JPWO2020067306A1 - Sliding body surface evaluation method and sliding body surface evaluation device - Google Patents

Sliding body surface evaluation method and sliding body surface evaluation device Download PDF

Info

Publication number
JPWO2020067306A1
JPWO2020067306A1 JP2020549363A JP2020549363A JPWO2020067306A1 JP WO2020067306 A1 JPWO2020067306 A1 JP WO2020067306A1 JP 2020549363 A JP2020549363 A JP 2020549363A JP 2020549363 A JP2020549363 A JP 2020549363A JP WO2020067306 A1 JPWO2020067306 A1 JP WO2020067306A1
Authority
JP
Japan
Prior art keywords
sliding body
sliding
surface evaluation
electromagnetic wave
sliding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020549363A
Other languages
Japanese (ja)
Other versions
JP7383358B2 (en
Inventor
拓人 福原
拓人 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Publication of JPWO2020067306A1 publication Critical patent/JPWO2020067306A1/en
Application granted granted Critical
Publication of JP7383358B2 publication Critical patent/JP7383358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N2021/646Detecting fluorescent inhomogeneities at a position, e.g. for detecting defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

摺動体の摺動部における変質部の時間的な変化を観察できる摺動体の表面評価方法及び摺動体の表面評価装置を提供すること。
被摺動体4に対し摺動する形成された摺動体3の摺動部3aに電磁波を照射する第1ステップと、電磁波が照射された摺動部3aの発光を検出する第2ステップと、摺動部における発光状態の変化を導出する第3ステップと、を含む。
Provided are a method for evaluating the surface of a sliding body and an apparatus for evaluating the surface of the sliding body, which can observe a change over time in a deteriorated part of the sliding part of the sliding body.
The first step of irradiating the sliding portion 3a of the formed sliding body 3 that slides with respect to the sliding body 4 with an electromagnetic wave, the second step of detecting the light emission of the sliding portion 3a irradiated with the electromagnetic wave, and the sliding. It includes a third step of deriving a change in the light emitting state in the moving part.

Description

本発明は、摺動体の摺動部を観察する表面評価方法及び摺動体の表面評価装置に関する。 The present invention relates to a surface evaluation method for observing a sliding portion of a sliding body and a surface evaluation device for the sliding body.

クランク軸、歯車、プーリ等の回転運動する装置や、ピストン等の往復運動する装置においては、別体の部材同士が摺動し、摩擦が発生する摺動部が存在する。この摺動部の摩擦に関して、特に炭化ケイ素により形成された摺動体にあっては、初期の摺動によって、摺動部の摩擦係数が一時的に上昇した後に急激に低下して安定する現象、いわゆる「なじみ」現象が知られている。例えば、メカニカルシールのように流体機械の回転軸を軸封する装置を構成する回転密封環や静止密封環のような摺動体にあっては、「なじみ」現象により摺動部の摩擦係数が十分に低下した状態となっていないと、流体装置の駆動性能への悪影響に加え、メカニカルシールのシール性能を確保できないという問題がある。そのため、摺動部の観察を行うことは、メカニカルシールの性能を評価する上で有益であり、この観察には種々の手法が用いられている。 In a rotating device such as a crankshaft, a gear, and a pulley, or a reciprocating device such as a piston, there is a sliding portion in which separate members slide with each other to generate friction. Regarding the friction of the sliding portion, particularly in the case of a sliding body formed of silicon carbide, a phenomenon in which the friction coefficient of the sliding portion temporarily increases and then rapidly decreases and stabilizes due to the initial sliding. The so-called "familiar" phenomenon is known. For example, in the case of a sliding body such as a rotary sealing ring or a static sealing ring that constitutes a device for shaft-sealing the rotating shaft of a fluid machine such as a mechanical seal, the friction coefficient of the sliding portion is sufficient due to the "familiarity" phenomenon. If it is not in a lowered state, there is a problem that the sealing performance of the mechanical seal cannot be ensured in addition to the adverse effect on the driving performance of the fluid device. Therefore, observing the sliding portion is useful for evaluating the performance of the mechanical seal, and various methods are used for this observation.

摺動部の観察方法として、例えば、特許文献1に示されるような観察装置がある。特許文献1の観察装置は、試験片となる摺動体を保持する保持治具と、光透過性の被摺動体を回転させる駆動手段と、を備えるとともに、これら摺動体と被摺動体との摺動面に対して光源から光を照射し、摺動面から反射し被摺動体を透過した光をデジタルカメラで受け取り、摺動面の画像を得るものである。 As a method of observing the sliding portion, for example, there is an observation device as shown in Patent Document 1. The observation device of Patent Document 1 includes a holding jig for holding a sliding body as a test piece, a driving means for rotating a light-transmitting sliding body, and sliding between the sliding body and the sliding body. The moving surface is irradiated with light from a light source, and the light reflected from the sliding surface and transmitted through the sliding body is received by a digital camera to obtain an image of the sliding surface.

特許第5037444号公報(第7頁、第2図)Japanese Patent No. 5037444 (page 7, Fig. 2)

特許文献1にあっては、被摺動体を光透過性のガラスとすることで、回転駆動された摺動体の摺動面の画像を得て、摺動中の摺動面の表面の凹凸や油膜を視覚的に観察することができる。一方で、摺動部の摩擦係数の低下に影響する事象は、摺動面の表面形状や油膜の介在状態に限らず、摺動部の摩擦により基材が変質した変質部が影響することが知られているが、特許文献1の技術は摺動部の変質部の時間的な変化の観察を意図するものでもなく、そのような観察ができるものでもない。 In Patent Document 1, by using light-transmitting glass for the sliding body, an image of the sliding surface of the rotatingly driven sliding body can be obtained, and the unevenness of the surface of the sliding surface during sliding can be obtained. The oil film can be visually observed. On the other hand, the event that affects the decrease in the coefficient of friction of the sliding part is not limited to the surface shape of the sliding surface and the intervening state of the oil film, but the altered part where the base material is altered by the friction of the sliding part may affect it. Although it is known, the technique of Patent Document 1 is not intended to observe the temporal change of the altered portion of the sliding portion, and is not capable of such observation.

本発明は、このような問題点に着目してなされたもので、摺動体の摺動部における変質部の時間的な変化を観察できる摺動体の表面評価方法及び摺動体の表面評価装置を提供することを目的とする。 The present invention has been made by paying attention to such a problem, and provides a method for evaluating the surface of a sliding body and an apparatus for evaluating the surface of the sliding body, which can observe a temporal change of a deteriorated portion in the sliding portion of the sliding body. The purpose is to do.

前記課題を解決するために、本発明の摺動体の表面評価方法は、
被摺動体に対し摺動する摺動体の摺動部に電磁波を照射する第1ステップと、
前記電磁波が照射された前記摺動部の発光を検出する第2ステップと、
前記摺動部における発光状態の変化を導出する第3ステップと、
を含むものである。
これによれば、摺動部の発光を検出し、発光状態の変化を導出することで、摺動体の表面が摩擦により化学的および幾何学的に変質した変質部を可視化することができ、この変質部の時間的な変化を観察することができる。
In order to solve the above problems, the surface evaluation method for a sliding body of the present invention is used.
The first step of irradiating the sliding part of the sliding body that slides with respect to the sliding body with electromagnetic waves,
The second step of detecting the light emission of the sliding portion irradiated with the electromagnetic wave, and
The third step of deriving the change in the light emitting state in the sliding portion and
Is included.
According to this, by detecting the light emission of the sliding part and deriving the change of the light emitting state, it is possible to visualize the altered part where the surface of the sliding body is chemically and geometrically altered by friction. It is possible to observe the temporal change of the altered part.

