JP2010025544A - Hydrate slurry production device - Google Patents

Hydrate slurry production device Download PDF

Info

Publication number
JP2010025544A
JP2010025544A JP2009242134A JP2009242134A JP2010025544A JP 2010025544 A JP2010025544 A JP 2010025544A JP 2009242134 A JP2009242134 A JP 2009242134A JP 2009242134 A JP2009242134 A JP 2009242134A JP 2010025544 A JP2010025544 A JP 2010025544A
Authority
JP
Japan
Prior art keywords
hydrate
heat exchanger
hydrate slurry
supercooling
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009242134A
Other languages
Japanese (ja)
Other versions
JP4835745B2 (en
Inventor
Hidemasa Ogose
英雅 生越
Shingo Takao
信吾 高雄
Kanetoshi Hayashi
謙年 林
Shigenori Matsumoto
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009242134A priority Critical patent/JP4835745B2/en
Publication of JP2010025544A publication Critical patent/JP2010025544A/en
Application granted granted Critical
Publication of JP4835745B2 publication Critical patent/JP4835745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrate slurry production device capable of preventing a pump power from increasing and a heat exchanger from being plugged, caused by excessive cooling at the time of generating a hydrate. <P>SOLUTION: The hydrate slurry production device includes the at least two heat exchangers connected in series, and an excessive cooling releasing means provided in a flow passage of an aqueous solution or a hydrate slurry arranged between the upstream heat exchanger and the downstream heat exchanger, in a device for producing the hydrate slurry containing the hydrate, by passing the aqueous solution of a guest compound generating the hydrate at a temperature higher than 0°C, to be cooled by heat exchange with a cooling medium. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は水和物スラリ製造装置に関する。   The present invention relates to a hydrate slurry manufacturing apparatus.

ゲスト化合物(テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などの各種塩類)を含む水溶液を冷却すると、水和物(液系包接水和物)が生成される。この水和物は0℃以上の温度で生成でき、しかも潜熱が大きく冷水に比較して数倍の熱量の冷熱を貯蔵することができる。また、この水和物は微細な粒子となって水溶液中に浮遊して比較的流動性の高い水和物スラリを形成する。このため、このような水和物スラリは、空調設備などの蓄冷材または冷熱の搬送媒体として好ましい特性を有している。   When an aqueous solution containing a guest compound (tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt, various salts such as triiso-amylsulfonium salt) is cooled, a hydrate (liquid system inclusion) Hydrate) is produced. This hydrate can be produced at a temperature of 0 ° C. or higher, and has a large latent heat and can store cold heat having a heat quantity several times that of cold water. Further, this hydrate becomes fine particles and floats in an aqueous solution to form a hydrate slurry having a relatively high fluidity. For this reason, such a hydrate slurry has favorable characteristics as a cold storage material such as an air conditioner or a cold heat transfer medium.

上述した水和物スラリを製造するために用いられている装置を図1に示す。蓄熱槽1には水溶液中に水和物が分散した水和物スラリが貯蔵される。蓄熱槽1内の水溶液は水溶液ポンプ2により水和物スラリ製造用熱交換器3へ送られる。この熱交換器3において、水溶液は冷凍機4で冷却されて冷却媒体ポンプ5で循環される冷却媒体と熱交換して冷却され、水和物を含む水和物スラリが生成される。この水和物スラリは蓄熱槽1へ送られる。また、蓄熱槽1内の水和物スラリはスラリポンプ6により負荷に送られてその冷熱が利用され、蓄熱槽1へ戻る。   An apparatus used to produce the hydrate slurry described above is shown in FIG. The heat storage tank 1 stores a hydrate slurry in which a hydrate is dispersed in an aqueous solution. The aqueous solution in the heat storage tank 1 is sent to the hydrate slurry manufacturing heat exchanger 3 by the aqueous solution pump 2. In this heat exchanger 3, the aqueous solution is cooled by the refrigerator 4 and heat-exchanged with the cooling medium circulated by the cooling medium pump 5 to be cooled, and a hydrate slurry containing hydrate is generated. This hydrate slurry is sent to the heat storage tank 1. Further, the hydrate slurry in the heat storage tank 1 is sent to a load by the slurry pump 6, and its cold energy is used, and returns to the heat storage tank 1.

