JP4599733B2 - Hydrate slurry production equipment - Google Patents

Hydrate slurry production equipment Download PDF

Info

Publication number
JP4599733B2
JP4599733B2 JP2001067037A JP2001067037A JP4599733B2 JP 4599733 B2 JP4599733 B2 JP 4599733B2 JP 2001067037 A JP2001067037 A JP 2001067037A JP 2001067037 A JP2001067037 A JP 2001067037A JP 4599733 B2 JP4599733 B2 JP 4599733B2
Authority
JP
Japan
Prior art keywords
hydrate
heat exchanger
hydrate slurry
aqueous solution
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001067037A
Other languages
Japanese (ja)
Other versions
JP2002263470A (en
Inventor
英雅 生越
信吾 高雄
謙年 林
繁則 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2001067037A priority Critical patent/JP4599733B2/en
Publication of JP2002263470A publication Critical patent/JP2002263470A/en
Application granted granted Critical
Publication of JP4599733B2 publication Critical patent/JP4599733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は水和物スラリ製造装置に関する。
【0002】
【従来の技術】
ゲスト化合物(テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などの各種塩類)を含む水溶液を冷却すると、水和物(液系包接水和物)が生成される。この水和物は0℃以上の温度で生成でき、しかも潜熱が大きく冷水に比較して数倍の熱量の冷熱を貯蔵することができる。また、この水和物は微細な粒子となって水溶液中に浮遊して比較的流動性の高い水和物スラリを形成する。このため、このような水和物スラリは、空調設備などの蓄冷材または冷熱の搬送媒体として好ましい特性を有している。
【0003】
上述した水和物スラリを製造するために用いられている装置を図1に示す。蓄熱槽1には水溶液中に水和物が分散した水和物スラリが貯蔵される。蓄熱槽1内の水溶液は水溶液ポンプ2により水和物スラリ製造用熱交換器3へ送られる。この熱交換器3において、水溶液は冷凍機4で冷却されて冷却媒体ポンプ5で循環される冷却媒体と熱交換して冷却され、水和物を含む水和物スラリが生成される。この水和物スラリは蓄熱槽1へ送られる。また、蓄熱槽1内の水和物スラリはスラリポンプ6により負荷に送られてその冷熱が利用され、蓄熱槽1へ戻る。
【0004】
ところで、たとえばテトラn−ブチルアンモニウムブロマイド(TBAB)の水溶液を用いた場合、水和数26の第一水和物と水和数36の第二水和物とが生成する。TBABの水溶液濃度が約20wt%の場合、第一水和物の凝固点は約8.2℃であり、第一水和物から第二水和物への変化温度は約8.0℃である。図1の熱交換器3において水溶液を冷却媒体により冷却していくと、第一水和物の凝固点では第一水和物が生成されず、凝固点より数度低い温度まで過冷却された後に第一水和物が生成される。また、第一水和物の温度が8.0℃になっても第二水和物に変化せず、変化温度よりも数度低い温度まで過冷却された後に第二水和物に変化する。
【0005】
このように水和物生成においては過冷却が生じるため、冷却媒体との温度差が小さくなって熱交換量が低下したり大きな過冷却が生じた後に過冷却が解除されると、急激に水和物が生成して粘性が増加し、流動抵抗が大きくなってポンプ動力が増加するうえ、最悪の場合には熱交換器が閉塞することもある。
【0006】
【発明が解決しようとする課題】
