excellent in monochromaticity, directivity and condensing property are inferior to laser light. A general light source is inferior to laser light in both directivity and light condensing property, but a specific wavelength can be extracted by using a filter having wavelength selectivity.

以上説明したように本発明によれば、端面シール部材と相手部材との回転摺動面間に介在する潤滑・密封流体の膜厚について、摺動面全周に亙る二次元的な分布をサブミクロンオーダの精度で測定することが可能となる。また、ハウジング回転制御手段が設けられれば、ハウジング回転角度の定量化すなわち測定角度変位の定量化が実現される。   As described above, according to the present invention, the film thickness of the lubricating / sealing fluid interposed between the rotational sliding surfaces of the end face seal member and the mating member is subdivided into a two-dimensional distribution over the entire circumference of the sliding surface. It becomes possible to measure with an accuracy of micron order. If the housing rotation control means is provided, the housing rotation angle can be quantified, that is, the measurement angular displacement can be quantified.

端面シール部材は例えばメカニカルシールの摺動環であって、メカニカルシールの摺動環はカーボン、炭化珪素、セラミック等の硬質材が平坦な摺動面を形成するので、薄い流体膜が広い面積に亙って形成される。これに対し本発明の測定装置は励起光をライン状に照射するので、このような測定対象に用いるのに特に適している。   The end seal member is, for example, a sliding ring of a mechanical seal, and the sliding ring of the mechanical seal forms a flat sliding surface made of a hard material such as carbon, silicon carbide, or ceramic, so that a thin fluid film has a large area. Formed. On the other hand, since the measuring apparatus of the present invention irradiates excitation light in a line shape, it is particularly suitable for use in such a measuring object.

本発明には、以下の実施形態が含まれる。
(1)上記特許文献1記載の発明でのオイルシール同様、粗さを持つ面においても精度良く測定が可能である蛍光法による液膜計測技術を応用して、メカニカルシールの液膜分布の2次元計測方法を発案した。
(2)レーザ光源、光学顕微鏡などの光学系の測定位置は固定されている。シールリングの固定されている部分は、自由に回転できる構造となっている。シールリングを少し回転させ、ライン状の液膜分布測定を行なう、という手順を繰り返し、摺動面一周分を連続測定する。測定後、すべてのライン状の液膜分布データを繋ぎ合わせることで、摺動面一周分の2次元的な液膜分布を測定することが可能となった。
(3)現在シールリングを微小に回転させる手法として、シールリング固定台の周囲に設置した歯数100の歯車の歯に柔らかいプラスチックの爪をかみ合わせており、一回転を歯車の歯数に分割して回転させることができる機構とした。この測定時の回転をモータにより自動化することも考えられる。
The present invention includes the following embodiments.
(1) Similar to the oil seal in the invention described in Patent Document 1, the liquid film distribution technique of the mechanical seal is applied by applying a liquid film measurement technique based on a fluorescence method, which enables accurate measurement even on a rough surface. A dimension measurement method was invented.
(2) The measurement position of an optical system such as a laser light source or an optical microscope is fixed. The portion where the seal ring is fixed has a structure that can freely rotate. The procedure of rotating the seal ring a little and measuring the line-shaped liquid film distribution is repeated to continuously measure the circumference of the sliding surface. After the measurement, it was possible to measure the two-dimensional liquid film distribution for one round of the sliding surface by connecting all the line-shaped liquid film distribution data.
(3) Currently, as a method of rotating the seal ring slightly, a soft plastic claw is engaged with the gear teeth of 100 teeth installed around the seal ring fixing base, and one rotation is divided into the number of gear teeth. The mechanism can be rotated. It is also conceivable to automate the rotation at the time of measurement with a motor.

(4)メカニカルシール摺動面の2次元的な液膜分布を、光干渉法よりも高精度で動的に測定することが可能となった。
(5)上記特許文献1記載の発明を基礎とし、レーザをメカニカルシール摺動面の半径方向断面にライン状に照射し、さらに摺動面を微小に回転しながら一周スキャンし、測定データを繋ぎ合わせることにより、メカニカルシールの二次元的な液膜厚さ分布を測定する装置を構成することができた。
(6)この装置および2次元測定法を用いることにより、これまで測定することができなかったメカニカルシールの液膜厚さ分布を、定量的に測定し、評価することが可能となった。
(7)光干渉法よりも高精度である理由・・・・干渉法は、面粗さの大きい部分や、微小な孔や溝などの凹凸部分のように、面の反射率が低い部分の液膜は測定できない。これに対して、この2次元測定法は、蛍光法を用いているため、面の反射率に関係なく液膜を測定できる。
(8)動的測定できるという理由・・・・蛍光分子が励起光を吸収し、その電子が励起状態に遷移するのにわずか10-11s程度の短時間で達成する。さらにその後蛍光を発し、元の基底状態へ戻り蛍光を示さなくなるまでの時間は、蛍光分子の種類にもよるが、10-9sのオーダと言われている。このような方法をレーザ蛍光法またはLIF(Laser Induced Florescence)法と呼ばれるものであり、ミリ秒オーダの液膜変化の測定に十分に対応でき、動的追従性に優れることを特徴としている。
(4) The two-dimensional liquid film distribution on the sliding surface of the mechanical seal can be dynamically measured with higher accuracy than the optical interference method.
(5) Based on the invention described in Patent Document 1, the laser is irradiated in a line shape on the radial cross section of the sliding surface of the mechanical seal, and the sliding surface is scanned while making a slight rotation, and the measurement data is connected. By combining them, an apparatus for measuring the two-dimensional liquid film thickness distribution of the mechanical seal could be constructed.
(6) By using this apparatus and the two-dimensional measurement method, it has become possible to quantitatively measure and evaluate the liquid film thickness distribution of the mechanical seal that could not be measured so far.
(7) Reason why it is more accurate than optical interferometry ... Interferometry is used for parts with low surface reflectance, such as parts with large surface roughness and uneven parts such as minute holes and grooves. The liquid film cannot be measured. On the other hand, since this two-dimensional measurement method uses a fluorescence method, a liquid film can be measured regardless of the reflectance of the surface.
(8) Reason that dynamic measurement can be performed .... Achieved in a short time of only about 10 -11 s for the fluorescent molecule to absorb the excitation light and for the electrons to transition to the excited state. Further, the time from the emission of fluorescence to the return to the original ground state and the absence of fluorescence is said to be on the order of 10 -9 s, depending on the type of fluorescent molecule. Such a method is called a laser fluorescence method or LIF (Laser Induced Florescence) method, and is characterized in that it can sufficiently cope with measurement of a liquid film change on the order of milliseconds and has excellent dynamic followability.

