JP5634161B2 - Ceramic sphere inspection equipment - Google Patents

Ceramic sphere inspection equipment Download PDF

Info

Publication number
JP5634161B2
JP5634161B2 JP2010178772A JP2010178772A JP5634161B2 JP 5634161 B2 JP5634161 B2 JP 5634161B2 JP 2010178772 A JP2010178772 A JP 2010178772A JP 2010178772 A JP2010178772 A JP 2010178772A JP 5634161 B2 JP5634161 B2 JP 5634161B2
Authority
JP
Japan
Prior art keywords
ceramic sphere
light
light receiving
ceramic
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010178772A
Other languages
Japanese (ja)
Other versions
JP2012037424A (en
Inventor
山田 賢司
賢司 山田
秀樹 小野
秀樹 小野
博進 松山
博進 松山
大西 宏司
宏司 大西
池田 博
博 池田
大樹 滝本
大樹 滝本
植村 浩
浩 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Tsubaki Nakashima Co Ltd
Original Assignee
Nikkato Corp
Tsubaki Nakashima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010178772A priority Critical patent/JP5634161B2/en
Application filed by Nikkato Corp, Tsubaki Nakashima Co Ltd filed Critical Nikkato Corp
Priority to CN201080060739.1A priority patent/CN102918006B/en
Priority to CN201410165457.8A priority patent/CN103954635B/en
Priority to EP10842139.7A priority patent/EP2522644B1/en
Priority to PCT/JP2010/070083 priority patent/WO2011083624A1/en
Priority to EP16161589.3A priority patent/EP3056895B1/en
Priority to US13/520,956 priority patent/US9719942B2/en
Priority to TW100100456A priority patent/TWI493176B/en
Publication of JP2012037424A publication Critical patent/JP2012037424A/en
Priority to US14/458,420 priority patent/US9316599B2/en
Application granted granted Critical
Publication of JP5634161B2 publication Critical patent/JP5634161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は耐摩耗性および耐久性に優れたセラミック球体の表面層の内部状態を検査するのに好適なセラミック球体検査装置に関するものである。   The present invention relates to a ceramic sphere inspection apparatus suitable for inspecting the internal state of the surface layer of a ceramic sphere excellent in wear resistance and durability.

セラミック球体は、鋼等の金属に比べて製造コストが高いものの、高強度で耐摩耗性や剛性に優れているとともに、鋼に比べて比重が小さく、かつ絶縁性で耐食性が高いという特徴を備えている。   Although ceramic spheres are more expensive to manufacture than metals such as steel, they are characterized by high strength, excellent wear resistance and rigidity, low specific gravity compared to steel, and high insulation and corrosion resistance. ing.

これらの特性を利用して、耐摩耗部材として、軸受やボールナット等の摺動装置や、高圧の流体を制御する流体弁の弁体等に使用されることで、軽量化を可能とするとともに、負荷荷重や繰り返し摺動による損傷や摩耗、腐食や電蝕による損傷等が抑制され、性能を長期にわたって維持することが可能となり、構成部品の長寿命化が図れるとともにメンテナンス作業が低減される。   Utilizing these characteristics, it is possible to reduce weight by using it as a wear-resistant member in sliding devices such as bearings and ball nuts, and valve bodies of fluid valves that control high-pressure fluid. In addition, damage and wear due to load load and repeated sliding, damage due to corrosion and electric corrosion, and the like can be suppressed, performance can be maintained over a long period of time, and the life of the components can be extended and maintenance work can be reduced.

特に、風力発電の発電機、空調装置の圧縮機、電気自動車やハイブリッド自動車等の各車両等、電気系統に近接しかつ温度、湿度等の変化が激しい環境で使用される軸受等では、腐食や電蝕による損傷等の影響が極めて大きく、製造コストの低い鋼等の金属に代えて維持コストを低くできるセラミック球体が採用されることも多くなっている。
また、特に高圧下で高速開閉する流体弁では剛性が高く軽量で長寿命の弁体が必須であり、弁体としてセラミック球体を採用するメリットも非常に大きい。
In particular, bearings used in environments such as wind power generators, air conditioner compressors, electric vehicles, hybrid vehicles, and other vehicles that are close to the electrical system and have drastic changes in temperature, humidity, etc. Ceramic spheres that are extremely affected by electric corrosion and that can reduce the maintenance cost instead of metals such as steel, which are low in production cost, are often used.
In particular, a fluid valve that opens and closes at high speed under high pressure requires a highly rigid, lightweight and long-life valve body, and the merit of using a ceramic sphere as the valve body is also very large.

一般的なセラミックは、複数の原材料および焼結助剤を用いて焼結されており、例えば窒化珪素質焼結体の焼結に際しては、原材料である窒化珪素(Si)は、それ自身での固相焼結は起こりづらく、緻密な焼結体が得ることができないため、焼結助剤としてYなどの希土類酸化物や、Alなどの酸化物を混合して成形した後、液相焼結により緻密化し、窒化珪素質焼結体を得ている。 A general ceramic is sintered using a plurality of raw materials and a sintering aid. For example, when a silicon nitride sintered body is sintered, the raw material silicon nitride (Si 3 N 4 ) Since solid-phase sintering by itself is unlikely to occur and a dense sintered body cannot be obtained, a rare earth oxide such as Y 2 O 3 or an oxide such as Al 2 O 3 is mixed as a sintering aid. After being molded, it is densified by liquid phase sintering to obtain a silicon nitride sintered body.

このように、複数の原材料や焼結助剤を用いて焼結した場合、条件によって表面や内部に微小な欠陥が発生しやすく、これらが存在すると、繰り返し荷重による疲労によって表面で剥離を起こす原因となる。
例えば、公知の特許文献1には、転動体表面のキズや亀裂などの欠陥が品質の信頼性の低下を招くため、焼結体の気孔率および粒界相中の最大気孔径について規定することで転がり寿命の優れた窒化珪素質焼結体製耐摩耗性部材が得られることが開示されている。
In this way, when sintering using multiple raw materials and sintering aids, minute defects are likely to occur on the surface and inside depending on the conditions, and if these exist, the cause of peeling on the surface due to fatigue due to repeated loading It becomes.
For example, in the known Patent Document 1, since defects such as scratches and cracks on the surface of the rolling element cause a decrease in quality reliability, the porosity of the sintered body and the maximum pore diameter in the grain boundary phase should be specified. It is disclosed that a wear resistant member made of a silicon nitride sintered body having an excellent rolling life can be obtained.