ところで、たとえばテトラn−ブチルアンモニウムブロマイド(TBAB)の水溶液を用いた場合、水和数26の第一水和物と水和数36の第二水和物とが生成する。TBABの水溶液濃度が約20wt%の場合、第一水和物の凝固点は約8.2℃であり、第一水和物から第二水和物への変化温度は約8.0℃である。図1の熱交換器3において水溶液を冷却媒体により冷却していくと、第一水和物の凝固点では第一水和物が生成されず、凝固点より数度低い温度まで過冷却された後に第一水和物が生成される。また、第一水和物の温度が8.0℃になっても第二水和物に変化せず、変化温度よりも数度低い温度まで過冷却された後に第二水和物に変化する。   By the way, for example, when an aqueous solution of tetra n-butylammonium bromide (TBAB) is used, a first hydrate having a hydration number of 26 and a second hydrate having a hydration number of 36 are formed. When the aqueous concentration of TBAB is about 20 wt%, the freezing point of the first hydrate is about 8.2 ° C., and the change temperature from the first hydrate to the second hydrate is about 8.0 ° C. . When the aqueous solution is cooled by the cooling medium in the heat exchanger 3 of FIG. 1, the first hydrate is not generated at the freezing point of the first hydrate, and the first hydrate is subcooled to a temperature several degrees lower than the freezing point. Monohydrate is produced. In addition, even if the temperature of the first hydrate reaches 8.0 ° C., it does not change to the second hydrate, and changes to the second hydrate after being supercooled to a temperature several degrees lower than the change temperature. .

このように水和物生成においては過冷却が生じるため、冷却媒体との温度差が小さくなって熱交換量が低下したり大きな過冷却が生じた後に過冷却が解除されると、急激に水和物が生成して粘性が増加し、流動抵抗が大きくなってポンプ動力が増加するうえ、最悪の場合には熱交換器が閉塞することもある。   As described above, since supercooling occurs in hydrate formation, when the supercooling is released after the temperature difference with the cooling medium is reduced and the heat exchange amount is reduced or the large supercooling occurs, A hydrate is formed and viscosity increases, flow resistance increases, pump power increases, and in the worst case, the heat exchanger may be blocked.

本発明の目的は、水和物生成時の過冷却に起因するポンプ動力の増加および熱交換器の閉塞を防止できる水和物スラリ製造装置を提供することにある。   The objective of this invention is providing the hydrate slurry manufacturing apparatus which can prevent the increase in pump power resulting from the supercooling at the time of hydrate production | generation, and the obstruction | occlusion of a heat exchanger.

本発明に係る水和物スラリ製造装置は、冷却媒体を供給する冷凍機と、水和物を生成するゲスト化合物の水溶液を前記冷却媒体との熱交換により冷却して水和物を含む水和物スラリを製造する装置において、水和物の凝固点より低い温度まで水溶液を過冷却する第1の熱交換器と、第1の熱交換器と直列に接続された第2の熱交換器と、第1の熱交換器と第2の熱交換器との間に配置された水溶液もしくは水和物スラリの流路と、該流路に設けられた過冷却解除手段とを具備し、該過冷却解除手段が、小型冷凍機に接続された冷却部、超音波発振器に接続された発振部、周波数が数〜数百Hzの低周波振動子、水和物注入口、スタティックミキサー、攪拌羽根、ポンプまたはベルチェ素子からなる低温突起であることを特徴とする。   The hydrate slurry manufacturing apparatus according to the present invention includes a refrigerator that supplies a cooling medium, and a hydrate containing a hydrate by cooling an aqueous solution of a guest compound that generates a hydrate by heat exchange with the cooling medium. In an apparatus for producing a product slurry, a first heat exchanger for supercooling an aqueous solution to a temperature below the freezing point of the hydrate, a second heat exchanger connected in series with the first heat exchanger, An aqueous solution or hydrate slurry channel disposed between the first heat exchanger and the second heat exchanger, and a supercooling release means provided in the channel; Release means is a cooling unit connected to a small refrigerator, an oscillation unit connected to an ultrasonic oscillator, a low-frequency vibrator having a frequency of several to several hundreds of Hz, a hydrate inlet, a static mixer, a stirring blade, a pump Or it is the low-temperature protrusion which consists of a Beltier element, It is characterized by the above-mentioned.