つぎに本発明の実施例を図面にしたがって説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例に係る流体膜厚測定装置をその正面方向から見た構成説明図である。図2は図1のA部拡大図である。図3は同測定装置を斜め方向から見た構成説明図である。当該実施例に係る流体膜厚測定装置は、以下のように構成されている。   FIG. 1 is a configuration explanatory view of a fluid film thickness measuring apparatus according to an embodiment of the present invention as viewed from the front direction. FIG. 2 is an enlarged view of part A of FIG. FIG. 3 is an explanatory diagram of the configuration of the measurement apparatus viewed from an oblique direction. The fluid film thickness measuring apparatus according to this embodiment is configured as follows.

すなわち先ず、基盤1に回転可能に連結されるとともに供試体である端面シール部材3を保持するハウジング2が設けられており、またハウジング2に保持された状態の端面シール部材3に対して接触可能に配置されるとともに光透過性を有する相手部材4が設けられている。   That is, first, a housing 2 is provided which is rotatably connected to the base 1 and holds an end face seal member 3 which is a specimen, and can contact the end face seal member 3 held in the housing 2. A mating member 4 is provided which is disposed on the surface and has optical transparency.

ハウジング2は、上下方向に貫通する貫通孔2bを平面軸心部に設けた円盤状底面部2aの内周部に円筒状軸部2cを設けるとともに底面部2aの外周部に同じく円筒状の側面部2dを設けたものであって、軸部2cの外周に配置したベアリング5を介して基盤1に回転可能に連結されている。またハウジング2は、底面部2aの内周部であって貫通孔2bの上端開口部に供試体である端面シール部材3を気密的にかつ着脱可能に保持する。   The housing 2 is provided with a cylindrical shaft portion 2c on the inner peripheral portion of a disc-shaped bottom surface portion 2a in which a through hole 2b penetrating in the vertical direction is provided at the plane axial center portion, and also has a cylindrical side surface on the outer peripheral portion of the bottom surface portion 2a. A portion 2d is provided, and is rotatably connected to the base 1 via a bearing 5 disposed on the outer periphery of the shaft portion 2c. Further, the housing 2 holds an end face seal member 3 as a specimen in an airtight and detachable manner at an inner peripheral portion of the bottom surface portion 2a and at an upper end opening portion of the through hole 2b.

端面シール部材3は、円筒端面部により密封を行なうシール部材であって、例えばメカニカルシールの回転側の摺動環(回転環)もしくは固定側の摺動環(固定環)、シールリップまたはオイルシール等であり、何れにしても密封を行なう端面部(以下、「摺動面」とも称する)3aを上方へ向けた状態でハウジング2に保持される。また必要に応じて、バネで上方へ弾性付勢された状態(相手部材4に押し付けられた状態)で保持される。   The end surface seal member 3 is a seal member that seals with a cylindrical end surface portion, and is, for example, a sliding ring (rotating ring) on a rotating side or a sliding ring (fixed ring) on a fixed side, a seal lip, or an oil seal. In any case, it is held in the housing 2 with an end face portion (hereinafter also referred to as “sliding face”) 3a for sealing being directed upward. Further, if necessary, it is held in a state of being elastically biased upward by a spring (a state of being pressed against the counterpart member 4).

相手部材4は、円盤状を呈し、ハウジング2に保持された状態の端面シール部材3に対して接触可能となるよう端面シール部材3の上方に配置されている。したがって相手部材4はその下面(以下、「摺動面」とも称する)4aをもって端面シール部材3の摺動面3aと接触する。また相手部材4は、ハウジング2の貫通孔2bに挿通した回転軸6の上端部に固定されており、回転軸6はモータ等の回転駆動源7に連結されている。したがって相手部材4は回転駆動源7の駆動によって回転することが可能とされている。また相手部材4は、励起光(当該実施例では励起光としてレーザ光を使用するため、以下、「レーザ光」とも称する)10を透過させるため、光学ガラス基板(オプティカルフラット)等の光透過性を有する平面部材により構成されている。   The mating member 4 has a disk shape and is disposed above the end face seal member 3 so as to be able to contact the end face seal member 3 held in the housing 2. Accordingly, the mating member 4 has a lower surface (hereinafter also referred to as “sliding surface”) 4 a in contact with the sliding surface 3 a of the end surface seal member 3. The mating member 4 is fixed to the upper end portion of the rotating shaft 6 inserted through the through hole 2b of the housing 2, and the rotating shaft 6 is connected to a rotational drive source 7 such as a motor. Therefore, the mating member 4 can be rotated by driving the rotational drive source 7. In addition, the counterpart member 4 transmits light such as an optical glass substrate (optical flat) in order to transmit the excitation light 10 (hereinafter, also referred to as “laser light” because laser light is used as excitation light in this embodiment). It is comprised by the planar member which has.