また、公知の特許文献2には、表面から深さ1mmの範囲にマイクロポア(微小な欠陥に相当する微細気孔)の集合体で構成された白い樹枝状に観察される組織に着目し、該マイクロポアの集合体がある特定の大きさ以下であれば、ボールの全表面積に対して占める面積割合に関係なく、軸受材料として使用する上で支障となる転がり疲労による剥離を生じさせることが開示されている。   Further, in the known patent document 2, paying attention to a structure observed in a white dendritic structure composed of aggregates of micropores (micropores corresponding to minute defects) within a depth of 1 mm from the surface, It is disclosed that if the aggregate of micropores is a certain size or less, peeling due to rolling fatigue, which is a hindrance to use as a bearing material, is caused regardless of the area ratio of the total surface area of the ball. Has been.

さらに、本発明者らは鋭意研究を行った結果、これらの欠陥を可能な限り低減するだけでは、耐摩耗性および耐久性の向上に不十分であることが判明した。   Furthermore, as a result of intensive studies, the present inventors have found that reducing these defects as much as possible is insufficient for improving wear resistance and durability.

即ち、これらの欠陥は走査電子顕微鏡(SEM)で観察可能な欠陥であるが、それ以外にSEMでは観察できず、光学顕微鏡で観察される白色斑点(スノーフレーク)の有無が耐摩耗性および耐久性に非常に大きな影響を及ぼしていることを見出した。   That is, these defects are observable with a scanning electron microscope (SEM), but cannot be observed with other SEMs. The presence or absence of white spots (snowflake) observed with an optical microscope indicates wear resistance and durability. It has been found to have a very big influence on.

このスノーフレーク部分は、図1に示すように、SEM観察では全く見られないのに対し、光学顕微鏡では明確に観察される。
このスノーフレークはSEM観察では見られないことから、特許文献2で開示されているマイクロポアの集合体からなる白い樹枝状のものではなく、スノーフレーク部分は、それ以外の部分と結晶粒界相のわずかな組成の違いがある部分と考えられ、このわずかな組成の違いが耐摩耗性および耐久性に大きく影響している。
As shown in FIG. 1, this snowflake portion is not observed at all by SEM observation, but is clearly observed by an optical microscope.
Since this snowflake is not observed by SEM observation, it is not a white dendritic structure composed of an aggregate of micropores disclosed in Patent Document 2, and the snowflake portion is slightly different from the other portions and the grain boundary phase. This slight difference in composition greatly affects the wear resistance and durability.

また、耐摩耗部材として使用される場合には、部材表面および表面近傍に存在するキズ、亀裂、気孔等の欠陥だけでなく、スノーフレークが耐摩耗性および耐久性に大きく影響を与えるため、表面および表面近傍の欠陥およびスノーフレークの有無が重要であり、焼結助剤組成の限定、かさ密度、平均結晶粒径をある特定の範囲内に調整し、限定した条件で製造することにより、表面から250μmの深さまでの欠陥およびスノーフレークのない組織とすることが可能であることを見出した。   In addition, when used as a wear-resistant member, not only defects such as scratches, cracks, and pores existing near the surface of the member, but also snowflakes greatly affect wear resistance and durability. The presence of defects near the surface and the presence or absence of snowflakes are important. By adjusting the sintering aid composition limitation, bulk density, and average crystal grain size within a certain range and manufacturing under limited conditions, 250 μm from the surface. It has been found that it is possible to achieve a structure free of defects and snowflakes to a depth of.

このような、本発明者が見出した特性を考慮してセラミック球体を製品として検査する場合、表面近傍に存在するキズ、亀裂、気孔等の欠陥だけでなく、スノーフレークがないことを、破壊することなく観察して検査するための手段が必要となる。   When inspecting ceramic spheres as products in consideration of the characteristics found by the present inventors, not only defects such as scratches, cracks and pores existing in the vicinity of the surface, but also the absence of snowflakes are destroyed. A means for observing and inspecting is necessary.

セラミック球体を破壊することなく検査するものとして、例えば特許文献3に示すような、セラミック球体の表面を光学的に観察する装置や、特許文献4に示すような、セラミック球体の表面および表面層の内部を超音波によって観察する装置が公知である。   For inspecting the ceramic sphere without destroying it, for example, an apparatus for optically observing the surface of the ceramic sphere as shown in Patent Document 3, or the surface and surface layer of the ceramic sphere as shown in Patent Document 4 An apparatus for observing the inside by ultrasonic waves is known.

特開2002−326875(全頁、図2)JP 2002-326875 (all pages, FIG. 2) 特開平6−329472(全頁、図1)JP-A-6-329472 (all pages, FIG. 1) 特開2008−51619(全頁、図1、図3)JP2008-51619 (all pages, FIG. 1 and FIG. 3) 特開2010−127621(全頁、図2)JP 2010-127621 (all pages, FIG. 2)

しかしながら、上記の特許文献3のような光学的に観察する装置では、表面からの反射光を検出しているため、表面に現れた欠陥やスノーフレーク等の色調の相違を検出することは可能であるが、表面には現れない表面層の内部の欠陥やスノーフレーク等を観察することができないという問題があった。   However, since the optical observation apparatus as described in Patent Document 3 detects reflected light from the surface, it is possible to detect a difference in color tone such as a defect appearing on the surface or a snowflake. However, there is a problem that defects inside the surface layer that do not appear on the surface, snowflakes, and the like cannot be observed.

また、特許文献4のような超音波によって観察する装置では、超音波の反射が異なるキズ、亀裂、気孔等であれば表面層の内部のものを検出することが可能であるが、前述したような結晶粒界相のわずかな組成の相違に基づき形成されるスノーフレークは超音波の反射による検出が困難であった。   In addition, in an apparatus for observing with ultrasonic waves such as Patent Document 4, it is possible to detect the inside of the surface layer if scratches, cracks, pores, etc., differing in the reflection of the ultrasonic waves. Snowflake formed on the basis of a slight compositional difference in the grain boundary phase was difficult to detect by reflection of ultrasonic waves.

そこで、本発明の目的は、簡単な構成で、セラミック球体を破壊することなく、表面層の内部の欠陥およびスノーフレークの有無を検出するセラミック球体検査装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramic sphere inspection apparatus that detects a defect inside a surface layer and the presence or absence of a snowflake with a simple configuration without destroying the ceramic sphere.