好適には、前記第1ステップは、前記摺動部の全表面に亘って前記電磁波を走査するステップを含む。
これによれば、摺動部の全表面に亘って発光状態の変化を観察することで、摺動部における低摩擦化されやすい領域等を評価することができる。
Preferably, the first step comprises scanning the electromagnetic wave over the entire surface of the sliding portion.
According to this, by observing the change in the light emitting state over the entire surface of the sliding portion, it is possible to evaluate the region where the friction is likely to be reduced in the sliding portion.

好適には、前記第1ステップは、前記摺動体を回転駆動しながら前記摺動部に電磁波を照射するステップを含む。
これによれば、摺動体を回転させることで、摺動部の全表面を容易に観察することができる。
Preferably, the first step includes a step of irradiating the sliding portion with an electromagnetic wave while rotationally driving the sliding body.
According to this, the entire surface of the sliding portion can be easily observed by rotating the sliding body.

好適には、前記第1ステップは、前記摺動部における発光領域を導出するステップを含む。
これによれば、発光領域の変化に基づき、摺動部の摩擦係数が低下する過程を観察できる。
Preferably, the first step includes a step of deriving a light emitting region in the sliding portion.
According to this, it is possible to observe the process in which the friction coefficient of the sliding portion decreases based on the change in the light emitting region.

好適には、前記第3ステップは、所定以上の輝度の領域を前記発光領域から除外するステップを含む。
これによれば、摺動部の表面のポアに埋まった摩耗紛による影響を除外して、形成された実質的な変質部の領域を正確に評価できる。
Preferably, the third step includes a step of excluding a region having a brightness equal to or higher than a predetermined value from the light emitting region.
According to this, it is possible to accurately evaluate the region of the substantially altered portion formed by excluding the influence of the wear powder buried in the pores on the surface of the sliding portion.

好適には、前記第1ステップは、共焦点走査型顕微鏡により前記電磁波を走査するステップを含む。
これによれば、共焦点走査型顕微鏡は、低い輝度である摺動部、特に変質部の発光を検出できる。
Preferably, the first step includes scanning the electromagnetic wave with a confocal scanning microscope.
According to this, the confocal scanning microscope can detect the light emission of the sliding portion, particularly the altered portion, which has low brightness.

好適には、前記第1ステップは、前記共焦点走査型顕微鏡の焦点を前記摺動部の深さ方向に微移動させるステップを含む。
これによれば、摺動部を3次元的に解析し、例えば形成された変質部の厚みや深さ別の変質部の発光面積を観察することができる。
Preferably, the first step includes a step of finely moving the focus of the confocal scanning microscope in the depth direction of the sliding portion.
According to this, the sliding portion can be analyzed three-dimensionally, and for example, the light emitting area of the altered portion according to the thickness and depth of the formed altered portion can be observed.

前記課題を解決するために、本発明の摺動体の表面評価装置は、
摺動体を保持する保持部材と、
前記摺動体を回転駆動させる駆動手段と、
前記摺動体の摺動部に電磁波を照射する照射装置と、
前記電磁波が照射された前記摺動部の発光を検出する検出部と、
前記検出部により検出された前記発光から、前記摺動部における発光状態の変化を導出する演算装置と、
を備えている。
これによれば、摺動部の発光を検出し、発光状態の変化を導出することで、摺動体の表面が摩擦により化学的および幾何学的に変質した変質部を可視化することができ、この変質部の時間的な変化を観察することができる。
In order to solve the above problems, the surface evaluation device for the sliding body of the present invention is used.
A holding member that holds the sliding body and
A driving means for rotationally driving the sliding body and
An irradiation device that irradiates the sliding portion of the sliding body with electromagnetic waves,
A detection unit that detects the light emission of the sliding portion irradiated with the electromagnetic wave, and a detection unit.
An arithmetic unit that derives a change in the light emitting state in the sliding part from the light emitted detected by the detection unit, and an arithmetic unit.
It has.
According to this, by detecting the light emission of the sliding part and deriving the change of the light emitting state, it is possible to visualize the altered part where the surface of the sliding body is chemically and geometrically altered by friction. It is possible to observe the temporal change of the altered part.

好適には、前記摺動体に対し摺動する被摺動体を保持可能な第2保持部材を備え、
前記被摺動体は前記電磁波及び前記発光を透過するものであり、前記照射装置は、前記被摺動体を通して前記摺動体の摺動部に前記電磁波を照射する位置に配置されている。
これによれば、被摺動体を透過して摺動体の摺動部に電磁波を照射し、さらに摺動部の発光を被摺動体を透過させて検出することができるため、摺動体と被摺動体との摺動中において、摺動部における変質部の変化の過程を観察することができる。
Preferably, a second holding member capable of holding the sliding object sliding with respect to the sliding body is provided.
The sliding body transmits the electromagnetic wave and the light emission, and the irradiation device is arranged at a position where the sliding portion of the sliding body is irradiated with the electromagnetic wave through the sliding body.
According to this, electromagnetic waves are irradiated to the sliding portion of the sliding body through the sliding body, and the light emission of the sliding portion can be detected by passing through the sliding body, so that the sliding body and the sliding portion can be detected. During sliding with a moving body, the process of change of the altered part in the sliding part can be observed.

好適には、前記摺動体は多結晶SiCであり、前記被摺動体は単結晶SiCである。
これによれば、被摺動体を電磁波と発光とを透過可能にしながら、摺動体との物理特性を近似させることで、摺動部の表面の変質部の変化の過程を精度よく観察できる。
Preferably, the sliding body is polycrystalline SiC and the sliding body is single crystal SiC.
According to this, it is possible to accurately observe the process of change of the altered portion on the surface of the sliding portion by approximating the physical characteristics with the sliding portion while allowing the sliding object to transmit electromagnetic waves and light emission.

好適には、前記摺動体と前記被摺動体との間には潤滑剤として水が供給されている。
これによれば、粘性が低い水を摺動部の潤滑剤として利用することで、摺動部の表面のなじみ現象の進行状況を精度よく観察できる。
Preferably, water is supplied as a lubricant between the sliding body and the sliding body.
According to this, by using water having a low viscosity as a lubricant for the sliding portion, it is possible to accurately observe the progress of the familiarization phenomenon on the surface of the sliding portion.

本発明の実施例1における摺動体の表面評価方法に用いられる表面評価装置を示す概略図である。It is the schematic which shows the surface evaluation apparatus used in the surface evaluation method of the sliding body in Example 1 of this invention. 摺動体の対向端面を拡大した拡大断面図である。It is an enlarged sectional view which enlarged the facing end face of a sliding body. 摺動距離に対する摺動体の摩擦係数の挙動を示すグラフである。It is a graph which shows the behavior of the friction coefficient of a sliding body with respect to a sliding distance. 摺動距離に対する摺動体の摺動部の算術平均高さ(Sa)の挙動を示すグラフである。It is a graph which shows the behavior of the arithmetic mean height (Sa) of the sliding part of a sliding body with respect to a sliding distance. 摺動距離に対する摺動体の摺動部の蛍光領域の面積の挙動を示すグラフである。It is a graph which shows the behavior of the area of the fluorescent region of the sliding part of the sliding body with respect to the sliding distance. 摺動体の摺動部の蛍光領域を示す画像である。It is an image which shows the fluorescence region of the sliding part of a sliding body. 共焦点走査型顕微鏡の焦点を摺動部の深さ方向に微移動させる様子を示すイメージ図である。It is an image diagram which shows the state which the focal point of a confocal scanning microscope is slightly moved in the depth direction of a sliding part. 本発明の実施例2における摺動体と被摺動体の対応関係を示す概略図である。It is the schematic which shows the correspondence relationship of the sliding body and the sliding body in Example 2 of this invention. 本発明の実施例3における摺動体と被摺動体の対応関係を示す概略図である。It is the schematic which shows the correspondence relationship of the sliding body and the sliding body in Example 3 of this invention.