ハウジング2に流体8が収容されており、すなわち端面シール部材3および相手部材4の接触により密封された状態となる蛍光色素を含む流体8が収容されている。流体8は、蛍光色素を溶解または混合させた液体または気体で構成され、特にその種類は限定されず、例えば、密封流体として、蛍光色素を溶解させたエチレングリコール水溶液や、潤滑油あるいは水などで構成される。図4に蛍光色素による励起光吸収波長と蛍光波長との関係を示す。このように特定の波長にピークを有する光に励起され(吸収波長)、これにより特定の波長にピークを持つ蛍光を発する(蛍光波長)特性を利用しているものである。流体8に溶解または混合させる蛍光色素は、レーザ光10により励起され十分な蛍光を発するものであれば特に制限されない。尚、流体8として気体を用いる場合には、ハウジング2に蓋(図示せず)を設ける等して密閉状のチャンバを設定する。この場合、ハウジング2の少なくとも一部にはレーザ光10を透過させるため、相手部材4と同様、光透過性を設定する。   A fluid 8 is accommodated in the housing 2, that is, a fluid 8 containing a fluorescent dye that is sealed by contact between the end face seal member 3 and the counterpart member 4 is accommodated. The fluid 8 is composed of a liquid or gas in which a fluorescent dye is dissolved or mixed. The type of the fluid 8 is not particularly limited. For example, as the sealing fluid, an ethylene glycol aqueous solution in which the fluorescent dye is dissolved, lubricating oil, water, or the like is used. Composed. FIG. 4 shows the relationship between the excitation light absorption wavelength by the fluorescent dye and the fluorescence wavelength. In this way, the light is excited by light having a peak at a specific wavelength (absorption wavelength), and thereby emits fluorescence having a peak at a specific wavelength (fluorescence wavelength). The fluorescent dye to be dissolved or mixed in the fluid 8 is not particularly limited as long as it is excited by the laser light 10 and emits sufficient fluorescence. When gas is used as the fluid 8, a sealed chamber is set by providing a lid (not shown) on the housing 2. In this case, since the laser beam 10 is transmitted through at least a part of the housing 2, the light transmission property is set in the same manner as the counterpart member 4.

上記した端面シール部材3および相手部材4の接触部は、流体膜厚測定の被計測領域とされ、この被計測領域へ向けてレーザ光10が照射される。このため当該測定装置には、レーザ光10を照射するための光源9と、レーザ光10の光軸調整機構11と、光軸調整のための絞り12,13と、光学フィルタホルダ14と、レーザ光照射形状を点光源(点状)からライン状へと拡散させるライン化機構15と、光源9からのレーザ光10を被計測領域である端面シール部材3および相手部材4の接触部へ導き、接触部に存在する流体8に含まれる蛍光物質から発せられる蛍光像17を対物レンズ18を通して拡大しビームスプリッタ19へと導く光学顕微鏡16とが設けられ、更に、レーザ光10の波長の光を除去する光学フィルタ20と、光学フィルタ20により得られる蛍光像17を撮像する撮像装置21とが設けられている。   The contact portion between the end face seal member 3 and the counterpart member 4 described above is a measurement region for fluid film thickness measurement, and the laser beam 10 is irradiated toward the measurement region. For this reason, the measuring apparatus includes a light source 9 for irradiating the laser beam 10, an optical axis adjusting mechanism 11 for the laser beam 10, an aperture 12, 13 for adjusting the optical axis, an optical filter holder 14, and a laser. A line forming mechanism 15 for diffusing a light irradiation shape from a point light source (dot shape) into a line shape, and a laser beam 10 from the light source 9 is guided to a contact portion between the end face seal member 3 and the counterpart member 4 which are measurement areas; An optical microscope 16 that expands the fluorescent image 17 emitted from the fluorescent substance contained in the fluid 8 existing in the contact portion through the objective lens 18 and guides it to the beam splitter 19 is provided, and further, the light having the wavelength of the laser light 10 is removed. And an imaging device 21 that captures the fluorescent image 17 obtained by the optical filter 20 is provided.

光源9から出射されるレーザ光10は、蛍光色素を含む流体8を励起し十分な蛍光発光強度を得るために、エネルギー密度が大きく、流体8に含まれる蛍光色素の励起光波長範囲にある必要がある。   The laser light 10 emitted from the light source 9 needs to have a large energy density and be in the excitation light wavelength range of the fluorescent dye contained in the fluid 8 in order to excite the fluid 8 containing the fluorescent dye and obtain sufficient fluorescence emission intensity. There is.

光軸調整機構11において、光源9の取付台は、鉛直方向、水平方向および鉛直方向あおり角の3方向について微動調節機構を備えており、光学顕微鏡16の入射口に設置した2つの絞り12,13を通過するように光軸を調整する。   In the optical axis adjustment mechanism 11, the mounting base of the light source 9 includes a fine movement adjustment mechanism in three directions of the vertical direction, the horizontal direction, and the vertical tilt angle, and two diaphragms 12 installed at the entrance of the optical microscope 16. The optical axis is adjusted to pass through 13.

