JP2006235250A - Measuring microscope - Google Patents

Measuring microscope Download PDF

Info

Publication number
JP2006235250A
JP2006235250A JP2005049947A JP2005049947A JP2006235250A JP 2006235250 A JP2006235250 A JP 2006235250A JP 2005049947 A JP2005049947 A JP 2005049947A JP 2005049947 A JP2005049947 A JP 2005049947A JP 2006235250 A JP2006235250 A JP 2006235250A
Authority
JP
Japan
Prior art keywords
disk
optical system
confocal
image
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049947A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005049947A priority Critical patent/JP2006235250A/en
Publication of JP2006235250A publication Critical patent/JP2006235250A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring microscope efficiently measuring a height of a test substance. <P>SOLUTION: The measuring microscope comprises: a white light source 4; a confocal disk 8 consisting of an optical transmitter 8a which light can freely pass through, and a Nipkow disk 8c in which confocal pinholes 8b of a plurality of small holes are arranged only to transmit the light of a predetermined color (for example, a color with a low-level focus depth like red), and which rotates around a rotation axis 8d at a predetermined rotation speed; an illumination optical system 2 which irradiates the illumination light from the white light source 4 to the test substance through the confocal disk 8 and a predetermined lens system; a measurement optical system 3 (confocal optical systems); and an image pickup device 12 which receives a returned light from the test substance 14 through the confocal optical systems 2 and 3, and obtains an image of the test substance 14. The image of the test substance 14 obtained by the image pickup device 12 is composed in such a manner that the bright-field image of the test substance 14 obtained by the transmission of the returned light through the transmitter 8a, and the confocal image of the test substance obtained by the transmission through the Nipkow disk 8c, are overlapped. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、共焦点光学系を用いて、被検物の表面高さや形状等を測定する測定顕微鏡に関する。   The present invention relates to a measurement microscope that measures the surface height, shape, and the like of a test object using a confocal optical system.

被検物に光源からの光を照射して映し出される画像の画像処理を行い、被検物の表面高さや形状の測定等を行う測定顕微鏡として、例えば、被検物の表面上に光学系の焦点を合わせ、そのときの高さの情報を取得する共焦点光学系を利用するものがある(例えば、特許文献1を参照)。共焦点光学系は、対物レンズの像面側にピンホールを配し、このピンホールを通して、例えば、光源から発せられる光(通常はレーザ光)を被検物に照射し、ピンホールを通過する被検物面からの戻り光を、CCDカメラなどの撮像素子により検出するものが代表的な構成として知られている。   As a measurement microscope that performs image processing of an image projected by irradiating light from a light source onto the test object and measures the surface height and shape of the test object, for example, an optical system on the surface of the test object There is one that uses a confocal optical system that focuses and acquires information on the height at that time (see, for example, Patent Document 1). The confocal optical system has a pinhole on the image plane side of the objective lens. Through this pinhole, for example, light (usually a laser beam) emitted from a light source is irradiated to the test object and passes through the pinhole. A typical configuration is one in which return light from the surface of the object to be detected is detected by an image sensor such as a CCD camera.

このような構成による共焦点光学系は、被検物面が対物レンズの被検物側の焦点面にあると、ピンホールを通して検出される戻り光の輝度(光量)が最大となり、該被検物面が対物レンズの被検物側の焦点面からわずかでも光軸方向にずれると、ピンホールへの戻り光が大部分遮光されるため、撮像素子が検出する戻り光の輝度は急激に減少する性質を持つ。したがって、共焦点光学系のこのような性質を利用して、被検物面からの戻り光の光量を検出することによって、被検物面の高さや特定の領域における表面形状を測定できるようになっている。
特開平10−221607号公報
In the confocal optical system having such a configuration, when the object surface is on the object surface side of the object lens, the brightness (light quantity) of the return light detected through the pinhole is maximized, and the object surface is detected. If the object plane is slightly displaced from the focal plane on the object side of the objective lens in the direction of the optical axis, the return light to the pinhole is largely blocked, so the brightness of the return light detected by the image sensor decreases sharply. It has the property to do. Therefore, by utilizing such properties of the confocal optical system, the height of the test object surface and the surface shape in a specific region can be measured by detecting the amount of return light from the test object surface. It has become.
JP-A-10-221607

しかしながら、上記のような共焦点光学系を用いた測定顕微鏡では、得られる被検物面の像の焦点深度が浅いためにユーザの所望する測定位置が探しづらく、高さ測定に多くの時間を要するという問題点があった。   However, in the measurement microscope using the confocal optical system as described above, it is difficult to find the measurement position desired by the user because the depth of focus of the obtained image of the object surface is shallow, and it takes a lot of time for the height measurement. There was a problem that it took.

本発明は、このような問題に鑑みてなされたものであり、効率よく被検物の高さ測定を行うことができる測定顕微鏡を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the measurement microscope which can perform the height measurement of a test object efficiently.

このような目的を達成するため、本発明は、白色光源と、光が自由に透過可能な透過部と、複数の小孔(例えば、本実施形態における共焦点ピンホール8b)が形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部とからなり、回転軸を中心に所定の回転速度で回転するディスク(例えば、本実施形態における共焦点ディスク8)と、前記ディスクの透過部及び所定のレンズ系から形成される非共焦点光学系と、前記ディスクのニポウディスク部及び所定のレンズ系から形成される共焦点光学系(例えば、本実施形態における照明光学系2及び測定光学系3)と、前記白色光源により照明された前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して前記被検物を観察する観察手段とを備え、前記観察手段は、前記ディスクの回転により前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された観察像を観察できるように構成される。   In order to achieve such an object, according to the present invention, a white light source, a transmissive portion through which light can be freely transmitted, and a plurality of small holes (for example, the confocal pinhole 8b in the present embodiment) are formed. A disk that is formed with a filter that transmits only light of the color of the film, and a disk that rotates at a predetermined rotational speed around the rotation axis (for example, the confocal disk 8 in the present embodiment); A non-confocal optical system formed from a transmission part and a predetermined lens system, and a confocal optical system formed from a Nipkow disk part of the disk and a predetermined lens system (for example, the illumination optical system 2 and the measurement optical system in this embodiment) System 3) and observation means for observing the test object through the non-confocal optical system or the confocal optical system with the return light from the test object illuminated by the white light source. The observation means includes a bright field image of the test object obtained by transmitting the return light through the non-confocal optical system by rotation of the disk, and the object obtained by transmitting through the confocal optical system. An observation image on which a confocal image of a specimen is superimposed can be observed.

また、本発明は、白色光源と、所定の色の光を出射する第2の光源と、光が自由に透過可能な透過部及び複数の小孔が形成されたニポウディスク部からなり、回転軸を中心に所定の回転速度で回転する第1のディスクと、前記白色光源と前記第1のディスクとの間に設けられ、前記第1のディスクと同一形状を有し、前記第1のディスクと同期回転する第2のディスクと、前記白色光源からの照明光を、前記第2のディスクを透過させ、前記第1のディスクの透過部から所定のレンズ系を介して被検物に照射する非共焦点光学系とともに、前記第2の光源からの照明光を、前記第2のディスクで反射させ、前記第1のディスクのニポウディスク部から前記所定のレンズ系を介して被検物に照射する共焦点光学系とからなる光学系(例えば、本実施形態における照明光学系2´及び測定光学系3´)と、前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して前記被検物を観察する観察手段とを備え、前記観察手段は、前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された観察像を観察できるように構成される。   In addition, the present invention includes a white light source, a second light source that emits light of a predetermined color, a transmission part through which light can freely pass, and a nippo disk part in which a plurality of small holes are formed. A first disk that rotates at a predetermined rotation speed at the center, and is provided between the white light source and the first disk, has the same shape as the first disk, and is synchronized with the first disk The non-shared light that irradiates the test object through the second disk that rotates and the illumination light from the white light source through the second disk and through a predetermined lens system from the transmission part of the first disk. A confocal system in which illumination light from the second light source is reflected by the second disk together with the focus optical system, and is irradiated on the test object from the tip disk part of the first disk through the predetermined lens system. An optical system comprising an optical system (for example, a book Observation in which the illumination optical system 2 ′ and the measurement optical system 3 ′) in the embodiment and the return light from the test object are observed through the non-confocal optical system or the confocal optical system. And the observation means includes the bright field image of the test object obtained by transmitting the return light through the non-confocal optical system and the test obtained by transmitting through the confocal optical system. An observation image in which a confocal image of an object is superimposed can be observed.

また、本発明は、白色光源と、光が自由に透過可能な透過部と、複数の小孔が形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部とからなり、回転軸を中心に所定の回転速度で回転するディスクと、前記ディスクの透過部及び所定のレンズ系から形成される非共焦点光学系と、前記ディスクのニポウディスク部及び所定のレンズ系から形成される共焦点光学系(例えば、本実施形態における照明光学系2及び測定光学系3)と、前記白色光源により照明された前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して受光して前記被検物の画像を取得する撮像手段(例えば、本実施形態における撮像素子12)とを備え、前記撮像手段により取得される前記被検物の画像は、前記ディスクの回転により前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された画像であるように構成される。   Further, the present invention comprises a white light source, a transmissive portion through which light can freely pass, and a nipou disc portion on which a plurality of small holes are formed and a filter that transmits only light of a predetermined color is formed, A disk that rotates at a predetermined rotation speed around a rotation axis, a non-confocal optical system formed from a transmission part of the disk and a predetermined lens system, and a tip disk part of the disk and a predetermined lens system A confocal optical system (for example, the illumination optical system 2 and the measurement optical system 3 in this embodiment) and return light from the test object illuminated by the white light source are converted into the non-confocal optical system or the confocal light. Imaging means (for example, the imaging device 12 in the present embodiment) that receives light via an optical system and acquires an image of the test object, and the image of the test object acquired by the imaging means is the disk A bright field image of the test object obtained by transmitting the return light through the non-confocal optical system by rotation and a confocal image of the test object obtained by transmitting through the confocal optical system are superimposed. Is configured to be a processed image.

また、本発明は、白色光源と、所定の色の光を出射する第2の光源と、光が自由に透過可能な透過部及び複数の小孔が形成されたニポウディスク部からなり、回転軸を中心に所定の回転速度で回転する第1のディスクと、前記白色光源と前記第1のディスクとの間に設けられ、前記第1のディスクと同一形状を有し、前記第1のディスクと同期回転する第2のディスクと、前記白色光源からの照明光を、前記第2のディスクを透過させ、前記第1のディスクの透過部から所定のレンズ系を介して被検物に照射する非共焦点光学系とともに、前記第2の光源からの照明光を、前記第2のディスクで反射させ、前記第1のディスクのニポウディスク部から前記所定のレンズ系を介して被検物に照射する共焦点光学系(例えば、本実施形態における照明光学系2´及び測定光学系3´)とからなる光学系と、前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して受光して前記被検物の画像を取得する撮像手段(例えば、本実施形態における撮像素子12)とを備え、前記撮像手段により取得される前記被検物の画像は、前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された画像であるように構成される。   In addition, the present invention includes a white light source, a second light source that emits light of a predetermined color, a transmission part through which light can freely pass, and a nippo disk part in which a plurality of small holes are formed. A first disk that rotates at a predetermined rotation speed at the center, and is provided between the white light source and the first disk, has the same shape as the first disk, and is synchronized with the first disk The non-shared light that irradiates the test object through the second disk that rotates and the illumination light from the white light source through the second disk and through a predetermined lens system from the transmission part of the first disk. A confocal system in which illumination light from the second light source is reflected by the second disk together with the focus optical system, and is irradiated on the test object from the tip disk part of the first disk through the predetermined lens system. Optical system (for example, in this embodiment An optical system comprising a bright optical system 2 ′ and a measurement optical system 3 ′) and return light from the test object is received via the non-confocal optical system or the confocal optical system and An imaging means for acquiring an image of the object (for example, the image sensor 12 in the present embodiment), and the image of the test object acquired by the imaging means has the return light transmitted through the non-confocal optical system. The bright field image of the test object obtained in this way and the confocal image of the test object obtained by transmitting through the confocal optical system are superimposed images.

なお、前記第1のディスク及び前記第2のディスクには、所定の色の光のみを透過させるフィルタが製膜されていることが望ましい。   It is desirable that a filter that transmits only light of a predetermined color is formed on the first disk and the second disk.

本発明において、前記ニポウディスク部は、前記回転軸を中心とする扇形状を有するように構成してもよい。   In this invention, you may comprise the said nipa disc part so that it may have a fan shape centering on the said rotating shaft.

また、本発明において、前記ニポウディスク部は、前記複数の小孔が所定間隔で螺旋状に配列されて形成された場合、これに沿った形状を有するように構成してもよい。   In the present invention, when the plurality of small holes are spirally arranged at a predetermined interval, the nipou disc portion may be configured to have a shape along the same.

以上説明したように、本発明によれば、被検物の焦点深度の浅い共焦点像に、被検物の焦点深度の深い明視野像を重畳した画像が得られるため、観測者は視野内における被検物の全体状態が把握し易くなって速やかに測定場所を探し出せるとともに、光の強度に合わせて高い精度で焦点合わせが行えるため、効率の良い被検物の高さや形状測定ができる測定顕微鏡を実現することができた。   As described above, according to the present invention, an image obtained by superimposing a bright field image having a deep focal depth of the test object on a confocal image having a shallow focus depth of the test object can be obtained. This makes it easy to grasp the overall condition of the test object at the time point, and can quickly find the measurement location, and can perform focusing with high accuracy according to the intensity of the light, making it possible to efficiently measure the height and shape of the test object. A microscope could be realized.

以下、図面を参照して本発明の好ましい実施形態について説明する。図1に示すように、本発明の測定顕微鏡1は、照明光学系2と、測定光学系3と、その他の計測制御装置とから構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the measurement microscope 1 of the present invention is composed of an illumination optical system 2, a measurement optical system 3, and other measurement control devices.

照明光学系2は、測定光学系3の側方に位置し、その光軸上に順に、白色光源4、コレクタレンズ5及び照明用ハーフミラー6が配設されて構成される。一方、測定光学系3は、その光軸上に順に、対物レンズからなる第1の結像光学系7と、共焦点ディスク8と、照明用ハーフミラー6と、リレーレンズからなる第2の結像光学系10と、撮像用ハーフミラー11と、撮像素子12と、接眼レンズ13とから構成される。   The illumination optical system 2 is located to the side of the measurement optical system 3, and is configured by arranging a white light source 4, a collector lens 5, and an illumination half mirror 6 in that order on the optical axis. On the other hand, the measurement optical system 3 has, in order on its optical axis, a first imaging optical system 7 composed of an objective lens, a confocal disc 8, an illumination half mirror 6, and a second connection composed of a relay lens. An image optical system 10, an imaging half mirror 11, an imaging element 12, and an eyepiece lens 13 are included.

被検物14は、XYステージ15に載置されて、測定光学系3における第1の結像光学系7の下方に配置され、テーブルのX方向(矢印21が示す方向),Y方向(矢印22が示す方向)の位置を調節することにより、測定対象部位を視野に入れることができる。   The test object 14 is placed on the XY stage 15 and disposed below the first imaging optical system 7 in the measurement optical system 3, and the X direction (direction indicated by the arrow 21) and Y direction (arrows) of the table. By adjusting the position in the direction indicated by 22), the region to be measured can be brought into the field of view.

照明光学系2及び測定光学系3からなるいわゆる非共焦点/共焦点光学系は、当該顕微鏡1の鏡筒部1a内に備えられ、ベース部1bに対してZ方向(矢印23が示す方向(高さ方向))に移動可能である。言い換えると、非共焦点/共焦点光学系は、XYテーブル15に載置された被検物14に対してZ方向に移動可能である。なお、鏡筒部1aとベース部1bとの相対的なZ方向の移動量はリニアスケール16にて検出可能であり、詳しくは後述するが、被検物14の焦点位置の違いから被検物14各部の高さの測定が可能となっている。   A so-called non-confocal / confocal optical system comprising the illumination optical system 2 and the measurement optical system 3 is provided in the lens barrel 1a of the microscope 1 and is in the Z direction (the direction indicated by the arrow 23 ( It can be moved in the height direction)). In other words, the non-confocal / confocal optical system is movable in the Z direction with respect to the test object 14 placed on the XY table 15. The relative amount of movement in the Z direction between the lens barrel portion 1a and the base portion 1b can be detected by the linear scale 16, and will be described in detail later. 14 The height of each part can be measured.

白色光源4から出射した照明光(例えば、ハロゲンランプやキセノンランプ等)は、コレクタレンズ5で平行光に変換され、照明用ハーフミラー6に照射される。照明用ハーフミラー6は約半分の光を透過して残りの光を反射するものであり、白色光源4から出射した照明光は測定光学系3の光軸方向下方に直角に反射する。そして、照明用ハーフミラー6で反射された照明光は、共焦点ディスク8の上面の視野範囲と共役な範囲を照射する(いわゆるケーラー照明を行う)。   Illumination light (for example, a halogen lamp or a xenon lamp) emitted from the white light source 4 is converted into parallel light by the collector lens 5 and applied to the illumination half mirror 6. The illumination half mirror 6 transmits about half of the light and reflects the remaining light, and the illumination light emitted from the white light source 4 is reflected perpendicularly downward in the optical axis direction of the measurement optical system 3. The illumination light reflected by the illumination half mirror 6 irradiates a range conjugate with the visual field range on the upper surface of the confocal disc 8 (so-called Koehler illumination is performed).

共焦点ディスク8は、図2(a)にも示すように、薄い円板状に形成されており、光が自由に透過可能な透過部8aと、板厚方向に貫通する複数の小孔である共焦点ピンホール8bが形成されて所定の色の光のみ(例えば赤色などの焦点深度の浅い色、若しくは補色の緑色等など)を透過させるフィルタが製膜されたニポウディスク部8cとから構成される。この共焦点ディスク8の全面には、ニポウディスク部8cにて反射した光が第2の結像光学系10に到達し難いように、反射防止膜が製膜されている。但し、これに限定されるものではなく、例えば、偏光板を用いて、前記反射した光が第2の結像光学系10に到達しないように構成してもよい。なお、図1中では1つの共焦点ピンホール8bを図示しているが、図2中では図示していない。   As shown in FIG. 2A, the confocal disc 8 is formed in a thin disk shape, and includes a transmission portion 8a through which light can freely pass and a plurality of small holes penetrating in the plate thickness direction. A confocal pinhole 8b is formed and a Nipkow disk portion 8c on which a filter that transmits only light of a predetermined color (for example, a color with a shallow depth of focus such as red, or a complementary color such as green) is formed. The An antireflection film is formed on the entire surface of the confocal disc 8 so that the light reflected by the Niipou disc portion 8 c does not easily reach the second imaging optical system 10. However, the present invention is not limited to this. For example, a polarizing plate may be used so that the reflected light does not reach the second imaging optical system 10. Although one confocal pinhole 8b is shown in FIG. 1, it is not shown in FIG.

そして共焦点ディスク8は、モータMにより回転軸8dを中心に所定の回転速度、すなわち観察者の瞳17の応答時間や撮像素子12の蓄積時間に対して十分に速く、共焦点ピンホール8bのパターンのスキャンムラにならない回転速度で回転する。その結果、測定顕微鏡1では、ディスク8に形成された共焦点ピンホール8bを通過した照明光が、スポット光として被検物14の物体面Oを走査して、該共焦点ピンホール8b(スポット光)の反射像を撮像素子12で検出され、被検物14のある領域における高さ情報を取得することができる。   The confocal disc 8 is sufficiently fast with respect to a predetermined rotation speed around the rotation axis 8d by the motor M, that is, the response time of the observer's pupil 17 and the accumulation time of the image sensor 12, and the confocal pinhole 8b Rotates at a rotational speed that does not cause uneven scanning of the pattern. As a result, in the measurement microscope 1, the illumination light that has passed through the confocal pinhole 8b formed on the disk 8 scans the object plane O of the test object 14 as spot light, and the confocal pinhole 8b (spot Light) is detected by the image sensor 12, and height information in a certain region of the test object 14 can be acquired.

なお、共焦点ディスク8の透過部8aが観察光路中に存在するときに、非共焦点光学系が形成され、非共焦点像が観察(撮像)される。また、非焦点ディスク8のニポウディスク部8cが観察光路中に存在するときに、共焦点光学系が形成され共焦点像が観察(撮像)される。共焦点ディスク8において、明視野像の明るさに対する共焦点像の明るさの比は、回転軸8dを中心としたと透過部に対するニポウディスク部8cの角度比率(面積比)に、これは予め設定されている。また、共焦点ディスク8において、透過部8aに対するニポウディスク部8cの面積比が同じであれば、基本的にはそれらディスクの性能は等価とみなされ、例えば、同じ直径を有するニポウディスク部8の形状が、図2(a)に示すように回転軸8dを中心とする扇形状8cを有するものであっても、図2(b)に示すように複数の小孔である共焦点ピンホール8bを所定間隔で螺旋状に配列して形成した場合にこれに沿った形状を有するであっても構わない。   In addition, when the transmission part 8a of the confocal disc 8 exists in the observation optical path, a non-confocal optical system is formed and a non-confocal image is observed (captured). Further, when the tip disk portion 8c of the non-focal disc 8 exists in the observation optical path, a confocal optical system is formed and a confocal image is observed (captured). In the confocal disc 8, the ratio of the brightness of the confocal image to the brightness of the bright field image is set in advance to the angle ratio (area ratio) of the Niipou disc portion 8c with respect to the transmission portion when the rotation axis 8d is the center. Has been. In the confocal disc 8, if the area ratio of the Niipou disc portion 8c to the transmitting portion 8a is the same, the performance of the discs is basically regarded as equivalent. For example, the shape of the Niipou disc portion 8 having the same diameter is used. 2A, even if it has a fan shape 8c centered on the rotating shaft 8d, a plurality of confocal pinholes 8b, which are small holes, are predetermined as shown in FIG. When formed in a spiral manner at intervals, it may have a shape along this.

このような構成の共焦点ディスク8は、測定光学系3を通過する光線(照明光等)を遮るように測定光学系3の光軸に対して直交するように配置され、該共焦点ディスク8に形成された共焦点ピンホール8bを通過した照明光は、第1の結像光学系7によりステージ15に載置された被検物14に、共焦点ピンホール8bの像として集光されて照射される。被検物14に集光照射された共焦点ピンホール8bの像は、被検物14の表面(以下、物体面Oと呼ぶ)で反射されて、再び第1の結像光学系7に入射し、この第1の結像光学系7で集光され、共焦点ディスク8上に反射像として結像し、さらに、共焦点ピンホール8bを通過する。そして、照明用ハーフミラー6を透過した後、第2の結像光学系10で再度結像され、撮像用ハーフミラー11を介し、撮像素子12の方向に進むものと接眼レンズ13の方向に進むものとに分割される。これら分割された光のうち、接眼レンズ13の方向に進んだ光は、観察者の瞳17の視野位置にて結像し、眼視観察に用いられる。一方、撮像素子12の方向に進んだ光は、該素子12の撮像面上にて受光されて光電変換され、撮像素子12が検出する光の強度(明るさ)に応じた撮像信号が出力される。この撮像信号は、デジタル信号に変換された後に、共焦点像として蓄えられる。   The confocal disc 8 having such a configuration is disposed so as to be orthogonal to the optical axis of the measurement optical system 3 so as to block light rays (illumination light or the like) passing through the measurement optical system 3. The illumination light that has passed through the confocal pinhole 8b formed on is focused on the object 14 placed on the stage 15 by the first imaging optical system 7 as an image of the confocal pinhole 8b. Irradiated. The image of the confocal pinhole 8b focused and irradiated on the test object 14 is reflected by the surface of the test object 14 (hereinafter referred to as the object plane O) and is incident on the first imaging optical system 7 again. Then, the light is condensed by the first imaging optical system 7, formed as a reflected image on the confocal disk 8, and further passes through the confocal pinhole 8 b. Then, after passing through the illumination half mirror 6, it is imaged again by the second imaging optical system 10, and proceeds in the direction of the image sensor 12 and in the direction of the eyepiece 13 through the imaging half mirror 11. Divided into things. Of these divided lights, the light traveling in the direction of the eyepiece 13 forms an image at the visual field position of the pupil 17 of the observer and is used for visual observation. On the other hand, the light traveling in the direction of the imaging element 12 is received on the imaging surface of the element 12 and subjected to photoelectric conversion, and an imaging signal corresponding to the intensity (brightness) of the light detected by the imaging element 12 is output. The The imaging signal is stored as a confocal image after being converted into a digital signal.

撮像素子12及び観察者の瞳17で認識される像は、被検物14からの戻り光が、透過部8aを透過するときにできる明視野像(非共焦点像)と、ニポウディスク部8cを透過するときにできる例えば赤色などの所定の色で光る共焦点像(反射像)とが重畳したものである。これは、上記したように、共焦点ディスク8が、光が自由に透過可能な透過部8aと、複数の小孔(共焦点ピンボール8b)が形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部8cとから構成され、且つ、モータMにより回転軸8dを中心に撮像素子12の蓄積時間や観察者の瞳の応答時間よりも十分に速く回転することに起因する。   The image recognized by the imaging element 12 and the observer's pupil 17 includes a bright field image (non-confocal image) formed when the return light from the test object 14 passes through the transmission part 8a, and the Niipou disk part 8c. For example, a confocal image (reflected image) shining with a predetermined color such as red, which is formed when transmitting, is superimposed. This is because, as described above, the confocal disc 8 is formed with a transmission portion 8a through which light can freely pass and a plurality of small holes (confocal pinballs 8b) to transmit only light of a predetermined color. This is due to the fact that the filter is composed of the formed Nipkow disk portion 8c and is rotated sufficiently faster than the accumulation time of the imaging device 12 and the response time of the observer's pupil around the rotation shaft 8d by the motor M. .

ここで、透過部8aを透過するときに得られる明視野像は、第1の結像光学系7の焦点面が物体面Oに一致しているときは解像度が上がり、物体面Oが光軸方向に焦点面からずれているときは解像度が下がるが、明るさは合焦状態に係らずほとんど変化しない。よって、焦点深度の深い明視野像からは、視野内における被検物14の全体状態を容易に求めることができる。   Here, the bright field image obtained when passing through the transmission part 8a has a higher resolution when the focal plane of the first imaging optical system 7 coincides with the object plane O, and the object plane O is positioned on the optical axis. When the direction deviates from the focal plane, the resolution decreases, but the brightness hardly changes regardless of the in-focus state. Therefore, the entire state of the test object 14 in the visual field can be easily obtained from the bright field image having a deep focal depth.

また、ニポウディスク部8cを透過するときに得られる被検物14の共焦点像は、第1の結像光学系7の焦点面が物体面Oに一致しているときだけ所定の色(例えば赤色や緑色等)で明るく映り、物体面Oが光軸方向に焦点面からずれているときは暗く映るようになっている。すなわち、被検物14の表面高さが、いわば等高線のように表示される。よって、測定顕微鏡1では、焦点面の光軸方向への移動に応じて強度が変化することにより、被検物14からの戻り光を撮像素子12が受光して得られる共焦点像から高さ情報を求めることができるようになっている。以下に、本実施形態に係る測定顕微鏡1を用いて、被検物14の高さ測定を行う具体的な方法について説明する。   The confocal image of the test object 14 obtained when passing through the Niipou disc portion 8c is a predetermined color (for example, red) only when the focal plane of the first imaging optical system 7 coincides with the object plane O. When the object plane O deviates from the focal plane in the optical axis direction, the image appears dark. That is, the surface height of the test object 14 is displayed like a contour line. Therefore, in the measurement microscope 1, the intensity changes according to the movement of the focal plane in the optical axis direction, so that the height from the confocal image obtained by the imaging element 12 receiving the return light from the test object 14 is increased. You can ask for information. Hereinafter, a specific method for measuring the height of the test object 14 using the measurement microscope 1 according to the present embodiment will be described.

図1に示すように、照明光学系2及び測定光学系3を含む鏡筒部1aは、光軸方向に沿って上下に移動可能なように構成されている。このため、鏡筒部1aを上下移動させて、第1の結像光学系7の焦点位置を物体面O付近(Z0)において光軸方向に移動させると、鏡筒部1aの光軸方向位置Zと撮像素子12で検出される共焦点像の光の強度Iとの関係は、図3に示すように、第1の結像光学系7の焦点面と被検物14の物体面Oとが一致する位置Z0において、光の強度Iが最も大きくなるような分布を示す(以降、光の強度の最大値を「IZピーク値」と呼ぶ)。同様に、被検物14の物体面O付近(Z1)に結像光学系7の焦点位置を移動させると、共焦点像の光の強度Iが図3のように最大値を示す。したがって、鏡筒部1aを物体面OからOへ光軸方向に移動させ、撮像素子12で検出された信号のIZピーク値を求めて、このとき鏡筒部1aの光軸方向位置Z(Z0)をリニアスケール16にて読み取れば、被検物14の高さ情報を得ることができる。 As shown in FIG. 1, the lens barrel 1a including the illumination optical system 2 and the measurement optical system 3 is configured to be movable up and down along the optical axis direction. Therefore, the lens barrel 1a by vertically moving, moving in the optical axis direction at the focal position of the first imaging optical system 7 the object plane O near 1 (Z0), the optical axis of the lens barrel portion 1a As shown in FIG. 3, the relationship between the position Z and the light intensity I of the confocal image detected by the image sensor 12 is such that the focal plane of the first imaging optical system 7 and the object plane O of the object 14 to be inspected. In the position Z0 where the two coincide with each other, the distribution is such that the light intensity I is maximized (hereinafter, the maximum value of the light intensity is referred to as “IZ peak value”). Similarly, when the focal position of the imaging optical system 7 is moved to near the object plane O 2 (Z1) of the test object 14, the light intensity I of the confocal image shows the maximum value as shown in FIG. Therefore, the lens barrel 1a is moved from the object plane O 1 to O 2 in the optical axis direction, seeking IZ peak value of the signal detected by the image sensor 12, the optical axis direction position Z In this case the barrel section 1a If (Z0) is read by the linear scale 16, the height information of the test object 14 can be obtained.

なお、共焦点ディスク8を所定の速度で回転させて、被検物14の物体面Oを所定の色の光がスキャンしているため、物体面O上の多数のポイントに対する高さ情報を同時に測定することができる。このとき、物体面O上の測定範囲は撮像素子12の撮像面の撮像視野に対応し、被検物14の高さ情報の測定範囲は鏡筒部1aの光軸方向移動範囲に対応する。   Since the confocal disc 8 is rotated at a predetermined speed and light of a predetermined color is scanned on the object plane O of the test object 14, height information for a large number of points on the object plane O is simultaneously obtained. Can be measured. At this time, the measurement range on the object plane O corresponds to the imaging field of view of the imaging surface of the imaging device 12, and the measurement range of the height information of the test object 14 corresponds to the movement range in the optical axis direction of the lens barrel 1a.

また、照明光学系2及び測定光学系3からなる非共焦点/共焦点光学系は、被検物14を載置するXYステージ15に対して垂直な方向に移動可能なように構成されている。このため、非共焦点/共焦点光学系2,3をXYステージ15に対して移動させることにより、被検物14を光軸に対して垂直な方向に所望若しくは任意の位置に移動させ、光線を物体面Oに照射すれば、広範囲にわたり被検物14の高さ測定が可能である。   The non-confocal / confocal optical system including the illumination optical system 2 and the measurement optical system 3 is configured to be movable in a direction perpendicular to the XY stage 15 on which the test object 14 is placed. . For this reason, by moving the non-confocal / confocal optical systems 2 and 3 with respect to the XY stage 15, the test object 14 is moved in a direction perpendicular to the optical axis to a desired or arbitrary position. If the object plane O is irradiated, the height of the test object 14 can be measured over a wide range.

以上のように、本発明の測定顕微鏡1では、被検物14からの戻り光が透過部8aを通ったときにできた焦点深度の深い明視野像(非共焦点像)と、ニッポウディスク部8cを通ったときにできた焦点深度の浅い共焦点像(反射像)とが重畳された画像、すなわち焦点が合った部分については所定の色で明るく強調され、それ以外の焦点が合っていない部分については被検物14の実際の色に近い色彩の画像を得ることができる。   As described above, in the measurement microscope 1 of the present invention, the bright field image (non-confocal image) having a deep focal depth formed when the return light from the test object 14 passes through the transmission part 8a, and the Nippon disk part. An image in which a confocal image (reflected image) with a shallow depth of focus formed by passing through 8c is superimposed, that is, a focused portion is brightly highlighted with a predetermined color, and the other focus is not in focus. For the portion, an image having a color close to the actual color of the test object 14 can be obtained.

その結果、本発明によれば、被検物14が、例えば透明体などコントラストの低いものやだれた縁部・バンプ頂頭部など、従来目視だけでは焦点合わせが行い難いものであっても、観察者は明るく光り強調される合焦位置を目安にすることで所望の測定場所での焦点合わせが容易にできるため、被検物14の高さや表面形状を簡単に測定でき、作業効率を向上させることができる。   As a result, according to the present invention, even if the test object 14 is difficult to perform focusing only by conventional visual observation, such as a low-contrast object such as a transparent body, a fringed edge or a bump top, etc. The person can easily measure the height and surface shape of the test object 14 by improving the working efficiency because the person can easily focus at a desired measurement location by using the in-focus position that is bright and bright and emphasized. be able to.

また、従来の共焦点光学系を利用した測定顕微鏡では、被検物14の高さ測定を行う上で、焦点が合っているか否かの判断は所定の色で光る共焦点像を見て行うが、本発明ではこの共焦点像に明視野像を重畳することによって、観察者は視野内の状態及び現在の測定場所を把握しやすくなり、測定作業をスムーズに行うことができる。   Further, in a measurement microscope using a conventional confocal optical system, when measuring the height of the test object 14, whether or not the object is in focus is determined by looking at a confocal image that shines in a predetermined color. However, in the present invention, by superimposing the bright field image on the confocal image, the observer can easily grasp the state in the field of view and the current measurement location, and the measurement operation can be performed smoothly.

さらに、観察者は、焦点深度の深い明視野像により被検物14の全体状態を観察しつつ、焦点深度の浅い共焦点像により合焦状態が把握できるため、手動で高さ測定を行う際に、明視野像のコントラストだけを見て焦点を合わせる場合よりも、より精度の高く、効率の良い被検物14の高さ測定を行うことができる。   Furthermore, since the observer can grasp the in-focus state with a confocal image with a shallow depth of focus while observing the entire state of the test object 14 with a bright field image with a deep depth of focus, when performing manual height measurement In addition, the height of the test object 14 can be measured more accurately and efficiently than when focusing only by looking at the contrast of the bright field image.

以上のような本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜改良可能である。   The present invention as described above is not limited to the above embodiment, and can be improved as appropriate without departing from the gist of the present invention.

上記実施形態では、白色光源4が明視野像用及び共焦点像用の照明光源を兼用しているが、例えば、これら照明光源を独立させて測定顕微鏡を構成することもできる。以下に、第2の実施形態として、図4を用いて説明する。なお、上記実施形態と同じ機能を有するものについては、同じ付番をしてその説明を省略する。   In the above-described embodiment, the white light source 4 serves as both a bright-field image confocal image and a confocal image illumination light source. However, for example, these illumination light sources can be made independent to constitute a measurement microscope. The second embodiment will be described below with reference to FIG. In addition, about the thing which has the same function as the said embodiment, the same number is attached | subjected and the description is abbreviate | omitted.

図4に示すように、第2の実施形態の測定顕微鏡30は、照明光学系2´と、測定光学系3と、その他の計測制御装置とから構成される。   As shown in FIG. 4, the measurement microscope 30 of the second embodiment includes an illumination optical system 2 ′, a measurement optical system 3, and other measurement control devices.

照明光学系2´は、測定光学系3の側方に位置し、明視野像用の白色光源4の光軸上に、順にコレクタレンズ5a、第2の共焦点ディスク8´、コレクタレンズ5b及び照明用ハーフミラー6が配設されるとともに、共焦点像用の第2の光源31(ここでは白色光源)の光軸上に順にコレクタレンズ5c、波長選択フィルタ32及び第2の共焦点ディスク8´が配設されて構成される。   The illumination optical system 2 ′ is located on the side of the measurement optical system 3, and in order on the optical axis of the white light source 4 for the bright field image, the collector lens 5 a, the second confocal disk 8 ′, the collector lens 5 b, The illumination half mirror 6 is disposed, and the collector lens 5c, the wavelength selection filter 32, and the second confocal disc 8 are sequentially arranged on the optical axis of the second light source 31 (here, a white light source) for confocal images. 'Is arranged.

このように、明視野像用及び共焦点像用の光源を独立させることより、照明強度がそれぞれ独立して調光可能となる。また、第2の光源31の光路上に波長選択フィルタ32を配置することによって、第2の光源31から照射された光を、任意の色に変更することが可能となる。但し、この構成に限定されるものではなく、第2の光源31と波長選択フィルタ32の組み合わせに代えて、色付光源(例えば、蛍光発色)など特定の波長を有する光源を用いてもよい。   Thus, by making the light source for the bright-field image and the confocal image independent, the illumination intensity can be dimmed independently. Further, by arranging the wavelength selection filter 32 on the optical path of the second light source 31, the light emitted from the second light source 31 can be changed to an arbitrary color. However, the configuration is not limited to this, and a light source having a specific wavelength such as a colored light source (for example, fluorescent color generation) may be used instead of the combination of the second light source 31 and the wavelength selection filter 32.

一方、測定光学系3は、その光軸上に順に、対物レンズからなる第1の結像光学系7と、第1の共焦点ディスク8と、照明用ハーフミラー6と、リレーレンズからなる第2の結像光学系10と、撮像用ハーフミラー11と、撮像素子12と、接眼レンズ13とから構成される。また、被検物14は、XYステージ15に載置されて、測定光学系3における第1の結像光学系7の下方に配置され、テーブルのX方向(矢印21が示す方向),Y方向(矢印22が示す方向)の位置を調節することにより、測定対象部位を視野に入れることができる。   On the other hand, the measurement optical system 3 is arranged in order on the optical axis thereof by a first imaging optical system 7 composed of an objective lens, a first confocal disc 8, an illumination half mirror 6, and a relay lens. 2 imaging optical system 10, imaging half mirror 11, imaging element 12, and eyepiece lens 13. In addition, the test object 14 is placed on the XY stage 15 and disposed below the first imaging optical system 7 in the measurement optical system 3, and the X direction (direction indicated by the arrow 21) and Y direction of the table. By adjusting the position in the direction indicated by the arrow 22, the measurement target site can be put in the field of view.

このような照明光学系2´及び測定光学系3からなる非共焦点/共焦点光学系は、当該顕微鏡30の鏡筒部1a内に備えられており、ベース部1bに対してZ方向(矢印23が示す方向(高さ方向))に移動可能である。言い換えれば、非共焦点/共焦点光学系は、XYテーブル15に載置された被検物14に対してZ方向に移動可能である。なお、鏡筒部1aとベース部1bとの相対的なZ方向の移動量は、リニアスケール16にて検出可能であり、被検物14の焦点位置の違いから被検物14各部の高さの測定が可能となっている。   Such a non-confocal / confocal optical system including the illumination optical system 2 ′ and the measurement optical system 3 is provided in the lens barrel 1a of the microscope 30 and is in the Z direction (arrow) with respect to the base 1b. 23 (direction (height direction)). In other words, the non-confocal / confocal optical system is movable in the Z direction with respect to the test object 14 placed on the XY table 15. The relative movement amount in the Z direction between the lens barrel portion 1a and the base portion 1b can be detected by the linear scale 16, and the height of each part of the test object 14 is determined from the difference in the focal position of the test object 14. Measurement is possible.

白色光源4から出射した照明光は、コレクタレンズ5aにより平行光に変換され、第2の共焦点ディスク8´を経て、コレクタレンズ5bにより再び平行光に変換され、照明用ハーフミラー6に照射される。また、第2の光源31から出射した光は、コレクタレンズ5cで平行光に変換され、波長選択フィルタ32により所定の色の光に変換され、第2の共焦点ディスク8´で反射され、コレクタレンズ5bにより平行光に変換され、照明用ハーフミラー6に照射される。そして、白色光源4及び第2の光源31からの照明光はともに測定光学系3の光軸方向下方に直角に反射する。ここで、照明用ハーフミラー6で反射された照明光は、共焦点ディスク8の上面の視野範囲と共役な範囲を照射される(いわゆるケーラー照明が行われる)。   The illumination light emitted from the white light source 4 is converted into parallel light by the collector lens 5a, is converted again into parallel light by the collector lens 5b via the second confocal disk 8 ', and is irradiated onto the illumination half mirror 6. The The light emitted from the second light source 31 is converted into parallel light by the collector lens 5c, converted into light of a predetermined color by the wavelength selection filter 32, reflected by the second confocal disk 8 ', and collected by the collector. The light is converted into parallel light by the lens 5b and applied to the illumination half mirror 6. The illumination light from the white light source 4 and the second light source 31 is reflected at a right angle downward in the optical axis direction of the measurement optical system 3. Here, the illumination light reflected by the illumination half mirror 6 is irradiated in a range conjugate with the visual field range on the upper surface of the confocal disk 8 (so-called Koehler illumination is performed).

第1及び第2の共焦点ディスク8,8´は、同じ形状を有している。すなわち、薄い円板状に形成されており、光が自由に透過可能な透過部8aと、板厚方向に貫通する複数の小孔である共焦点ピンホール8bが形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部8cとから構成される。また、本実施形態では、共焦点ディスク8の全面には、ニポウディスク部8cにて反射した光が第2の結像光学系10に到達し難いように、反射防止膜が製膜されている。なお、図4中では1つの共焦点ピンホール8bを図示している。ここで、第2の光源31に、単色レーザ光源(例えば、蛍光発色)が用いられた場合は照射される光の強度を調節すれば、上記実施形態とは異なりフィルタが製膜されていないニポウディスク部を備えた共焦点ディスクを用いることも可能である。   The first and second confocal discs 8 and 8 'have the same shape. In other words, a light-transmitting portion 8a that is formed in a thin disk shape and is capable of transmitting light freely and a confocal pinhole 8b that is a plurality of small holes penetrating in the plate thickness direction are formed. And a Nipkow disc portion 8c on which a filter that transmits only the film is formed. In the present embodiment, an antireflection film is formed on the entire surface of the confocal disc 8 so that the light reflected by the tip disk portion 8c does not easily reach the second imaging optical system 10. In FIG. 4, one confocal pinhole 8b is shown. Here, in the case where a monochromatic laser light source (for example, fluorescent color generation) is used as the second light source 31, if the intensity of the irradiated light is adjusted, unlike the above-described embodiment, the Nipkow disc having no filter formed thereon. It is also possible to use a confocal disc with a section.

第1及び第2の共焦点ディスク8,8´は、それぞれモータM,M´(図示略)により回転軸8d,8d´を中心に、所定速度で同期回転する。ここで、所定速度とは、観察者の瞳17の応答時間や撮像素子12の蓄積時間に対して十分に速く、共焦点ピンホール8bのパターンのスキャンムラにならない回転速度を示す。   The first and second confocal discs 8 and 8 'are synchronously rotated at predetermined speeds around the rotation shafts 8d and 8d' by motors M and M '(not shown), respectively. Here, the predetermined speed indicates a rotation speed that is sufficiently fast with respect to the response time of the observer's pupil 17 and the accumulation time of the image sensor 12 and does not cause uneven scanning of the pattern of the confocal pinhole 8b.

このような第1の共焦点ディスク8は測定光学系3を通過する光線(照明光等)を遮る測定光学系3の光軸に対して直交して配置され、第2の共焦点ディスク8´は白色光源4からの光を透過させ、第2の光源31からの光を反射するように傾けて配置される。   Such a first confocal disc 8 is disposed perpendicular to the optical axis of the measurement optical system 3 that blocks light (illumination light, etc.) passing through the measurement optical system 3, and the second confocal disc 8 '. Are inclined so as to transmit the light from the white light source 4 and reflect the light from the second light source 31.

第1の共焦点ディスク8に形成された共焦点ピンホール8bを通過した照明光は、第1の結像光学系7によりステージ15に載置された被検物14に、共焦点ピンホール8bの像として集光されて照射される。被検物14に集光照射された共焦点ピンホール8bの像は、被検物14の表面(以下、物体面Oと呼ぶ)で反射されて、再び第1の結像光学系7に入射し、この第1の結像光学系7で集光されて第1の共焦点ディスク8上に反射像として結像し、さらに共焦点ピンホール8bを通過する。そして、照明用ハーフミラー6を透過した後、第2の結像光学系10で再度結像され、撮像用ハーフミラー11を介して、撮像素子12の方向に進むものと接眼レンズ13の方向に進むものとに分割される。これら分割された光のうち、接眼レンズ13の方向に進んだ光は、観察者の瞳17の視野位置にて結像して、眼視観察に用いられる。一方、撮像素子12の方向に進んだ光は、該素子12の撮像面上にて受光されて光電変換され、撮像素子12が検出する光の強度(明るさ)に応じた撮像信号が出力される。この撮像信号は、デジタル信号に変換された後に、共焦点像として蓄えられる。   Illumination light that has passed through the confocal pinhole 8b formed in the first confocal disk 8 is applied to the test object 14 placed on the stage 15 by the first imaging optical system 7 to the confocal pinhole 8b. It is condensed and irradiated as an image. The image of the confocal pinhole 8b focused and irradiated on the test object 14 is reflected by the surface of the test object 14 (hereinafter referred to as the object plane O) and is incident on the first imaging optical system 7 again. Then, the light is condensed by the first imaging optical system 7 and formed as a reflected image on the first confocal disk 8 and further passes through the confocal pinhole 8b. Then, after passing through the illumination half mirror 6, it is imaged again by the second imaging optical system 10, and proceeds in the direction of the image sensor 12 via the imaging half mirror 11 and in the direction of the eyepiece 13. Divided into things to advance. Of these divided lights, the light traveling in the direction of the eyepiece lens 13 forms an image at the visual field position of the observer's pupil 17 and is used for visual observation. On the other hand, the light traveling in the direction of the imaging element 12 is received on the imaging surface of the element 12 and subjected to photoelectric conversion, and an imaging signal corresponding to the intensity (brightness) of the light detected by the imaging element 12 is output. The The imaging signal is stored as a confocal image after being converted into a digital signal.

その結果、第2の実施形態における測定顕微鏡1は、観察者の瞳17及び撮像素子12において、被検物14からの戻り光が、透過部8aを透過して得られる被検物14の明視野像と、ニポウディスク部8cを透過して得られる被検物14の共焦点像とが重畳された画像を得ることができ、第1の実施形態と同様に効率よく被検物14の高さ測定を行うことができる。   As a result, in the measurement microscope 1 in the second embodiment, the bright light of the test object 14 obtained by the return light from the test object 14 transmitted through the transmission part 8a in the observer's pupil 17 and the image sensor 12 is obtained. An image in which the field image and the confocal image of the test object 14 obtained by transmitting through the Niipou disc portion 8c can be obtained, and the height of the test object 14 can be efficiently obtained as in the first embodiment. Measurements can be made.

本発明の実施形態に係る測定顕微鏡の構成図である。It is a block diagram of the measurement microscope which concerns on embodiment of this invention. 本発明の実施形態に係る測定顕微鏡に配設された共焦点ディスクの平面図であり、(a)はニポウディスク部が扇形状に形成されたもの、(b)はニポウディスクの表面に共焦点ピンホールが螺旋状に形成された場合にこれに沿った形状に形成されたものを示す図である。It is a top view of the confocal disc arrange | positioned at the measuring microscope which concerns on embodiment of this invention, (a) is what formed the Niipou disc part in the fan shape, (b) is a confocal pinhole in the surface of a Nipo disc. It is a figure which shows what was formed in the shape along this, when is formed in spiral. 鏡筒部の光軸方向の位置Zと撮像手段で検出される光の強度Iとの関係を示す図である。It is a figure which shows the relationship between the position Z of the optical axis direction of a lens-barrel part, and the intensity | strength I of the light detected by an imaging means. 本発明の他の実施形態に係る測定顕微鏡の構成図である。It is a block diagram of the measurement microscope which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 測定顕微鏡
2 照明光学系(共焦点光学系)
3 測定光学系(共焦点光学系)
4 白色光源
5 コレクタレンズ
6 照明用ハーフミラー
7 第1の結像光学系
8 共焦点ディスク
10 第2の結像光学系
11 撮像用ハーフミラー
12 撮像素子(撮像手段)
13 接眼レンズ
14 被検物
15 XYステージ
16 リニアスケール
8a 透過部
8b 共焦点ピンホール(小孔)
8c ニポウディスク部
8d 回転軸
M モータ
1 Measuring microscope 2 Illumination optical system (confocal optical system)
3 Measurement optical system (confocal optical system)
4 white light source 5 collector lens 6 illumination half mirror 7 first imaging optical system 8 confocal disk 10 second imaging optical system 11 imaging half mirror 12 imaging element (imaging means)
DESCRIPTION OF SYMBOLS 13 Eyepiece 14 Test object 15 XY stage 16 Linear scale 8a Transmission part 8b Confocal pinhole (small hole)
8c Nipou disc part 8d Rotating shaft M Motor

Claims (7)

白色光源と、
光が自由に透過可能な透過部と、複数の小孔が形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部とからなり、回転軸を中心に所定の回転速度で回転するディスクと、
前記ディスクの透過部及び所定のレンズ系から形成される非共焦点光学系と、
前記ディスクのニポウディスク部及び所定のレンズ系から形成される共焦点光学系と、
前記白色光源により照明された前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して前記被検物を観察する観察手段とを備え、
前記観察手段は、前記ディスクの回転により前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された観察像を観察できることを特徴とする測定顕微鏡。
A white light source,
It consists of a transmission part that allows light to freely pass through and a Niipou disk part on which a plurality of small holes are formed and a filter that transmits only light of a predetermined color is formed. A rotating disc,
A non-confocal optical system formed from a transmission part of the disk and a predetermined lens system;
A confocal optical system formed from a Nipkow disk portion of the disk and a predetermined lens system;
Observing means for observing the test object through the non-confocal optical system or the confocal optical system with return light from the test object illuminated by the white light source;
The observation means includes a bright field image of the test object obtained by transmitting the return light through the non-confocal optical system by rotation of the disk, and the test obtained by transmitting through the confocal optical system. A measuring microscope characterized by being able to observe an observation image superimposed with a confocal image of an object.
白色光源と、
所定の色の光を出射する第2の光源と、
光が自由に透過可能な透過部及び複数の小孔が形成されたニポウディスク部からなり、回転軸を中心に所定の回転速度で回転する第1のディスクと、
前記白色光源と前記第1のディスクとの間に設けられ、前記第1のディスクと同一形状を有し、前記第1のディスクと同期回転する第2のディスクと、
前記白色光源からの照明光を、前記第2のディスクを透過させ、前記第1のディスクの透過部から所定のレンズ系を介して被検物に照射する非共焦点光学系とともに、前記第2の光源からの照明光を、前記第2のディスクで反射させ、前記第1のディスクのニポウディスク部から前記所定のレンズ系を介して被検物に照射する共焦点光学系とからなる光学系と、
前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して前記被検物を観察する観察手段とを備え、
前記観察手段は、前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された観察像を観察できることを特徴とする測定顕微鏡。
A white light source,
A second light source that emits light of a predetermined color;
A first disk that consists of a transmission part through which light can freely pass and a nipou disk part in which a plurality of small holes are formed, and that rotates at a predetermined rotational speed about a rotation axis;
A second disk provided between the white light source and the first disk, having the same shape as the first disk, and rotating synchronously with the first disk;
Along with the non-confocal optical system that transmits the illumination light from the white light source through the second disk and irradiates the test object from the transmission part of the first disk through a predetermined lens system. An optical system comprising a confocal optical system that reflects illumination light from the light source of the first light source on the second disk and irradiates the object to be inspected from the Nipou disk portion of the first disk via the predetermined lens system; ,
Observation means for observing the test object through the non-confocal optical system or the confocal optical system with the return light from the test object,
The observation means includes a bright field image of the test object obtained by transmitting the return light through the non-confocal optical system, and a confocal image of the test object obtained by transmitting through the confocal optical system. A measurement microscope characterized by being able to observe an observation image in which and are superimposed.
白色光源と、
光が自由に透過可能な透過部と、複数の小孔が形成されて所定の色の光のみを透過させるフィルタが製膜されたニポウディスク部とからなり、回転軸を中心に所定の回転速度で回転するディスクと、
前記ディスクの透過部及び所定のレンズ系から形成される非共焦点光学系と、
前記ディスクのニポウディスク部及び所定のレンズ系から形成される共焦点光学系と、
前記白色光源により照明された前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して受光して前記被検物の画像を取得する撮像手段とを備え、
前記撮像手段により取得される前記被検物の画像は、前記ディスクの回転により前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された画像であることを特徴とする測定顕微鏡。
A white light source,
It consists of a transmission part that allows light to freely pass through and a Niipou disk part on which a plurality of small holes are formed and a filter that transmits only light of a predetermined color is formed. A rotating disc,
A non-confocal optical system formed from a transmission part of the disk and a predetermined lens system;
A confocal optical system formed from a Nipkow disk portion of the disk and a predetermined lens system;
An imaging means for receiving the return light from the object illuminated by the white light source via the non-confocal optical system or the confocal optical system and acquiring an image of the object;
The image of the test object acquired by the imaging means includes a bright-field image of the test object obtained by transmitting the return light through the non-confocal optical system by the rotation of the disk, and the confocal optics. A measurement microscope, wherein the measurement microscope is an image on which a confocal image of the test object obtained by passing through a system is superimposed.
白色光源と、
所定の色の光を出射する第2の光源と、
光が自由に透過可能な透過部及び複数の小孔が形成されたニポウディスク部からなり、回転軸を中心に所定の回転速度で回転する第1のディスクと、
前記白色光源と前記第1のディスクとの間に設けられ、前記第1のディスクと同一形状を有し、前記第1のディスクと同期回転する第2のディスクと、
前記白色光源からの照明光を、前記第2のディスクを透過させ、前記第1のディスクの透過部から所定のレンズ系を介して被検物に照射する非共焦点光学系とともに、前記第2の光源からの照明光を、前記第2のディスクで反射させ、前記第1のディスクのニポウディスク部から前記所定のレンズ系を介して被検物に照射する共焦点光学系とからなる光学系と、
前記被検物からの戻り光を、前記非共焦点光学系又は前記共焦点光学系を介して受光して前記被検物の画像を取得する撮像手段とを備え、
前記撮像手段により取得される前記被検物の画像は、前記戻り光が前記非共焦点光学系を透過して得られる前記被検物の明視野像と、前記共焦点光学系を透過して得られる前記被検物の共焦点像とが重畳された画像であることを特徴とする測定顕微鏡。
A white light source,
A second light source that emits light of a predetermined color;
A first disk that consists of a transmission part through which light can freely pass and a nipou disk part in which a plurality of small holes are formed, and that rotates at a predetermined rotational speed about a rotation axis;
A second disk provided between the white light source and the first disk, having the same shape as the first disk, and rotating synchronously with the first disk;
Along with the non-confocal optical system that transmits the illumination light from the white light source through the second disk and irradiates the test object from the transmission part of the first disk through a predetermined lens system. An optical system comprising a confocal optical system that reflects illumination light from the light source of the first light source on the second disk and irradiates the object to be inspected from the Nipou disk portion of the first disk via the predetermined lens system; ,
An imaging means for receiving return light from the test object via the non-confocal optical system or the confocal optical system and acquiring an image of the test object;
The image of the test object acquired by the imaging means is transmitted through the confocal optical system and a bright field image of the test object obtained by transmitting the return light through the non-confocal optical system. A measurement microscope, wherein the obtained confocal image of the test object is an superimposed image.
前記第1のディスク及び前記第2のディスクには、所定の色の光のみを透過させるフィルタが製膜されていることを特徴とする請求項4に記載の測定顕微鏡。   The measurement microscope according to claim 4, wherein a filter that transmits only light of a predetermined color is formed on the first disk and the second disk. 前記ニポウディスク部は、前記回転軸を中心とする扇形状を有することを特徴とする請求項1〜5のいずれかに記載の測定顕微鏡。   The measuring microscope according to claim 1, wherein the Nipkow disc portion has a fan shape centered on the rotation axis. 前記ニポウディスク部は、前記複数の小孔が所定間隔で螺旋状に配列されて形成された場合、これに沿った形状を有することを特徴とする請求項1〜5のいずれかに記載の測定顕微鏡。   The measurement microscope according to claim 1, wherein, when the plurality of small holes are formed so as to be spirally arranged at a predetermined interval, the Nipkow disk portion has a shape along the same. .
JP2005049947A 2005-02-25 2005-02-25 Measuring microscope Pending JP2006235250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049947A JP2006235250A (en) 2005-02-25 2005-02-25 Measuring microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049947A JP2006235250A (en) 2005-02-25 2005-02-25 Measuring microscope

Publications (1)

Publication Number Publication Date
JP2006235250A true JP2006235250A (en) 2006-09-07

Family

ID=37042964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049947A Pending JP2006235250A (en) 2005-02-25 2005-02-25 Measuring microscope

Country Status (1)

Country Link
JP (1) JP2006235250A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045982A (en) * 2006-08-15 2008-02-28 Yokogawa Electric Corp Screening apparatus for drug discovery
US7477401B2 (en) * 2004-11-24 2009-01-13 Tamar Technology, Inc. Trench measurement system employing a chromatic confocal height sensor and a microscope
US9041940B2 (en) 2012-02-03 2015-05-26 Takaoka Toko Co., Ltd. Three-dimensional shape measuring apparatus
TWI486555B (en) * 2012-03-14 2015-06-01 Takaoka Toko Co Ltd Focus position changing apparatus and confocal optical apparatus using the same
DE102014108044A1 (en) * 2014-06-06 2015-12-17 Carl Zeiss Microscopy Gmbh Light microscope with a rotatable disc and method of microscopy with this
CN114002806A (en) * 2021-11-10 2022-02-01 苏州天准科技股份有限公司 Measuring device and measuring method based on spectrum confocal rapid focusing
CN114838673A (en) * 2022-05-18 2022-08-02 长春长光辰英生物科学仪器有限公司 Archimedes stripe turntable for turntable confocal system and partition method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083426A (en) * 1999-07-09 2001-03-30 Olympus Optical Co Ltd Confocal microscope
JP2004177493A (en) * 2002-11-25 2004-06-24 Olympus Corp Confocal microscope and disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083426A (en) * 1999-07-09 2001-03-30 Olympus Optical Co Ltd Confocal microscope
JP2004177493A (en) * 2002-11-25 2004-06-24 Olympus Corp Confocal microscope and disk

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477401B2 (en) * 2004-11-24 2009-01-13 Tamar Technology, Inc. Trench measurement system employing a chromatic confocal height sensor and a microscope
JP2008045982A (en) * 2006-08-15 2008-02-28 Yokogawa Electric Corp Screening apparatus for drug discovery
JP4678601B2 (en) * 2006-08-15 2011-04-27 横河電機株式会社 Drug discovery screening device
US9041940B2 (en) 2012-02-03 2015-05-26 Takaoka Toko Co., Ltd. Three-dimensional shape measuring apparatus
TWI507659B (en) * 2012-02-03 2015-11-11 Takaoka Toko Co Ltd Three-dimensional shape measuring apparatus
TWI486555B (en) * 2012-03-14 2015-06-01 Takaoka Toko Co Ltd Focus position changing apparatus and confocal optical apparatus using the same
DE102014108044A1 (en) * 2014-06-06 2015-12-17 Carl Zeiss Microscopy Gmbh Light microscope with a rotatable disc and method of microscopy with this
DE102014108044B4 (en) 2014-06-06 2023-10-12 Carl Zeiss Microscopy Gmbh Light microscope with a rotatable disk and method for microscopy therewith
CN114002806A (en) * 2021-11-10 2022-02-01 苏州天准科技股份有限公司 Measuring device and measuring method based on spectrum confocal rapid focusing
CN114002806B (en) * 2021-11-10 2022-07-15 苏州天准科技股份有限公司 Measuring device and measuring method based on spectrum confocal rapid focusing
CN114838673A (en) * 2022-05-18 2022-08-02 长春长光辰英生物科学仪器有限公司 Archimedes stripe turntable for turntable confocal system and partition method thereof
CN114838673B (en) * 2022-05-18 2024-03-19 长春长光辰英生物科学仪器有限公司 Archimedes stripe turntable for turntable confocal system and partitioning method thereof

Similar Documents

Publication Publication Date Title
US9989746B2 (en) Light microscope and microscopy method
US6031661A (en) Confocal microscopic equipment
US9410794B2 (en) Light microscope and microscopy method for examining a microscopic specimen
US9696686B2 (en) Method and device for focussing a microscope automatically
CN106980175B (en) Non-fluorescence imaging dicing method and device based on annular off-axis illumination focal plane conjugation
JP2006235250A (en) Measuring microscope
JP2006084794A (en) Observation device with focal position control mechanism
JP2007506955A (en) Scanning microscope with evanescent wave illumination
JP3611755B2 (en) Three-dimensional shape detection method and apparatus, and confocal detection apparatus
JP5086197B2 (en) Confocal microscope
JP4725967B2 (en) Minute height measuring device and displacement meter unit
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP2009251535A (en) Confocal microscope
JP4963567B2 (en) Minute height measuring device
JP2007072391A (en) Laser microscope
JP2008046362A (en) Optical device
JP2003307681A (en) Confocal scanning optical microscope
US10983320B2 (en) Optical arrangement for imaging a sample
JP2004102032A (en) Scanning type confocal microscope system
JP2008197283A (en) Slit scanning confocal microscope and method of obtaining image
JP4406873B2 (en) Scan measurement inspection equipment
JP2010072015A (en) Microscope device
JP2003015048A (en) Lattice illumination microscope
JP2011095512A (en) Confocal microscope
JP2019074692A (en) Magnifying observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110422