摺動体は初期の摺動によって、摺動部の摩擦係数が一時的に上昇した後、急激に摩擦係数が低下して安定する現象(図3参照)、いわゆる「なじみ現象」が知られている。なじみ過程において、摺動部にはせん断力、熱、圧力等が作用して、その表面が化学的及び幾何学的に変化して形成された変質部が低摩擦化に支配的となるといわれている。
従前より知られるように、「なじみ現象」により低摩耗を発現した摺動部を観察したところ、大部分は基材が変質しアモルファル化した変質部であり、残りの部分は変質していない基材部であることが確認されている。また、摩耗紛が埋められた微細凹部であるポアが局所的に存在していることも確認されている。発明者らは、共焦点顕微鏡を用いることで、変質部自体の発光を捉えることに成功し、摺動初期の変質部の生成状況がなじみ過程における摩擦係数の変化や表面粗さの変化に合致していることを見出した。この現象を利用することで摺動体の摺動部、特に変質部の状態を正確に把握することが可能となるので以下実施例として説明する。
The so-called "familiar phenomenon" is known as a phenomenon in which the friction coefficient of the sliding portion temporarily increases due to the initial sliding of the sliding body, and then the friction coefficient rapidly decreases and stabilizes (see FIG. 3). .. It is said that in the familiar process, shearing force, heat, pressure, etc. act on the sliding part, and the altered part formed by chemically and geometrically changing the surface becomes dominant in reducing friction. There is.
As has been known from the past, when observing the sliding parts that developed low wear due to the "familiarity phenomenon", most of them were altered parts in which the base material was altered and became amorphous, and the rest were unaltered groups. It has been confirmed that it is a timber part. It has also been confirmed that pores, which are fine recesses filled with wear powder, are locally present. The inventors succeeded in capturing the light emission of the altered part itself by using a confocal microscope, and the formation state of the altered part at the initial stage of sliding matches the change in friction coefficient and the change in surface roughness in the familiar process. I found out what I was doing. By utilizing this phenomenon, it is possible to accurately grasp the state of the sliding portion of the sliding body, particularly the altered portion, which will be described below as an example.

本発明の実施例1に係る摺動体の表面評価方法と摺動体の表面評価装置につき、図1から図7を参照して説明する。 The surface evaluation method for the sliding body and the surface evaluation device for the sliding body according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 7.

発明者は、摺動体の表面の観察を行う実験をおこなった。実験では、セラミックスである炭化ケイ素(SiC)の端面同士のすべり摩擦試験を行うために、図1に示されるような、温度制御が可能であるリングオンリング型のスラスト摩擦摩耗試験機である表面評価装置(以下、単に試験機30という。)を用いた。まず、実験に用いられる試験片や試験機30について説明する。 The inventor conducted an experiment to observe the surface of the sliding body. In the experiment, in order to perform a slip friction test between the end faces of silicon carbide (SiC), which is a ceramic, the surface of a ring-on-ring type thrust friction and wear tester capable of temperature control as shown in FIG. An evaluation device (hereinafter, simply referred to as a testing machine 30) was used. First, the test piece and the testing machine 30 used in the experiment will be described.

試験片として用いる摺動体は、多結晶の炭化ケイ素(以下、多結晶SiCという。)で形成され円環状の摺動体3と、単結晶の炭化ケイ素(以下、単結晶SiCという。)で形成され円環状の被摺動体4と、を用いた。摺動体3を形成する多結晶SiCは、流体機器の軸封等に用いられるメカニカルシールの回転密封環または静止密封環に用いられるものと同質である。被摺動体4には、硬度や摩擦係数の特性が多結晶SiCと同等でありながら、後述する励起光としてのレーザ光10を透過させるために、多結晶SiCに比べて光が透過し易い単結晶SiCを用いた。摺動体3として外径18mm、内径8mm、厚さ8mm、被摺動体4として外形16mm、内径11mm、厚さ8mmのものを使用した。 The sliding body used as a test piece is formed of an annular sliding body 3 formed of polycrystalline silicon carbide (hereinafter referred to as polycrystalline SiC) and a single crystal silicon carbide (hereinafter referred to as single crystal SiC). An annular sliding body 4 and an annular body 4 were used. The polycrystalline SiC forming the sliding body 3 is of the same quality as that used for the rotary sealing ring or the static sealing ring of the mechanical seal used for the shaft sealing of the fluid device or the like. Although the sliding body 4 has the same hardness and friction coefficient characteristics as polycrystalline SiC, it allows light to pass through the sliding body 4 more easily than polycrystalline SiC in order to transmit laser light 10 as excitation light, which will be described later. Crystalline SiC was used. The sliding body 3 had an outer diameter of 18 mm, an inner diameter of 8 mm, and a thickness of 8 mm, and the sliding body 4 had an outer diameter of 16 mm, an inner diameter of 11 mm, and a thickness of 8 mm.

試験機30は、基盤1に回転可能に連結されるとともに摺動体3を保持するハウジング2が設けられており、摺動体3の上方に、被摺動体4が摺動体3と接触可能に配置されている。 The testing machine 30 is provided with a housing 2 that is rotatably connected to the base 1 and holds the sliding body 3, and the sliding body 4 is arranged above the sliding body 3 so as to be in contact with the sliding body 3. ing.

ハウジング2は、上下方向に貫通する貫通孔2bが軸心部に設けられた円盤状の底面部2aと、底面部2aの下面に設けられる円筒状の軸部2cと、底面部2aの外周縁に設けられ上方に延びる円筒状の側面部2dと、を有して構成されている。ハウジング2は軸部2cの外周に配置したベアリング5を介して基盤1に回転可能に連結されている。 The housing 2 has a disk-shaped bottom surface portion 2a provided with a through hole 2b penetrating in the vertical direction at the axial center portion, a cylindrical shaft portion 2c provided on the lower surface portion of the bottom surface portion 2a, and an outer peripheral edge of the bottom surface portion 2a. It is configured to have a cylindrical side surface portion 2d which is provided in the housing and extends upward. The housing 2 is rotatably connected to the base 1 via a bearing 5 arranged on the outer periphery of the shaft portion 2c.

また、ハウジング2の内部には少なくとも摺動体3の対向端面と被摺動体4の対向端面が浸かる水位で水8が収容されており、これら端面の間に浸入した水が摺動体3と被摺動体4との相対回転の摺動時における潤滑剤として機能する。なお、図示しないが、摺動体3と被摺動体4との端面間に供給される水8は、25℃の精製水であり、かつ60ml/minで循環供給される。 Further, water 8 is housed inside the housing 2 at a water level at which at least the facing end faces of the sliding body 3 and the facing end faces of the sliding body 4 are immersed, and the water that has entered between these end faces is contained between the sliding body 3 and the sliding body 4. It functions as a lubricant when sliding relative to the moving body 4. Although not shown, the water 8 supplied between the end faces of the sliding body 3 and the sliding body 4 is purified water at 25 ° C. and is circulated and supplied at 60 ml / min.

摺動体3は、端面を上方へ向けた状態でハウジング2の貫通孔2bの上端開口部に保持されている。被摺動体4は、ハウジング2に保持された状態の摺動体3に対して接触可能となるよう摺動体3の上方に配置されている。 The sliding body 3 is held in the upper end opening of the through hole 2b of the housing 2 with its end face facing upward. The sliding body 4 is arranged above the sliding body 3 so as to be in contact with the sliding body 3 held in the housing 2.