光学フィルタホルダ14は、1枚または2枚の光学フィルタを設置する機構を備えており、例えばNDフィルタ(減衰フィルタ)を用いることにより任意の割合でレーザ光10の強度を減衰させる。またバンドパスフィルタやロングパスフィルタなど波長選択性を持つフィルタを設置することで、仮に波長範囲の広い光源9を用いた場合でも、目的にあった波長のみを選択して取り出す。   The optical filter holder 14 includes a mechanism for installing one or two optical filters, and attenuates the intensity of the laser light 10 at an arbitrary ratio by using, for example, an ND filter (attenuation filter). In addition, by installing a filter having wavelength selectivity such as a band pass filter or a long pass filter, even when the light source 9 having a wide wavelength range is used, only a wavelength suitable for the purpose is selected and extracted.

ライン化機構15は、点光源であるレーザ光10を一方向のみに拡張することで、照射光をライン状に拡張する。ライン化機構15として当該測定装置では市販のライン化レンズを用いているが、例えばガルバノミラー、ポリゴンミラーまたは音響光学素子などを用いても同様の効果を得ることができる。   The line forming mechanism 15 expands the irradiation light in a line shape by expanding the laser light 10 that is a point light source in only one direction. Although the measurement apparatus uses a commercially available lined lens as the line forming mechanism 15, for example, the same effect can be obtained by using a galvanometer mirror, a polygon mirror, an acoustooptic device, or the like.

撮像装置21は、光学顕微鏡16により拡大された蛍光像17を撮像するために、例えばCCDカメラなどにより構成されている。   The imaging device 21 is configured by a CCD camera, for example, in order to capture the fluorescent image 17 magnified by the optical microscope 16.

ビームスプリッタ19は、励起光であるレーザ光10の波長を反射し、蛍光色素を含む流体8の発する蛍光波長を透過する波長選択を持つダイクロイックミラーを用いている。ライン化機構15によりライン状に拡張されたレーザ光10はビームスプリッタ19により反射され、光透過性を有する相手部材4を透過し、摺動面3a,4a間の隙間に存在する蛍光色素を含む流体8に照射される。その結果、流体8中の蛍光色素がレーザ光10に励起され、蛍光を発する。前述のとおりビームスプリッタ19は波長選択性を持つため、対物レンズ18を有する光学顕微鏡16により拡大された蛍光はビームスプリッタ19を透過し、光学フィルタ20を通過した後、撮像装置21へ導かれる。   The beam splitter 19 uses a dichroic mirror that reflects the wavelength of the laser light 10 that is excitation light and has a wavelength selection that transmits the fluorescence wavelength emitted by the fluid 8 containing the fluorescent dye. The laser beam 10 expanded in a line shape by the line forming mechanism 15 is reflected by the beam splitter 19, passes through the light-transmitting counterpart member 4, and includes a fluorescent dye present in the gap between the sliding surfaces 3 a and 4 a. The fluid 8 is irradiated. As a result, the fluorescent dye in the fluid 8 is excited by the laser light 10 and emits fluorescence. Since the beam splitter 19 has wavelength selectivity as described above, the fluorescence magnified by the optical microscope 16 having the objective lens 18 passes through the beam splitter 19, passes through the optical filter 20, and is guided to the imaging device 21.

蛍光像17は、ビームスプリッタ19透過直後には、ビームスプリッタ19により完全には除去できなかった励起光であるレーザ光10の波長成分を含んでいる。したがって光学フィルタ20において、蛍光像17を蛍光波長のみを通過させるバンドパスフィルタ(狭帯域干渉フィルタ)に通すことによって、更に精度良く蛍光波長のみを取り出すことができる。   The fluorescence image 17 includes a wavelength component of the laser beam 10 that is excitation light that cannot be completely removed by the beam splitter 19 immediately after passing through the beam splitter 19. Therefore, in the optical filter 20, only the fluorescence wavelength can be extracted with higher accuracy by passing the fluorescence image 17 through a band-pass filter (narrowband interference filter) that allows only the fluorescence wavelength to pass.

以上により光路を説明すると、光源9より照射されるレーザ光10は、絞り12,13を通過し、フィルタホルダ14に設置されたフィルタ類を透過して任意の強度に減衰または波長選択された後、ライン化機構15により点光源(点状)からライン状へとその照射形状が拡散され、ビームスプリッタ19にて鉛直方向に反射され、光透過性を有する相手部材4を透過し、端面シール部材3と相手部材4間の隙間に存在する蛍光色素を含む流体8に照射される。図5に示すようにライン状に拡散されたレーザ光10が照射されるのは、環状の端面シール部材3における摺動面3aの円周上1箇所であり(被照射部位を符号22で示す)、かつその直線状のラインは環状の端面シール部材3の摺動面3aの半径方向に沿って延びるものとなる。ラインの長さは摺動面3aの径方向幅と同じかこれよりも大きく、ラインの一端は摺動面3aの外径部より更に外側に位置し、ラインの他端は摺動面3aの内径部より更に内側に位置するのが好ましい。流体8中に含まれる蛍光色素は、ライン状に拡散されたレーザ光10より励起され、励起光波長と異なる波長の蛍光を発光する。蛍光像17は、対物レンズ18を有する光学顕微鏡16により拡大され、ビームスプリッタ19を通過し、光学フィルタ20により蛍光波長以外の波長の光が除去され、撮像装置21へと導かれる。   The optical path will be described above. After the laser light 10 emitted from the light source 9 passes through the diaphragms 12 and 13, passes through the filters installed in the filter holder 14, and is attenuated or wavelength-selected to an arbitrary intensity. The irradiating shape is diffused from a point light source (dot) into a line shape by the line forming mechanism 15, reflected in the vertical direction by the beam splitter 19, and transmitted through the counterpart member 4 having optical transparency, and an end face seal member The fluid 8 containing the fluorescent dye existing in the gap between the member 3 and the counterpart member 4 is irradiated. As shown in FIG. 5, the laser beam 10 diffused in a line is irradiated at one place on the circumference of the sliding surface 3a of the annular end face seal member 3 (the irradiated portion is indicated by reference numeral 22). ), And the straight line extends along the radial direction of the sliding surface 3a of the annular end surface seal member 3. The length of the line is equal to or larger than the radial width of the sliding surface 3a, one end of the line is located further outside the outer diameter portion of the sliding surface 3a, and the other end of the line is the sliding surface 3a. It is preferable to be located further inside than the inner diameter portion. The fluorescent dye contained in the fluid 8 is excited by the laser light 10 diffused in a line shape, and emits fluorescence having a wavelength different from the excitation light wavelength. The fluorescent image 17 is magnified by the optical microscope 16 having the objective lens 18, passes through the beam splitter 19, light having a wavelength other than the fluorescent wavelength is removed by the optical filter 20, and is guided to the imaging device 21.