本発明においては、前記流路は、第1の熱交換器と第2の熱交換器との間に設けられた管路を備えており、前記管路に過冷却解除手段を設けてもよい。   In this invention, the said flow path is provided with the pipe line provided between the 1st heat exchanger and the 2nd heat exchanger, and a supercooling cancellation | release means may be provided in the said pipe line. .

本発明においては、前記流路は、第1の熱交換器と第2の熱交換器との間に設けられた管路を備えており、前記管路にバイパス管路および流路切換え弁を設け、前記バイパス管路に前記過冷却解除手段を設けてもよい。   In the present invention, the flow path includes a pipe line provided between the first heat exchanger and the second heat exchanger, and the pipe line includes a bypass pipe line and a flow path switching valve. And the supercooling release means may be provided in the bypass pipeline.

本発明においては、前記流路は、第2の熱交換器の出口から該熱交換器の入口より上流側に水和物スラリの一部を返流する管路を備えており、前記管路は、遮断弁およびポンプを備えていてもよい。   In the present invention, the flow path includes a conduit for returning a part of the hydrate slurry from the outlet of the second heat exchanger to the upstream side of the inlet of the heat exchanger. May include a shut-off valve and a pump.

本発明において、前記第1及び第2の熱交換器として、プレート式熱交換器またはシェルアンドチューブ式熱交換器を用いてもよい。   In the present invention, a plate heat exchanger or a shell-and-tube heat exchanger may be used as the first and second heat exchangers.

本発明において、ゲスト化合物としては、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種が用いられる。   In the present invention, as the guest compound, at least one selected from the group consisting of tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt and triiso-amylsulfonium salt is used.

本発明によれば、水和物生成時の過冷却に起因するポンプ動力の増加および熱交換器の閉塞を防止できる水和物スラリ製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrate slurry manufacturing apparatus which can prevent the increase in pump power resulting from the supercooling at the time of hydrate production | generation, and the obstruction | occlusion of a heat exchanger can be provided.

従来の水和物スラリ製造装置を示す構成図である。It is a block diagram which shows the conventional hydrate slurry manufacturing apparatus. 本発明に係る水和物スラリ製造装置の熱交換器部分を示す構成図である。It is a block diagram which shows the heat exchanger part of the hydrate slurry manufacturing apparatus which concerns on this invention. 本発明に係る他の水和物スラリ製造装置の熱交換器部分を示す構成図である。It is a block diagram which shows the heat exchanger part of the other hydrate slurry manufacturing apparatus which concerns on this invention. 本発明に係る過冷却解除手段の一例を示す構成図である。It is a block diagram which shows an example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention. 本発明に係る過冷却解除手段の他の例を示す構成図である。It is a block diagram which shows the other example of the supercooling cancellation | release means which concerns on this invention.

以下、本発明をより詳細に説明する。
図2は本発明の一実施形態に係る熱交換器の部分を示す図であり、図1の熱交換器3として設置される。図2に示すように、第1のプレート式熱交換器11と第2のプレート式熱交換器12が直列に接続されている。蓄熱槽からのゲスト化合物の水溶液は管路13から第1のプレート式熱交換器11に入って冷却され、管路14を通して第2のプレート式熱交換器12に入ってさらに冷却される。この間に水溶液中で水和物が生成し、水和物スラリが製造される。製造された水和物スラリは管路15を通して蓄熱槽へ戻る。一方、冷凍機からの冷却媒体は管路16から第2のプレート式熱交換器12に入って水和物スラリと熱交換し、管路17を通して第1のプレート式熱交換器11に入って水溶液と熱交換し、管路18を通して冷凍機へ戻る。そして、第1のプレート式熱交換器11と第2のプレート式熱交換器12とを接続する管路14には過冷却解除手段19が設けられている。冷却媒体は、第1、第2の熱交換器に直列で流送しなくても、並列もしくは一部バイパスさせて流送させてもよい。
Hereinafter, the present invention will be described in more detail.
FIG. 2 is a view showing a portion of the heat exchanger according to one embodiment of the present invention, and is installed as the heat exchanger 3 of FIG. As shown in FIG. 2, a first plate heat exchanger 11 and a second plate heat exchanger 12 are connected in series. The aqueous solution of the guest compound from the heat storage tank enters the first plate heat exchanger 11 from the pipe 13 and is cooled, and then enters the second plate heat exchanger 12 through the pipe 14 and is further cooled. During this time, a hydrate is formed in the aqueous solution, and a hydrate slurry is produced. The produced hydrate slurry returns to the heat storage tank through the pipe line 15. On the other hand, the cooling medium from the refrigerator enters the second plate heat exchanger 12 through the pipe line 16 to exchange heat with the hydrate slurry, and enters the first plate heat exchanger 11 through the pipe line 17. It exchanges heat with the aqueous solution and returns to the refrigerator through the pipe 18. And the supercooling cancellation | release means 19 is provided in the pipe line 14 which connects the 1st plate type heat exchanger 11 and the 2nd plate type heat exchanger 12. FIG. The cooling medium may not be sent in series to the first and second heat exchangers, but may be sent in parallel or partially bypassed.

図4に、管路14に設けられた過冷却解除手段の一例を示す。図4の過冷却解除手段は、小型冷凍機31に接続された冷却部32からなっており、冷却部32は外部から管路14中に挿入されている。   In FIG. 4, an example of the supercooling cancellation | release means provided in the pipe line 14 is shown. The supercooling release means in FIG. 4 includes a cooling unit 32 connected to the small refrigerator 31, and the cooling unit 32 is inserted into the pipe line 14 from the outside.

図2に示すように、ゲスト化合物の水溶液は第1のプレート式熱交換器11に入り、冷凍機からの冷却媒体と熱交換して、およそ第一水和物の凝固点または第二水和物への変化温度まで冷却される。図4に示すように、管路14に設けられた冷却部32は小型冷凍機31により予め第二水和物への変化温度以下に冷却されており、その表面に第二水和物が付着している。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が冷却部32に接触すると、冷却部32の表面に存在する付着水和物が生成核として作用し過冷却が解除され、容易に水和物が生成する。このように、わずかな過冷却を経て水和物スラリが生成する。したがって、第2のプレート式熱交換器12中で急激に水和物が生成して粘性が増加し、流動抵抗が大きくなってポンプ動力が増加したり、第2のプレート式熱交換器12が閉塞することが避けられる。   As shown in FIG. 2, the aqueous solution of the guest compound enters the first plate heat exchanger 11 and exchanges heat with the cooling medium from the refrigerator to approximately the freezing point of the first hydrate or the second hydrate. Cool down to change temperature. As shown in FIG. 4, the cooling part 32 provided in the pipe line 14 is cooled in advance by the small refrigerator 31 to a temperature lower than the change temperature to the second hydrate, and the second hydrate adheres to the surface thereof. is doing. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate comes into contact with the cooling unit 32, the attached hydrate existing on the surface of the cooling unit 32 becomes a generation nucleus. Acts, the supercooling is released, and hydrates are easily formed. Thus, a hydrate slurry is formed through a slight supercooling. Therefore, a hydrate is suddenly generated in the second plate heat exchanger 12 to increase the viscosity, the flow resistance increases, the pump power increases, and the second plate heat exchanger 12 Occlusion is avoided.

図3は本発明の他の実施形態に係る熱交換器の部分を示す図である。図3は、図2における第1のプレート式熱交換器11と第2のプレート式熱交換器12の代わりに、第1のシェルアンドチューブ式熱交換器21と第2のシェルアンドチューブ式熱交換器22を用いた以外は、図2と同様の構成を有する。この場合も、上記と同様な効果が得られる。   FIG. 3 is a view showing a portion of a heat exchanger according to another embodiment of the present invention. FIG. 3 shows a first shell-and-tube heat exchanger 21 and a second shell-and-tube heat exchanger instead of the first plate-type heat exchanger 11 and the second plate-type heat exchanger 12 in FIG. The configuration is the same as that shown in FIG. 2 except that the exchanger 22 is used. In this case, the same effect as described above can be obtained.

本発明における過冷却解除手段は図4に示した小型冷凍機の冷却部に限らず、図5〜図8に示す他の過冷却解除手段を用いてもよい。   The supercooling release means in the present invention is not limited to the cooling unit of the small refrigerator shown in FIG. 4, and other supercooling release means shown in FIGS.

図5の過冷却解除手段は、超音波発振器33に接続された発振部34からなっており、発振部34は外部から管路14中に挿入されている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が発振部34に接触すると、振動によって過冷却が解除され、容易に水和物が生成する。また超音波振動でなくても、数〜数百Hzの低周波振動子でもよい。   The supercooling release means in FIG. 5 includes an oscillating unit 34 connected to an ultrasonic oscillator 33, and the oscillating unit 34 is inserted into the pipe line 14 from the outside. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate contacts the oscillating unit 34, the supercooling is released by vibration and a hydrate is easily generated. . Further, it may be a low frequency vibrator of several to several hundreds of Hz, not ultrasonic vibration.