また、摺動体3と被摺動体4との間には、図示しない荷重用のモータによって摺動体3の上方から荷重が与えられた状態でそれぞれ保持される。この荷重は、図示しないロードセルによって計測されて、流体機器の軸封等に用いられるメカニカルシールの回転密封環と静止密封環とを近接せしめるバネ等の弾性手段の付勢力と同等となっている。 Further, the sliding body 3 and the sliding body 4 are held in a state where a load is applied from above the sliding body 3 by a load motor (not shown). This load is measured by a load cell (not shown) and is equivalent to the urging force of an elastic means such as a spring that brings the rotary sealing ring and the static sealing ring of the mechanical seal used for shaft sealing of a fluid device close to each other.

また、被摺動体4は、ハウジング2の貫通孔2bに挿通された回転軸6の上端部に固定されており、回転軸6はモータ等の回転駆動源7に連結され、回転駆動源7の駆動によって回転可能となっている。また、回転軸6の外径側に位置する環状のシール11により、回転軸6と貫通孔2bとの間が軸封されている。 Further, the sliding body 4 is fixed to the upper end portion of the rotary shaft 6 inserted into the through hole 2b of the housing 2, and the rotary shaft 6 is connected to a rotary drive source 7 such as a motor to form a rotary drive source 7. It can be rotated by driving. Further, the ring-shaped seal 11 located on the outer diameter side of the rotating shaft 6 is used to seal the shaft between the rotating shaft 6 and the through hole 2b.

試験機30は、共焦点走査型顕微鏡16(オリンパス社製)を備えている。共焦点走査型顕微鏡16は、レーザ光10を照射する光源9、対物レンズ18、ビームスプリッタ19、検出器20、検出器20に入射した発光としての蛍光から散乱光を排除するピンホール12、を有している。 The testing machine 30 includes a confocal scanning microscope 16 (manufactured by Olympus Corporation). The confocal scanning microscope 16 includes a light source 9 that irradiates the laser beam 10, an objective lens 18, a beam splitter 19, a detector 20, and a pinhole 12 that excludes scattered light from fluorescence as light emission incident on the detector 20. Have.

共焦点走査型顕微鏡16の動作について簡単に説明する。光源9から照射されたレーザ光10は、ビームスプリッタ19により反射され、対物レンズ18を通過し、さらに被摺動体4を透過して摺動体3の摺動部3aに向けて照射される。摺動部3aとは、摺動体3における被摺動体4との摺動箇所である摺動部3aを指し、図7に示されるように、変質部3pと変質していない基材部3bとを含む摺動体3の表層部を意味する。レーザ光10による観察対象の蛍光17と観察対象で反射されたレーザ光とは、再度、被摺動体4を透過して対物レンズ18で集められる。集められた光の内、反射されたレーザ光は、ビームスプリッタ19によって反射され、蛍光17のみが検出器20側に通過する。蛍光17は、検出器20の手前でピンホール12により散乱光が排除され、検出器20に入射する。検出器20では入射された蛍光17が増幅される。図示しないが、ビームスプリッタ19とピンホール12との間に基材部3bが発する蛍光の波長を遮断するフィルタを設けておくことが好ましい。 The operation of the confocal scanning microscope 16 will be briefly described. The laser beam 10 emitted from the light source 9 is reflected by the beam splitter 19, passes through the objective lens 18, passes through the sliding body 4, and is irradiated toward the sliding portion 3a of the sliding body 3. The sliding portion 3a refers to a sliding portion 3a which is a sliding portion of the sliding body 3 with the sliding body 4, and as shown in FIG. 7, the altered portion 3p and the non-altered base material portion 3b. Means the surface layer portion of the sliding body 3 including. The fluorescence 17 of the observation target by the laser light 10 and the laser light reflected by the observation target again pass through the sliding body 4 and are collected by the objective lens 18. Of the collected light, the reflected laser light is reflected by the beam splitter 19, and only the fluorescence 17 passes to the detector 20 side. In the fluorescence 17, scattered light is excluded by the pinhole 12 in front of the detector 20, and the fluorescence 17 is incident on the detector 20. In the detector 20, the incident fluorescence 17 is amplified. Although not shown, it is preferable to provide a filter between the beam splitter 19 and the pinhole 12 to block the wavelength of fluorescence emitted by the base material portion 3b.

また、ビームスプリッタ19は図示しない駆動機構により、微回動駆動されその反射角を変更可能となっており、レーザ光10の照射方向を変化できるようになっており、レーザ光10により摺動体3の摺動部3aの表面を径方向に走査することができる。検出器20では、入射した光をデジタルデータに変換し、観察対象の三次元画像を作成できる。 Further, the beam splitter 19 is driven by a drive mechanism (not shown) to be finely rotated and its reflection angle can be changed, and the irradiation direction of the laser beam 10 can be changed. The sliding body 3 is driven by the laser beam 10. The surface of the sliding portion 3a of the above can be scanned in the radial direction. The detector 20 can convert the incident light into digital data and create a three-dimensional image to be observed.

また、試験機30には、ハウジングを一定ピッチで回転および停止させるハウジング回転制御手段23が設けられている。ハウジング回転制御手段23としては具体的には、サーボモータ24が使用されるが、ハウジング2の外周に歯車の歯を設け、基盤1側にラチェット機構を設け、この歯とラチェットとを噛み合わせることにしてもよい。このハウジング回転制御手段23によるハウジング2の回転と、ビームスプリッタ19の反射角の駆動によるレーザ光10の径方向への走査と、を合わせて、共焦点走査型顕微鏡16は摺動部3aの全表面を走査することができる。検出器20により検出された画像は、図示しないパソコン等の演算装置にて演算解析され、摺動部3aの蛍光領域と、その面積の摺動部3a全表面に対する比率、さらに輝度分布を評価することができる。 Further, the testing machine 30 is provided with a housing rotation control means 23 for rotating and stopping the housing at a constant pitch. Specifically, a servomotor 24 is used as the housing rotation control means 23. A gear tooth is provided on the outer periphery of the housing 2, a ratchet mechanism is provided on the base 1 side, and the tooth and the ratchet are meshed with each other. It may be. The confocal scanning microscope 16 includes the entire sliding portion 3a by combining the rotation of the housing 2 by the housing rotation control means 23 and the radial scanning of the laser beam 10 by driving the reflection angle of the beam splitter 19. The surface can be scanned. The image detected by the detector 20 is arithmetically analyzed by an arithmetic unit such as a personal computer (not shown), and the fluorescence region of the sliding portion 3a, the ratio of the area to the entire surface of the sliding portion 3a, and the brightness distribution are evaluated. be able to.

上記した試験片と試験機30とを使用して、試験片である摺動体3の摺動部3aの観察を行う実験について説明する。 An experiment in which the sliding portion 3a of the sliding body 3 which is the test piece is observed by using the test piece and the testing machine 30 described above will be described.

水中における摺動体3と被摺動体4との端面同士のすべり摩擦試験を行った。摩擦力は軸受によって支持された試験片冶具に付加される摩擦トルクより換算される。実験では、摺動体3と被摺動体4との間に荷重を与える荷重モータの荷重は、32N,53N,212Nとした。また、ハウジングの回転速度は142rpm,284rpm,1420rpm,2840rpmとした。 A sliding friction test between the end faces of the sliding body 3 and the sliding body 4 in water was performed. The frictional force is converted from the friction torque applied to the test piece jig supported by the bearing. In the experiment, the load of the load motor that applies a load between the sliding body 3 and the sliding body 4 was 32N, 53N, 212N. The rotation speeds of the housing were 142 rpm, 284 rpm, 1420 rpm, and 2840 rpm.

摺動体3の摺動以前の初期における表面粗さ(以後Raという)は、Ra<0.1とRa<0.01のものを用意した。被摺動体4の摺動以前の初期におけるRaは、Ra<0.01のものを用意した。 The surface roughness of the sliding body 3 in the initial stage before sliding (hereinafter referred to as Ra) was Ra <0.1 and Ra <0.01. As the Ra in the initial stage before the sliding of the sliding body 4, Ra <0.01 was prepared.

試験機30を用いるとともに、上記の条件で摺動体3と被摺動体4とを摺動させた場合の、摺動体3(Ra<0.1)の摩擦係数の挙動は図3のようになった。図3から分かるように、摺動体3(Ra<0.1)の摩擦係数は、初期に比較的高い摩擦を示した後、急峻な摩擦係数の低下を伴い摩擦係数0.05以下を維持した。 The behavior of the friction coefficient of the sliding body 3 (Ra <0.1) when the testing machine 30 is used and the sliding body 3 and the sliding body 4 are slid under the above conditions is as shown in FIG. rice field. As can be seen from FIG. 3, the friction coefficient of the sliding body 3 (Ra <0.1) was maintained at 0.05 or less with a sharp decrease in the friction coefficient after showing a relatively high friction at the initial stage. ..

図4は、摺動体3の摺動部3aの算術平均高さ(Sa)の結果を示すものであり、なじみ過程において急激に平滑なすべり面が形成され、低摩擦発現後もすべり距離と共にナノメートルオーダの変化を続けて超平滑なすべり面が形成されることが確認された。 FIG. 4 shows the result of the arithmetic mean height (Sa) of the sliding portion 3a of the sliding body 3. It was confirmed that an ultra-smooth slip surface was formed by continuing the change in metric order.

発明者らは、アモルファス化などSiCが化学的に変化した変質部が蛍光を示すことを見出し、変質部を蛍光現象により観察・評価することで、なじみ過程を解明できることが判明したので以下詳細に説明する。 The inventors have found that the altered part where SiC is chemically changed such as amorphization shows fluorescence, and it has been found that the familiar process can be elucidated by observing and evaluating the altered part by the fluorescence phenomenon. explain.

共焦点走査型顕微鏡16により摺動部3aを観察すると、低摩擦を発現したすべり面は、摩耗紛によって埋められたポアが局所的に存在するものの、大部分が変質部であることが確認された。 When the sliding portion 3a was observed with the confocal scanning microscope 16, it was confirmed that most of the slip surface that developed low friction was a deteriorated portion, although pores filled with wear powder were locally present. rice field.

なじみ過程では、SiCの変質を伴う摩耗と摩耗粉がポアを埋める2つの作用が生じていると考えられる。そして、なじみ過程で急激に平滑なすべり面を形成してSaが低下する時(図4参照)、蛍光領域は増加することが確認された(図5参照)。すなわち、すべり距離100mから400mにかけて、Saは0.05から0.01に急減する一方、蛍光領域は20%から80%に急増することが確認された。このことから、Saが低下する時、化学的に変化して低摩擦を発現する変質部が急増することが判明した。 In the familiarization process, it is considered that wear accompanied by alteration of SiC and wear debris fill the pores. Then, it was confirmed that the fluorescence region increased when Sa decreased (see FIG. 4) by rapidly forming a smooth slip surface during the familiarization process (see FIG. 5). That is, it was confirmed that from a slip distance of 100 m to 400 m, Sa sharply decreased from 0.05 to 0.01, while the fluorescent region rapidly increased from 20% to 80%. From this, it was found that when Sa decreases, the number of altered parts that chemically change and develop low friction increases rapidly.

図6(a)は、すべり距離が98mの摺動部3aの表面を共焦点走査型顕微鏡16で撮像したものであり、白抜きの部分が蛍光領域を示す。図6(b)は、同様にすべり距離が200mの蛍光領域を示す。蛍光領域は変質部3pであり、黒色部は変質していない基材部3bを示す。この図6と図5から、特に摩擦係数が上昇した98mから200mにおいてSaと蛍光領域が共に顕著な変化を示し、蛍光領域の著しい増加が確認できた。また、なじみ初期(98m)や摩擦係数0.05以下の低摩擦発現後の領域においても、僅かではあるが蛍光領域の拡大が確認でき、化学的変化は摩擦初期から低摩擦発現後も継続して生じていたことが明らかになった。つまり、低摩擦を発現したすべり面の大部分が変質部であることから、蛍光観察によって変質部の化学的変化を高感度に捉えることができる可能性が示唆された。 FIG. 6A is an image of the surface of the sliding portion 3a having a sliding distance of 98 m with a confocal scanning microscope 16, and the white portion shows the fluorescence region. FIG. 6B also shows a fluorescence region having a slip distance of 200 m. The fluorescent region is the altered portion 3p, and the black portion indicates the unaltered base material portion 3b. From FIGS. 6 and 5, it was confirmed that both Sa and the fluorescent region showed a remarkable change, especially from 98 m to 200 m when the friction coefficient increased, and a significant increase in the fluorescent region was confirmed. In addition, even in the initial stage of familiarity (98 m) and in the region after the development of low friction with a friction coefficient of 0.05 or less, a slight expansion of the fluorescence region can be confirmed, and the chemical change continues from the initial stage of friction to the region after the development of low friction. It became clear that it had occurred. In other words, since most of the slip surface that developed low friction is the altered part, it was suggested that the chemical change of the altered part could be captured with high sensitivity by fluorescence observation.

以上より、摩擦エネルギーによるSiCの化学的変化がトリガーとなって、SiC表面が平滑に摩耗しながら、変質したSiCから生じた摩耗粉がポアを埋める作用で幾何学的に安定し、変質部の化学的変化も安定した時に低摩擦界面が形成されることが分かった。 From the above, the chemical change of SiC due to frictional energy triggers the surface of the SiC to wear smoothly, and the wear debris generated from the altered SiC fills the pores, making it geometrically stable. It was found that a low friction interface was formed when the chemical changes were stable.

また、ポアに埋まった摩耗紛は、変質部の発光輝度より高くなることが分かったため、演算装置による摺動部3aの演算解析において、所定以上の輝度の領域を発光面積から除外するステップを行うことで、摺動部3aの表面のポアに埋まった摩耗紛による影響を除外して、形成された変質部の面積を確実に評価できる。 Further, since it was found that the wear powder buried in the pores is higher than the emission brightness of the altered portion, a step of excluding a region having a brightness equal to or higher than a predetermined value from the emission area is performed in the arithmetic analysis of the sliding portion 3a by the arithmetic unit. Therefore, the area of the formed altered portion can be reliably evaluated by excluding the influence of the wear powder buried in the pores on the surface of the sliding portion 3a.

また、変質部で生じた化学変化について、TEM観察および分光分析によって詳細を確認した。このTEM観察により、低摩擦を発現して間もないすべり面(例えばすべり距離519mのすべり面)と、低摩擦発現後に十分滑らせたすべり面(例えばすべり距離10kmのすべり面)とでは、いずれも基材のSiCとは異なり変質部が大部分を占める厚さ数nmのナノ界面が形成されていた。すべり距離519mから10kmまでに摩耗深さが約30nm深くなったことを考慮すると、数nmのナノ界面は摩耗と生成を繰り返していることが推定できる。 In addition, the details of the chemical changes that occurred in the altered part were confirmed by TEM observation and spectroscopic analysis. According to this TEM observation, either a slip surface that has just developed low friction (for example, a slip surface with a slip distance of 519 m) and a slip surface that has been sufficiently slid after the development of low friction (for example, a slip surface with a slip distance of 10 km) However, unlike the SiC of the base material, a nano-interface with a thickness of several nm was formed in which the altered part occupies most of the material. Considering that the wear depth increased by about 30 nm from the slip distance of 519 m to 10 km, it can be estimated that the nanointerface of several nm repeats wear and formation.

以上の実験では、以下の結論を得た。
(1)蛍光観察は、低摩擦発生時の変質部の微小な化学的変化を高感度に検出し、SiCが変質した領域を蛍光領域として定量的に評価することが可能である。
(2)基材SiCの変質を伴う摩耗と摩耗粉が表面凹部を埋める2つの作用により、急激に平滑なすべり面を形成し、算術平均高さSaが低下するなじみ過程において変質部が示す蛍光領域が増加する。
In the above experiments, the following conclusions were obtained.
(1) In fluorescence observation, it is possible to detect minute chemical changes in the altered portion when low friction occurs with high sensitivity, and quantitatively evaluate the region in which SiC is altered as the fluorescent region.
(2) Fluorescence exhibited by the altered part in the familiar process in which the wear accompanied by the alteration of the base material SiC and the abrasion powder fill the surface recesses to rapidly form a smooth slip surface and the arithmetic mean height Sa decreases. The area increases.

このように、摺動体の表面評価方法は、SiCで形成された摺動体3と被摺動体4との間において、摺動体3の摺動部3aにレーザ光10を照射する第1ステップと、レーザ光10が照射された変質部3pの発光である蛍光を検出する第2ステップと、摺動部3aにおける発光状態の変化を導出する第3ステップと、を備えている。これによれば、SiCプラトー部が形成された発光状態の変化から、なじみ現象の進行状況を評価することができ、摩擦係数の低下を確実に評価することができる。 As described above, the surface evaluation method of the sliding body includes the first step of irradiating the sliding portion 3a of the sliding body 3 with the laser beam 10 between the sliding body 3 formed of SiC and the sliding body 4. It includes a second step of detecting fluorescence which is light emission of the altered portion 3p irradiated with the laser beam 10 and a third step of deriving a change in the light emitting state of the sliding portion 3a. According to this, it is possible to evaluate the progress of the familiar phenomenon from the change in the light emitting state in which the SiC plateau portion is formed, and it is possible to reliably evaluate the decrease in the friction coefficient.

また、レーザ光10により摺動部3aの全表面に亘って走査し、摺動部3aの全表面に亘って発光面積を演算することで、摺動部3aにおける低摩擦化されやすい領域等を評価することができる。例えば、径方向の特定の領域において「なじみ現象」が顕著であること等を評価できる。 Further, by scanning the entire surface of the sliding portion 3a with the laser beam 10 and calculating the light emitting area over the entire surface of the sliding portion 3a, a region or the like in the sliding portion 3a where friction is likely to be reduced can be obtained. Can be evaluated. For example, it can be evaluated that the "familiarity phenomenon" is remarkable in a specific region in the radial direction.

また、摺動部3aの観察に共焦点走査型顕微鏡を用いることで、低い輝度である摺動部3aの発光を確実に検出できる。 Further, by using a confocal scanning microscope for observing the sliding portion 3a, it is possible to reliably detect the light emission of the sliding portion 3a having low brightness.

また、摺動体3と被摺動体4との間には潤滑剤として水が供給されるようにした。これによれば、粘性が低い水を摺動部の潤滑剤として利用することで、摺動部3aの表面のなじみ現象の進行状況を精度よく観察できる。 Further, water is supplied as a lubricant between the sliding body 3 and the sliding body 4. According to this, by using water having a low viscosity as a lubricant for the sliding portion, it is possible to accurately observe the progress of the familiarization phenomenon on the surface of the sliding portion 3a.

なお、試験機30は、共焦点走査型顕微鏡16の対物レンズ18の高さ位置を上下(Z軸)方向に微移動可能な駆動装置(図示略)を備えてもよい。これによれば、図7に示されるように、共焦点走査型顕微鏡16の焦点を摺動部3aの深さ方向に微移動させることで、摺動部3aを3次元的に解析し、形成された変質部3pの厚みを観察することができる。さらに、深さ毎の蛍光領域を観察することで、深さ毎の変質部3pの生成領域を観察することができる。ここで、摺動部3aの変質部3pは概ね数μmの厚さであるからこれらの観察は有意である。 The testing machine 30 may include a driving device (not shown) capable of finely moving the height position of the objective lens 18 of the confocal scanning microscope 16 in the vertical (Z-axis) direction. According to this, as shown in FIG. 7, the sliding portion 3a is three-dimensionally analyzed and formed by slightly moving the focal point of the confocal scanning microscope 16 in the depth direction of the sliding portion 3a. The thickness of the altered portion 3p can be observed. Further, by observing the fluorescence region for each depth, the formation region of the altered portion 3p for each depth can be observed. Here, since the altered portion 3p of the sliding portion 3a has a thickness of about several μm, these observations are significant.

なお、前記実施例では、説明の便宜上、共焦点走査型顕微鏡16にて観察される試験片として下側に配置されるものを摺動体3とし、その摺動相手として上側に配置されるものを被摺動体として説明したが、摺動体と被摺動体という言葉で観察対象が区別されるものではなく、観察対象は上側に配置される被摺動体の摺動部であってもよい。 In the above embodiment, for convenience of explanation, the test piece to be observed with the confocal scanning microscope 16 as the test piece arranged on the lower side is referred to as the sliding body 3, and the test piece arranged on the upper side as the sliding partner thereof is used as the sliding body 3. Although described as a sliding body, the observation target is not distinguished by the terms sliding body and sliding body, and the observation target may be a sliding portion of the sliding body arranged on the upper side.

次に、実施例2に係る摺動体の表面評価方法及び摺動体の表面評価装置につき、図8を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the surface evaluation method for the sliding body and the surface evaluation device for the sliding body according to the second embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

図8では、摺動体を円筒の部材に代えて棒状の部材33とした。この場合には、被摺動体4の摺動部が観察対象となる。 In FIG. 8, the sliding body is a rod-shaped member 33 instead of a cylindrical member. In this case, the sliding portion of the sliding body 4 is the observation target.

次に、実施例3に係る摺動体の表面評価方法及び摺動体の表面評価装置につき、図9を参照して説明する。尚、前記実施例と同一構成で重複する構成の説明を省略する。 Next, the surface evaluation method for the sliding body and the surface evaluation device for the sliding body according to the third embodiment will be described with reference to FIG. It should be noted that the description of the same configuration as that of the above embodiment and the overlapping configuration will be omitted.

図9(a)では、被摺動体40は、レーザ光が透過しにくい多結晶SiCにより円筒状に形成されている。この場合には、摺動体3と被摺動体40とのすべり摩擦実験を行った後、被摺動体40を取り外し、試験機30の共焦点走査型顕微鏡16を用いて摺動体3の摺動部3aを観察する。この構成によれば、摺動体3と被摺動体40とを、実際に用いられるメカニカルシールの回転密封環と静止密封環と場合と同様の素材にし、正確な摺動部の観察結果を得ることができる。 In FIG. 9A, the sliding body 40 is formed in a cylindrical shape by polycrystalline SiC, which is difficult for laser light to pass through. In this case, after performing a sliding friction experiment between the sliding body 3 and the sliding body 40, the sliding body 40 is removed, and the sliding portion of the sliding body 3 is removed using the confocal scanning microscope 16 of the testing machine 30. Observe 3a. According to this configuration, the sliding body 3 and the sliding body 40 are made of the same materials as the rotary sealing ring and the static sealing ring of the mechanical seal actually used, and an accurate observation result of the sliding portion can be obtained. Can be done.

また、図9(b)は、図9(a)の変形例であり、被摺動体41を円筒状に代えて棒状の部材とした。この場合には、摺動体3と被摺動体41とが重ならない位置にて、共焦点走査型顕微鏡16を用いて、被摺動体41を取り外さずとも摺動体3の摺動部3aを観察することができる。 Further, FIG. 9B is a modification of FIG. 9A, in which the sliding body 41 is replaced with a cylindrical member to be a rod-shaped member. In this case, the sliding portion 3a of the sliding body 3 is observed using the confocal scanning microscope 16 at a position where the sliding body 3 and the sliding body 41 do not overlap, without removing the sliding body 41. be able to.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although examples of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these examples, and any changes or additions within the scope of the gist of the present invention are included in the present invention. Is done.

例えば、摺動体の表面評価方法に利用される試験機は、上記した試験機30の構成に限定されるものではない。 For example, the testing machine used for the surface evaluation method of the sliding body is not limited to the configuration of the testing machine 30 described above.

また、被摺動体は単結晶SiCに代えて、ガラス等の光を透過する別の素材から作成されてもよい。このとき、摺動体との物理特性が近いものが好ましい。 Further, the sliding body may be made of another material that transmits light, such as glass, instead of the single crystal SiC. At this time, those having similar physical characteristics to the sliding body are preferable.

また、摺動部3aに電磁波を照射す光源は、レーザ光源以外、例えばランプであってもよく、可視光に限らず、紫外線や赤外線等の不可視光の電磁波であってよい。 Further, the light source for irradiating the sliding portion 3a with electromagnetic waves may be, for example, a lamp other than the laser light source, and may be not limited to visible light but also electromagnetic waves of invisible light such as ultraviolet rays and infrared rays.

また、摺動部3aを観察する顕微鏡としては、上記した共焦点走査型顕微鏡以外のものを用いてもよい。 Further, as the microscope for observing the sliding portion 3a, a microscope other than the above-mentioned confocal scanning microscope may be used.

また、基材が変質した変質部31pとして結晶構造が基材から変質したアモルファスを例に説明したが、変質部は化学的、機械的、熱的等により材料特性が変質した部位であればよく、例えば酸化により変質した変質部が挙げられる。 Further, an amorphous part in which the crystal structure is altered from the substrate has been described as an example of the altered portion 31p in which the substrate has been altered, but the altered portion may be a portion whose material properties have been altered by chemical, mechanical, thermal, etc. For example, an altered portion that has been altered by oxidation can be mentioned.

また、摺動体3は、セラミックス以外の素材から構成されていてもよいが、SiC、Al等のセラミックスが好ましい。The sliding body 3 may be made of a material other than ceramics, but ceramics such as SiC and Al 2 O 3 are preferable.

また、摺動体3と被摺動体4との端面間に供給される潤滑剤としては水に限らず、例えば気体、溶媒、油であってもよい。 Further, the lubricant supplied between the end faces of the sliding body 3 and the sliding body 4 is not limited to water, and may be, for example, a gas, a solvent, or oil.

また、前記実施例における図1では、ハウジング2に収容された水は、摺動体3と被摺動体4の外径側にのみ配置されているが、これに限らず、摺動体3と被摺動体4の内径側や、外径側と内径側の両側に配置されてもよい。なお、外径側と内径側に異なる種類の潤滑剤を配置してもよい。 Further, in FIG. 1 in the above embodiment, the water contained in the housing 2 is arranged only on the outer diameter side of the sliding body 3 and the sliding body 4, but the present invention is not limited to this, and the sliding body 3 and the sliding body 3 and the sliding body 4 are covered. It may be arranged on the inner diameter side of the moving body 4 or on both sides of the outer diameter side and the inner diameter side. In addition, different kinds of lubricants may be arranged on the outer diameter side and the inner diameter side.

また、発光状態の変化は、発光面積と輝度の一方でも両方であってもよく、さらに発光面積と輝度以外の発光状態であってもよい。 Further, the change in the light emitting state may be one or both of the light emitting area and the brightness, and may be a light emitting state other than the light emitting area and the brightness.

1 基盤
2 ハウジング
2a 底面部
2b 貫通孔
2c 軸部
2d 側面部
3 摺動体
3a 摺動部
3b 基材部
3p 変質部
4 被摺動体
5 ベアリング
6 回転軸
7 回転駆動源
8 水
9 光源
10 レーザ光
11 シール
12 ピンホール
16 共焦点走査型顕微鏡
17 蛍光
18 対物レンズ
19 ビームスプリッタ
20 検出器
23 ハウジング回転制御手段
24 サーボモータ
30 試験機
1 Base 2 Housing 2a Bottom part 2b Through hole 2c Shaft part 2d Side part 3 Sliding body 3a Sliding part 3b Base material part 3p Altered part 4 Sliding body 5 Bearing 6 Rotating shaft 7 Rotating drive source 8 Water 9 Light source 10 Laser light 11 Seal 12 Pinhole 16 Confocal scanning microscope 17 Fluorescence 18 Objective lens 19 Beam splitter 20 Detector 23 Housing rotation control means 24 Servo motor 30 Testing machine

Claims (11)

被摺動体に対し摺動する摺動体の摺動部に電磁波を照射する第1ステップと、
前記電磁波が照射された前記摺動部の発光を検出する第2ステップと、
前記摺動部における発光状態の変化を導出する第3ステップと、
を含むことを特徴とする摺動体の表面評価方法。
The first step of irradiating the sliding part of the sliding body that slides with respect to the sliding body with electromagnetic waves,
The second step of detecting the light emission of the sliding portion irradiated with the electromagnetic wave, and
The third step of deriving the change in the light emitting state in the sliding portion and
A method for evaluating the surface of a sliding body, which comprises.
前記第1ステップは、前記摺動部の全表面に亘って前記電磁波を走査するステップを含むことを特徴とする請求項1に記載の摺動体の表面評価方法。 The surface evaluation method for a sliding body according to claim 1, wherein the first step includes a step of scanning the electromagnetic wave over the entire surface of the sliding portion. 前記第1ステップは、前記摺動体を回転駆動しながら前記摺動部に電磁波を照射するステップを含むことを特徴とする請求項2に記載の摺動体の表面評価方法。 The surface evaluation method for a sliding body according to claim 2, wherein the first step includes a step of irradiating the sliding portion with an electromagnetic wave while rotationally driving the sliding body. 前記第1ステップは、前記摺動部における発光領域を導出するステップを含むことを特徴とする請求項1ないし3のいずれかに記載の摺動体の表面評価方法。 The method for evaluating the surface of a sliding body according to any one of claims 1 to 3, wherein the first step includes a step of deriving a light emitting region in the sliding portion. 前記第3ステップは、所定以上の輝度の領域を前記発光領域から除外するステップを含むことを特徴とする請求項4に記載の摺動体の表面評価方法。 The surface evaluation method for a sliding body according to claim 4, wherein the third step includes a step of excluding a region having a brightness equal to or higher than a predetermined value from the light emitting region. 前記第1ステップは、共焦点走査型顕微鏡により前記電磁波を走査するステップを含むことを特徴とする請求項1ないし5のいずれかに記載の摺動体の表面評価方法。 The method for evaluating the surface of a sliding body according to any one of claims 1 to 5, wherein the first step includes a step of scanning the electromagnetic wave with a confocal scanning microscope. 前記第1ステップは、前記共焦点走査型顕微鏡の焦点を前記摺動部の深さ方向に微移動させるステップを含むことを特徴とする請求項6に記載の摺動体の表面評価方法。 The surface evaluation method for a sliding body according to claim 6, wherein the first step includes a step of finely moving the focus of the confocal scanning microscope in the depth direction of the sliding portion. 摺動体を保持する保持部材と、
前記摺動体を回転駆動させる駆動手段と、
前記摺動体の摺動部に電磁波を照射する照射装置と、
前記電磁波が照射された前記摺動部の発光を検出する検出部と、
前記検出部により検出された前記発光から、前記摺動部における発光状態の変化を導出する演算装置と、
を備えることを特徴とする摺動体の表面評価装置。
A holding member that holds the sliding body and
A driving means for rotationally driving the sliding body and
An irradiation device that irradiates the sliding portion of the sliding body with electromagnetic waves,
A detection unit that detects the light emission of the sliding portion irradiated with the electromagnetic wave, and a detection unit.
An arithmetic unit that derives a change in the light emitting state in the sliding part from the light emitted detected by the detection unit, and an arithmetic unit.
A surface evaluation device for a sliding body, which comprises.
前記摺動体に対し摺動する被摺動体を保持可能な第2保持部材を備え、
前記被摺動体は前記電磁波及び前記発光を透過するものであり、前記照射装置は、前記被摺動体を通して前記摺動体の摺動部に前記電磁波を照射する位置に配置されていることを特徴とする請求項8に記載の摺動体の表面評価装置。
A second holding member capable of holding a sliding body that slides with respect to the sliding body is provided.
The sliding body transmits the electromagnetic wave and the light emission, and the irradiation device is arranged at a position where the sliding portion of the sliding body is irradiated with the electromagnetic wave through the sliding body. The surface evaluation device for a sliding body according to claim 8.
前記摺動体は多結晶SiCであり、前記被摺動体は単結晶SiCであることを特徴とする請求項9に記載の摺動体の表面評価装置。 The surface evaluation device for a sliding body according to claim 9, wherein the sliding body is polycrystalline SiC, and the sliding body is single crystal SiC. 前記摺動体と前記被摺動体との間には潤滑剤として水が供給されることを特徴とする請求項9または10に記載の摺動体の表面評価装置。 The surface evaluation device for a sliding body according to claim 9 or 10, wherein water is supplied as a lubricant between the sliding body and the sliding body.
JP2020549363A 2018-09-28 2019-09-26 Sliding body surface evaluation method and sliding body surface evaluation device Active JP7383358B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018184006 2018-09-28
JP2018184006 2018-09-28
PCT/JP2019/037898 WO2020067306A1 (en) 2018-09-28 2019-09-26 Sliding-body-surface evaluation method and sliding-body-surface evaluation device

Publications (2)

Publication Number Publication Date
JPWO2020067306A1 true JPWO2020067306A1 (en) 2021-08-30
JP7383358B2 JP7383358B2 (en) 2023-11-20

Family

ID=69953457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020549363A Active JP7383358B2 (en) 2018-09-28 2019-09-26 Sliding body surface evaluation method and sliding body surface evaluation device

Country Status (5)

Country Link
US (1) US11719640B2 (en)
EP (1) EP3859312A4 (en)
JP (1) JP7383358B2 (en)
CN (1) CN112740019A (en)
WO (1) WO2020067306A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162127A (en) * 1998-11-27 2000-06-16 Toyota Motor Corp Quality evaluating method for friction material
JP2002243643A (en) * 2001-02-15 2002-08-28 National Institute Of Advanced Industrial & Technology Method and instrument for measuring two-dimensional distribution of tribo-photon
JP2007321797A (en) * 2006-05-30 2007-12-13 Kyocera Corp Sliding member and mechanical seal ring using the same
WO2008053903A1 (en) * 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
JP2009281970A (en) * 2008-05-26 2009-12-03 Ihi Corp Film thickness measuring device and method
JP2010025671A (en) * 2008-07-17 2010-02-04 Eagle Ind Co Ltd Fluid film thickness measuring apparatus
JP2011220744A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Defect checkup method for silicon carbide bulk monocrystalline substrates, defect checkup system for silicon carbide bulk monocrystalline substrates using this method, and silicon carbide bulk monocrystalline substrate with defect information
JP2012529602A (en) * 2009-06-10 2012-11-22 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Mechanical seal with friction monitoring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314372A (en) * 1987-06-15 1988-12-22 Hitachi Ltd Water-lubrication type bearing device for water wheel
WO2000037813A1 (en) * 1998-12-22 2000-06-29 Nsk Ltd. Ball bearing
DE102004011648A1 (en) * 2004-03-10 2005-09-29 Roche Diagnostics Gmbh Test element analysis system with hard-coated contact surfaces
JP4517946B2 (en) 2005-06-07 2010-08-04 トヨタ自動車株式会社 Time-resolved analyzer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162127A (en) * 1998-11-27 2000-06-16 Toyota Motor Corp Quality evaluating method for friction material
JP2002243643A (en) * 2001-02-15 2002-08-28 National Institute Of Advanced Industrial & Technology Method and instrument for measuring two-dimensional distribution of tribo-photon
JP2007321797A (en) * 2006-05-30 2007-12-13 Kyocera Corp Sliding member and mechanical seal ring using the same
WO2008053903A1 (en) * 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
JP2009281970A (en) * 2008-05-26 2009-12-03 Ihi Corp Film thickness measuring device and method
JP2010025671A (en) * 2008-07-17 2010-02-04 Eagle Ind Co Ltd Fluid film thickness measuring apparatus
JP2012529602A (en) * 2009-06-10 2012-11-22 イーグルブルクマン ジャーマニー ゲセルシャフト ミト ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Mechanical seal with friction monitoring device
JP2011220744A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Defect checkup method for silicon carbide bulk monocrystalline substrates, defect checkup system for silicon carbide bulk monocrystalline substrates using this method, and silicon carbide bulk monocrystalline substrate with defect information

Also Published As

Publication number Publication date
WO2020067306A1 (en) 2020-04-02
EP3859312A1 (en) 2021-08-04
US11719640B2 (en) 2023-08-08
EP3859312A4 (en) 2022-06-08
US20210349026A1 (en) 2021-11-11
JP7383358B2 (en) 2023-11-20
CN112740019A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP4500641B2 (en) Defect inspection method and apparatus
Cho et al. Micro CNC surface texturing on polyoxymethylene (POM) and its tribological performance in lubricated sliding
JP6966253B2 (en) How to measure the thickness of a flat workpiece
US20180356288A1 (en) Inspection system for estimating wall friction in combustion engines
JP5655531B2 (en) Friction and wear test equipment
JP2006214931A (en) Measuring device of rolling bearing
JPWO2020067306A1 (en) Sliding body surface evaluation method and sliding body surface evaluation device
JP5037444B2 (en) Fluid film thickness measuring device
JP2010196760A (en) Grease behavior observing method and roll bearing
JP5864009B1 (en) Fine particle detector
JP5634161B2 (en) Ceramic sphere inspection equipment
US20030144159A1 (en) Fluorescent grease and bearings having the same therein
JP2006349385A (en) Particle measuring instrument
Binnington The measurement of rotary shaft seal film thickness.
JP4307343B2 (en) Optical disk inspection method and apparatus
Reithmeier et al. Optical vibration and deviation measurement of rotating machine parts
US20230028962A1 (en) Determination of a gemstone&#39;s composition
JP3508747B2 (en) Polishing pad and wafer polishing apparatus
EP3559644A1 (en) Infrared detection device
JP2010038623A (en) Optical measuring instrument for microresonator device
JP4621893B2 (en) Object investigation method and investigation apparatus
WO2010084193A1 (en) Imaging system using sample surface scanning, and corresponding substrate and reading device
Sahoo Tribology measurements
TWI602645B (en) Thickness reducing apparatus and thickness reducing method
WO2023062309A1 (en) Method for the quantitative measurement of an element in a specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230815

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7383358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150