また当該測定装置には、ハウジング2に保持された状態の端面シール部材3におけるレーザ光被照射位置22を円周上位置決めするため、ハウジングを一定ピッチで回転および停止させるハウジング回転制御手段23が設けられている。すなわち光学顕微鏡16等の光学系要素はその位置が固定されているため、レーザ光10は常に端面シール部材3の円周上1箇所に照射される。したがって端面シール部材3の摺動面3a全面に亙って蛍光を測定するには、ハウジング2を少しずつ回転させ測定位置をずらしながら摺動面3a一周分の測定を行なう。このためハウジング2は上記したように回転可能とされ、かつハウジング2を一定ピッチで回転させるべくハウジング回転制御手段23が設けられている。ハウジング回転制御手段23としては具体的には、サーボモータ24が使用されるが、ハウジング2の外周に歯車の歯を設け、基盤1側にラチェット機構を設け、この歯とラチェットとを噛み合わせることにしても良い(この場合、ハウジング2は手動で回転する)。   In addition, the measurement apparatus is provided with housing rotation control means 23 for rotating and stopping the housing at a constant pitch in order to position the laser beam irradiated position 22 in the end face seal member 3 held in the housing 2 on the circumference. It has been. That is, since the position of the optical system element such as the optical microscope 16 is fixed, the laser beam 10 is always applied to one place on the circumference of the end face seal member 3. Therefore, in order to measure fluorescence over the entire sliding surface 3a of the end face seal member 3, the housing 2 is rotated little by little, and the measurement for one round of the sliding surface 3a is performed while shifting the measurement position. For this reason, the housing 2 is rotatable as described above, and the housing rotation control means 23 is provided to rotate the housing 2 at a constant pitch. Specifically, a servo motor 24 is used as the housing rotation control means 23. A gear tooth is provided on the outer periphery of the housing 2, a ratchet mechanism is provided on the base 1, and the teeth and the ratchet are engaged with each other. (In this case, the housing 2 is rotated manually).

当該測定装置により撮影された蛍光画像の一例を示すと、図6に示すようになる。このとき、端面シール部材3としてはメカニカルシールの摺動環、相手部材4としては光学ガラス基板(BK-7)、流体8としては、蛍光色素を溶解させたエチレングリコール水溶液、光学フィルタ20としては、レーザ光源9から照射されるレーザ光10を8%まで減光させるND-8フィルタをそれぞれ適用した。図6のとおりライン状の蛍光画像が撮影されていることがわかる。尚、図6中のライン状の蛍光画像両端部に強い蛍光が見られるのは、メカニカルシール内外周側に付着した液だまりによるものである。図6の蛍光画像より蛍光強度を数値化し、予め測定しておいた蛍光強度から膜厚への換算曲線を元に膜厚を定量化した。結果を図7に示す。図7上図は、蛍光強度から膜厚へ変換したグラフであり、図7下図は、触針式形状測定器により予め測定しておいた摺動面の断面形状である。この図7に示されるように、当該装置によるメカニカルシール摺動面間の液膜測定は、摺動面の粗さ成分までも含んだ幅方向断面の膜厚分布測定が可能であり、サブミクロンオーダと類推されるメカニカルシールの膜厚においても、十分適用可能な垂直方向分解能を有することがわかる。   An example of a fluorescent image photographed by the measuring device is as shown in FIG. At this time, the end face seal member 3 is a sliding ring of a mechanical seal, the counterpart member 4 is an optical glass substrate (BK-7), the fluid 8 is an ethylene glycol aqueous solution in which a fluorescent dye is dissolved, and the optical filter 20 is ND-8 filters for reducing the laser beam 10 emitted from the laser light source 9 to 8% were applied. As shown in FIG. 6, it can be seen that a line-like fluorescent image is taken. Note that strong fluorescence is observed at both ends of the line-like fluorescent image in FIG. 6 due to a liquid pool adhering to the inner and outer peripheral sides of the mechanical seal. The fluorescence intensity was digitized from the fluorescence image of FIG. 6, and the film thickness was quantified based on a conversion curve from fluorescence intensity to film thickness measured in advance. The results are shown in FIG. The upper diagram in FIG. 7 is a graph obtained by converting the fluorescence intensity into the film thickness, and the lower diagram in FIG. 7 is a cross-sectional shape of the sliding surface measured in advance by a stylus shape measuring instrument. As shown in FIG. 7, the liquid film measurement between the sliding surfaces of the mechanical seal by the apparatus can measure the film thickness distribution of the cross section in the width direction including the roughness component of the sliding surface. It can be seen that the thickness of the mechanical seal, which can be inferred as an order, has a sufficiently applicable vertical resolution.

また、上記したようにレーザ光10の照射位置は固定されていて端面シール部材3の摺動面3a上の一定の位置に常に照射されるので、ハウジング2を回転させることにより、摺動面3a全周に亙る二次元的な膜厚分布を測定した。すなわち上記図6および図7で示したメカニカルシール幅方向断面の液膜分布測定を被測定面をずらしながら連続的に実施し、測定結果をつなぎ合わせることにより二次元的な膜厚分布測定を行なった。尚、当該測定試験では、ハウジング回転制御手段23として、上記ハウジング2の外周に設けた歯車の歯と基盤1側に設けたラチェット機構との組み合わせよりなるものを使用し、歯車としては歯数100の歯車を使用した。すなわち、この歯車とこれに噛み合わせたラチェット機構を利用して、歯車のひと歯毎にハウジング2およびハウジング2に固定された上記メカニカルシールを微小回転させ、ひと微小回転毎にメカニカルシール幅方向断面の液膜分布測定を行なった。測定は、端面シール部材3と相手部材4とが摺動を伴わない静的測定と、回転軸6を介して回転駆動源7と接続された相手部材4が静止した端面シール部材3に対して回転する、摺動を伴った動的測定について実施した。   Further, as described above, since the irradiation position of the laser beam 10 is fixed and is always irradiated to a certain position on the sliding surface 3a of the end face seal member 3, the sliding surface 3a is rotated by rotating the housing 2. A two-dimensional film thickness distribution over the entire circumference was measured. That is, the liquid film distribution measurement of the cross section in the mechanical seal width direction shown in FIGS. 6 and 7 is continuously performed while shifting the surface to be measured, and the two-dimensional film thickness distribution measurement is performed by connecting the measurement results. It was. In the measurement test, the housing rotation control means 23 is a combination of a gear tooth provided on the outer periphery of the housing 2 and a ratchet mechanism provided on the base 1, and the gear has 100 teeth. Used the gears. That is, by utilizing this gear and a ratchet mechanism meshed with the gear, the housing 2 and the mechanical seal fixed to the housing 2 are slightly rotated for each tooth of the gear, and the cross section in the mechanical seal width direction for each minute rotation. The liquid film distribution was measured. In the measurement, the end face seal member 3 and the mating member 4 are statically measured without sliding, and the mating member 4 connected to the rotational drive source 7 via the rotary shaft 6 is stationary. A dynamic measurement with rotation and sliding was performed.

この二次元測定結果を図8に示す。図8(a)は静止時の液膜分布測定結果である。被測定面は2波長分のうねりを有しており、相手面とは2点で接触していることがわかる。図8(b)は回転速度100rpmでの液膜分布を示している。静止時の液膜分布と比較し、回転に伴いうねり谷部の液膜が減少していることがわかる。この液膜の減少は、うねりの頂点後部の広がり隙間部における負圧発生に伴うキャビティー発生のためと考えられる。また液膜分布をより明瞭に表現するため、液膜厚さの2値化を行なった。図8(d)に、2値化のしきい値を0.27μmとした場合の100rpm時の結果を示す。被測定面に2箇所薄膜領域が存在すること、すなわち回転摺動に伴うキャビテーションの形状がより明確に識別できる。図8(c)に1000rpm時の測定結果を、図8(e)にしきい値0.57μmにおいて図8(c)を2値化した結果を示す。100rpmに比べて1000rpmでは摺動面全体的な液膜厚さの増加が見られる。これは回転速度の増加による液膜内の動圧作用が顕著になった結果と考えられる。また2値化画像より、100rpmと比較し薄膜領域、つまりキャビテーションが円周方向により長く伸びていることが観察できる。   This two-dimensional measurement result is shown in FIG. FIG. 8A shows the measurement result of the liquid film distribution at rest. It can be seen that the surface to be measured has undulations for two wavelengths and is in contact with the mating surface at two points. FIG. 8B shows a liquid film distribution at a rotational speed of 100 rpm. Compared with the liquid film distribution at rest, it can be seen that the liquid film in the undulating valley decreases with rotation. This decrease in the liquid film is thought to be due to the generation of cavities associated with the generation of negative pressure in the widening gap at the back of the top of the swell. In order to express the liquid film distribution more clearly, the liquid film thickness was binarized. FIG. 8D shows the result at 100 rpm when the binarization threshold is 0.27 μm. The presence of two thin film regions on the surface to be measured, that is, the shape of cavitation accompanying rotational sliding can be identified more clearly. FIG. 8C shows the measurement result at 1000 rpm, and FIG. 8E shows the result of binarizing FIG. 8C at a threshold value of 0.57 μm. Compared to 100 rpm, the overall liquid film thickness of the sliding surface is increased at 1000 rpm. This is considered to be a result of the dynamic pressure action in the liquid film becoming remarkable due to the increase in the rotation speed. From the binarized image, it can be observed that the thin film region, that is, the cavitation extends longer in the circumferential direction than 100 rpm.

本発明の実施例に係る流体膜厚測定装置を正面方向から見た構成説明図Structure explanatory drawing which looked at the fluid film thickness measuring apparatus which concerns on the Example of this invention from the front direction 図1のA部拡大図Part A enlarged view of FIG. 同測定装置を斜め方向から見た構成説明図Configuration explanatory view of the same measuring device viewed from an oblique direction 励起光波長(吸収波長)スペクトルと蛍光波長スペクトルの関係を示すグラフ図Graph showing the relationship between the excitation light wavelength (absorption wavelength) spectrum and the fluorescence wavelength spectrum 供試体であるメカニカルシール摺動環の一例を示す説明図Explanatory drawing which shows an example of the mechanical seal sliding ring which is a specimen 撮影された蛍光画像の一例を示す説明図Explanatory drawing which shows an example of the image | photographed fluorescence image 図6の蛍光画像から読み出される蛍光強度を膜厚に換算した液膜厚さを示す説明図、および触針式形状測定器によって予め測定されたレーザ光照射位置の形状を示す説明図6 is an explanatory diagram showing the liquid film thickness obtained by converting the fluorescence intensity read from the fluorescent image of FIG. 6 into a film thickness, and an explanatory diagram showing the shape of the laser light irradiation position measured in advance by a stylus type shape measuring instrument メカニカルシール摺動面間膜厚の二次元測定結果を示す説明図であって、(a)は静止時膜厚、(b)は100rpmにて回転時の膜厚分布、(c)は1000rpmにて回転時の膜厚分布、(d)は100rpmにて回転時の膜厚分布を2値化結果、(e)は1000rpmにて回転時の膜厚分布を2値化結果をそれぞれ示す説明図It is explanatory drawing which shows the two-dimensional measurement result of the film thickness between sliding surfaces of a mechanical seal, (a) is a film thickness at rest, (b) is a film thickness distribution during rotation at 100 rpm, and (c) is 1000 rpm. (D) is a binarization result of the film thickness distribution at 100 rpm, and (e) is an explanatory diagram showing the binarization result of the film thickness distribution at 1000 rpm.

符号の説明Explanation of symbols

1 基盤
2 ハウジング
3 端面シール部材
3a,4a 摺動面
4 相手部材
5 ベアリング
6 回転軸
7 回転駆動源
8 流体
9 レーザ光源
10 レーザ光(励起光)
11 光軸調整機構
12,13 絞り
14 光学フィルタホルダ
15 ライン化機構
16 光学顕微鏡
17 蛍光像
18 対物レンズ
19 ビームスプリッタ
20 光学フィルタ
21 撮像装置
22 被照射部位
23 ハウジング回転制御手段
24 サーボモータ
DESCRIPTION OF SYMBOLS 1 Base | substrate 2 Housing 3 End surface sealing member 3a, 4a Sliding surface 4 Opposing member 5 Bearing 6 Rotating shaft 7 Rotation drive source 8 Fluid 9 Laser light source 10 Laser beam (excitation light)
DESCRIPTION OF SYMBOLS 11 Optical axis adjustment mechanism 12, 13 Aperture 14 Optical filter holder 15 Line formation mechanism 16 Optical microscope 17 Fluorescent image 18 Objective lens 19 Beam splitter 20 Optical filter 21 Imaging device 22 Irradiated part 23 Housing rotation control means 24 Servo motor

Claims (2)

端面シール部材の摺動面における流体膜厚を測定する装置であって、
基盤に回転可能に連結されるとともに供試体である端面シール部材を保持するハウジングと、前記ハウジングに保持された状態の端面シール部材に対し接触可能に配置されるとともに光透過性を有する相手部材と、前記ハウジングに収容され、前記端面シール部材および相手部材の接触により密封された状態となる蛍光色素を含む流体と、励起光を照射する光源と、励起光の光軸調整機構と、光軸調整のための絞りと、光学フィルタホルダと、励起光の照射形状を点状からライン状へ拡散させるライン化機構と、前記光源からの励起光を被計測領域である前記端面シール部材および相手部材の接触部へ導き、前記接触部に存在する流体から発せられる蛍光像を対物レンズを通し拡大しビームスプリッタへ導く光学顕微鏡と、前記励起光の波長の光を除去する光学フィルタと、前記光学フィルタにより得られる蛍光像を撮像する撮像装置と、前記端面シール部材および相手部材の接触部の摺動状態を実現すべく前記相手部材を回転させる回転駆動源と、を有し、
前記ライン状に拡散される励起光は、前記端面シール部材の摺動面の円周上1箇所であってかつ前記摺動面の半径方向に沿って延びるかたちで照射されることを特徴とする流体膜厚測定装置。
An apparatus for measuring a fluid film thickness on a sliding surface of an end face seal member,
A housing which is rotatably connected to the base and holds an end face seal member which is a specimen, and a mating member which is disposed so as to be able to contact the end face seal member held in the housing and has light transmittance; , A fluid containing a fluorescent dye housed in the housing and sealed by contact between the end face seal member and the counterpart member, a light source for irradiating excitation light, an optical axis adjustment mechanism for excitation light, and optical axis adjustment For the aperture, an optical filter holder, a line-forming mechanism for diffusing the irradiation shape of the excitation light from a dot shape to a line shape, and the end face seal member and the counterpart member that are the measurement target region of the excitation light from the light source An optical microscope that guides to a contact portion, expands a fluorescent image emitted from a fluid existing in the contact portion through an objective lens, and guides it to a beam splitter; and a wavelength of the excitation light An optical filter that removes light, an imaging device that captures a fluorescent image obtained by the optical filter, and a rotational drive source that rotates the mating member to realize a sliding state of the contact portions of the end face seal member and the mating member And having
The excitation light diffused in a line shape is irradiated at one place on the circumference of the sliding surface of the end face seal member and extending along the radial direction of the sliding surface. Fluid film thickness measuring device.
請求項1記載の流体膜厚測定装置において、
ハウジングに保持された状態の端面シール部材における励起光被照射位置を円周上位置決めすべく前記ハウジングを一定ピッチで回転および停止させるハウジング回転制御手段が設けられていることを特徴とする流体膜厚測定装置。
The fluid film thickness measuring device according to claim 1,
The fluid film thickness is characterized in that a housing rotation control means is provided for rotating and stopping the housing at a constant pitch so as to position the irradiation position of the excitation light on the end face seal member held in the housing on the circumference. measuring device.
JP2008185807A 2008-07-17 2008-07-17 Fluid film thickness measuring device Active JP5037444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185807A JP5037444B2 (en) 2008-07-17 2008-07-17 Fluid film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185807A JP5037444B2 (en) 2008-07-17 2008-07-17 Fluid film thickness measuring device

Publications (2)

Publication Number Publication Date
JP2010025671A true JP2010025671A (en) 2010-02-04
JP5037444B2 JP5037444B2 (en) 2012-09-26

Family

ID=41731655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185807A Active JP5037444B2 (en) 2008-07-17 2008-07-17 Fluid film thickness measuring device

Country Status (1)

Country Link
JP (1) JP5037444B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997855A (en) * 2012-11-30 2013-03-27 清华大学 Experiment device for measuring thickness of lubricating liquid film under contact between spherical surfaces
CN106524929A (en) * 2016-12-07 2017-03-22 大连海事大学 Test device of distribution states of lubricating oil films of cylinder sleeve and piston and test method thereof
WO2020067306A1 (en) * 2018-09-28 2020-04-02 イーグル工業株式会社 Sliding-body-surface evaluation method and sliding-body-surface evaluation device
CN112964184A (en) * 2021-04-12 2021-06-15 西华大学 Oil film thickness measuring device and measuring method based on surface friction resistance experiment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393507U (en) * 1986-12-09 1988-06-16
JPH07311158A (en) * 1994-05-19 1995-11-28 Sanyo Electric Co Ltd Inspection method for protective coating film of optical disk, and inspection device using the method
JPH08159722A (en) * 1994-11-30 1996-06-21 Nok Corp Product dimension measuring instrument
JP2001264021A (en) * 2000-03-21 2001-09-26 Nok Corp Apparatus and method, for measuring fluid film thickness
JP2002005628A (en) * 2000-06-16 2002-01-09 Koyo Seiko Co Ltd Apparatus for measuring film thickness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393507U (en) * 1986-12-09 1988-06-16
JPH07311158A (en) * 1994-05-19 1995-11-28 Sanyo Electric Co Ltd Inspection method for protective coating film of optical disk, and inspection device using the method
JPH08159722A (en) * 1994-11-30 1996-06-21 Nok Corp Product dimension measuring instrument
JP2001264021A (en) * 2000-03-21 2001-09-26 Nok Corp Apparatus and method, for measuring fluid film thickness
JP2002005628A (en) * 2000-06-16 2002-01-09 Koyo Seiko Co Ltd Apparatus for measuring film thickness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997855A (en) * 2012-11-30 2013-03-27 清华大学 Experiment device for measuring thickness of lubricating liquid film under contact between spherical surfaces
CN106524929A (en) * 2016-12-07 2017-03-22 大连海事大学 Test device of distribution states of lubricating oil films of cylinder sleeve and piston and test method thereof
CN106524929B (en) * 2016-12-07 2020-12-15 大连海事大学 Device and method for testing distribution state of lubricating oil films of cylinder sleeve and piston
WO2020067306A1 (en) * 2018-09-28 2020-04-02 イーグル工業株式会社 Sliding-body-surface evaluation method and sliding-body-surface evaluation device
CN112740019A (en) * 2018-09-28 2021-04-30 伊格尔工业股份有限公司 Surface evaluation method for sliding body and surface evaluation device for sliding body
JPWO2020067306A1 (en) * 2018-09-28 2021-08-30 イーグル工業株式会社 Sliding body surface evaluation method and sliding body surface evaluation device
US11719640B2 (en) 2018-09-28 2023-08-08 Eagle Industry Co., Ltd. Sliding body surface evaluation method and sliding body surface evaluation apparatus
JP7383358B2 (en) 2018-09-28 2023-11-20 イーグル工業株式会社 Sliding body surface evaluation method and sliding body surface evaluation device
CN112964184A (en) * 2021-04-12 2021-06-15 西华大学 Oil film thickness measuring device and measuring method based on surface friction resistance experiment

Also Published As

Publication number Publication date
JP5037444B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6553631B2 (en) Method and apparatus for light sheet microscopy
US8389893B2 (en) Laser beam machining
JP5337483B2 (en) Luminescence microscopy with increased resolution
JP5037444B2 (en) Fluid film thickness measuring device
EP2993509A1 (en) Sample observation device and sample observation method
JP2008275612A (en) Device equipped with high resolution measurement structure on substrate for manufacturing semiconductor, and use of aperture in measuring device
US20090225410A1 (en) Fluorescence Microscope
US8643833B1 (en) System for inspecting surface defects of a specimen and a method thereof
JP2009543101A (en) Method and apparatus for generating an image of a thin layer of an object
WO2011162187A1 (en) Image generation device
JP2007233371A (en) Laser illumination device
JP5043571B2 (en) Inner surface inspection device
JP2011002439A (en) Inspection apparatus
CN111307068A (en) Optical three-dimensional measuring system
JP5592108B2 (en) Interference confocal microscope and light source imaging method
US9729800B2 (en) Image generation system
JP2017142277A (en) Evanescent light generator
KR20100124757A (en) Shape measuring apparatus and method thereof
JP2006235250A (en) Measuring microscope
JP6784773B2 (en) Specimen observation device
JP4775943B2 (en) Inspection apparatus, inspection method, and cylinder block manufacturing method using the same
JP2012117989A (en) Friction abrasion testing device
JP5255763B2 (en) Optical inspection method and apparatus
JP2016061967A (en) Microscope illumination device, microscope illumination method and microscope
JP2001264021A (en) Apparatus and method, for measuring fluid film thickness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250