本請求項1に係る発明は、セラミック球体を所定の位置で自転可能に支持する回転支持手段と、セラミック球体の表面に向けて照射光を照射する投光手段と、セラミック球体からの反射光を検査光として検出する受光手段と、該受光手段からの検出出力を受けてセラミック球体の表面層の内部状態を評価する処理手段とを備えたセラミック球体検査装置であって、前記投光手段が、光源と、該光源の光を照射光としてセラミック球体の表面に導く投光部とを有し、前記受光手段が、光量検出部と、前記セラミック球体からの検査光を光量検出部に導く受光部とを有し、前記投光部あるいは受光部の少なくとも一方が、先端にセラミック球体の表面と接触可能な接触面を有し、前記回転支持手段が、間欠的に駆動可能に構成され、前記投光部あるいは受光部の少なくとも一方が、セラミック球体の表面方向に進退可能に構成され、前記投光部あるいは受光部の少なくとも一方の先端の接触面が、前記回転支持手段の駆動停止時にセラミック球体の表面に密着し、前記回転支持手段の駆動時にセラミック球体の表面から離脱するように構成されていることにより、前記課題を解決するものである。 The invention according to claim 1 is a rotary support means for supporting the ceramic sphere so as to be capable of rotating at a predetermined position, a light projecting means for irradiating irradiation light toward the surface of the ceramic sphere, and reflected light from the ceramic sphere. A ceramic sphere inspection apparatus comprising: a light receiving means for detecting as inspection light; and a processing means for receiving a detection output from the light receiving means and evaluating an internal state of the surface layer of the ceramic sphere , wherein the light projecting means comprises: A light source and a light projecting unit that guides the light from the light source to the surface of the ceramic sphere as irradiation light, and the light receiving unit guides the light quantity detection unit and the inspection light from the ceramic sphere to the light quantity detection unit At least one of the light projecting unit or the light receiving unit has a contact surface that can contact the surface of the ceramic sphere at the tip, and the rotation support means is configured to be intermittently driven, and Hikaribe Alternatively, at least one of the light receiving portions is configured to be able to advance and retreat in the surface direction of the ceramic sphere, and the contact surface of at least one tip of the light projecting portion or the light receiving portion is the surface of the ceramic sphere when the rotation support means is stopped. The problem is solved by being configured to be in close contact with and detached from the surface of the ceramic sphere when the rotation support means is driven .

本請求項2に係る発明は、請求項1に記載の構成に加え、前記受光部が、セラミック球体の中心を通る断面の外周円の半円周にわたって複数設けられており、前記回転支持手段が、前記受光部の設けられた外周円に対し直角方向にセラミック球体を自転させるように構成されていることにより、前記課題を解決するものである。 In the invention according to claim 2, in addition to the configuration according to claim 1 , a plurality of the light receiving portions are provided over a semicircular circumference of an outer circumference of a cross section passing through the center of the ceramic sphere, and the rotation support means is The above-mentioned problems are solved by rotating the ceramic sphere in a direction perpendicular to the outer circumferential circle provided with the light receiving portion.

本請求項3に係る発明は、請求項1に記載の構成に加え、前記受光部が、セラミック球体の中心を通る断面の外周円の一部に沿って複数設けられており、前記回転支持手段が、前記受光部の設けられた外周円に対し直角方向にセラミック球体を自転させるとともに、自転で一周したときに前記複数の受光部の幅分だけずれるように、前記受光部の設けられた外周円方向にセラミック球体を回転させるように構成されていることにより、前記課題を解決するものである。 In the invention according to claim 3, in addition to the configuration according to claim 1 , a plurality of the light receiving portions are provided along a part of an outer circumference circle of a cross section passing through the center of the ceramic sphere, and the rotation support means However, the outer circumference provided with the light receiving portion is rotated by rotating the ceramic sphere in a direction perpendicular to the outer circumference circle provided with the light receiving portion, and shifted by the width of the plurality of light receiving portions when rotating once around the rotation. The above-described problem is solved by the configuration in which the ceramic sphere is rotated in the circular direction.

本請求項4に係る発明は、請求項1に記載の構成に加え、前記受光部が、1つのみ設けられており、前記回転支持手段が、所定の方向にセラミック球体を自転させるとともに、該自転方向と直角方向にわずかに回転させるように構成されていることにより、前記課題を解決するものである。 In the invention according to claim 4, in addition to the configuration according to claim 1, only one light receiving portion is provided, and the rotation support means rotates the ceramic sphere in a predetermined direction, and The above-described problem is solved by being configured to rotate slightly in the direction perpendicular to the rotation direction.

本請求項5に係る発明は、請求項2乃至請求項4のいずれかに記載の構成に加え、前記投光部が、前記複数の受光部と同じ個数設けられ、1個ずつそれぞれ隣接するように設けられていることにより、前記課題を解決するものである。 In the invention according to claim 5, in addition to the configuration according to any one of claims 2 to 4, the same number of the light projecting parts as the plurality of light receiving parts are provided, and the light projecting parts are adjacent to each other one by one. The above-mentioned problems are solved by being provided in the above.

本請求項1に係る発明のセラミック球体検査装置によれば、投光部あるいは受光部の少なくとも一方が、先端にセラミック球体の表面と接触可能な接触面を有していることにより、投光部と受光部が近接していても、投光部から照射される照射光のセラミック球体の表面での反射光を、確実に受光部で検出されないようにすることができる。
このことで、受光手段が投光手段から照射される照射光のセラミック球体の表面での反射光を検出しないため、検出される検査光は、セラミック球体の表面層の内部に透過し拡散した照射光の内部からの反射光のみとなり、表面層の内部の欠陥や、結晶粒界相のわずかな組成の相違に基づき形成されるスノーフレークの有無を、セラミック球体を破壊することなく、かつ、表面状態に左右されることなく正確に検出することができる。
According to the ceramic sphere inspection device of the present invention, at least one of the light projecting unit and the light receiving unit has a contact surface that can come into contact with the surface of the ceramic sphere at the tip. Even if the light receiving part is close, the reflected light on the surface of the ceramic sphere of the irradiation light irradiated from the light projecting part can be reliably prevented from being detected by the light receiving part.
In this way, since the light receiving means does not detect the reflected light of the surface of the ceramic sphere of the irradiation light emitted from the light projecting means, the detected inspection light is transmitted through and diffused into the surface layer of the ceramic sphere. Only the reflected light from the inside of the light, surface defects without destroying the ceramic sphere, whether there is a defect inside the surface layer or the presence or absence of snowflakes based on a slight difference in the composition of the grain boundary phase It is possible to detect accurately without being influenced by.