本発明の目的は、水和物生成時の過冷却に起因するポンプ動力の増加および熱交換器の閉塞を防止できる水和物スラリ製造装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る水和物スラリ製造装置は、冷却媒体を供給する冷凍機と、水和物を生成するゲスト化合物の水溶液を前記冷却媒体との熱交換により冷却して水和物を含む水和物スラリを製造する装置において、直列に接続された少なくとも二つの熱交換器と、下流側の熱交換器の出口から該熱交換器の入口より上流側に水溶液又は水和物スラリを返流する返流管とを具備したことを特徴とする。
【0008】
本発明においては、上流側の熱交換器と下流側の熱交換器との間に管路を備えるとともに、この管路に返流管を接続してもよい。
【0011】
本発明においては、返流管は、下流側の熱交換器の出口から該熱交換器の入口より上流側に水溶液又は水和物スラリを返流するためのポンプを備えてもよい。
【0012】
本発明において、熱交換器としては、プレート式熱交換器またはシェルアンドチューブ式熱交換器が用いられる。
【0013】
本発明において、ゲスト化合物としては、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種が用いられる。
【0014】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
図2は本発明の一実施形態に係る熱交換器の部分を示す図であり、図1の熱交換器3として設置される。図2に示すように、第1のプレート式熱交換器11と第2のプレート式熱交換器12が直列に接続されている。蓄熱槽からのゲスト化合物の水溶液は管路13から第1のプレート式熱交換器11に入って冷却され、管路14を通して第2のプレート式熱交換器12に入ってさらに冷却される。この間に水溶液中で水和物が生成し、水和物スラリが製造される。製造された水和物スラリは管路15を通して蓄熱槽へ戻る。一方、冷凍機からの冷却媒体は管路16から第2のプレート式熱交換器12に入って水和物スラリと熱交換し、管路17を通して第1のプレート式熱交換器11に入って水溶液と熱交換し、管路18を通して冷凍機へ戻る。そして、第1のプレート式熱交換器11と第2のプレート式熱交換器12とを接続する管路14には過冷却解除手段19が設けられている。冷却媒体は、第1、第2の熱交換器に直列で流送しなくても、並列もしくは一部バイパスさせて流送させてもよい。
【0015】
図4に、管路14に設けられた過冷却解除手段の一例を示す。図4の過冷却解除手段は、小型冷凍機31に接続された冷却部32からなっており、冷却部32は外部から管路14中に挿入されている。
【0016】
図2に示すように、ゲスト化合物の水溶液は第1のプレート式熱交換器11に入り、冷凍機からの冷却媒体と熱交換して、およそ第一水和物の凝固点または第二水和物への変化温度まで冷却される。図4に示すように、管路14に設けられた冷却部32は小型冷凍機31により予め第二水和物への変化温度以下に冷却されており、その表面に第二水和物が付着している。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が冷却部32に接触すると、冷却部32の表面に存在する付着水和物が生成核として作用し過冷却が解除され、容易に水和物が生成する。このように、わずかな過冷却を経て水和物スラリが生成する。したがって、第2のプレート式熱交換器12中で急激に水和物が生成して粘性が増加し、流動抵抗が大きくなってポンプ動力が増加したり、第2のプレート式熱交換器12が閉塞することが避けられる。
【0017】
図3は本発明の他の実施形態に係る熱交換器の部分を示す図である。図3は、図2における第1のプレート式熱交換器11と第2のプレート式熱交換器12の代わりに、第1のシェルアンドチューブ式熱交換器21と第2のシェルアンドチューブ式熱交換器22を用いた以外は、図2と同様の構成を有する。この場合も、上記と同様な効果が得られる。
【0018】
本発明における過冷却解除手段は図4に示した小型冷凍機の冷却部に限らず、図5〜図8に示す他の過冷却解除手段を用いてもよい。
【0019】
図5の過冷却解除手段は、超音波発振器33に接続された発振部34からなっており、発振部34は外部から管路14中に挿入されている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が発振部34に接触すると、振動によって過冷却が解除され、容易に水和物が生成する。また超音波振動でなくても、数〜数百Hzの低周波振動子でもよい。
【0020】
図6の過冷却解除手段は、水和物スラリ容器35からポンプ36により水和物を管路14に注入するようにした注入口37からなっている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が、注入口37から注入された水和物と接触すると、注入された水和物が生成核となって容易に水和物が生成する。この場合、注入口37から注入する水和物は第二水和物であることが好ましい。
【0021】
図7の過冷却解除手段は、管路14内に設けられた流体を反転・混合させるためのねじり板のような機構を有するスタティックミキサー38からなっている。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液はスタティックミキサー38によって攪拌されて過冷却が解除され、容易に水和物が生成する。
【0022】
図8の過冷却解除手段は、管路14の途中に挿入された容器内に収容された、モータ39によって回転する攪拌羽根40からなっている第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液は攪拌羽根40によって攪拌されて過冷却が解除され、容易に水和物が生成する。
【0023】
過冷却解除手段として、ペルチェ素子などからなる低温突起を管路に挿入してもよい。このような低温突起も、図4に示した小型冷凍機の冷却部と同様に、予め第二水和物への変化温度以下に冷却されており、その表面に第二水和物が付着している。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液が低温突起に接触すると、低温突起の表面に存在する付着水和物が生成核として作用し過冷却が解除され、容易に水和物が生成する。
【0024】
図9の過冷却解除手段は、管路14の途中に設けられたポンプケーシング内をインペラが回転しているポンプである。第一水和物の凝固点または第二水和物への変化温度より低い温度まで過冷却された水溶液はポンプ50によって攪拌されて過冷却が解除され、容易に水和物が生成する。この場合、図1の水溶液ポンプ2を第1の熱交換器と第2の熱交換器との間に設置してもよい。
【0025】
また図10は、第2の熱交換器12出口から第1と第2の熱交換器の間の管路14に水和物スラリの一部を返流する返流管60、バルブ61およびポンプ62を設け、第2の熱交換器12出口の水和物スラリを一部取り出して、第1の熱交換器11出口の過冷却された水溶液と混ぜることで、過冷却を解除する。
【0026】
なお、本発明における過冷却解除手段の設置位置は、直列に接続された少なくとも2つの熱交換器を含む水溶液もしくは水和物スラリが生成し得る位置であれば、特に限定されない。たとえば、図2に示す第2のプレート式熱交換器12の入口や、図3に示す第2のシェルアンドチューブ式熱交換器22の入口に過冷却解除手段を設けてもよい。また、図3に示す第1のシェルアンドチューブ式熱交換器21のAで示す管室内に過冷却解除手段を設けてもよい。また、図11に示すように、第1の熱交換器と第2の熱交換器との間の管路14にバイパス管路41を設けるとともに管路14およびバイパス管路41にそれぞれ流路切換え弁42,43を設け、バイパス管路41に小型冷凍機の冷却部32などの過冷却解除手段を設けてもよい。さらに、過冷却解除手段は1個所に限らず、複数個所に設けてもよい。また、複数の種類の異なる過冷却解除手段を併用してもよい。
【0027】
【発明の効果】
以上詳述したように本発明によれば、水和物生成時の過冷却に起因するポンプ動力の増加および熱交換器の閉塞を防止できる水和物スラリ製造装置を提供することができる。
【図面の簡単な説明】
【図1】従来の水和物スラリ製造装置を示す構成図。
【図2】本発明に係る水和物スラリ製造装置の熱交換器部分を示す構成図。
【図3】本発明に係る他の水和物スラリ製造装置の熱交換器部分を示す構成図。
【図4】本発明に係る過冷却解除手段の一例を示す構成図。
【図5】本発明に係る過冷却解除手段の他の例を示す構成図。
【図6】本発明に係る過冷却解除手段の他の例を示す構成図。
【図7】本発明に係る過冷却解除手段の他の例を示す構成図。
【図8】本発明に係る過冷却解除手段の他の例を示す構成図。
【図9】本発明に係る過冷却解除手段の他の例を示す構成図。
【図10】本発明に係る過冷却解除手段の他の例を示す構成図。
【図11】本発明に係る過冷却解除手段の他の例を示す構成図。
【符号の説明】
1…蓄熱槽
2…水溶液ポンプ
3…水和物スラリ製造用熱交換器
4…冷凍機
5…冷却媒体ポンプ
6…スラリポンプ
7…負荷
11…第1のプレート式熱交換器
12…第2のプレート式熱交換器
13、14、15、16、17、18…管路
19…過冷却解除手段
21…第1のシェルアンドチューブ式熱交換器
22…第2のシェルアンドチューブ式熱交換器
31…小型冷凍機
32…冷却部
33…超音波発振器
34…発振部
35…水和物スラリ容器
36…ポンプ
37…注入口
38…スタティックミキサー
39…モータ
40…攪拌羽根
41…バイパス管路
42、43…流路切換え弁
50…ポンプ
60…返流管
61…バルブ
62…ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrate slurry manufacturing apparatus.
[0002]
[Prior art]
When an aqueous solution containing a guest compound (tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt, various salts such as triiso-amylsulfonium salt) is cooled, a hydrate (liquid system inclusion) Hydrate) is produced. This hydrate can be produced at a temperature of 0 ° C. or higher, and has a large latent heat and can store cold heat having a heat quantity several times that of cold water. Further, this hydrate becomes fine particles and floats in an aqueous solution to form a hydrate slurry having a relatively high fluidity. For this reason, such a hydrate slurry has favorable characteristics as a cold storage material such as an air conditioner or a cold heat transfer medium.
[0003]
An apparatus used to produce the hydrate slurry described above is shown in FIG. The heat storage tank 1 stores a hydrate slurry in which a hydrate is dispersed in an aqueous solution. The aqueous solution in the heat storage tank 1 is sent to the hydrate slurry manufacturing heat exchanger 3 by the aqueous solution pump 2. In this heat exchanger 3, the aqueous solution is cooled by the refrigerator 4 and heat-exchanged with the cooling medium circulated by the cooling medium pump 5 to be cooled, and a hydrate slurry containing hydrate is generated. This hydrate slurry is sent to the heat storage tank 1. Further, the hydrate slurry in the heat storage tank 1 is sent to a load by the slurry pump 6, and its cold energy is used, and returns to the heat storage tank 1.
[0004]
By the way, for example, when an aqueous solution of tetra n-butylammonium bromide (TBAB) is used, a first hydrate having a hydration number of 26 and a second hydrate having a hydration number of 36 are formed. When the aqueous concentration of TBAB is about 20 wt%, the freezing point of the first hydrate is about 8.2 ° C., and the change temperature from the first hydrate to the second hydrate is about 8.0 ° C. . When the aqueous solution is cooled by the cooling medium in the heat exchanger 3 of FIG. 1, the first hydrate is not generated at the freezing point of the first hydrate, and the first hydrate is subcooled to a temperature several degrees lower than the freezing point. Monohydrate is produced. In addition, even if the temperature of the first hydrate reaches 8.0 ° C., it does not change to the second hydrate, and changes to the second hydrate after being supercooled to a temperature several degrees lower than the change temperature. .
[0005]
As described above, since supercooling occurs in hydrate formation, if the temperature difference from the cooling medium becomes small and the heat exchange amount decreases or large supercooling occurs and then supercooling is canceled, A product is formed and viscosity is increased, the flow resistance is increased and the pump power is increased. In the worst case, the heat exchanger may be blocked.
[0006]
[Problems to be solved by the invention]
The objective of this invention is providing the hydrate slurry manufacturing apparatus which can prevent the increase in pump power resulting from the supercooling at the time of hydrate production | generation, and the obstruction | occlusion of a heat exchanger.
[0007]
[Means for Solving the Problems]
The hydrate slurry manufacturing apparatus according to the present invention includes a refrigerator that supplies a cooling medium, and a hydrate containing a hydrate by cooling an aqueous solution of a guest compound that generates a hydrate by heat exchange with the cooling medium. In an apparatus for producing a product slurry, at least two heat exchangers connected in series and an aqueous solution or a hydrate slurry are returned from the outlet of the downstream heat exchanger to the upstream side of the inlet of the heat exchanger. And a return pipe .
[0008]
In the present invention, a pipe line may be provided between the upstream heat exchanger and the downstream heat exchanger, and a return pipe may be connected to the pipe line .
[0011]
In the present invention, the return pipe may include a pump for returning the aqueous solution or hydrate slurry from the outlet of the downstream heat exchanger to the upstream side of the inlet of the heat exchanger .
[0012]
In the present invention, a plate heat exchanger or a shell and tube heat exchanger is used as the heat exchanger.
[0013]
In the present invention, as the guest compound, at least one selected from the group consisting of tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt and triiso-amylsulfonium salt is used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
FIG. 2 is a view showing a portion of the heat exchanger according to one embodiment of the present invention, and is installed as the heat exchanger 3 of FIG. As shown in FIG. 2, a first plate heat exchanger 11 and a second plate heat exchanger 12 are connected in series. The aqueous solution of the guest compound from the heat storage tank enters the first plate heat exchanger 11 from the pipe 13 and is cooled, and then enters the second plate heat exchanger 12 through the pipe 14 and is further cooled. During this time, a hydrate is formed in the aqueous solution, and a hydrate slurry is produced. The produced hydrate slurry returns to the heat storage tank through the pipe line 15. On the other hand, the cooling medium from the refrigerator enters the second plate heat exchanger 12 through the pipe line 16 to exchange heat with the hydrate slurry, and enters the first plate heat exchanger 11 through the pipe line 17. It exchanges heat with the aqueous solution and returns to the refrigerator through the pipe 18. And the supercooling cancellation | release means 19 is provided in the pipe line 14 which connects the 1st plate type heat exchanger 11 and the 2nd plate type heat exchanger 12. FIG. The cooling medium may not be sent in series to the first and second heat exchangers, but may be sent in parallel or partially bypassed.
[0015]
In FIG. 4, an example of the supercooling cancellation | release means provided in the pipe line 14 is shown. The supercooling release means in FIG. 4 includes a cooling unit 32 connected to the small refrigerator 31, and the cooling unit 32 is inserted into the pipe line 14 from the outside.
[0016]
As shown in FIG. 2, the aqueous solution of the guest compound enters the first plate heat exchanger 11 and exchanges heat with the cooling medium from the refrigerator to approximately the freezing point of the first hydrate or the second hydrate. Cool down to change temperature. As shown in FIG. 4, the cooling part 32 provided in the pipe line 14 is cooled in advance by the small refrigerator 31 to a temperature lower than the change temperature to the second hydrate, and the second hydrate adheres to the surface thereof. is doing. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate comes into contact with the cooling unit 32, the attached hydrate existing on the surface of the cooling unit 32 becomes a generation nucleus. Acts, the supercooling is released, and hydrates are easily formed. Thus, a hydrate slurry is formed through a slight supercooling. Therefore, a hydrate is suddenly generated in the second plate heat exchanger 12 to increase the viscosity, the flow resistance increases, the pump power increases, and the second plate heat exchanger 12 Occlusion is avoided.
[0017]
FIG. 3 is a view showing a portion of a heat exchanger according to another embodiment of the present invention. FIG. 3 shows a first shell-and-tube heat exchanger 21 and a second shell-and-tube heat exchanger instead of the first plate-type heat exchanger 11 and the second plate-type heat exchanger 12 in FIG. The configuration is the same as that shown in FIG. 2 except that the exchanger 22 is used. In this case, the same effect as described above can be obtained.
[0018]
The supercooling release means in the present invention is not limited to the cooling unit of the small refrigerator shown in FIG. 4, and other supercooling release means shown in FIGS.
[0019]
The supercooling release means in FIG. 5 includes an oscillating unit 34 connected to an ultrasonic oscillator 33, and the oscillating unit 34 is inserted into the pipe line 14 from the outside. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate contacts the oscillating unit 34, the supercooling is released by vibration and a hydrate is easily generated. . Further, it may be a low frequency vibrator of several to several hundreds of Hz, not ultrasonic vibration.
[0020]
The supercooling release means of FIG. 6 comprises an injection port 37 in which hydrate is injected from the hydrate slurry container 35 into the conduit 14 by the pump 36. When the aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate comes into contact with the hydrate injected from the inlet 37, the injected hydrate is formed. Hydrates easily form as nuclei. In this case, the hydrate injected from the injection port 37 is preferably a second hydrate.
[0021]
7 comprises a static mixer 38 having a mechanism such as a torsion plate for inverting and mixing the fluid provided in the pipe 14. The aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate is stirred by the static mixer 38 to release the supercooling, and a hydrate is easily formed.
[0022]
The supercooling release means of FIG. 8 is a freezing point or second hydrate of the first hydrate comprising a stirring blade 40 that is housed in a container inserted in the middle of the conduit 14 and is rotated by a motor 39. The aqueous solution supercooled to a temperature lower than the change temperature to is stirred by the stirring blade 40, the supercooling is released, and a hydrate is easily generated.
[0023]
As the supercooling release means, a low-temperature protrusion made of a Peltier element or the like may be inserted into the pipe line. Similar to the cooling part of the small refrigerator shown in FIG. 4, such a low-temperature protrusion is cooled in advance to a temperature lower than the change temperature to the second hydrate, and the second hydrate adheres to the surface. ing. When an aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate contacts the low temperature protrusion, the attached hydrate present on the surface of the low temperature protrusion acts as a nucleus. The supercooling is released and a hydrate is easily formed.
[0024]
The supercooling release means in FIG. 9 is a pump in which an impeller rotates in a pump casing provided in the middle of the pipeline 14. The aqueous solution supercooled to a temperature lower than the freezing point of the first hydrate or the change temperature to the second hydrate is stirred by the pump 50 to release the supercooling, and a hydrate is easily formed. In this case, the aqueous solution pump 2 of FIG. 1 may be installed between the first heat exchanger and the second heat exchanger.
[0025]
FIG. 10 also shows a return pipe 60, a valve 61 and a pump for returning a part of the hydrate slurry from the outlet of the second heat exchanger 12 to the pipe line 14 between the first and second heat exchangers. 62, and a part of the hydrate slurry at the outlet of the second heat exchanger 12 is taken out and mixed with the supercooled aqueous solution at the outlet of the first heat exchanger 11 to release the supercooling.
[0026]
In addition, the installation position of the supercooling cancellation | release means in this invention will not be specifically limited if it is a position which can produce | generate the aqueous solution or hydrate slurry containing the at least 2 heat exchanger connected in series. For example, the supercooling release means may be provided at the inlet of the second plate heat exchanger 12 shown in FIG. 2 or the inlet of the second shell and tube heat exchanger 22 shown in FIG. Moreover, you may provide a supercooling cancellation | release means in the pipe chamber shown by A of the 1st shell and tube type heat exchanger 21 shown in FIG. Further, as shown in FIG. 11, a bypass pipe 41 is provided in the pipe 14 between the first heat exchanger and the second heat exchanger, and the flow path is switched to the pipe 14 and the bypass pipe 41, respectively. The valves 42 and 43 may be provided, and the bypass conduit 41 may be provided with a supercooling release means such as the cooling unit 32 of the small refrigerator. Further, the supercooling release means is not limited to one place, and may be provided at a plurality of places. Moreover, you may use together several types of different supercooling cancellation | release means.
[0027]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a hydrate slurry manufacturing apparatus that can prevent an increase in pump power and blockage of a heat exchanger due to supercooling during hydrate formation.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a conventional hydrate slurry manufacturing apparatus.
FIG. 2 is a configuration diagram showing a heat exchanger portion of the hydrate slurry manufacturing apparatus according to the present invention.
FIG. 3 is a configuration diagram showing a heat exchanger part of another hydrate slurry manufacturing apparatus according to the present invention.
FIG. 4 is a configuration diagram showing an example of a supercooling release unit according to the present invention.
FIG. 5 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 6 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 7 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 8 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 9 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 10 is a block diagram showing another example of the supercooling release means according to the present invention.
FIG. 11 is a block diagram showing another example of the supercooling release means according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heat storage tank 2 ... Aqueous solution pump 3 ... Heat exchanger 4 for hydrate slurry manufacture ... Refrigerator 5 ... Coolant pump 6 ... Slurry pump 7 ... Load 11 ... First plate type heat exchanger 12 ... Second Plate heat exchangers 13, 14, 15, 16, 17, 18 ... pipeline 19 ... supercooling release means 21 ... first shell and tube heat exchanger 22 ... second shell and tube heat exchanger 31 ... small refrigerator 32 ... cooling part 33 ... ultrasonic oscillator 34 ... oscillating part 35 ... hydrate slurry container 36 ... pump 37 ... inlet 38 ... static mixer 39 ... motor 40 ... stirring blade 41 ... bypass pipes 42 and 43 ... Flow path switching valve 50 ... Pump 60 ... Return pipe 61 ... Valve 62 ... Pump

Claims (5)

冷却媒体を供給する冷凍機と、水和物を生成するゲスト化合物の水溶液を前記冷却媒体との熱交換により冷却して水和物を含む水和物スラリを製造する装置において、直列に接続された少なくとも二つの熱交換器と、下流側の熱交換器の出口から該熱交換器の入口より上流側に水溶液又は水和物スラリを返流する返流管とを具備したことを特徴とする水和物スラリ製造装置。In a refrigerator for supplying a cooling medium and an apparatus for producing a hydrate slurry containing a hydrate by cooling an aqueous solution of a guest compound that produces a hydrate by heat exchange with the cooling medium, these are connected in series. And at least two heat exchangers and a return pipe for returning the aqueous solution or hydrate slurry from the outlet of the downstream heat exchanger to the upstream side of the inlet of the heat exchanger. Hydrate slurry manufacturing equipment. 上流側の熱交換器と下流側の熱交換器との間に管路を備えるとともに、前記返流管が前記管路に接続されてなることを特徴とする請求項1に記載の水和物スラリ製造装置。 2. The hydrate according to claim 1, further comprising: a pipe line between the upstream heat exchanger and the downstream heat exchanger , wherein the return pipe is connected to the pipe line. Slurry manufacturing equipment. 前記返流管は、下流側の熱交換器の出口から該熱交換器の入口より上流側に水溶液又は水和物スラリを返流するためのポンプを備えることを特徴とする請求項1又は2に記載の水和物スラリ製造装置。3. The return pipe includes a pump for returning an aqueous solution or a hydrate slurry from an outlet of a downstream heat exchanger to an upstream side of the inlet of the heat exchanger. The hydrate slurry manufacturing apparatus described in 1. 前記熱交換器が、プレート式熱交換器またはシェルアンドチューブ式熱交換器であることを特徴とする請求項1乃至3のいずれかに記載の水和物スラリ製造装置。The hydrate slurry manufacturing apparatus according to any one of claims 1 to 3 , wherein the heat exchanger is a plate heat exchanger or a shell and tube heat exchanger. 前記ゲスト化合物は、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種であることを特徴とする請求項1乃至4のいずれかに記載の水和物スラリ製造装置。The guest compound is at least one selected from the group consisting of a tetra n-butylammonium salt, a tetraiso-amylammonium salt, a tetraiso-butylphosphonium salt, and a triiso-amylsulfonium salt. Item 5. The hydrate slurry production apparatus according to any one of Items 1 to 4 .
JP2001067037A 2001-03-09 2001-03-09 Hydrate slurry production equipment Expired - Fee Related JP4599733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067037A JP4599733B2 (en) 2001-03-09 2001-03-09 Hydrate slurry production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067037A JP4599733B2 (en) 2001-03-09 2001-03-09 Hydrate slurry production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009242134A Division JP4835745B2 (en) 2009-10-21 2009-10-21 Hydrate slurry production equipment

Publications (2)

Publication Number Publication Date
JP2002263470A JP2002263470A (en) 2002-09-17
JP4599733B2 true JP4599733B2 (en) 2010-12-15

Family

ID=18925448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067037A Expired - Fee Related JP4599733B2 (en) 2001-03-09 2001-03-09 Hydrate slurry production equipment

Country Status (1)

Country Link
JP (1) JP4599733B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510763B1 (en) * 2002-05-31 2012-02-01 JFE Engineering Corporation Apparatus for producing hydrate slurry
JP2009068826A (en) * 2006-12-25 2009-04-02 Jfe Engineering Kk Method and apparatus for producing clathrate hydrate slurry and method of operating the production apparatus
WO2008108308A1 (en) 2007-03-02 2008-09-12 Jfe Engineering Corporation Latent heat storage substance, inclusion hydrate or slurry thereof, method for producing inclusion hydrate or slurry thereof, and latent heat storage agent
JP5003213B2 (en) 2007-03-06 2012-08-15 Jfeエンジニアリング株式会社 Method to increase heat storage rate of heat storage agent, clathrate hydrate
JP5125316B2 (en) * 2007-08-24 2013-01-23 Jfeエンジニアリング株式会社 Raw material for clathrate hydrate production, method for producing clathrate hydrate or slurry thereof, and method for reducing pressure loss generated when cooling an aqueous solution for clathrate hydrate production
JP7170580B2 (en) * 2019-04-22 2022-11-14 三菱電機株式会社 Slurry production equipment, heat medium circulation circuit and air conditioning system
CN113063096B (en) * 2021-02-05 2022-09-09 永发(河南)模塑科技发展有限公司 Individualized thick liquids that satisfy arbitrary switching pipeline supply thick liquid system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185991A (en) * 1983-04-08 1984-10-22 Nok Corp Overcooling prevention method
JPH11264681A (en) * 1998-03-18 1999-09-28 Nkk Corp Cold storage method and system employing inclusion hydrate and cold storage agent
JP2000233101A (en) * 1999-02-15 2000-08-29 Nkk Corp Process and apparatus for manufacturing hydrate slurry
JP2001031958A (en) * 1999-07-23 2001-02-06 Mitsubishi Chemicals Corp Method for using heat transport medium
JP2003126676A (en) * 2001-05-30 2003-05-07 Nkk Corp Supply method of hydrate-slurry forming agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743235B2 (en) * 1987-08-26 1995-05-15 株式会社日立製作所 Heat storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185991A (en) * 1983-04-08 1984-10-22 Nok Corp Overcooling prevention method
JPH11264681A (en) * 1998-03-18 1999-09-28 Nkk Corp Cold storage method and system employing inclusion hydrate and cold storage agent
JP2000233101A (en) * 1999-02-15 2000-08-29 Nkk Corp Process and apparatus for manufacturing hydrate slurry
JP2001031958A (en) * 1999-07-23 2001-02-06 Mitsubishi Chemicals Corp Method for using heat transport medium
JP2003126676A (en) * 2001-05-30 2003-05-07 Nkk Corp Supply method of hydrate-slurry forming agent

Also Published As

Publication number Publication date
JP2002263470A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
KR100455839B1 (en) Hydrate thermal storage medium and method for producing thereof, thermal storage apparatus using hydrate thermal storage medium, and hydrate cold thermal transportation medium
JP4816053B2 (en) Heat storage agent, heat transport medium, melting point adjusting agent for heat storage agent, supercooling inhibitor for heat storage agent, method for producing heat storage agent or main component of heat transport medium, and tri-n-butyl-n-pentylammonium chloride hydrate
JP4599733B2 (en) Hydrate slurry production equipment
WO2003102474A1 (en) Hydrate slurry manufacturing device
JPH09291272A (en) Heat accumulating material
JP2014016143A (en) Manufacturing method for hydrate slurry, manufacturing device for hydrate slurry, and hydrate heat storage type air conditioning system
JP3972734B2 (en) Hydrate slurry manufacturing apparatus and operation method thereof
JP4835745B2 (en) Hydrate slurry production equipment
JP4853851B2 (en) High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP2004053171A (en) Air conditioning system and operation method for the same
JP4888521B2 (en) Hydrate slurry manufacturing equipment
JP2005029591A (en) Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JP4396355B2 (en) Supercooling release device in hydrate slurry air conditioning system
JP4595754B2 (en) Hydrate slurry manufacturing apparatus and hydrate slurry manufacturing method
JP3994829B2 (en) Hydrate slurry production equipment
JP2007046855A (en) Hydrate slurry thermal storage device and thermal storage method
JP4529305B2 (en) Method and apparatus for transporting hydrate slurry
JP2005300043A (en) Ice thermal storage system
JP3427628B2 (en) Ice storage device
JP4507458B2 (en) Method for producing hydrate slurry
JPS60196580A (en) Cryogenic warehouse
JP2508299B2 (en) Ice heat storage device
JP2000130899A (en) Cold heat system
JP3367274B2 (en) Ice storage device
JP2000146475A (en) Manufacturing apparatus for inclusion hydrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees