JP2010024525A - Galvannealed steel sheet - Google Patents

Galvannealed steel sheet Download PDF

Info

Publication number
JP2010024525A
JP2010024525A JP2008190052A JP2008190052A JP2010024525A JP 2010024525 A JP2010024525 A JP 2010024525A JP 2008190052 A JP2008190052 A JP 2008190052A JP 2008190052 A JP2008190052 A JP 2008190052A JP 2010024525 A JP2010024525 A JP 2010024525A
Authority
JP
Japan
Prior art keywords
mass
steel sheet
plating
alloying
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190052A
Other languages
Japanese (ja)
Inventor
Fumio Yuse
文雄 湯瀬
Mikako Takeda
実佳子 武田
Shigenobu Nanba
茂信 難波
Yoshihiro Miyake
義浩 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008190052A priority Critical patent/JP2010024525A/en
Publication of JP2010024525A publication Critical patent/JP2010024525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet in which the increase of production cost is suppressed, and which has surface appearance properties more excellent than those of the conventional one. <P>SOLUTION: Into a steel sheet having a chemical composition comprising, by mass, 0.02 to 0.2% C, 1.5 to 3.5% Mn, 0.03 to 0.5% Cr and 0.01 to 0.15% Al, also comprising ≤0.04% Si, ≤0.03% P, ≤0.03% S, and the balance Fe with inevitable impurities, further, one or more selected from Se, Sb, Zn and Ba are incorporated in the range of 0.001 to 0.2% in total, and hot dip galvanizing is performed, so as to produce a hot dip galvannealed steel sheet. By the action of Se, Sb, Zn and Ba, the concentration of easily oxidizable elements such as Si and Mn onto the surface of the steel sheet caused by selective oxidation upon annealing is suppressed, and the reduction of its plating properties and alloying treatability is prevented. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動車、家電製品、建材などの用途に供される、表面外観に優れた合金化溶融亜鉛めっき鋼板に係り、特に、自動車の車体に防錆表面処理鋼板として用いられる、焼付け硬化性が良くかつ高強度・高張力で、表面外観に優れた合金化溶融亜鉛めっき鋼板に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet having an excellent surface appearance, which is used for applications such as automobiles, home appliances, and building materials, and is particularly used as a rust-proof surface-treated steel sheet for automobile bodies. The present invention relates to an alloyed hot-dip galvanized steel sheet having good surface strength, high strength and high tension.

溶融亜鉛めっき鋼板は、自動車、家電、建材などの広範な用途に使用されている。特に、合金化亜鉛めっき鋼板は、耐食性、スポット溶接性にも優れ、国内では自動車用鋼板として広く使用されている。近年、自動車では、地球環境問題に関する意識の高まりによる燃費向上のための車体軽量化や衝突安全性を高める観点から、溶融亜鉛めっき鋼板にも高強度化および薄物化の要求が高まっており、強度延性バランスを確保するために、Si、Mnなどの易酸化元素を添加したものが多い。これらの添加元素は、めっき処理前に行なわれる焼鈍時に選択酸化されて、溶融亜鉛のめっき濡れ性やめっき層の合金化処理性を著しく阻害することが知られており、めっき後の鋼板に、めっきが均一に付着していない不めっきなどのめっき不良や、めっきは付着しているものの表面が波を打ったような模様があり外観が優れない「さざなみ」と呼ばれるめっき不良が発生しやすくなり、また、めっき層の合金化の制御が難しいため、合金化溶融亜鉛めっき鋼板を安定的に製造するのが困難な状況にあった。前記めっき不良(不めっき)、さざなみ、合金化ムラが発生すると、耐パウダリング(粉末状の剥離)性も劣るため、後の部品加工工程で、めっき層が剥離するという問題が発生する。   Hot-dip galvanized steel sheets are used in a wide range of applications such as automobiles, home appliances, and building materials. In particular, alloyed galvanized steel sheets are excellent in corrosion resistance and spot weldability, and are widely used as automotive steel sheets in Japan. In recent years, in automobiles, from the viewpoint of increasing the weight of the vehicle body for improving fuel efficiency due to increased awareness of global environmental problems and improving collision safety, there is an increasing demand for hot-dip galvanized steel sheets with higher strength and thinner materials. In order to ensure a ductile balance, many of them are added with easily oxidizable elements such as Si and Mn. These additive elements are known to be selectively oxidized at the time of annealing before the plating treatment, and significantly inhibit the wettability of hot dip zinc and the alloying processability of the plating layer. Plating defects such as non-plating where plating does not adhere uniformly, and plating defects called “Sazanami”, which has a pattern that appears to be wavy on the surface of plating but has an excellent appearance, are likely to occur. Moreover, since it is difficult to control the alloying of the plating layer, it has been difficult to stably manufacture the galvannealed steel sheet. When the above-mentioned plating defects (non-plating), ripples, and alloying unevenness occur, the powdering (powder-like peeling) property is also inferior, resulting in a problem that the plating layer is peeled off in the subsequent component processing step.

このような問題を解消するために、例えば、特許文献1では、被めっき鋼板の焼鈍工程で、この鋼板表層に、例えば、窒素雰囲気中の酸素分圧または硫化水素分圧などを調節した加熱工程を組み入れて、Si、Mn、Al、Tiなどの鋼板添加元素と焼鈍雰囲気成分との、Si−Mn複合酸化物またはMnSなどの反応物を形成させることにより、合金化反応性を大幅に改善し、めっき密着性に優れ、合金化ムラがなく、耐パウダリング性に優れた合金化溶融めっき鋼板の製造方法が開示されている。また、特許文献2では、Mnを含む高張力鋼板の表面に、Sを含有するアンモニウム塩を付着させ、少量の水素ガスを含む窒素ガス雰囲気中で焼鈍処理を施した後に、溶融亜鉛めっき処理を施すことにより、Mnの鋼板表層への濃化を抑制して、鋼板と溶融亜鉛との濡れ性低下を防止し、めっき性、めっき密着性、めっき外観に優れた溶融亜鉛めっき鋼板を、合金化処理の遅延を伴わずに、生産性よく製造する方法が開示されている。さらに、特許文献3では、Si、Mn、P等の、焼鈍時にFeよりも酸化しやすい元素を含有する鋼板を焼鈍した後、亜鉛めっき浴を通過させて溶融亜鉛めっき処理を施す前に、この鋼板の表層をドライエッチング法により除去し、表層が除去された鋼板に溶融亜鉛めっき処理を施した後、合金化処理を施すことにより、鋼板と溶融亜鉛めっき浴との濡れ性が良好となり、合金化亜鉛めっき層中に不めっきや合金化むらが発生せず、均一性および耐パウダリング性に優れた合金化溶融亜鉛めっきの製造方法が開示されている。そして、特許文献4では、Si、Mn、Alのうちの1種または2種以上を含有する高張力鋼板を、無酸化炉または直火炉型の加熱帯を有する連続焼鈍炉で焼鈍した後、この高張力鋼板に含有される元素の表面濃化層の70%以上を酸洗によって除去した後に再加熱し、その後、高張力鋼板に溶融亜鉛めっきを施すことにより、不めっきを防止して優れた表面性状、および優れためっき密着性を有する高張力溶融亜鉛めっき鋼板の製造方法が開示されている。
特開2005−200711号公報 特開2001−279410号公報 特開平6―88193号公報 特開2004−263271号公報
In order to solve such a problem, for example, in Patent Document 1, in the annealing process of the steel sheet to be plated, a heating process in which, for example, an oxygen partial pressure or a hydrogen sulfide partial pressure in a nitrogen atmosphere is adjusted to the surface layer of the steel sheet. And alloying reactivity is greatly improved by forming a reaction product such as Si-Mn composite oxide or MnS between steel plate additive elements such as Si, Mn, Al, Ti and annealing atmosphere components. Also disclosed is a method for producing an galvannealed steel sheet having excellent plating adhesion, no alloying unevenness, and excellent powdering resistance. In Patent Document 2, an ammonium salt containing S is attached to the surface of a high-tensile steel plate containing Mn, and after annealing in a nitrogen gas atmosphere containing a small amount of hydrogen gas, hot dip galvanizing is performed. By applying it, the concentration of Mn on the steel sheet surface layer is suppressed, the wettability of the steel sheet and hot dip zinc is prevented, and hot dip galvanized steel sheets with excellent plating properties, plating adhesion and plating appearance are alloyed. A method of manufacturing with high productivity without delaying processing is disclosed. Furthermore, in Patent Document 3, after annealing a steel sheet containing an element that is easier to oxidize than Fe during annealing, such as Si, Mn, P, before passing a galvanizing bath and performing a hot dip galvanizing treatment, The surface layer of the steel sheet is removed by a dry etching method, and the steel sheet from which the surface layer has been removed is subjected to a hot dip galvanizing process, and then the alloying process is performed to improve the wettability between the steel sheet and the hot dip galvanizing bath. There has been disclosed a method for producing galvannealed galvanized iron that is excellent in uniformity and powdering resistance without causing non-plating or alloying unevenness in the galvanized layer. And in patent document 4, after annealing the high-tensile steel plate containing 1 type or 2 types or more in Si, Mn, and Al by a continuous annealing furnace which has a non-oxidizing furnace or a direct-fired furnace type heating zone, After removing 70% or more of the surface concentrated layer of the elements contained in the high-tensile steel plate by pickling, it was reheated and then hot-dip galvanized on the high-tensile steel plate to prevent unplating and excellent A method for producing a high-tensile hot-dip galvanized steel sheet having surface properties and excellent plating adhesion is disclosed.
Japanese Patent Laying-Open No. 2005-200711 JP 2001-279410 A JP-A-6-88193 JP 2004-263271 A

しかし、上記特許文献1〜4に記載された合金化溶融亜鉛めっき鋼板の製造方法では、鋼板と溶融亜鉛との濡れ性およびめっき層の合金化処理性の低下や、めっき性およびめっき密着性、合金化ムラの原因となる、Si、Mnなどの鋼板添加元素の鋼板表面への濃化を抑制するために、溶融亜鉛めっき処理前の焼鈍工程で、熱処理パターンを余分に追加したり、鋼板表面にSを含有するアンモニウム塩を付着させた後に焼鈍処理をしたり、前記添加元素の鋼板表面への濃化層を、ドライエッチングや酸洗によって除去するなど、合金化溶融亜鉛めっき鋼板の製造工程が複雑化するという問題点がある。   However, in the method for producing an alloyed hot-dip galvanized steel sheet described in Patent Documents 1 to 4, the wettability between the steel sheet and hot-dip zinc and the alloying processability of the plating layer are reduced, the plating property and the plating adhesion, To suppress the concentration of steel additive elements such as Si and Mn on the steel sheet surface, which cause uneven alloying, an extra heat treatment pattern is added in the annealing process before hot dip galvanizing, or the steel sheet surface An alloyed hot-dip galvanized steel sheet manufacturing process, such as annealing after adhering an ammonium salt containing S to the surface, or removing the concentrated layer of the additive element on the steel sheet surface by dry etching or pickling There is a problem that becomes complicated.

この発明は、上記のような従来技術の問題点に鑑みなされたもので、その課題は、製造工程が複雑化せず、製造コストの上昇を抑制して、従来よりも表面外観性に優れた合金化溶融亜鉛めっき鋼板を提供することである。   The present invention has been made in view of the above-described problems of the prior art, and the problem is that the manufacturing process is not complicated, the increase in manufacturing cost is suppressed, and the surface appearance is superior to the conventional one. It is to provide a galvannealed steel sheet.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

請求項1に係る合金化亜鉛めっき鋼板は、C:0.02〜0.2質量%、Mn:1.5〜3.5質量%、Cr:0.03〜0.5質量%、Al:0.01〜0.15質量%、かつSi:0.04質量%以下、P:0.03質量%以下、S:0.03質量%以下で、残部Feおよび不可避的不純物の化学組成を有する鋼板に、溶融亜鉛めっき処理を施した後にめっき層を合金化処理した合金化溶融亜鉛めっき鋼板であって、前記化学組成を有する鋼板が、さらに、Se、Sb、Zn、Baの中から選ばれた1種または2種以上を、合計で0.001〜0.2質量%の範囲で含有していることを特徴とする。   The alloyed galvanized steel sheet according to claim 1 is C: 0.02-0.2 mass%, Mn: 1.5-3.5 mass%, Cr: 0.03-0.5 mass%, Al: 0.01 to 0.15% by mass, Si: 0.04% by mass or less, P: 0.03% by mass or less, S: 0.03% by mass or less, and having the chemical composition of the balance Fe and inevitable impurities An alloyed hot-dip galvanized steel sheet obtained by subjecting a steel sheet to hot-dip galvanization and then alloying the plating layer, wherein the steel sheet having the chemical composition is further selected from Se, Sb, Zn, and Ba. 1 type or 2 types or more are contained in the range of 0.001-0.2 mass% in total.

請求項2に係る合金化亜鉛めっき鋼板は、前記鋼板が、さらに、Cu:0.003〜0.5質量%、Ni:0.003〜1.0質量%、Ti:0.003〜1.0質量%の中から選ばれた1種または2種以上を、合計で0.003〜2.5質量%の範囲で含有していることを特徴とする。   In the alloyed galvanized steel sheet according to claim 2, the steel sheet is further Cu: 0.003-0.5 mass%, Ni: 0.003-1.0 mass%, Ti: 0.003-1. 1 type or 2 types or more selected from 0 mass% is contained in 0.003-2.5 mass% in total.

請求項3に係る合金化亜鉛めっき鋼板は、前記鋼板が、さらに、V:0.003〜1.0質量%、Nb:0.003〜1.0質量%、B:0.0002〜0.1質量%、Mo:0.003〜1.0質量%の中から選ばれた1種または2種以上を0.001〜1.0質量%含むことを特徴とする。   In the alloyed galvanized steel sheet according to claim 3, the steel sheet is further divided into V: 0.003-1.0 mass%, Nb: 0.003-1.0 mass%, and B: 0.0002-0. 1 mass%, Mo: 0.001-1.0 mass% of 1 type (s) or 2 or more types chosen from 0.003-1.0 mass% is contained.

請求項4に係る合金化亜鉛めっき鋼板は、前記鋼板が、さらに、Ca:0.0005〜0.005質量%、Mg:0.0005〜0.01質量%の中の1種または2種を含むことを特徴とする。   In the alloyed galvanized steel sheet according to claim 4, the steel sheet further comprises one or two of Ca: 0.0005 to 0.005 mass% and Mg: 0.0005 to 0.01 mass%. It is characterized by including.

本願発明では、鋼板の強度延性バランスを確保するために添加されるSi、Mnなどの易酸化性元素の、焼鈍時の選択酸化による鋼板表面への濃化を抑制して、めっき性や合金化処理性の低下を防止する合金元素を含有するように化学組成を規定したので、めっき性が良好で、合金化ムラが少なく、表面外観が優れた高強度の合金化溶融亜鉛めっき鋼板を製造することができる。このような格段の品質効果により、めっき品質の要求レベルの高い自動車用鋼板として、合金化亜鉛めっき鋼板の適用拡大が可能となり、拡販による経済的効果も期待される。   In the present invention, the concentration of easily oxidizable elements such as Si and Mn added to secure the strength ductility balance of the steel sheet to the steel sheet surface due to selective oxidation during annealing is suppressed, and plating properties and alloying are achieved. Since the chemical composition is defined so as to contain an alloying element that prevents deterioration of the processability, a high-strength galvannealed steel sheet with good plating properties, less unevenness in alloying, and excellent surface appearance is manufactured. be able to. Such a remarkable quality effect makes it possible to expand the application of alloyed galvanized steel sheets as automotive steel sheets having a high required level of plating quality, and an economic effect by expanding sales is also expected.

以下に、この発明の実施形態を、技術的根拠および実施例を交えて説明する。   Hereinafter, embodiments of the present invention will be described with reference to technical grounds and examples.

合金化溶融亜鉛めっき鋼板の製造工程における焼鈍は、通常、窒素ガスに少量の水素ガスを混合させた雰囲気下で実施される。しかし、焼鈍時には、少量の大気の侵入があり、このような雰囲気下では、Feは酸化されないが、易酸化元素であるSiやMnは酸化されるため、この易酸化元素が選択的に酸化されて表面への拡散が生じ、これらの元素の単独酸化物、または複合酸化物が生成し、不めっきなどのめっき欠陥や合金化ムラなどの合金化不良の原因となる。とくにSiは鋼板表面に濃化すると、最表面に薄い酸化層や粒界酸化を形成し、めっき性や合金化処理性を著しく劣化させることが知られている。一方、Mnは鋼板の表層に濃化し、粒状の酸化物(MnO)として成長するため、溶融亜鉛めっき後に行なうめっき層の合金化熱処理時のFeのめっき層方向の拡散に対するバリア効果はSiよりも小さく、少量の添加であれば合金化の処理速度への影響は少ない。しかし、Mnは強化能力の低い元素であるため、添加量を多くする必要がある。多量に添加すると、MnOが表面に生成しやすいため、合金化挙動が複雑化して、合金化制御が困難となる。   The annealing in the manufacturing process of the alloyed hot-dip galvanized steel sheet is usually performed in an atmosphere in which a small amount of hydrogen gas is mixed with nitrogen gas. However, during annealing, there is a small amount of air intrusion. In such an atmosphere, Fe is not oxidized, but easily oxidizable elements such as Si and Mn are oxidized. As a result, diffusion to the surface occurs, and single oxides or composite oxides of these elements are generated, which causes plating defects such as non-plating and alloying defects such as uneven alloying. In particular, when Si is concentrated on the surface of a steel sheet, it is known that a thin oxide layer or grain boundary oxidation is formed on the outermost surface, and the plating property and alloying processability are significantly deteriorated. On the other hand, since Mn concentrates on the surface layer of the steel sheet and grows as a granular oxide (MnO), the barrier effect on the diffusion of Fe in the plating layer direction during alloying heat treatment of the plating layer performed after hot dip galvanizing is more than that of Si. If it is small and added in a small amount, there is little influence on the processing speed of alloying. However, since Mn is an element having a low strengthening ability, it is necessary to increase the amount of addition. When added in a large amount, MnO is likely to be formed on the surface, so that the alloying behavior becomes complicated and the alloying control becomes difficult.

本発明者らは、鋼板表面の状態、とくにMnOの生成形態とめっき層の合金化の関係に着目して検討した結果、高強度化および薄物化への要求が高まる中で、強度延性バランスを確保する観点から、Si、Mn,Pなどの易酸化性元素を添加した鋼板においても、めっき欠陥や合金化ムラが発生しない、表面外観に優れた合金化溶融亜鉛めっき鋼板の製造が可能であることを把握した。すなわち、鋼板の表面状態を詳細に解析した結果、SiやMnの表面酸化を抑制できれば、めっき欠陥や合金化ムラが低減でき、良好なめっき表面外観が得られることに想到した。このSiやMnの表面酸化を抑制する元素として、鋼板表面に濃化しやすく、地鉄には固溶せず、粒界に偏析しやすい元素であるSe、Sb、Zn、Baに着目した。これらの元素は粒界に存在しやすい性質がある。そのため、これらの元素を添加すれば、鋼板表面(表層)または表面(表層)粒界近傍に偏析することになり、粒界を通じて形成される、Siの複合酸化物やMn酸化物の生成を抑制することが可能となる。そして、表層にSiやMnの酸化物が少ないため、溶融亜鉛との濡れ性が改善され、合金反応の進行が均一化するため、不めっきや合金化不良(ムラ)も低減する。また、このような良好なめっき表面外観により、塗装焼付け硬化性も向上する。以下に、本願発明における化学組成の限定理由について記載する。   As a result of examining the state of the steel sheet surface, in particular, the relationship between the MnO generation form and the alloying of the plating layer, the demand for high strength and thinning has increased. From the standpoint of securing, it is possible to produce an alloyed hot-dip galvanized steel sheet with excellent surface appearance that does not cause plating defects or alloying irregularities even in steel sheets to which easily oxidizable elements such as Si, Mn, and P are added. I figured out that. That is, as a result of detailed analysis of the surface state of the steel sheet, if surface oxidation of Si and Mn could be suppressed, it was conceived that plating defects and alloying unevenness could be reduced and a good plating surface appearance could be obtained. As elements for suppressing the surface oxidation of Si and Mn, attention was focused on Se, Sb, Zn, and Ba, which are elements that are easily concentrated on the steel sheet surface, do not dissolve in the base iron, and are easily segregated at the grain boundaries. These elements tend to exist at grain boundaries. Therefore, if these elements are added, they will segregate in the vicinity of the steel plate surface (surface layer) or surface (surface layer) grain boundary and suppress the formation of Si complex oxide and Mn oxide formed through the grain boundary. It becomes possible to do. And since there are few oxides of Si or Mn in the surface layer, the wettability with molten zinc is improved and the progress of the alloy reaction is made uniform, so that non-plating and poor alloying (unevenness) are also reduced. In addition, such a good plating surface appearance also improves paint bake hardenability. The reasons for limiting the chemical composition in the present invention will be described below.

(1)C:0.02〜0.2質量%
Cは鋼板の強度に大きく作用し、低温変態生成物の量や形態を変化させることにより、伸びや伸びフランジ性などの延性にも影響する。0.02質量%未満では自動車用の高強度ニーズに応えることができず、0.2質量%を超えて添加すると溶接性の低下を招く。このため、C量の下限を0.02質量%とし、好ましくは0.04質量%であり、上限を0.2質量%とし、好ましくは0.15質量%である。
(2)Mn:1.5〜3.5質量%
Mnは強化元素であり、高強度かつ極めて優れた加工性を具備する高強度鋼板としての特性を得るためには、少なくとも1.5質量%以上の添加量が必要である。また、伸びなどの延性の低下、および炭素当量の増大による溶接性への悪影響を避けるため、3.5質量%以下の添加量であることが望ましい。
(3)Cr:0.03〜0.5質量%
Crは焼入れ性を高め、組織強化を図る上で有効な元素であり、オーステナイト相においてCを濃化させて相安定度を高め、マルテンサイトを生成させやすくするのみならず、Cr酸化物を鋼板表面に形成するため、めっき性にも影響を及ぼす。添加量が0.03質量%未満では、焼入れ性向上の効果が期待できない。一方、0.5質量%を超えて添加しても焼入れ性向上の効果が飽和し、製造コスト面でも不利となる。しかも、0.5質量%を超える添加量は、めっき性を損ねる。
(4)Al:0.01〜0.15質量%
Alは製鋼段階での脱酸剤として有効な元素であるため、0.01質量%以上の添加量が必要である。しかし、0.15質量%を超えるAl添加量は、製造コストの上昇を招くとともに、鋼板表面性状へ悪影響を及ぼす。
(5)Si:0.04質量%以下
Siは、α相における固溶C量を減少させることにより、伸びなどの延性、すなわち加工性を向上させる元素である。しかし、Siは鋼板表面に酸化皮膜を形成し、溶融亜鉛との濡れ性を極めて悪化させる元素であるため、本願発明では基本的に添加を必要とせず、不可避的不純物として混入する場合には、その上限を0.04質量%以下、好ましくは0.02質量%以下に止める必要がある。
(6)P:0.03質量%以下
Pは、鋼板の高強度化に有効な元素であるが,0.03質量%を超えると、めっきムラが生じやすくなり、また、合金化処理が困難になるため、本願発明では基本的に添加せず、不可避的不純物として混入する場合には、その上限を0.03質量%以下に止める必要がある。
(7)S:0.03質量%以下
Sは熱間圧延時の熱間割れの原因となる上に、スポット溶接性を著しく損なう元素である。鋼板中で析出物として固定されるが、その量が増加すると、伸びや伸びフランジ性などの延性劣化を招くため、不可避的不純物として混入する場合には、その上限を0.03質量%以下に止める必要がある。
(8)Se、Sb、Zn、Ba:合計で0.001〜0.2質量%
前述したように、めっき不良や合金化ムラを低減し、優れた表面外観を得るためには、SiやMnの表面酸化を抑制する必要がある。そのためには、鋼板表面に濃化しやすく、また粒界に偏析しやすいSe、Sb、Zn、Baの1種または2種以上を、合計で0.001質量%以上添加する必要がある。この添加量未満では、前記表面酸化の抑制効果が発揮されず、0.2質量%を超える添加は、表面酸化の抑制効果が飽和するだけでなく、脆化など鋼板の機械的性質の劣化を招く。これらの元素の作用は、基本的には同じであり、合計の添加量が上記添加量の範囲内で、2種以上の複数の元素を添加してもよい。また、後述するように、Cu、Ni、Tiなどの元素と複合添加すると、相乗作用により、めっき欠陥や合金化ムラを低減し、優れた表面外観をもたらす効果が増大する。
(1) C: 0.02 to 0.2% by mass
C greatly affects the strength of the steel sheet, and affects the ductility such as elongation and stretch flangeability by changing the amount and form of the low-temperature transformation product. If it is less than 0.02% by mass, the high strength needs for automobiles cannot be met, and if it exceeds 0.2% by mass, weldability is deteriorated. For this reason, the lower limit of the C amount is 0.02% by mass, preferably 0.04% by mass, and the upper limit is 0.2% by mass, preferably 0.15% by mass.
(2) Mn: 1.5 to 3.5% by mass
Mn is a strengthening element, and an addition amount of at least 1.5% by mass or more is necessary in order to obtain characteristics as a high-strength steel sheet having high strength and extremely excellent workability. Moreover, in order to avoid the bad influence on weldability by the fall of ductility, such as elongation, and the increase in a carbon equivalent, it is desirable that it is the addition amount of 3.5 mass% or less.
(3) Cr: 0.03-0.5 mass%
Cr is an element effective in enhancing hardenability and strengthening the structure. In addition to concentrating C in the austenite phase to increase phase stability and facilitating the formation of martensite, Cr oxide is used as a steel plate. Since it is formed on the surface, the plating property is also affected. If the addition amount is less than 0.03% by mass, the effect of improving hardenability cannot be expected. On the other hand, even if added over 0.5 mass%, the effect of improving hardenability is saturated, which is disadvantageous in terms of manufacturing cost. And the addition amount exceeding 0.5 mass% impairs plating property.
(4) Al: 0.01 to 0.15 mass%
Since Al is an effective element as a deoxidizer in the steelmaking stage, an addition amount of 0.01% by mass or more is necessary. However, an Al addition amount exceeding 0.15% by mass causes an increase in production cost and adversely affects the steel sheet surface properties.
(5) Si: 0.04% by mass or less Si is an element that improves ductility such as elongation, that is, workability, by reducing the amount of solid solution C in the α phase. However, since Si is an element that forms an oxide film on the steel sheet surface and extremely deteriorates the wettability with molten zinc, the present invention basically does not require addition, and when mixed as an unavoidable impurity, It is necessary to limit the upper limit to 0.04 mass% or less, preferably 0.02 mass% or less.
(6) P: 0.03% by mass or less P is an element effective for increasing the strength of a steel sheet. However, if it exceeds 0.03% by mass, uneven plating tends to occur and alloying treatment is difficult. Therefore, in the present invention, basically, it is not added, and when it is mixed as an unavoidable impurity, the upper limit must be limited to 0.03% by mass or less.
(7) S: 0.03 mass% or less S is an element that causes hot cracking during hot rolling and significantly impairs spot weldability. Although fixed as precipitates in the steel sheet, increasing the amount causes ductile deterioration such as elongation and stretch flangeability, so when mixed as an unavoidable impurity, the upper limit is set to 0.03% by mass or less. It is necessary to stop.
(8) Se, Sb, Zn, Ba: 0.001 to 0.2% by mass in total
As described above, it is necessary to suppress surface oxidation of Si and Mn in order to reduce plating defects and alloying unevenness and obtain an excellent surface appearance. For this purpose, it is necessary to add one or more of Se, Sb, Zn and Ba, which are easily concentrated on the steel sheet surface and segregated at the grain boundaries, in a total amount of 0.001% by mass or more. If the amount added is less than this amount, the effect of suppressing the surface oxidation is not exhibited. If the amount exceeds 0.2% by mass, the effect of suppressing the surface oxidation is saturated, and the mechanical properties of the steel sheet such as embrittlement are deteriorated. Invite. The action of these elements is basically the same, and a plurality of two or more elements may be added within the range of the total addition amount. As will be described later, when added in combination with elements such as Cu, Ni, and Ti, the synergistic effect reduces plating defects and alloying unevenness and increases the effect of providing an excellent surface appearance.

本願発明の素地鋼板、すなわち溶融亜鉛メッキ前の鋼板の組織は、フェライトとマルテンサイトの混合組織を主体とするものであればよく、金属組織に占めるフェライトとマルテンサイトの各分率(体積率)はとくに限定されない。マルテンサイトは高強度化しやすい組織であり、自動車用鋼板などにおいて要求度の高い高強度鋼板の製造に適した組織である。また、フェライト組織を混在させることにより、曲げ性や伸びなどの延性、および深絞り性などの加工性を調整することが可能となる。この両組織の分率自体は、鋼板に要求される強度と延性のバランスに応じて決定すればよい。一般的にはフェライト分率が高くなると強度が低下する反面、延性が向上する傾向にある。マルテンサイト分率が高くなると、強度は向上するが延性が低下する傾向にある。これらの分率として、延性の観点からは、フェライトが5〜90体積%、強度の観点からはマルテンサイトが5〜90体積%であることが好ましい。また、パーライトやベイナイト(中間変態組織)などの異なる組織の混在量が多くなると、加工性が劣化するため、フェライトとマルテンサイトの合計量は70体積%以上であることが好ましく、95体積%以上であることがより好ましい。なお、素地鋼板の金属組織中の各組織の分率は、圧延方向と垂直な断面における板厚(t)方向中央(t/2)でかつ板幅(w)方向中央(w/2)の位置を、部走査型電子顕微鏡(SEM)を用いて、少なくとも倍率3000倍程度で観察して、それぞれの組織の面積率を求め、この面積率を各組織の体積率とみなすことができる。本願発明で用いる素地鋼板は、上記の組織条件を満足するものであり、その製造条件をとくに限定するものではなく、その一例を後述する。   The structure of the base steel sheet of the present invention, that is, the steel sheet before hot dip galvanizing, may be any structure as long as it is mainly composed of a mixed structure of ferrite and martensite, and each fraction (volume ratio) of ferrite and martensite in the metal structure. Is not particularly limited. Martensite is a structure that is easily strengthened, and is a structure that is suitable for manufacturing a high-strength steel sheet that has a high degree of demand in steel sheets for automobiles. In addition, by mixing the ferrite structure, it is possible to adjust ductility such as bendability and elongation, and workability such as deep drawability. What is necessary is just to determine the fraction itself of both structures according to the balance of the intensity | strength requested | required of a steel plate, and ductility. Generally, as the ferrite fraction increases, the strength decreases, but the ductility tends to improve. When the martensite fraction is increased, the strength is improved, but the ductility tends to be lowered. These fractions are preferably 5 to 90% by volume of ferrite from the viewpoint of ductility and 5 to 90% by volume of martensite from the viewpoint of strength. Further, since the workability deteriorates when the mixed amount of different structures such as pearlite and bainite (intermediate transformation structure) increases, the total amount of ferrite and martensite is preferably 70% by volume or more, and 95% by volume or more. It is more preferable that It should be noted that the fraction of each structure in the metal structure of the base steel sheet is the thickness (t) direction center (t / 2) and the sheet width (w) direction center (w / 2) in the cross section perpendicular to the rolling direction. The position can be observed with a partial scanning electron microscope (SEM) at least at a magnification of about 3000 times to determine the area ratio of each tissue, and this area ratio can be regarded as the volume ratio of each tissue. The base steel sheet used in the present invention satisfies the above-described structure conditions, and does not particularly limit the production conditions, and an example thereof will be described later.

また、Cu、NiおよびTiは、鋼板のめっき性や機械的性質などの特性に対して、それぞれ以下のような作用を及ぼす。
(9)Cu:0.003〜0.5質量%、Ni:0.003〜1.0質量%
Cu、Niは、鋼板自体の強度を向上させ、かつ、めっき性を向上させることができる有効な元素である。とくに、Feよりも酸化しにくいCu、Niが鋼板表面に濃化することにより、SiやMnの酸化物の形態を変化させて、めっき性の低下を防止することができる。このようなめっき性低下の防止効果の観点からは、0.003質量%以上の添加量が必要であるが、過度の添加量はコスト上昇や加工性の劣化をもたらすため、それぞれ上限を、0.5質量%および1.0質量%とする。
(10)Ti:0.003〜1.0質量%
Tiは、炭化物を形成するため、鋼板の高強度化に有効な元素であり、また、C、Nを粒界に固定して、鋼板のr値を上昇させる効果もある。これらの効果を発揮するためには、0.003質量%以上の添加量が必要であり、Cu、Niの場合と同様に、過度の添加量はコスト上昇や加工性の劣化をもたらすため、上限を1.0質量%とする。
Cu, Ni, and Ti have the following effects on the properties of the steel sheet, such as plating properties and mechanical properties, respectively.
(9) Cu: 0.003-0.5 mass%, Ni: 0.003-1.0 mass%
Cu and Ni are effective elements that can improve the strength of the steel sheet itself and improve the plating properties. In particular, Cu and Ni, which are more difficult to oxidize than Fe, are concentrated on the surface of the steel sheet, whereby the form of oxides of Si and Mn can be changed to prevent a decrease in plating performance. From the viewpoint of the effect of preventing such a decrease in plating property, an addition amount of 0.003% by mass or more is necessary, but an excessive addition amount causes an increase in cost and deterioration of workability. .5% by mass and 1.0% by mass.
(10) Ti: 0.003 to 1.0 mass%
Since Ti forms carbides, Ti is an element effective for increasing the strength of the steel sheet, and also has the effect of fixing C and N to the grain boundaries and increasing the r value of the steel sheet. In order to exert these effects, an addition amount of 0.003% by mass or more is necessary, and as in the case of Cu and Ni, an excessive addition amount causes an increase in cost and deterioration of workability. Is 1.0 mass%.

これらのCu、Ni、Tiを複合添加することにより、鋼板表面の清浄度の向上や、上工程での溶解時に、Feとの複合酸化物を形成して、SiやMnの表面濃化を抑制し、めっき性を向上させる作用があるため、Cu、Ni、Tiの中、1種または2種以上を合計で、0.003〜2.5質量%の範囲で含有することが望ましい。   By adding these Cu, Ni, and Ti in combination, the surface cleanliness of the steel sheet is improved, and when it is dissolved in the upper process, a complex oxide with Fe is formed to suppress the surface concentration of Si and Mn. And since it has the effect | action which improves metal-plating property, it is desirable to contain 1 type (s) or 2 or more types in total in 0.003-2.5 mass% among Cu, Ni, and Ti.

さらに、V、Nb、B、Moは、上記合金化亜鉛めっき鋼板のめっき性や機械的性質などの特性をさらに向上させる元素であり、それぞれ以下のような作用を及ぼす。
(11)V:0.003〜1.0質量%、Nb:0.003〜1.0質量%
V、Nbは、上記Tiと同様に、炭化物を形成し、鋼板の高強度化に有効な元素であり、その効果を発揮するためには、0.003質量%以上の添加量が必要である。過度の添加量は、コスト上昇や加工性の劣化をもたらすため、その上限を1.0質量%とする。
(12)Mo:0.003〜1.0質量%
Moはめっき性を損なわずに、固溶強化により高強度化を図ることができる有効な元素である。その効果を発揮するためには、0.003質量%以上の添加量が必要である。過度の添加量は、コスト上昇をもたらすため、その上限を1.0質量%とする。
(13)B:0.0002〜0.1質量%
Bは、鋼板の溶接性や焼入れ性を向上させる作用がある。このような作用を効果的に発現させるためには、添加量を0.0002質量%以上とするのが好ましい。しかし、過度の添加量は、前記向上作用が飽和するだけでなく、延性が劣化し、加工性が低下するため、添加量の上限を0.1質量%とする。
Furthermore, V, Nb, B, and Mo are elements that further improve characteristics such as plating properties and mechanical properties of the alloyed galvanized steel sheet, and have the following effects.
(11) V: 0.003 to 1.0 mass%, Nb: 0.003 to 1.0 mass%
V and Nb are elements that form carbides and are effective in increasing the strength of the steel sheet, as in the case of Ti, and an additive amount of 0.003% by mass or more is necessary to exert the effect. . An excessive addition amount causes an increase in cost and deterioration of workability, so the upper limit is made 1.0 mass%.
(12) Mo: 0.003 to 1.0 mass%
Mo is an effective element that can increase the strength by solid solution strengthening without impairing the plating property. In order to exert the effect, an addition amount of 0.003% by mass or more is necessary. An excessive addition amount causes an increase in cost, so the upper limit is made 1.0 mass%.
(13) B: 0.0002 to 0.1% by mass
B has the effect of improving the weldability and hardenability of the steel sheet. In order to effectively exhibit such an action, the addition amount is preferably 0.0002% by mass or more. However, an excessive addition amount not only saturates the above-mentioned improving effect, but also deteriorates ductility and lowers workability, so the upper limit of the addition amount is 0.1% by mass.

これらの元素V、Nb、B、Moは、前記SeやSbに比べると、SiやMnの表面酸化を抑制する能力はやや低下するが、粒界に偏析しやすいため、亜鉛めっきの合金化を均一に制御し、合金化ムラやめっき不良を低減させる効果がある。また、前記SeやSbなどの元素と、またはCu、NiやTiなどの元素との相乗作用も期待されるため、SeやSbなどの元素と、またはCu、NiやTiなどの元素との複合添加により、めっき性の向上や合金ムラ低減、および高強度化などの効果が増大する。   These elements V, Nb, B, and Mo are slightly less capable of suppressing the surface oxidation of Si and Mn than Se and Sb, but are easily segregated at grain boundaries. It has the effect of uniformly controlling and reducing alloying irregularities and plating defects. In addition, since a synergistic effect between the element such as Se or Sb or an element such as Cu, Ni or Ti is also expected, a composite of an element such as Se or Sb or an element such as Cu, Ni or Ti. By the addition, effects such as improvement in plating properties, reduction in alloy unevenness, and increase in strength are increased.

そして、Ca、Mgは、以下のような作用を及ぼす。
(14)Ca:0.0005〜0.005質量%、Mg:0.0005〜0.01質量%
Caは、鋼中介在物の形態を制御して、延性を高め、加工性を向上させる作用がある。このような作用を効果的に発現させるためには、0.0005質量%以上の添加量が好ましい。しかし、過度に添加すると、鋼中の介在物量が増加し、延性が劣化し、加工性が低下するため、その上限を0.005質量%とする。Mgについても、その作用、および好ましい添加量範囲は、Caの場合と同様である。CaやMgには、鋼の清浄化作用があるため、鋼板表面の清浄度も向上し、めっき層付与および合金化処理の均一化を促進する作用もある。
And Ca and Mg exert the following actions.
(14) Ca: 0.0005 to 0.005 mass%, Mg: 0.0005 to 0.01 mass%
Ca has the effect | action which controls the form of the inclusion in steel, raises ductility, and improves workability. In order to effectively exhibit such an action, an addition amount of 0.0005% by mass or more is preferable. However, if added excessively, the amount of inclusions in the steel increases, ductility deteriorates, and workability decreases, so the upper limit is made 0.005% by mass. Also for Mg, the action and the preferable addition amount range are the same as in the case of Ca. Since Ca and Mg have a steel cleaning action, they also improve the cleanliness of the steel sheet surface and promote the application of a plating layer and the homogenization of the alloying treatment.

以下に、本願発明の好適な製造方法を記載する。本願発明のいずれかの化学組成を有する鋼のスラブを、加工性を阻害する集合組織が形成されないように、800〜950℃の仕上げ温度を確保し、かつオーステナイト粒径の粗大化を防止する観点から、1000〜1300℃の温度範囲に加熱後、熱間圧延を行ない、仕上げ圧延機を通過後、冷却帯で、パーライトの生成を抑制するため、30〜120℃/sの範囲の冷却速度で、700℃以下に冷却して巻き取られる。ここで、巻取り温度を700℃以下とするのは、700℃よりも高温で巻き取ると、鋼板表面のスケールが厚くなり、酸洗性が低下するためである。巻取り温度は、低過ぎると鋼板の硬度が上昇して冷間圧延性が低下するため、下限温度を250℃とし、この下限温度は400℃以上とすることが好ましい。巻取り後、鋼板は、酸洗によって表面のスケールが除去された後、30%以上の冷延率(総圧下率)で冷間圧延される。ここで、冷延率を30%以上とするのは、30%未満では、所望の板厚の冷延鋼板とするためには、冷間圧延に供される熱間圧延鋼板の板厚を薄くする必要があり、板厚が薄くなる分だけ鋼板が長くなって、酸洗時の生産性の低下などの不都合が生じるためである。   Below, the suitable manufacturing method of this invention is described. A viewpoint of securing a finishing temperature of 800 to 950 ° C. and preventing coarsening of the austenite grain size so that a texture that inhibits workability is not formed in the steel slab having any chemical composition of the present invention. In order to suppress the formation of pearlite in the cooling zone after performing hot rolling after heating to 1000 to 1300 ° C and passing through the finish rolling mill, the cooling rate is in the range of 30 to 120 ° C / s. And cooled to 700 ° C. or lower. Here, the winding temperature is set to 700 ° C. or less because when the winding is performed at a temperature higher than 700 ° C., the scale on the surface of the steel sheet becomes thick and the pickling property is lowered. If the coiling temperature is too low, the hardness of the steel sheet increases and the cold rolling property decreases, so the lower limit temperature is preferably 250 ° C., and the lower limit temperature is preferably 400 ° C. or higher. After winding, the steel sheet is cold-rolled at a cold rolling rate (total rolling reduction) of 30% or more after the surface scale is removed by pickling. Here, if the cold rolling rate is 30% or more, if less than 30%, in order to obtain a cold rolled steel sheet having a desired thickness, the thickness of the hot rolled steel sheet used for cold rolling is reduced. This is because the steel plate becomes longer as the plate thickness becomes thinner, and inconveniences such as reduced productivity during pickling occur.

前記冷延鋼板は、連続式溶融亜鉛めっきラインで、めっき処理前に、Ac1点以上の温度に加熱保持されて、焼鈍処理が行なわれる。この焼鈍処理によって、所望の組織を確実に実現して、めっき処理後の加工性を安定化させるために、前記加熱保持温度は、Ac1点よりも50℃程度高い加熱保持温度とすることが望ましい。この望ましい加熱保持温度は、本願発明の化学組成範囲では、780℃以上となる。加熱保持温度の上限については、オーステナイト結晶粒の粗大化を防止する観点から、本願発明の化学組成範囲では、900℃以下であればとくに支障はない。加熱保持時間については、780〜900℃の高温域での加熱保持であるため、10秒以上保持すれば十分に均熱されて、フェライト+オーステナイト組織が得られる。この加熱保持により均熱された鋼板は、通常440〜470℃の温度範囲に設定された溶融亜鉛めっき浴の温度にまで、平均冷却速度が1℃/s以上で冷却される。このめっき浴の組成はとくに限定されず、公知の溶融亜鉛めっき浴を用いることができる。なお、Alは溶融亜鉛めっき層の合金化速度の制御に作用する元素であるため、めっき浴中のAl含有量は、0.05〜0.2質量%の範囲とすることが好ましい。めっき浴中のAl含有量がこの範囲を上回ると合金化が不十分になり、逆に下回ると、合金化が進行しすぎて亜鉛めっき中のFeの割合が高くなりすぎて、いずれも所望の合金度(Fe%)にならず、耐めっき剥離性が低下する。このような合金化度合いや耐めっき剥離性の観点から、Al含有量は0.07〜0.18質量%の範囲とすることがより好ましい。   The cold-rolled steel sheet is heated and held at a temperature of Ac1 point or higher before the plating process in a continuous hot dip galvanizing line and subjected to an annealing process. In order to reliably realize a desired structure by this annealing treatment and stabilize the workability after the plating treatment, the heating and holding temperature is preferably set to a heating and holding temperature that is about 50 ° C. higher than the Ac1 point. . This desirable heating and holding temperature is 780 ° C. or higher in the chemical composition range of the present invention. With respect to the upper limit of the heating and holding temperature, there is no particular problem as long as it is 900 ° C. or lower in the chemical composition range of the present invention from the viewpoint of preventing coarsening of austenite crystal grains. The heating and holding time is heating and holding in a high temperature range of 780 to 900 ° C., and so long as it is held for 10 seconds or more, the temperature is sufficiently soaked to obtain a ferrite + austenite structure. The steel plate soaked by this heating and holding is cooled at an average cooling rate of 1 ° C./s or more to the temperature of the hot dip galvanizing bath normally set to a temperature range of 440 to 470 ° C. The composition of the plating bath is not particularly limited, and a known hot dip galvanizing bath can be used. In addition, since Al is an element which acts on the control of the alloying speed of the hot dip galvanized layer, the Al content in the plating bath is preferably in the range of 0.05 to 0.2% by mass. If the Al content in the plating bath exceeds this range, alloying becomes insufficient. On the other hand, if the Al content is less than this range, alloying proceeds too much and the proportion of Fe in the galvanizing becomes too high. The alloying degree (Fe%) is not achieved, and the plating peel resistance is reduced. From the viewpoint of such an alloying degree and plating peel resistance, the Al content is more preferably in the range of 0.07 to 0.18% by mass.

前記溶融亜鉛めっき処理が施された後は、平均冷却速度1℃/s以上で常温まで冷却することにより、前記素地鋼板中のオーステナイトをマルテンサイトに変態させ、フェライトとマルテンサイトを主体とする混合組織を得ることができる。平均冷却速度が1℃/s未満では、マルテンサイトが生成し難く、パーラートやベイナイト(中間変態組織)が生成するおそれがある。平均冷却速度は10℃/s以上とすることが好ましい。そして、合金化溶融亜鉛めっき鋼板を製造する場合には、前記鋼板に溶融亜鉛めっき処理を施した後、通常、400〜750℃の温度範囲で、好ましくは500〜600℃の範囲に、2〜30秒の範囲で加熱保持して、めっき層をZn−Feの合金にする合金化処理が行なわれる。この合金化処理を行なうための加熱手段としては、ガス加熱やインダクションヒータ加熱など、慣用されている種々の加熱手段を利用することができる。そして、合金化処理後に、前記鋼板を、平均冷却速度が1℃/s以上で、通常、常温まで冷却することにより、フェライトおよびマルテンサイトを主体とする混合組織を得ることができる。   After the hot dip galvanizing treatment is performed, the austenite in the base steel sheet is transformed into martensite by cooling to room temperature at an average cooling rate of 1 ° C./s or more, and a mixture mainly composed of ferrite and martensite. You can get an organization. When the average cooling rate is less than 1 ° C./s, martensite is difficult to be generated, and there is a possibility that perlate and bainite (intermediate transformation structure) are generated. The average cooling rate is preferably 10 ° C./s or more. And when manufacturing an alloyed hot dip galvanized steel sheet, after performing the hot dip galvanizing process to the said steel plate, it is usually in the temperature range of 400-750 degreeC, Preferably it is in the range of 500-600 degreeC, 2- An alloying process is performed in which the plating layer is made into an alloy of Zn—Fe by heating and holding for 30 seconds. As a heating means for performing this alloying treatment, various commonly used heating means such as gas heating and induction heater heating can be used. After the alloying treatment, the steel sheet is cooled to an average cooling rate of 1 ° C./s or more and usually to room temperature, whereby a mixed structure mainly composed of ferrite and martensite can be obtained.

このようなフェライトとマルテンサイトを主体とする混合組織を有する鋼板を素地鋼板として用いた合金化溶融亜鉛めっき鋼板では、素地鋼板の引張り強度が590〜1470MPa級になるとともに、強度と延性のバランスが良好なため、この良好な特性が反映されて、合金化溶融亜鉛めっき鋼板も強度と延性のバランスが良好なものとなる。それによって、この合金化溶融亜鉛めっき鋼板の用途としては、自動車の構造部品が適したものとなり、フロントおよびリア部のサイドメンバやクラッシュボックス、バンパーレインフォースやドアインパクトビームなどの衝撃吸収部品をはじめ、センターピラーレインフォースなどのピラー類、ルーフレールレインフォース、サイドシル、フロアメンバー、キック部などの車体構成部品として使用できる。   In an galvannealed steel sheet using a steel sheet having a mixed structure mainly composed of ferrite and martensite as a base steel sheet, the tensile strength of the base steel sheet is 590 to 1470 MPa, and the balance between strength and ductility is balanced. Since it is good, this good characteristic is reflected, and the alloyed hot-dip galvanized steel sheet also has a good balance between strength and ductility. As a result, structural parts of automobiles are suitable for the use of this alloyed hot-dip galvanized steel sheet, including front and rear side members, crash boxes, bumper reinforcements, and impact absorbing parts such as door impact beams. It can be used as vehicle components such as pillars such as center pillar reinforcements, roof rail reinforcements, side sills, floor members, and kick parts.

以下に、実施例を挙げて本願発明を具体的に説明するが、本願発明はもとより、以下の実施例によって制限を受けるものではなく、本願発明の趣旨に適合する範囲で適当に変更を加えて実施することはもちろん可能であり、そのような変更はいずれも本願発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as well as the present invention, and appropriate modifications are made within a scope that fits the gist of the present invention. Of course, it is possible to implement, and any such modifications are included in the technical scope of the present invention.

表1に示す化学組成(残部はFeおよび不可避的不純物)の鋼を溶製し、この溶鋼を連続鋳造して得られたスラブを1150℃に加熱した後、熱間圧延を行ない、仕上げ温度が870〜900℃で、板厚2.6mmの鋼板に仕上げた後、仕上げ圧延機出側の水冷帯において、40℃/sの平均冷却速度で冷却した後、480℃で巻き取った。この熱間圧延鋼板を酸洗後、冷延率(総圧下率)46%で、板厚1.4mmまで冷間圧延を行い、冷延鋼板を製造した。この板厚1.4mmの冷延鋼板から、板幅100mm×長さ250mmのサンプルを切り出し、酸洗により鋼板表面を清浄化した後、溶融めっきシミュレータを用いて、「焼鈍処理→溶融亜鉛めっき処理→合金化処理」を行なった。   A steel having the chemical composition shown in Table 1 (the balance is Fe and inevitable impurities) is melted, and a slab obtained by continuously casting the molten steel is heated to 1150 ° C., and then hot-rolled, and the finishing temperature is After finishing a steel plate having a thickness of 2.6 mm at 870 to 900 ° C., the steel sheet was cooled at an average cooling rate of 40 ° C./s in a water cooling zone on the exit side of the finish rolling mill, and then wound at 480 ° C. The hot-rolled steel sheet was pickled and then cold-rolled to a sheet thickness of 1.4 mm at a cold rolling rate (total rolling reduction) of 46% to produce a cold-rolled steel sheet. From this cold-rolled steel sheet with a thickness of 1.4 mm, a sample having a sheet width of 100 mm and a length of 250 mm was cut out and the steel sheet surface was cleaned by pickling. → Alloying process ”was performed.

Figure 2010024525
Figure 2010024525

前記焼鈍処理では、水素ガスを流量比率で3%添加した窒素雰囲気中で、750〜900℃の温度域で、120秒間加熱保持した。その際に、雰囲気の露点を、−30℃に調節した。焼鈍後、鋼板を加熱保持温度から、平均冷却速度1℃/s以上で、Alを0.13質量%含有する溶融亜鉛めっき浴の温度460℃まで冷却し、侵入鋼板温度460℃、浸漬時間2secで溶融亜鉛めっき処理を行なった。このめっき処理の直後に、めっきシミュレータ内の赤外線加熱炉を使用して、合金化の加熱温度550℃、加熱時間10secで合金化処理を行なった。この合金化処理後に、平均冷却速度1℃/s以上で常温まで冷却した。このようにして作製した合金化亜鉛めっき鋼板のめっき性、および耐パウダリング性(めっき剥離性)を以下の手順で評価した。
(1)めっき性の評価
めっき性は、不めっき部および合金化ムラを評価項目とし、これらの評価項目の発生の有無を目視観察して評価し、その発生状況を符号表示した。符号の具体的表示内容は以下のとおりである。
◎:不めっき部、合金化ムラの発生なし
◎○:不めっき部発生なし、合金化ムラ一部(面積率で4%未満)発生あり
○:不めっき部なし、合金化ムラ一部(面積率で10%未満)発生あり
×:不めっき部発生あり、合金化ムラ多発生(面積率で10%以上)あり
(2)耐パウダリング性の評価
耐パウダリング性は、曲げ角60°、曲げ半径1mmのV型パンチを用いて、V曲げ試験を行い、曲げ部の内側におけるめっき剥離量を測定して、剥離状況を符号表示した。符号の具体的表示内容は以下のとおりである。
◎:めっき剥離量が6mg以下
○:めっき剥離量が10mg以下
×:めっき剥離量が10mg超過
In the annealing treatment, heating was held for 120 seconds in a temperature range of 750 to 900 ° C. in a nitrogen atmosphere to which hydrogen gas was added at a flow rate ratio of 3%. At that time, the dew point of the atmosphere was adjusted to −30 ° C. After annealing, the steel sheet is cooled from the heating and holding temperature to an average cooling rate of 1 ° C./s or higher to a temperature of a hot dip galvanizing bath containing 0.13% by mass of Al, 460 ° C., an intruding steel plate temperature of 460 ° C., and an immersion time of 2 sec. The hot dip galvanizing process was performed. Immediately after the plating treatment, the alloying treatment was performed using an infrared heating furnace in the plating simulator at an alloying heating temperature of 550 ° C. and a heating time of 10 seconds. After this alloying treatment, it was cooled to room temperature at an average cooling rate of 1 ° C./s or more. The plating property and powdering resistance (plating peeling property) of the alloyed galvanized steel sheet thus prepared were evaluated by the following procedure.
(1) Evaluation of plating property The plating property was evaluated by visually observing the presence or absence of occurrence of these evaluation items, with the non-plated portion and the alloying unevenness as evaluation items, and the occurrence state was indicated by a code. The specific display contents of the symbols are as follows.
◎: No plating, no alloying unevenness ◎ ○: No plating, no alloying unevenness (less than 4% in area ratio) ○: No plating, no alloying unevenness (area) X: Occurrence of non-plated parts, occurrence of uneven alloying (10% or more in area ratio) (2) Evaluation of powdering resistance Powdering resistance has a bending angle of 60 °, Using a V-shaped punch with a bending radius of 1 mm, a V-bending test was performed, the amount of plating peeling inside the bent portion was measured, and the peeling state was indicated by a sign. The specific display contents of the symbols are as follows.
A: Plating peeling amount is 6 mg or less. ○: Plating peeling amount is 10 mg or less. X: Plating peeling amount exceeds 10 mg.

No.1〜No.22の各化学組成の合金化亜鉛めっき鋼板のめっき性および耐パウダリング性評価結果を表2に示す。これらの各化学組成の合金化亜鉛めっき鋼板(No.1〜No.20)は、表2に示したように、いずれの化学組成の合金化亜鉛めっき鋼板も、不めっき部は発生しておらず、耐パウダリング性にも優れている。一方、本願発明の化学組成の要件を満たしていない合金化亜鉛めっき鋼板(No.21、N0.22)の場合は、めっき性および耐パウダリング性ともに劣っている。   Table 2 shows the evaluation results of the platability and powdering resistance of the alloyed galvanized steel sheets having the chemical compositions No. 1 to No. 22. As shown in Table 2, the alloyed galvanized steel sheets (No. 1 to No. 20) having the respective chemical compositions had no unplated portion in any of the alloyed galvanized steel sheets having any chemical composition. In addition, it has excellent powdering resistance. On the other hand, in the case of an alloyed galvanized steel sheet (No. 21, N0.22) that does not satisfy the chemical composition requirements of the present invention, both the plating property and the powdering resistance are inferior.

Figure 2010024525
Figure 2010024525

また、前記各化学組成の合金化亜鉛めっき鋼板(No.1〜No.20)の板幅方向の中央部でかつ板厚方向の中央部において評価した組織は、フェライトが面積率で5〜90%の範囲にあり、マルテンサイトが5〜90%の範囲にあり、かつフェライトとマルテンサイトの合計の面積率が95%以上の、フェライトおよびマルテンサイトを主体とする混合組織からなるものである。   Moreover, the structure evaluated in the center part of the plate width direction and the center part of a plate | board thickness direction of the alloyed galvanized steel plate (No. 1-No. 20) of each said chemical composition is ferrite, and the area ratio is 5-90. %, Martensite is in the range of 5 to 90%, and the total area ratio of ferrite and martensite is 95% or more, and is composed of a mixed structure mainly composed of ferrite and martensite.

Claims (4)

C:0.02〜0.2質量%、Mn:1.5〜3.5質量%、Cr:0.03〜0.5質量%、Al:0.01〜0.15質量%、かつSi:0.04質量%以下、P:0.03質量%以下、S:0.03質量%以下で、残部Feおよび不可避的不純物の化学組成を有する鋼板に、溶融亜鉛めっき処理を施した後にめっき層を合金化処理した合金化溶融亜鉛めっき鋼板であって、前記化学組成を有する鋼板が、さらに、Se、Sb、Zn、Baの中から選ばれた1種または2種以上を、合計で0.001〜0.2質量%の範囲で含有していることを特徴とする合金化溶融亜鉛めっき鋼板。   C: 0.02-0.2 mass%, Mn: 1.5-3.5 mass%, Cr: 0.03-0.5 mass%, Al: 0.01-0.15 mass%, and Si : 0.04% by mass or less, P: 0.03% by mass or less, S: 0.03% by mass or less, and after performing hot dip galvanizing treatment on the steel sheet having the chemical composition of the remaining Fe and inevitable impurities An alloyed hot-dip galvanized steel sheet in which layers are alloyed, wherein the steel sheet having the chemical composition further contains one or more selected from Se, Sb, Zn, and Ba in a total of 0. An alloyed hot-dip galvanized steel sheet containing 0.001 to 0.2% by mass. 前記鋼板が、さらに、Cu:0.003〜0.5質量%、Ni:0.003〜1.0質量%、Ti:0.003〜1.0質量%の中から選ばれた1種または2種以上を、合計で0.003〜2.5質量%の範囲で含有していることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。   The steel plate is further selected from Cu: 0.003-0.5 mass%, Ni: 0.003-1.0 mass%, Ti: 0.003-1.0 mass%, The alloyed hot-dip galvanized steel sheet according to claim 1, wherein two or more kinds are contained in a total range of 0.003 to 2.5 mass%. 前記鋼板が、さらに、V:0.003〜1.0質量%、Nb:0.003〜1.0質量%、B:0.0002〜0.1質量%、Mo:0.003〜1.0質量%の中から選ばれた1種または2種以上を0.001〜1.0質量%含むことを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板。   The steel plate is further provided with V: 0.003 to 1.0 mass%, Nb: 0.003 to 1.0 mass%, B: 0.0002 to 0.1 mass%, Mo: 0.003 to 1. The alloyed hot-dip galvanized steel sheet according to claim 1 or 2, comprising 0.001 to 1.0% by mass of one or more selected from 0% by mass. 前記鋼板が、さらに、Ca:0.0005〜0.005質量%、Mg:0.0005〜0.01質量%の中の1種または2種を含むことを特徴とする請求項1から3のいずれかに記載の合金化溶融亜鉛めっき鋼板。   The steel sheet further includes one or two of Ca: 0.0005 to 0.005 mass% and Mg: 0.0005 to 0.01 mass%. The alloyed hot-dip galvanized steel sheet according to any one of the above.
JP2008190052A 2008-07-23 2008-07-23 Galvannealed steel sheet Pending JP2010024525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190052A JP2010024525A (en) 2008-07-23 2008-07-23 Galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190052A JP2010024525A (en) 2008-07-23 2008-07-23 Galvannealed steel sheet

Publications (1)

Publication Number Publication Date
JP2010024525A true JP2010024525A (en) 2010-02-04

Family

ID=41730613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190052A Pending JP2010024525A (en) 2008-07-23 2008-07-23 Galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP2010024525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508000A (en) * 2017-12-24 2021-02-25 ポスコPosco Steel sheet with excellent seizure curability and plating adhesion and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105591A (en) * 2000-09-29 2002-04-10 Kawasaki Steel Corp High tensile strength steel sheet having excellent hot dip plating property
JP2007009317A (en) * 2005-05-31 2007-01-18 Jfe Steel Kk High-strength cold-rolled steel sheet having excellent formability for extension flange, hot-dip galvanized steel sheet having the same formability, and method for manufacturing those
WO2007067014A1 (en) * 2005-12-09 2007-06-14 Posco Tole d'acier laminee a froid de haute resistance possedant une excellente propriete de formabilite et de revetement, tole d'acier plaquee de metal a base de zinc fabriquee a partir de cette tole et procece de fabrication de celle-ci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105591A (en) * 2000-09-29 2002-04-10 Kawasaki Steel Corp High tensile strength steel sheet having excellent hot dip plating property
JP2007009317A (en) * 2005-05-31 2007-01-18 Jfe Steel Kk High-strength cold-rolled steel sheet having excellent formability for extension flange, hot-dip galvanized steel sheet having the same formability, and method for manufacturing those
WO2007067014A1 (en) * 2005-12-09 2007-06-14 Posco Tole d'acier laminee a froid de haute resistance possedant une excellente propriete de formabilite et de revetement, tole d'acier plaquee de metal a base de zinc fabriquee a partir de cette tole et procece de fabrication de celle-ci

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508000A (en) * 2017-12-24 2021-02-25 ポスコPosco Steel sheet with excellent seizure curability and plating adhesion and its manufacturing method
JP7017635B2 (en) 2017-12-24 2022-02-08 ポスコ Steel sheet with excellent seizure curability and plating adhesion and its manufacturing method
US11421296B2 (en) 2017-12-24 2022-08-23 Posco Steel sheet with excellent bake hardening properties and plating adhesion and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4503001B2 (en) High-strength galvannealed steel sheet with excellent powdering resistance and workability
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
CN101297051B (en) High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP4221023B2 (en) High strength galvannealed steel sheet with excellent powdering resistance and method for producing the same
WO2010103936A1 (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP4926814B2 (en) High strength steel plate with controlled yield point elongation and its manufacturing method
JPWO2019106895A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JPWO2019106894A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JP2007211279A (en) Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
JP3889767B2 (en) High strength steel plate for hot dip galvanizing
JP2011032549A (en) High-strength hot-dip galvanized steel strip with excellent moldability and less variation of material grade in steel strip, and method for production thereof
CN113122772A (en) Thin steel sheet and plated steel sheet, and method for producing thin steel sheet and plated steel sheet
JP5436009B2 (en) High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same
JP7137492B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5192704B2 (en) High strength steel plate with excellent strength-elongation balance
JP2009235532A (en) High strength steel sheet having excellent deep drawability, and method for producing the same
JP2006274378A (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them
JP4629138B2 (en) Alloy hot-dip galvanized steel sheet
JP5173638B2 (en) Method for producing galvannealed steel sheet
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP2010024525A (en) Galvannealed steel sheet
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709