また、セラミック球体の材質や焼結条件に応じて光の透過率が決定されるため、複数箇所を検出した全体的な検査光の多寡を観察することで、セラミック球体の材質や焼結の良否を検査することもできる。
さらに、投光部あるいは受光部の少なくとも一方の先端の接触面が、回転支持手段の駆動停止時にセラミック球体の表面に密着し、回転支持手段の駆動時にセラミック球体の表面から離脱するように構成されていることにより、投光部あるいは受光部の少なくとも一方の先端の接触面が、セラミック球体の表面との摺動で破損したり摩耗したりすることなく、検査精度の維持メンテが容易となる。
Also, since the light transmittance is determined according to the material of the ceramic sphere and the sintering conditions, the quality of the material of the ceramic sphere and the quality of the sintering can be determined by observing the amount of the entire inspection light detected at multiple locations. Can also be inspected.
Further, the contact surface at the tip of at least one of the light projecting unit or the light receiving unit is configured to be in close contact with the surface of the ceramic sphere when the rotation support unit is stopped and to be detached from the surface of the ceramic sphere when the rotation support unit is driven. This facilitates maintenance of inspection accuracy without causing the contact surface at the tip of at least one of the light projecting part or the light receiving part to be damaged or worn by sliding with the surface of the ceramic sphere.

本請求項2に係る構成によれば、セラミック球体を1回転自転させるだけで、セラミック球体の全表面を観察することができ、セラミック球体を効率よく検査することができる。 According to the configuration of the second aspect of the present invention , the entire surface of the ceramic sphere can be observed only by rotating the ceramic sphere once, and the ceramic sphere can be inspected efficiently.

本請求項3に係る構成によれば、投光部および受光部の数を少なくすることができ、装置全体が簡素化され、コストが低減される。 According to the configuration of the third aspect, the number of light projecting units and light receiving units can be reduced, the entire apparatus is simplified, and the cost is reduced.

本請求項4に係る構成によれば、投光部および受光部をそれぞれ1つとすることができ、さらに装置全体が簡素化され、コストが低減されるとともに、複数の投光部および受光部の光量や感度の調整が一切不要となり、検査精度の維持メンテが容易となる。 According to the configuration of the fourth aspect of the present invention , each of the light projecting unit and the light receiving unit can be made one, the entire apparatus is simplified, the cost is reduced, and a plurality of light projecting units and light receiving units are provided. There is no need to adjust the amount of light or sensitivity, and maintenance of inspection accuracy is facilitated.

本請求項5に係る構成によれば、投光部と受光部の位置関係による、検出感度等の調整が不要となり、検査精度の維持メンテが容易となる。 According to the configuration of the fifth aspect, it is not necessary to adjust the detection sensitivity or the like based on the positional relationship between the light projecting unit and the light receiving unit, and maintenance of inspection accuracy is facilitated.

セラミック体のスノーフレーク部分の光学顕微鏡写真。An optical micrograph of a snowflake portion of a ceramic body. 本発明の第1実施例であるセラミック球体検査装置の概略側面図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic side view of the ceramic sphere inspection apparatus which is 1st Example of this invention. 本発明の第1実施例であるセラミック球体検査装置の概略平面図。1 is a schematic plan view of a ceramic sphere inspection apparatus that is a first embodiment of the present invention. 本発明の第2実施例であるセラミック球体検査装置の概略平面図。The schematic top view of the ceramic sphere inspection apparatus which is 2nd Example of this invention. 本発明の第2実施例であるセラミック球体検査装置の概略正面図。The schematic front view of the ceramic sphere inspection apparatus which is 2nd Example of this invention. 本発明の第3実施例であるセラミック球体検査装置の概略平面図。The schematic top view of the ceramic sphere inspection apparatus which is 3rd Example of this invention. 本発明の第3実施例であるセラミック球体検査装置の他の実施形態の概略平面図。The schematic plan view of other embodiment of the ceramic sphere test | inspection apparatus which is the 3rd Example of this invention. 本発明のセラミック球体検査装置の他の実施形態の概略図。Schematic of other embodiment of the ceramic sphere test | inspection apparatus of this invention. 本発明のセラミック球体検査装置のさらに他の実施形態の概略図。Schematic of further another embodiment of the ceramic sphere inspection apparatus of the present invention.

そこで、本発明のセラミック球体検査装置について説明する。
本発明の第1実施例であるセラミック球体検査装置100は、図2、図3に示すように、被検査体であるセラミック球体Sを所定の位置で自転可能に支持する回転支持手段と、セラミック球体Sの表面に向けて照射光を照射する投光手段110と、セラミック球体Sからの反射光を検査光として検出する受光手段120と、該受光手段120からの検出出力を受けてセラミック球体Sの表面層の内部状態を評価する処理手段140とを有している。
Therefore, the ceramic sphere inspection apparatus of the present invention will be described.
As shown in FIGS. 2 and 3, the ceramic sphere inspection apparatus 100 according to the first embodiment of the present invention includes a rotation support means for supporting a ceramic sphere S as an object to be inspected so as to be able to rotate at a predetermined position, and a ceramic. The light projecting means 110 that irradiates the surface of the sphere S with the irradiation light, the light receiving means 120 that detects the reflected light from the ceramic sphere S as inspection light, and the ceramic sphere S that receives the detection output from the light receiving means 120. And processing means 140 for evaluating the internal state of the surface layer.

回転支持手段は、1つの駆動ローラ131と複数の従動ローラ132とからなり、複数の従動ローラ132が保持体134に回転可能に軸支されている。
保持体134は、その揺動軸135を中心に揺動支持部133に揺動可能に支持されることで、セラミック球体Sを1つの駆動ローラ131と複数の従動ローラ132の間に自転可能に保持するとともに、セラミック球体Sを保持から解放可能に構成されている。
The rotation support means includes one drive roller 131 and a plurality of driven rollers 132, and the plurality of driven rollers 132 are rotatably supported by the holding body 134.
The holding body 134 is swingably supported by the swing support part 133 around the swing shaft 135 so that the ceramic sphere S can be rotated between one drive roller 131 and a plurality of driven rollers 132. While holding, the ceramic sphere S is configured to be releasable from holding.

投光手段110は、光源111と、該光源111の光を照射光としてセラミック球体Sの表面に導く投光部112とを有している。
受光手段120は、光量検出部121と、セラミック球体Sからの検査光を光量検出部121に導く受光部122とを有している。
投光部112と受光部122の先端は、セラミック球体Sの表面と接触可能な接触面をなしており、保持体134に、図示しない進退機構によってセラミック球体Sの表面方向に進退可能に保持されている。
The light projecting unit 110 includes a light source 111 and a light projecting unit 112 that guides the light from the light source 111 to the surface of the ceramic sphere S as irradiation light.
The light receiving means 120 includes a light amount detecting unit 121 and a light receiving unit 122 that guides inspection light from the ceramic sphere S to the light amount detecting unit 121.
The tips of the light projecting unit 112 and the light receiving unit 122 form a contact surface that can come into contact with the surface of the ceramic sphere S, and are held by the holding body 134 so as to be able to advance and retract in the surface direction of the ceramic sphere S by an advancing / retreating mechanism (not shown). ing.

光源111は、照射光が表面層の内部まで透過する波長を含み、内部で乱反射、拡散して受光部122に到達する光量を有するものであれば良く、最適な波長のみを効率的に出力可能なレーザー光源や、安価で光量の大きなハロゲン光源等、いかなる光源であっても良い。
例えば、前述した、本発明者が見出した窒化珪素焼結体は表面および表面近傍の欠陥およびスノーフレークの有無について観察する場合、ハロゲン光で約250μmまで透過可能であり、500nm〜800nmの波長の光で観察できることから、一般的なハロゲン光源等を採用し、レーザー等のコストの高い光源としたり、複雑な光学システム等を設けなくても良い。
また、投光部112と受光部122は、接触面以外からの光を遮断可能に構成されていれば良く、例えば光ファイバー等を用いれば良い。
The light source 111 only needs to have a wavelength that includes the wavelength at which the irradiated light is transmitted to the inside of the surface layer, and diffusely reflects and diffuses inside to reach the light receiving unit 122. Only the optimum wavelength can be output efficiently. Any light source such as a simple laser light source or a halogen light source that is inexpensive and has a large amount of light may be used.
For example, when the silicon nitride sintered body found by the present inventor described above is observed for defects on the surface and in the vicinity of the surface and the presence or absence of snowflakes, the silicon nitride sintered body can transmit light up to about 250 μm with halogen light, and has a wavelength of 500 nm to 800 nm. Therefore, it is not necessary to use a general halogen light source or the like, to use a high-cost light source such as a laser, or to provide a complicated optical system.
The light projecting unit 112 and the light receiving unit 122 may be configured to be able to block light from other than the contact surface, and for example, an optical fiber may be used.

駆動ローラ131は、間欠的に駆動可能に構成され、投光部112と受光部122の先端の接触面が駆動ローラ131の駆動停止時にセラミック球体Sの表面に密着して表面層の内部を光学的に観察し、駆動ローラ131の駆動時にセラミック球体Sの表面から離脱することを繰り返す。   The driving roller 131 is configured to be intermittently drivable, and the contact surfaces at the tips of the light projecting unit 112 and the light receiving unit 122 are in close contact with the surface of the ceramic sphere S when the driving roller 131 stops driving, and the inside of the surface layer is optically observed. Observation is repeated, and the drive roller 131 is repeatedly detached from the surface of the ceramic sphere S when it is driven.

以上の構成で、セラミック球体Sの表面の多数の箇所において、表面からの反射光を検出することなく、表面層の内部に透過し拡散した照射光の内部からの反射光のみを観察することができる。
このことで、表面層の内部の欠陥や結晶粒界相のわずかな組成の相違に基づき形成されるスノーフレークFを、セラミック球体を破壊することなく、かつ、表面状態に左右されることなく、受光手段が検出する検査光の変化として正確に検出することができるとともに、全体的な検査光の多寡を観察することで、セラミック球体の材質や焼結の良否を検査することもできる。
With the above configuration, it is possible to observe only the reflected light from the inside of the irradiated light that has been transmitted and diffused into the surface layer, without detecting the reflected light from the surface, at many locations on the surface of the ceramic sphere S. it can.
As a result, the snowflake F formed on the basis of defects in the surface layer and slight compositional differences in the grain boundary phase can be received without destroying the ceramic sphere and depending on the surface state. It can be accurately detected as a change in the inspection light detected by the means, and the quality of the ceramic sphere and the quality of the sintering can be inspected by observing the total amount of the inspection light.

なお、本実施例では、投光部112と受光部122が一体となって、保持体134にセラミック球体Sの表面方向に進退可能に保持されているが、投光部112あるいは受光部122のいずれか一方のみが進退可能に保持されも良く、両方をセラミック球体Sの表面に接触させた状態で固定されていても良い。   In the present embodiment, the light projecting unit 112 and the light receiving unit 122 are integrated and held by the holding body 134 so as to be able to advance and retreat in the surface direction of the ceramic sphere S. Only one of them may be held so as to be able to advance and retreat, or both may be fixed in a state where they are in contact with the surface of the ceramic sphere S.

また、投光部112と受光部122の先端の距離が表面からの反射光を検出しない程度に離れていれば、投光部112と受光部122の両方がセラミック球体Sの表面に接触しない位置で固定されていても良い。
投光部112と受光部122の両方が固定されている場合は、駆動ローラ131は間欠駆動でなく連続的に駆動されても良い。
In addition, if the distance between the tip of the light projecting unit 112 and the light receiving unit 122 is far enough not to detect the reflected light from the surface, the position where both the light projecting unit 112 and the light receiving unit 122 do not contact the surface of the ceramic sphere S. It may be fixed with.
When both the light projecting unit 112 and the light receiving unit 122 are fixed, the driving roller 131 may be driven continuously instead of intermittent driving.

また、セラミック球体検査装置100は、前述した本発明者が見出した窒化珪素焼結体からなる球体だけではなく、他の組成、製造法による窒化珪素焼結体や、例えばアルミナ、ジルコニア、サイアロン等を主成分とするセラミック等、照射光が表面層の内部まで透過する材質からなるものであれば、いかなるセラミック球にも適用可能である。
例えば、ハロゲン光源を照射した場合、アルミナであれば3〜8mm程度、ジルコニアであれば2〜3mm程度透過可能な材質が知られており、これらの材質の検査が可能である。
Further, the ceramic sphere inspection apparatus 100 is not limited to the sphere made of the silicon nitride sintered body found by the inventor described above, but also a silicon nitride sintered body by other composition and manufacturing method, such as alumina, zirconia, sialon, etc. Any ceramic sphere can be used as long as it is made of a material that transmits the irradiated light to the inside of the surface layer, such as a ceramic mainly composed of.
For example, when a halogen light source is irradiated, materials that can transmit about 3 to 8 mm for alumina and about 2 to 3 mm for zirconia are known, and these materials can be inspected.

次に、セラミック球体Sの表面全体をくまなく観察するための構成を有する実施例について説明する。
本発明の第2実施例であるセラミック球体検査装置200は、回転支持手段については第1実施例と同様に、1つの駆動ローラ231と複数の従動ローラ232とからなり、複数の従動ローラ232が保持体234に回転可能に軸支されている。
Next, an embodiment having a configuration for observing the entire surface of the ceramic sphere S throughout will be described.
In the ceramic sphere inspection apparatus 200 according to the second embodiment of the present invention, the rotation support means includes one drive roller 231 and a plurality of driven rollers 232 as in the first embodiment, and the plurality of driven rollers 232 include The holder 234 is rotatably supported by the shaft.

そして、投光部212と受光部222は、図4、図5に示すように、セラミック球体Sの中心を通り、かつ、自転方向と直角の断面の外周円の半円周にわたるように複数設けられている。
このことで、セラミック球体Sを1回転自転させるだけで、全表面を観察することができ、セラミック球体Sを効率よく検査することができる。
As shown in FIGS. 4 and 5, a plurality of light projecting units 212 and light receiving units 222 are provided so as to pass through the center of the ceramic sphere S and to cover the semicircular circumference of the outer circumferential circle having a cross section perpendicular to the rotation direction. It has been.
Thus, the entire surface can be observed only by rotating the ceramic sphere S by one rotation, and the ceramic sphere S can be inspected efficiently.

なお、投光部212および受光部222は、図示では分かりやすくするために太く描いているが、光ファイバー等の細いものを用いることで、図示以上に多く設けることができる。
また、投光部212を受光部222よりも少ない数としても良い。
Note that the light projecting unit 212 and the light receiving unit 222 are drawn thick for easy understanding in the drawing, but can be provided more than shown by using a thin one such as an optical fiber.
Further, the number of light projecting units 212 may be smaller than that of the light receiving units 222.

本発明の第3実施例であるセラミック球体検査装置300は、図6に示すように、回転支持手段は、1つの駆動ローラ331と複数の従動ローラ332とからなり、複数の従動ローラ332は平行な回転軸線C2周りに回転可能に保持体334に軸支されており、駆動ローラ331は複数の従動ローラ332の回転軸線C2と所定の角度θだけ傾いた回転軸線C1周りに回転可能に構成されている。   In the ceramic sphere inspection apparatus 300 according to the third embodiment of the present invention, as shown in FIG. 6, the rotation support means includes one drive roller 331 and a plurality of driven rollers 332, and the plurality of driven rollers 332 are parallel. The drive roller 331 is configured to be rotatable about a rotation axis C1 inclined by a predetermined angle θ with respect to the rotation axis C2 of the plurality of driven rollers 332. ing.

そして、投光部312と受光部322は、セラミック球体Sの中心を通り、かつ、自転方向と直角の断面の外周円に沿って複数設けられている。
駆動ローラ331の回転軸線C1の傾き角度θは、セラミック球体Sを自転で一周させたとき、複数の受光部322の幅分だけずれるように設定されている。
全表面を観察するためには、セラミック球体Sを複数回自転させる必要があるが、第2実施例より少ない数の受光部322で全表面を観察することができる。
A plurality of light projecting portions 312 and light receiving portions 322 are provided along the outer circumference of the ceramic sphere S and having a cross section perpendicular to the rotation direction.
The inclination angle θ of the rotation axis C1 of the drive roller 331 is set so as to be shifted by the width of the plurality of light receiving portions 322 when the ceramic sphere S is rotated once.
In order to observe the entire surface, it is necessary to rotate the ceramic sphere S a plurality of times, but the entire surface can be observed with a smaller number of light receiving units 322 than in the second embodiment.

なお、第2実施例と同様に、投光部312および受光部322は、図示では分かりやすくするために太く描いているが、光ファイバー等の細いものを用いることで、図示以上に多く設けることができる。
また、投光部312を受光部322よりも少ない数としても良い。
As in the second embodiment, the light projecting unit 312 and the light receiving unit 322 are drawn thick for easy understanding in the drawing, but they can be provided more than shown by using a thin one such as an optical fiber. it can.
Further, the number of light projecting units 312 may be smaller than that of the light receiving units 322.

さらに、図7に示すように、投光部312と受光部322をそれぞれ1個ずつとし、駆動ローラ331の回転軸線C1の傾き角度θをごくわずかなものとしても良い。
このことで、複数の投光部および受光部の光量や感度を調整する作業が一切不要となり、検査精度の維持メンテが容易となる。
Further, as shown in FIG. 7, one light projecting unit 312 and one light receiving unit 322 may be provided, and the tilt angle θ of the rotation axis C <b> 1 of the drive roller 331 may be very small.
This eliminates the need for adjusting the light quantity and sensitivity of the plurality of light projecting units and light receiving units, and facilitates maintenance of inspection accuracy.

なお、回転支持手段は、上記実施例1乃至実施例3と同様の動作でセラミック球体Sを所定の位置で自転可能に支持するものであれば、上記実施例のものに限定されず、いかなる構成であっても良い。   The rotation support means is not limited to that of the above embodiment as long as it supports the ceramic sphere S so as to be capable of rotating at a predetermined position by the same operation as in the first to third embodiments. It may be.

例えば、図8に示すように、セラミック球体Sを回転可能に支持する従動ローラ432のうちの対向する2個を、縦方向に延びる回転軸437を持つ円錐台形状のものとしても良い。
この構成で、対向する2個の従動ローラ432の回転軸437に、それぞれ歯車436を偏心量rだけ偏心させて取り付け、2個の従動ローラ432の回転速度をそれぞれ周期的に変動させることで、セラミック球体Sを自転させるとともに捻り運動を加えてセラミック球体Sの表面全体をくまなく観察することができる。
For example, as shown in FIG. 8, two opposing rollers 432 that rotatably support the ceramic sphere S may have a truncated cone shape having a rotation shaft 437 extending in the vertical direction.
With this configuration, the gears 436 are attached to the rotation shafts 437 of the two driven rollers 432 facing each other with an eccentric amount r, respectively, and the rotational speeds of the two driven rollers 432 are periodically changed. The entire surface of the ceramic sphere S can be observed throughout by rotating the ceramic sphere S and applying a twisting motion.

また、図9に示すように、駆動ローラ531を平行溝538とネジ溝539を有する軸状に形成し、複数のセラミック球Sを連続的に検査できるようにしても良い。
図9に示す実施形態では、軸状の駆動ローラ531の約半周にわたって円周方向に延びる複数の平行溝538が形成されており、該平行溝538に連続して残りの約半周で隣接する平行溝538と接続するように延びる複数のネジ溝539が形成されている。
Further, as shown in FIG. 9, the driving roller 531 may be formed in a shaft shape having parallel grooves 538 and screw grooves 539 so that a plurality of ceramic balls S can be inspected continuously.
In the embodiment shown in FIG. 9, a plurality of parallel grooves 538 extending in the circumferential direction are formed over about a half circumference of the shaft-like drive roller 531, and the parallel grooves 538 are continuously adjacent to each other in the remaining half circumference. A plurality of screw grooves 539 extending so as to be connected to the groove 538 are formed.

そして、各平行溝538に対応してそれぞれ受光部522が設けられており、セラミック球Sは受光部522の位置において、平行溝538によって自転し、ネジ溝539によって駆動ローラ531の軸方向に移動するととともに、自転軸が変更される。
このことで、セラミック球Sは、図9における左方向から連続的に導入され、順次右方向の平行溝538部分に送られ、それぞれの平行溝538に対応した受光部522によって、順次自転軸を変更しながら観察され、連続的に全球面が観察される。
A light receiving portion 522 is provided corresponding to each parallel groove 538, and the ceramic sphere S rotates by the parallel groove 538 at the position of the light receiving portion 522, and moves in the axial direction of the driving roller 531 by the screw groove 539. At the same time, the rotation axis is changed.
Thus, the ceramic sphere S is continuously introduced from the left direction in FIG. 9 and sequentially sent to the parallel groove 538 portion in the right direction, and the rotation axis is sequentially changed by the light receiving unit 522 corresponding to each parallel groove 538. The whole sphere is continuously observed while changing.

なお、図8、図9に示すような、回転支持手段の他の実施態様においても、受光部および投光部の個数は1つでも複数でも良く、また、駆動ローラが間欠駆動され、受光部および投光部がセラミック球Sの表面方向に進退可能に構成され、駆動ローラの停止時にのみセラミック球Sの表面に密着するように構成されても良い。   In other embodiments of the rotation support means as shown in FIGS. 8 and 9, the number of the light receiving parts and the light projecting parts may be one or plural, and the driving roller is intermittently driven, and the light receiving part. The light projecting portion may be configured to be able to advance and retract in the surface direction of the ceramic sphere S, and may be configured to be in close contact with the surface of the ceramic sphere S only when the driving roller is stopped.

100、200、300 ・・・セラミック球体検査装置
110 ・・・投光手段
111 ・・・ハロゲン光源
112、212、312 ・・・投光部
120 ・・・受光手段
121 ・・・光量検出部
122、222、322 、522 ・・・受光部
131、231、331、431、531 ・・・駆動ローラ
132、232、332、432 ・・・従動ローラ
133 ・・・揺動支持部
134 ・・・保持体
135 ・・・揺動軸
436 ・・・歯車
437 ・・・回転軸
538 ・・・平行溝
539 ・・・ネジ溝
S ・・・セラミック球体
F ・・・スノーフレークF
DESCRIPTION OF SYMBOLS 100, 200, 300 ... Ceramic sphere inspection apparatus 110 ... Light projection means 111 ... Halogen light source 112, 212, 312 ... Light projection part 120 ... Light reception means 121 ... Light quantity detection part 122 , 222, 322, 522... Light receiving portions 131, 231, 331, 431, 531,..., Driving rollers 132, 232, 332, 432, driven rollers 133, swing support portions 134, holding Body 135 ・ ・ ・ Oscillating shaft
436 ... Gear
437... Rotating shaft
538 ... Parallel grooves
539 ・ ・ ・ Screw groove S ・ ・ ・ Ceramic sphere F ・ ・ ・ Snowflake F

Claims (5)

セラミック球体を所定の位置で自転可能に支持する回転支持手段と、セラミック球体の表面に向けて照射光を照射する投光手段と、セラミック球体からの反射光を検査光として検出する受光手段と、該受光手段からの検出出力を受けてセラミック球体の表面層の内部状態を評価する処理手段とを備えたセラミック球体検査装置であって、
記投光手段が、光源と、該光源の光を照射光としてセラミック球体の表面に導く投光部とを有し、
前記受光手段が、光量検出部と、前記セラミック球体からの検査光を光量検出部に導く受光部とを有し、
前記投光部あるいは受光部の少なくとも一方が、先端にセラミック球体の表面と接触可能な接触面を有し、
前記回転支持手段が、間欠的に駆動可能に構成され、
前記投光部あるいは受光部の少なくとも一方が、セラミック球体の表面方向に進退可能に構成され、
前記投光部あるいは受光部の少なくとも一方の先端の接触面が、前記回転支持手段の駆動停止時にセラミック球体の表面に密着し、前記回転支持手段の駆動時にセラミック球体の表面から離脱するように構成されていることを特徴とするセラミック球体検査装置。
Rotation support means for supporting the ceramic sphere so as to be able to rotate at a predetermined position, light projecting means for irradiating irradiation light toward the surface of the ceramic sphere, light receiving means for detecting reflected light from the ceramic sphere as inspection light, A ceramic sphere inspection device comprising processing means for receiving the detection output from the light receiving means and evaluating the internal state of the surface layer of the ceramic sphere ,
Before Kitoko means has a light source and a light projecting portion for guiding the surface of the ceramic spheres light of the light source as the irradiation light,
The light receiving means includes a light amount detecting unit and a light receiving unit that guides inspection light from the ceramic sphere to the light amount detecting unit,
At least one of the light projecting part or the light receiving part has a contact surface that can contact the surface of the ceramic sphere at the tip,
The rotation support means is configured to be intermittently drivable,
At least one of the light projecting unit or the light receiving unit is configured to be able to advance and retreat in the surface direction of the ceramic sphere,
The contact surface at the tip of at least one of the light projecting unit or the light receiving unit is configured to be in close contact with the surface of the ceramic sphere when the rotation support unit is stopped and to be detached from the surface of the ceramic sphere when the rotation support unit is driven. Ceramic sphere inspection apparatus characterized by being made .
前記受光部が、セラミック球体の中心を通る断面の外周円の半円周にわたって複数設けられており、
前記回転支持手段が、前記受光部の設けられた外周円に対し直角方向にセラミック球体を自転させるように構成されていることを特徴とする請求項1に記載のセラミック球体検査装置。
A plurality of the light receiving portions are provided over the semicircular circumference of the outer circumference of the cross section passing through the center of the ceramic sphere,
2. The ceramic sphere inspection apparatus according to claim 1, wherein the rotation support means is configured to rotate the ceramic sphere in a direction perpendicular to an outer peripheral circle provided with the light receiving portion.
前記受光部が、セラミック球体の中心を通る断面の外周円の一部に沿って複数設けられており、
前記回転支持手段が、前記受光部の設けられた外周円に対し直角方向にセラミック球体を自転させるとともに、
自転で一周したときに前記複数の受光部の幅分だけずれるように、前記受光部の設けられた外周円方向にセラミック球体を回転させるように構成されていることを特徴とする請求項1に記載のセラミック球体検査装置。
A plurality of the light receiving portions are provided along a part of the outer circumference of a cross section passing through the center of the ceramic sphere,
The rotation support means rotates the ceramic sphere in a direction perpendicular to the outer circumference circle provided with the light receiving portion, and
As it shifted by the width of the plurality of light receiving portions when round in rotation, to claim 1, characterized in that it is configured to rotate the ceramic sphere outer circumference direction provided with the light receiving portion The ceramic sphere inspection device described.
前記受光部が、1つのみ設けられており、
前記回転支持手段が、所定の方向にセラミック球体を自転させるとともに、該自転方向と直角方向にわずかに回転させるように構成されていることを特徴とする請求項1に記載のセラミック球体検査装置。
Only one light receiving unit is provided,
The ceramic sphere inspection apparatus according to claim 1, wherein the rotation support means is configured to rotate the ceramic sphere in a predetermined direction and slightly rotate the sphere in a direction perpendicular to the rotation direction.
前記投光部が、前記複数の受光部と同じ個数設けられ、1個ずつそれぞれ隣接するように設けられていることを特徴とする請求項2乃至請求項4のいずれかに記載のセラミック球体検査装置。 5. The ceramic sphere inspection according to claim 2 , wherein the same number of the light projecting units as the plurality of light receiving units are provided adjacent to each other. apparatus.
JP2010178772A 2010-01-07 2010-08-09 Ceramic sphere inspection equipment Active JP5634161B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010178772A JP5634161B2 (en) 2010-08-09 2010-08-09 Ceramic sphere inspection equipment
CN201410165457.8A CN103954635B (en) 2010-01-07 2010-11-11 Spheres of ceramic checks device
EP10842139.7A EP2522644B1 (en) 2010-01-07 2010-11-11 Sintered silicon nitride ceramic
PCT/JP2010/070083 WO2011083624A1 (en) 2010-01-07 2010-11-11 Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
CN201080060739.1A CN102918006B (en) 2010-01-07 2010-11-11 Ceramic sintered bodies, spheres of ceramic and spheres of ceramic inspection units
EP16161589.3A EP3056895B1 (en) 2010-01-07 2010-11-11 Device for inspecting ceramic sphere
US13/520,956 US9719942B2 (en) 2010-01-07 2010-11-11 Sintered ceramic and ceramic sphere
TW100100456A TWI493176B (en) 2010-01-07 2011-01-06 Ceramics, ceramic ball, and inspection device for ceramic ball
US14/458,420 US9316599B2 (en) 2010-01-07 2014-08-13 Device for inspecting ceramic sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178772A JP5634161B2 (en) 2010-08-09 2010-08-09 Ceramic sphere inspection equipment

Publications (2)

Publication Number Publication Date
JP2012037424A JP2012037424A (en) 2012-02-23
JP5634161B2 true JP5634161B2 (en) 2014-12-03

Family

ID=45849560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178772A Active JP5634161B2 (en) 2010-01-07 2010-08-09 Ceramic sphere inspection equipment

Country Status (1)

Country Link
JP (1) JP5634161B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948151B2 (en) * 2012-05-30 2016-07-06 株式会社ミツトヨ Sphere sample holder
EP3279644A4 (en) * 2015-03-30 2018-08-22 NTN Corporation Rotation method, inspection method, bearing manufacturing method, bearing, rotation device, and inspection device
JP2016188834A (en) * 2015-03-30 2016-11-04 Ntn株式会社 Rotation method, inspection method, method of manufacturing bearing, and bearing
JP2016188835A (en) * 2015-03-30 2016-11-04 Ntn株式会社 Rotation device and inspection device
JP7003346B2 (en) * 2017-06-23 2022-01-20 株式会社ニッカトー Ceramic sphere inspection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461653A (en) * 1987-09-01 1989-03-08 Aoki Tetsuo Method and device for detecting crack of translucent body
JPH0416751A (en) * 1990-05-11 1992-01-21 Advantest Corp Method for inspecting ceramic
JPH0763539A (en) * 1993-06-18 1995-03-10 Daio Koukiyuu Seizo Kk Surface inspecting device for spherical material
JPH06329472A (en) * 1993-05-21 1994-11-29 Ube Ind Ltd Sintered silicon nitride
JP3269288B2 (en) * 1994-10-31 2002-03-25 松下電器産業株式会社 Optical inspection method and optical inspection device
JPH11287764A (en) * 1998-04-01 1999-10-19 Matsushita Electric Ind Co Ltd Defect-inspecting method
JP2004093441A (en) * 2002-09-02 2004-03-25 Nissan Arc Ltd Method and apparatus for detecting ceramic surface layer zone defect and attachment for detecting ceramic surface layer zone defect
JP2004204912A (en) * 2002-12-24 2004-07-22 Nsk Ltd Rolling device

Also Published As

Publication number Publication date
JP2012037424A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2011083624A1 (en) Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
JP5634161B2 (en) Ceramic sphere inspection equipment
KR20120110135A (en) Ion milling device, sample processing method, processing device, and sample drive mechanism
JP2007205996A (en) Apparatus for measuring coaxiality and squareness and its method
US4969361A (en) Ultrasonic flaw detecting method and apparatus for structural balls
JP2008131025A5 (en)
CN102507749A (en) A/B shaft used for ultrasound scanning and examination of complex shape/contour
JP5295307B2 (en) Sphere rotating device, sphere rotating method and application machine using sphere rotating device
JP5325394B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection apparatus and ultrasonic flaw detection system for shaft member
JPH06508925A (en) Equipment for inspecting the surface of conical parts
JP6783176B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
GB2436618A (en) Hole inspection method and apparatus
WO2016158204A1 (en) Rotation method, inspection method, bearing manufacturing method, bearing, rotation device, and inspection device
JP2001296248A (en) Appearance inspection apparatus for spherical body
JP2007248420A (en) Method, apparatus, and system for ultrasonic flaw detection of shaft member
JP2016078197A (en) Silicon nitride spheroid, manufacturing method of silicon nitride spheroid, and inspection method of silicon nitride spheroid
JPH0763539A (en) Surface inspecting device for spherical material
JP2009222075A (en) Roller bearing and its manufacturing method
JP2016188834A (en) Rotation method, inspection method, method of manufacturing bearing, and bearing
JP2010281709A (en) Inspection device and inspection method of sphere
KR20080057450A (en) Ultrasonic probe apparatus for continuous ultrasonic scanning
CN219266112U (en) Detection device
TWI602645B (en) Thickness reducing apparatus and thickness reducing method
JP2016188835A (en) Rotation device and inspection device
JP2003225860A (en) Method for polishing peripheral surface of roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250