図6の過冷却解除手段は、水和物スラリ容器35からポンプ36により水和物を管路14に注入するようにした注入口37からなっている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が、注入口37から注入された水和物と接触すると、注入された水和物が生成核となって容易に水和物が生成する。この場合、注入口37から注入する水和物は第二水和物であることが好ましい。   The supercooling release means in FIG. 6 includes an injection port 37 in which hydrate is injected from the hydrate slurry container 35 into the conduit 14 by the pump 36. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate comes into contact with the hydrate injected from the inlet 37, the injected hydrate is formed. Hydrates easily form as nuclei. In this case, the hydrate injected from the injection port 37 is preferably a second hydrate.

図7の過冷却解除手段は、管路14内に設けられた流体を反転・混合させるためのねじり板のような機構を有するスタティックミキサー38からなっている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液はスタティックミキサー38によって攪拌されて過冷却が解除され、容易に水和物が生成する。   7 comprises a static mixer 38 having a mechanism such as a torsion plate for inverting and mixing the fluid provided in the pipe 14. The aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate is stirred by the static mixer 38 to release the supercooling, and a hydrate is easily formed.

図8の過冷却解除手段は、管路14の途中に挿入された容器内に収容された、モータ39によって回転する攪拌羽根40からなっている第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液は攪拌羽根40によって攪拌されて過冷却が解除され、容易に水和物が生成する。   The supercooling release means of FIG. 8 is a freezing point or second hydrate of the first hydrate comprising a stirring blade 40 that is housed in a container inserted in the middle of the conduit 14 and is rotated by a motor 39. The aqueous solution supercooled to a temperature lower than the change temperature to is stirred by the stirring blade 40, the supercooling is released, and a hydrate is easily generated.

過冷却解除手段として、ペルチェ素子などからなる低温突起を管路に挿入してもよい。このような低温突起も、図4に示した小型冷凍機の冷却部と同様に、予め第二水和物への変化温度以下に冷却されており、その表面に第二水和物が付着している。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が低温突起に接触すると、低温突起の表面に存在する付着水和物が生成核として作用し過冷却が解除され、容易に水和物が生成する。   As the supercooling release means, a low-temperature protrusion made of a Peltier element or the like may be inserted into the conduit. Similar to the cooling part of the small refrigerator shown in FIG. 4, such a low-temperature protrusion is cooled in advance to a temperature lower than the change temperature to the second hydrate, and the second hydrate adheres to the surface. ing. When an aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate contacts the low temperature protrusion, the attached hydrate present on the surface of the low temperature protrusion acts as a nucleus. The supercooling is released and a hydrate is easily formed.

図9の過冷却解除手段は、管路14の途中に設けられたポンプケーシング内をインペラが回転しているポンプである。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液はポンプ50によって攪拌されて過冷却が解除され、容易に水和物が生成する。この場合、図1の水溶液ポンプ2を第1の熱交換器と第2の熱交換器との間に設置してもよい。   The supercooling release means in FIG. 9 is a pump in which an impeller rotates in a pump casing provided in the middle of the pipeline 14. The aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate is stirred by the pump 50 to release the supercooling, and a hydrate is easily formed. In this case, the aqueous solution pump 2 of FIG. 1 may be installed between the first heat exchanger and the second heat exchanger.

また図10は、第2の熱交換器12出口から第1と第2の熱交換器の間の管路14に水和物スラリの一部を返流する返流管60、バルブ61およびポンプ62を設け、第2の熱交換器12出口の水和物スラリを一部取り出して、第1の熱交換器11出口の過冷却された水溶液と混ぜることで、過冷却を解除する。   FIG. 10 also shows a return pipe 60, a valve 61 and a pump for returning a part of the hydrate slurry from the outlet of the second heat exchanger 12 to the pipe line 14 between the first and second heat exchangers. 62, and a part of the hydrate slurry at the outlet of the second heat exchanger 12 is taken out and mixed with the supercooled aqueous solution at the outlet of the first heat exchanger 11 to release the supercooling.

なお、本発明における過冷却解除手段の設置位置は、直列に接続された少なくとも2つの熱交換器を含む水溶液もしくは水和物スラリが生成し得る位置であれば、特に限定されない。たとえば、図2に示す第2のプレート式熱交換器12の入口や、図3に示す第2のシェルアンドチューブ式熱交換器22の入口に過冷却解除手段を設けてもよい。また、図3に示す第1のシェルアンドチューブ式熱交換器21のAで示す管室内に過冷却解除手段を設けてもよい。また、図11に示すように、第1の熱交換器と第2の熱交換器との間の管路14にバイパス管路41を設けるとともに管路14およびバイパス管路41にそれぞれ流路切換え弁42,43を設け、バイパス管路41に小型冷凍機の冷却部32などの過冷却解除手段を設けてもよい。さらに、過冷却解除手段は1個所に限らず、複数個所に設けてもよい。また、複数の種類の異なる過冷却解除手段を併用してもよい。   In addition, the installation position of the supercooling cancellation | release means in this invention will not be specifically limited if it is a position which can produce | generate the aqueous solution or hydrate slurry containing the at least 2 heat exchanger connected in series. For example, the supercooling release means may be provided at the inlet of the second plate heat exchanger 12 shown in FIG. 2 or the inlet of the second shell and tube heat exchanger 22 shown in FIG. Moreover, you may provide a supercooling cancellation | release means in the pipe chamber shown by A of the 1st shell and tube type heat exchanger 21 shown in FIG. Further, as shown in FIG. 11, a bypass pipe 41 is provided in the pipe 14 between the first heat exchanger and the second heat exchanger, and the flow path is switched to the pipe 14 and the bypass pipe 41, respectively. The valves 42 and 43 may be provided, and the bypass conduit 41 may be provided with a supercooling release means such as the cooling unit 32 of the small refrigerator. Further, the supercooling release means is not limited to one place, and may be provided at a plurality of places. Moreover, you may use together several types of different supercooling cancellation | release means.

1…蓄熱槽
2…水溶液ポンプ
3…水和物スラリ製造用熱交換器
4…冷凍機
5…冷却媒体ポンプ
6…スラリポンプ
7…負荷
11…第1のプレート式熱交換器
12…第2のプレート式熱交換器
13、14、15、16、17、18…管路
19…過冷却解除手段
21…第1のシェルアンドチューブ式熱交換器
22…第2のシェルアンドチューブ式熱交換器
31…小型冷凍機
32…冷却部
33…超音波発振器
34…発振部
35…水和物スラリ容器
36…ポンプ
37…注入口
38…スタティックミキサー
39…モータ
40…攪拌羽根
41…バイパス管路
42、43…流路切換え弁
50…ポンプ
60…返流管
61…バルブ
62…ポンプ
DESCRIPTION OF SYMBOLS 1 ... Heat storage tank 2 ... Aqueous solution pump 3 ... Heat exchanger for hydrate slurry manufacture 4 ... Refrigerator 5 ... Coolant pump 6 ... Slurry pump 7 ... Load 11 ... First plate type heat exchanger 12 ... Second Plate type heat exchanger 13, 14, 15, 16, 17, 18 ... Pipe line 19 ... Supercooling release means 21 ... First shell-and-tube heat exchanger 22 ... Second shell-and-tube heat exchanger 31 ... Small refrigerator 32 ... Cooling part 33 ... Ultrasonic oscillator 34 ... Oscillator 35 ... Hydrate slurry container 36 ... Pump 37 ... Inlet 38 ... Static mixer 39 ... Motor 40 ... Agitating blade 41 ... Bypass pipes 42, 43 ... Flow path switching valve 50 ... Pump 60 ... Return pipe 61 ... Valve 62 ... Pump

Claims (6)

冷却媒体を供給する冷凍機と、水和物を生成するゲスト化合物の水溶液を前記冷却媒体との熱交換により冷却して水和物を含む水和物スラリを製造する装置において、水和物の凝固点より低い温度まで水溶液を過冷却する第1の熱交換器と、第1の熱交換器と直列に接続された第2の熱交換器と、第1の熱交換器と第2の熱交換器との間に配置された水溶液もしくは水和物スラリの流路と、該流路に設けられた過冷却解除手段とを具備し、該過冷却解除手段が、小型冷凍機に接続された冷却部、超音波発振器に接続された発振部、周波数が数〜数百Hzの低周波振動子、水和物注入口、スタティックミキサー、攪拌羽根、ポンプまたはベルチェ素子からなる低温突起であることを特徴とする水和物スラリ製造装置。   In a refrigerator for supplying a cooling medium and an apparatus for producing a hydrate slurry containing a hydrate by cooling an aqueous solution of a guest compound that forms a hydrate by heat exchange with the cooling medium, A first heat exchanger that supercools the aqueous solution to a temperature below the freezing point; a second heat exchanger connected in series with the first heat exchanger; and the first heat exchanger and the second heat exchange. An aqueous solution or hydrate slurry channel disposed between the unit and a supercooling release unit provided in the channel, wherein the supercooling release unit is connected to a small refrigerator. Oscillating unit connected to an ultrasonic oscillator, a low-frequency projection consisting of a low-frequency vibrator having a frequency of several to several hundreds of Hz, a hydrate inlet, a static mixer, a stirring blade, a pump, or a Bertier element Hydrate slurry production equipment. 前記流路は、第1の熱交換器と第2の熱交換器との間に設けられた管路を備えており、前記管路に前記過冷却解除手段を設けたことを特徴とする請求項1に記載の水和物スラリ製造装置。   The said flow path is provided with the pipe line provided between the 1st heat exchanger and the 2nd heat exchanger, The said supercooling cancellation | release means was provided in the said pipe line, It is characterized by the above-mentioned. The hydrate slurry manufacturing apparatus according to Item 1. 前記流路は、第1の熱交換器と第2の熱交換器との間に設けられた管路を備えており、前記管路にバイパス管路および流路切換え弁を設け、前記バイパス管路に前記過冷却解除手段を設けたことを特徴とする請求項1に記載の水和物スラリ製造装置。   The flow path includes a pipe line provided between the first heat exchanger and the second heat exchanger, the pipe line is provided with a bypass pipe line and a flow path switching valve, and the bypass pipe The apparatus for producing a hydrate slurry according to claim 1, wherein the supercooling release means is provided in a path. 前記流路は、第2の熱交換器の出口から該熱交換器の入口より上流側に水和物スラリの一部を返流する管路を備えており、前記管路は、遮断弁およびポンプを備えていることを特徴とする請求項1に記載の水和物スラリ製造装置。   The flow path includes a conduit for returning a part of the hydrate slurry from the outlet of the second heat exchanger to the upstream side of the inlet of the heat exchanger, and the conduit includes a shutoff valve and The apparatus for producing a hydrate slurry according to claim 1, further comprising a pump. 前記第1及び第2の熱交換器が、プレート式熱交換器またはシェルアンドチューブ式熱交換器であることを特徴とする請求項1ないし4のいずれかに記載の水和物スラリ製造装置。   The hydrate slurry manufacturing apparatus according to any one of claims 1 to 4, wherein the first and second heat exchangers are plate heat exchangers or shell and tube heat exchangers. 前記ゲスト化合物は、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種であることを特徴とする請求項1ないし5のいずれかに記載の水和物スラリ製造装置。   The guest compound is at least one selected from the group consisting of a tetra n-butylammonium salt, a tetraiso-amylammonium salt, a tetraiso-butylphosphonium salt, and a triiso-amylsulfonium salt. Item 6. The hydrate slurry production apparatus according to any one of Items 1 to 5.
JP2009242134A 2009-10-21 2009-10-21 Hydrate slurry production equipment Expired - Fee Related JP4835745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242134A JP4835745B2 (en) 2009-10-21 2009-10-21 Hydrate slurry production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242134A JP4835745B2 (en) 2009-10-21 2009-10-21 Hydrate slurry production equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001067037A Division JP4599733B2 (en) 2001-03-09 2001-03-09 Hydrate slurry production equipment

Publications (2)

Publication Number Publication Date
JP2010025544A true JP2010025544A (en) 2010-02-04
JP4835745B2 JP4835745B2 (en) 2011-12-14

Family

ID=41731540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242134A Expired - Fee Related JP4835745B2 (en) 2009-10-21 2009-10-21 Hydrate slurry production equipment

Country Status (1)

Country Link
JP (1) JP4835745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248574B1 (en) * 2019-12-04 2021-05-06 한밭대학교 산학협력단 Continuous operation hydrate slurry cooling system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS59185991A (en) * 1983-04-08 1984-10-22 Nok Corp Overcooling prevention method
JPS6454197A (en) * 1987-08-26 1989-03-01 Hitachi Ltd Heat storage device
JPH04353375A (en) * 1991-05-30 1992-12-08 Daikin Ind Ltd Ice making device
JPH05248741A (en) * 1990-06-15 1993-09-24 Daikin Ind Ltd Ice making device
JPH074801A (en) * 1993-06-18 1995-01-10 Shinryo Corp Ice-maker
JPH10170033A (en) * 1996-12-03 1998-06-26 Daikin Ind Ltd Ice heat storage device
JPH10267329A (en) * 1997-03-25 1998-10-09 Daikin Ind Ltd Ice heat storage device
JPH11264681A (en) * 1998-03-18 1999-09-28 Nkk Corp Cold storage method and system employing inclusion hydrate and cold storage agent
JP2000233101A (en) * 1999-02-15 2000-08-29 Nkk Corp Process and apparatus for manufacturing hydrate slurry
JP2001343139A (en) * 2000-03-30 2001-12-14 Nkk Corp Producing method and producing device for hydrate slurry and cold utilizing system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146054A (en) * 1978-05-08 1979-11-14 Hitachi Ltd Heat accumulator
JPS59185991A (en) * 1983-04-08 1984-10-22 Nok Corp Overcooling prevention method
JPS6454197A (en) * 1987-08-26 1989-03-01 Hitachi Ltd Heat storage device
JPH05248741A (en) * 1990-06-15 1993-09-24 Daikin Ind Ltd Ice making device
JPH04353375A (en) * 1991-05-30 1992-12-08 Daikin Ind Ltd Ice making device
JPH074801A (en) * 1993-06-18 1995-01-10 Shinryo Corp Ice-maker
JPH10170033A (en) * 1996-12-03 1998-06-26 Daikin Ind Ltd Ice heat storage device
JPH10267329A (en) * 1997-03-25 1998-10-09 Daikin Ind Ltd Ice heat storage device
JPH11264681A (en) * 1998-03-18 1999-09-28 Nkk Corp Cold storage method and system employing inclusion hydrate and cold storage agent
JP2000233101A (en) * 1999-02-15 2000-08-29 Nkk Corp Process and apparatus for manufacturing hydrate slurry
JP2001343139A (en) * 2000-03-30 2001-12-14 Nkk Corp Producing method and producing device for hydrate slurry and cold utilizing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248574B1 (en) * 2019-12-04 2021-05-06 한밭대학교 산학협력단 Continuous operation hydrate slurry cooling system

Also Published As

Publication number Publication date
JP4835745B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Zhang et al. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems
WO2001038811A1 (en) Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
JP4816053B2 (en) Heat storage agent, heat transport medium, melting point adjusting agent for heat storage agent, supercooling inhibitor for heat storage agent, method for producing heat storage agent or main component of heat transport medium, and tri-n-butyl-n-pentylammonium chloride hydrate
JP2014016143A (en) Manufacturing method for hydrate slurry, manufacturing device for hydrate slurry, and hydrate heat storage type air conditioning system
WO2003102474A1 (en) Hydrate slurry manufacturing device
JP2007186667A (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium
JP4599733B2 (en) Hydrate slurry production equipment
JP2007107773A (en) Heat accumulator, heat pump system and solar system
KR200393464Y1 (en) Ice making system
JP4835745B2 (en) Hydrate slurry production equipment
JP3972734B2 (en) Hydrate slurry manufacturing apparatus and operation method thereof
JP4853851B2 (en) High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP2001010990A (en) Device for producing methane hydrate and method for producing the same
JP4888521B2 (en) Hydrate slurry manufacturing equipment
JP2004053171A (en) Air conditioning system and operation method for the same
JP2005029591A (en) Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JP2014081116A (en) Water heater
JP4396355B2 (en) Supercooling release device in hydrate slurry air conditioning system
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
JP4260260B2 (en) High-density cold heat storage and transportation composition
JP4304848B2 (en) Cold heat transport method, cold heat transport system, operation method of cold heat transport system, storage device, and hydrate production device
JP2003056951A (en) Ice slurry continuous making method and continuous ice making heat storage system therefor
JP2007046855A (en) Hydrate slurry thermal storage device and thermal storage method
JP4595754B2 (en) Hydrate slurry manufacturing apparatus and hydrate slurry manufacturing method
JP2007132658A (en) Generation suppression method of liquid passage of hydrate slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees