JP2010016048A - Inspection device for wafer - Google Patents

Inspection device for wafer Download PDF

Info

Publication number
JP2010016048A
JP2010016048A JP2008172487A JP2008172487A JP2010016048A JP 2010016048 A JP2010016048 A JP 2010016048A JP 2008172487 A JP2008172487 A JP 2008172487A JP 2008172487 A JP2008172487 A JP 2008172487A JP 2010016048 A JP2010016048 A JP 2010016048A
Authority
JP
Japan
Prior art keywords
wafer
camera
peripheral edge
imaging
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008172487A
Other languages
Japanese (ja)
Other versions
JP5144401B2 (en
Inventor
Kengo Urakabe
健伍 浦壁
Akira Sekikawa
亮 関川
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naoetsu Electronics Co Ltd
Original Assignee
Naoetsu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoetsu Electronics Co Ltd filed Critical Naoetsu Electronics Co Ltd
Priority to JP2008172487A priority Critical patent/JP5144401B2/en
Publication of JP2010016048A publication Critical patent/JP2010016048A/en
Application granted granted Critical
Publication of JP5144401B2 publication Critical patent/JP5144401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inspect images of three surfaces of a peripheral edge of a wafer by a single camera at the same time. <P>SOLUTION: An optical system 3 having three optical paths 3a, 3b, 3c bending from a peripheral end face W1 and chamfered parts W2, W3 of the peripheral edge of a wafer toward the single camera 1 is arranged; reflected light rays guided by the optical paths 3a, 3b, 3c are imaged by the single camera 1; and the three surfaces of the peripheral end face W1 and the chamfered parts W2, W3 are formed into pictures at the same time, whereby surface defects occurring on the peripheral end face W1, the chamfered parts W2, W3 and boundaries W5, W6 thereof can be detected at the same time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ウエハの断面形状が立体的形状をしている周端縁(エッジ)に発生した例えばピットや突起などの表面欠陥を光学的手段の使用により非破壊で検出するためのウエハ用検査装置に関する。
詳しくは、回転するウエハの周端縁に検査光を照射して反射させ、この反射光をカメラで撮像して映像化することにより、該ウエハ周端縁の外周端面と、それを厚さ方向に挟んで形成される一対の面取り部とに生じた表面欠陥を同時に検出するウエハ用検査装置に関する。
The present invention relates to a wafer for non-destructively detecting surface defects such as pits and protrusions generated on a peripheral edge (edge) having a three-dimensional cross section of a semiconductor wafer by using optical means. It relates to an inspection device.
Specifically, the peripheral edge of the rotating wafer is irradiated with inspection light and reflected, and the reflected light is imaged by a camera, and the outer peripheral end surface of the peripheral edge of the wafer and its thickness direction The present invention relates to a wafer inspection apparatus that simultaneously detects surface defects generated in a pair of chamfered portions formed between the two.

従来、この種のウエハ用検査装置としては、ウエハの周端縁の厚さ方向の異なる部位を撮像する複数の撮像カメラとして、ウエハ周端縁の外周側面、面取りされた上面及び下面に対して撮像方向を略直角に対面させて夫々配置した側面用撮像カメラ、上面用撮像カメラ及び下面用撮像カメラを備え、これらの各撮像カメラが、C型の周端縁照明部からの照明を正反射で受け、これら反射光の明視野範囲に位置するように配置され、上記ウエハ周端縁の側面、上面及び下面にピットあるいは突起などが発生して、その正反射光が撮像カメラに入射されない部分は暗くなり、画像処理で欠陥として抽出されるようにしたものがある(例えば、特許文献1参照)。   Conventionally, as this type of wafer inspection apparatus, as a plurality of imaging cameras for imaging different portions in the thickness direction of the peripheral edge of the wafer, the outer peripheral side surface of the wafer peripheral edge, the chamfered upper surface and the lower surface The camera has a side imaging camera, a top imaging camera, and a bottom imaging camera that are arranged with their imaging directions facing substantially at right angles, and these imaging cameras regularly reflect illumination from the C-shaped peripheral edge illumination section. A portion where the reflected light is positioned in the bright field range, and pits or protrusions are generated on the side surface, upper surface and lower surface of the peripheral edge of the wafer, and the specularly reflected light is not incident on the imaging camera. Is darkened and is extracted as a defect by image processing (see, for example, Patent Document 1).

特開2003−243465号公報(第8−13頁、図15−16)Japanese Patent Laying-Open No. 2003-243465 (pages 8-13 and FIGS. 15-16)

しかし乍ら、このような従来のウエハ用検査装置では、ウエハ周端縁の外周端面及び面取り部に対応して少なくとも3台以上のカメラが必要となるため、その構造が複雑化して大型化し、それによりコスト高になるという問題があった。
また、明視野のみの撮像で表面欠陥の検出を行っているため、例えばパーティクルやゴミなどの付着異物が、ピットなどのキズ欠陥として誤判定するおそれがあるという問題もあった。
However, such a conventional wafer inspection apparatus requires at least three cameras corresponding to the outer peripheral end face and the chamfered portion of the peripheral edge of the wafer, so that the structure is complicated and enlarged. As a result, there is a problem that the cost becomes high.
In addition, since surface defects are detected by imaging only in the bright field, there is a problem that, for example, adhered foreign matters such as particles and dust may be erroneously determined as scratch defects such as pits.

本発明のうち第一の発明は、ウエハ周端縁の三面を一台のカメラで同時に画像検査することを目的としたものである。
第二の発明は、第一の発明の目的に加えて、画像検査の精度を更に向上させることを目的としたものである。
第三の発明は、第一の発明又は第二の発明の目的に加えて、パーティクルやゴミなどの付着異物をピットなどのキズ欠陥と分別して判定することを目的としたものである。
第四の発明は、第一の発明、第二の発明又は第三の発明の目的に加えて、オリフラ部の面像にエッジシャドーが発生するのを防止することを目的としたものである。
A first aspect of the present invention is to image-inspect three surfaces of the peripheral edge of a wafer simultaneously with a single camera.
The second invention is intended to further improve the accuracy of image inspection in addition to the object of the first invention.
In addition to the objects of the first invention or the second invention, the third invention is intended to determine adhering foreign matters such as particles and dust from flaw defects such as pits.
In addition to the objects of the first invention, the second invention, or the third invention, the fourth invention is intended to prevent the occurrence of edge shadow in the plane image of the orientation flat portion.

前述した目的を達成するために、本発明のうち第一の発明は、ウエハ周端縁の外周端面及び面取り部から一台のカメラへ向けて、三つの屈曲する光路を有する光学系を設け、これら光路で導かれる反射光を上記一台のカメラで撮像して、上記外周端面及び上下面取り部の3面を同時に映像化することを特徴とするものである。
第二の発明は、第一の発明の構成に、前記光学系の光路途中に複数のプリズムを配置して、前記ウエハ周端縁の外周端面及び面取面からの反射光を屈折させ合成した構成を加えたことを特徴とする。
第三の発明は、第一の発明又は第二の発明の構成に、前記検査光を照射する照明として明視野照明と暗視野照明を備え、これら明視野照明と暗視野照明の光源を切り換えて撮像する構成を加えたことを特徴とする。
第四の発明は、第一の発明、第二の発明又は第三の発明の構成に、前記ウエハに対して前記カメラ及び光学系を相対的に移動させる移動手段と、ウエハのオリフラ部がカメラによる撮像位置に送達したことを検出する検出手段と、この検出手段による検出結果に応じて上記移動手段を作動制御する制御手段とを備え、この制御手段は、上記オリフラ部の検出時に上記カメラ及び光学系を移動させる構成を加えたことを特徴とする。
In order to achieve the above-described object, the first invention of the present invention is provided with an optical system having three bending optical paths from the outer peripheral end surface and the chamfered portion of the wafer peripheral edge toward one camera, The reflected light guided by these optical paths is imaged by the one camera, and the three surfaces of the outer peripheral end surface and the upper and lower chamfered portions are simultaneously imaged.
According to a second invention, in the configuration of the first invention, a plurality of prisms are arranged in the optical path of the optical system, and the reflected light from the outer peripheral end surface and the chamfered surface of the peripheral edge of the wafer is refracted and synthesized. It is characterized by adding a configuration.
According to a third aspect of the present invention, in the configuration of the first aspect or the second aspect, bright field illumination and dark field illumination are provided as illumination for irradiating the inspection light, and the light sources of these bright field illumination and dark field illumination are switched. It is characterized in that a configuration for imaging is added.
According to a fourth aspect of the present invention, in the configuration of the first aspect, the second aspect or the third aspect, the moving means for moving the camera and the optical system relative to the wafer, and the orientation flat part of the wafer And detecting means for detecting delivery to the imaging position and control means for controlling operation of the moving means according to the detection result by the detecting means. It is characterized in that a configuration for moving the optical system is added.

本発明のうち第一の発明は、ウエハ周端縁の外周端面及び面取り部から一台のカメラへ向けて、三つの屈曲する光路を有する光学系を設け、これら光路で導かれる反射光を上記一台のカメラで撮像して、上記外周端面及び面取り部の3面を同時に映像化することにより、これら外周端面と面取り部及びその境界に生じた表面欠陥が同時に検出可能となる。
したがって、ウエハ周端縁の三面を一台のカメラで同時に画像検査することができる。
その結果、ウエハ周端縁の外周端面及び面取り部に対応して少なくとも3台以上のカメラが必要となる従来のものに比べ、その構造を簡素化してコンパクト化が可能になり、それによってコストの低減化を図ることができる。
The first aspect of the present invention provides an optical system having three bending optical paths from the outer peripheral end face and the chamfered portion of the peripheral edge of the wafer toward one camera, and reflects the reflected light guided by these optical paths. By imaging with one camera and simultaneously imaging the three surfaces of the outer peripheral end surface and the chamfered portion, it becomes possible to simultaneously detect surface defects generated on the outer peripheral end surface, the chamfered portion, and the boundary thereof.
Therefore, it is possible to simultaneously inspect the three surfaces of the peripheral edge of the wafer with one camera.
As a result, the structure can be simplified and made compact compared to the conventional camera that requires at least three cameras corresponding to the outer peripheral edge surface and the chamfered portion of the wafer peripheral edge, thereby reducing the cost. Reduction can be achieved.

第二の発明は、第一の発明の効果に加えて、光学系の光路途中に複数のプリズムを配置して、ウエハ周端縁の外周端面及び面取面からの反射光を屈折させ合成することにより、反射光の散乱反射が防止される。
したがって、画像検査の精度を更に向上させることができる。
In addition to the effects of the first invention, the second invention arranges a plurality of prisms in the middle of the optical path of the optical system to refract and synthesize the reflected light from the outer peripheral end surface and the chamfered surface of the peripheral edge of the wafer. Thereby, scattering reflection of reflected light is prevented.
Therefore, the accuracy of image inspection can be further improved.

第三の発明は、第一の発明又は第二の発明の効果に加えて、検査光を照射する照明として明視野照明と暗視野照明を備え、これら明視野照明と暗視野照明の光源を切り換えて撮像することにより、暗視野においてパーティクルやゴミなどの付着異物とピットなどのキズ欠陥とが、それら反射形態の違いで識別され、明視野照明において検出される欠陥データと照合することで、付着欠陥が除去されてキズ欠陥のみになる。
したがって、パーティクルやゴミなどの付着異物をピットなどのキズ欠陥と分別して判定することができる。
その結果、明視野のみの撮像で表面欠陥の検出が行われる従来のものに比べ、パーティクルやゴミなどの付着異物をも欠陥として誤判定されることがなく、判定精度を向上させることができる。
In addition to the effects of the first invention or the second invention, the third invention includes bright field illumination and dark field illumination as illumination for irradiating inspection light, and switches between the light sources of the bright field illumination and dark field illumination. In the dark field, the adhering foreign matter such as particles and dust and the flaw defect such as the pit are identified by the difference in the reflection form, and the defect data detected in the bright field illumination is collated. Defects are removed and only scratch defects are formed.
Therefore, it is possible to determine by adhering foreign matter such as particles and dust separately from scratch defects such as pits.
As a result, it is possible to improve the determination accuracy without erroneously determining an adhering foreign matter such as a particle or dust as a defect, as compared with a conventional method in which a surface defect is detected by imaging only in a bright field.

第四の発明は、第一の発明、第二の発明又は第三の発明の効果に加えて、ウエハに対してカメラ及び光学系を相対的に移動させる移動手段と、ウエハのオリフラ部がカメラによる撮像位置に送達したことを検出する検出手段と、この検出手段による検出結果に応じて上記移動手段を作動制御する制御手段とを備え、この制御手段が、上記オリフラ部の検出時に上記カメラ及び光学系を移動させることにより、外周端面及び面取り部が形成される円周部を撮像する時のカメラ及び光学系の位置と、オリフラ部を撮像する時のカメラの位置とが変えられる。
したがって、オリフラ部の面像にエッジシャドーが発生するのを防止することができる。
In addition to the effects of the first invention, the second invention or the third invention, the fourth invention is a moving means for moving the camera and the optical system relative to the wafer, and the orientation flat part of the wafer is a camera. Detecting means for detecting delivery to the imaging position and control means for controlling the operation of the moving means according to the detection result by the detecting means. By moving the optical system, the position of the camera and the optical system when imaging the circumferential part where the outer peripheral end face and the chamfered part are formed, and the position of the camera when imaging the orientation flat part are changed.
Therefore, it is possible to prevent the edge shadow from occurring in the plane image of the orientation flat portion.

本発明のウエハ用検査装置の実施形態は、ウエハWを回転可能に支持する支持部と、この支持部に支持されて回転させたウエハWの周端縁を連続的に撮像する周端縁撮像部と、この周端縁撮像部で撮像した撮像データを処理する制御部とを備え、この周端縁撮像部は、図1〜図4に示すように、ウエハWの周端縁の厚さ方向の異なる部位を撮像する一台のカメラ1と、該ウエハWの周端縁に検査光を照射する照明2からなる。   In the embodiment of the wafer inspection apparatus of the present invention, the peripheral edge imaging for continuously imaging the support portion that rotatably supports the wafer W and the peripheral edge of the wafer W that is supported and rotated by the support portion. And a control unit that processes the imaging data imaged by the peripheral edge imaging unit. The peripheral edge imaging unit has a thickness of the peripheral edge of the wafer W as shown in FIGS. It consists of a single camera 1 that picks up images of parts in different directions, and an illumination 2 that irradiates the peripheral edge of the wafer W with inspection light.

上記ウエハWの周端縁には、その外周端面W1と、これを厚さ方向に挟んで傾斜状に形成される一対の面取り部W2,W3が夫々形成され、これら外周端面W1及び面取り部W2,W3へ向けて、上記照明2から照射される検査光を正反射させ、夫々の正反射光を上記一台のカメラ1で撮像して映像化することにより、該外周端面W1及び面取り部W2,W3とに生じた例えばピットや突起などの表面欠陥を同時に検出している。   On the peripheral edge of the wafer W, there are formed an outer peripheral end surface W1 and a pair of chamfered portions W2 and W3 formed in an inclined shape with the outer peripheral end surface W1 being sandwiched in the thickness direction. , W3, the inspection light emitted from the illumination 2 is specularly reflected, and each specularly reflected light is captured and imaged by the one camera 1, thereby forming the outer peripheral end face W1 and the chamfered part W2. , W3, for example, surface defects such as pits and protrusions are simultaneously detected.

上記ウエハWの周端縁に検査光を照射する照明2としては、図2〜図4に示すように、LEDなどを光源2aと、上記ウエハ周端縁を包み込むように配置されて該光源2aからから照射された検査光を球面反射し集光させる半球状の積分球2bとからなる積分球照明を使用することが好ましい。   As the illumination 2 for irradiating the peripheral edge of the wafer W with inspection light, as shown in FIGS. 2 to 4, an LED or the like is disposed so as to wrap around the peripheral edge of the wafer. It is preferable to use integrating sphere illumination composed of a hemispherical integrating sphere 2b that reflects and collects the inspection light irradiated from the spherical surface.

上記ウエハ周端縁の外周端面W1及び面取り部W2,W3と一台のカメラ1との間には、三つの屈曲する光路3a,3b,3cを有する光学系3が設けられ、これら光路3a,3b,3cの途中に例えばプリズムやミラーなどの反射体4を配置して、該外周端面W1及び面取り部W2,W3からの各反射光を夫々分離しつつ導くとともに合成して一台のカメラ1で撮像することにより、上記外周端面W1及び面取り部W2,W3の3面を同時に映像化する。   An optical system 3 having three bent optical paths 3a, 3b, 3c is provided between the outer peripheral end face W1 and the chamfered portions W2, W3 of the peripheral edge of the wafer and one camera 1, and the optical paths 3a, 3b, 3c are provided. A reflector 4 such as a prism or a mirror is disposed in the middle of 3b and 3c, and the reflected light from the outer peripheral end surface W1 and the chamfered portions W2 and W3 are guided while being separated from each other and synthesized to form a single camera 1. The three images of the outer peripheral end surface W1 and the chamfered portions W2 and W3 are simultaneously imaged.

さらに、上記ウエハ周端縁の外周端面W1からの反射光を導く光路3aは、上記ウエハWの厚み方向へ調整移動自在に支持され、上記面取り部W2,W3からの反射光を導く光路3b,3cは、上記ウエハWの厚み方向へ調整移動自在に支持されるとともに、それら撮像画像のフォーカスを独自に調整するフォーカス調整機構が備えられることにより、該ウエハWの径寸法や厚み寸法の変化に対応してフォーカス調整できるようにすることが好ましい。   Further, an optical path 3a for guiding the reflected light from the outer peripheral end surface W1 of the wafer peripheral edge is supported so as to be adjustable in the thickness direction of the wafer W, and an optical path 3b for guiding the reflected light from the chamfered portions W2, W3. 3c is supported so as to be adjustable in the thickness direction of the wafer W, and is provided with a focus adjustment mechanism that independently adjusts the focus of the captured image, thereby changing the diameter and thickness of the wafer W. It is preferable to adjust the focus accordingly.

上記制御部における画像処理では、欠陥コントラストと適度な面拡散光により面のザラツキ感を白くフェードさせ、欠陥とのコントラスト差を出すことが必要だが、同軸入射軸を上記プリズムやミラーなどの反射体による光学系で軸回転させることで正反射光を逃がし、適切なコントラストに調整することが可能となる。   In the image processing in the control unit, it is necessary to fade the roughness of the surface white by the defect contrast and the appropriate surface diffused light to produce a contrast difference from the defect, but the coaxial incident axis is a reflector such as the prism or mirror. By rotating the axis with the optical system according to the above, regular reflected light can be released and the contrast can be adjusted to an appropriate level.

また、上記ウエハWとしては、図5〜図7に示すように、その周端縁の一部に平面状のオリフラ(オリエンテーションフラット)部W4が形成されるものについても外観検査を可能にすることが好ましい。
以下、本発明の一実施例を図面に基づいて説明する。
Further, as shown in FIGS. 5 to 7, the wafer W can be visually inspected even when a planar orientation flat (orientation flat) portion W4 is formed on a part of its peripheral edge. Is preferred.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

この実施例1は、図1(a)に示すように、前記光学系3の光路3a,3b,3c途中に複数のプリズム4を夫々配置して、その下流側にテレセントリック撮像レンズ5を配置することにより、前記ウエハ周端縁の外周端面W1及び上下面取り部W2,W3からの各反射光を例えばCCDカメラなどのラインセンサカメラ1へ向け平行に導き、これらの3画像をリレー合成により、図1(b)に示すように、該ウエハ周端縁の外周端面W1及び面取り部W2,W3に相当するA部分、B部分、C部分の3画像が一方向へ並んで同時に表示され、同時に画像検査するようにしている。   In the first embodiment, as shown in FIG. 1A, a plurality of prisms 4 are arranged in the middle of the optical paths 3a, 3b, 3c of the optical system 3, and a telecentric imaging lens 5 is arranged downstream thereof. As a result, each reflected light from the outer peripheral end surface W1 and the upper and lower chamfered portions W2 and W3 of the wafer peripheral edge is guided in parallel toward the line sensor camera 1 such as a CCD camera, and these three images are combined by relay composition. As shown in FIG. 1 (b), three images of the A portion, the B portion, and the C portion corresponding to the outer peripheral end surface W1 and the chamfered portions W2 and W3 of the peripheral edge of the wafer are displayed at the same time in one direction. I try to inspect.

前記ウエハWの周端縁に検査光を照射する積分球照明2は、図2〜図4に示すように、前記積分球2bの球芯(積分中心)を通るように、該ウエハ周端縁が回転可能に挿入されて、この積分球2bの積分中心に上記面取り部W2,W3の撮像中心が合うように配置される。
上記積分球2bの内部には、ウエハ周端縁を挟むように上記積分球2bの上下には、前記光源2aとして照明面積が多くてフラットな面光源を夫々配置し、上記ウエハ周端縁の外周端面W1及び面取り部W2,W3の背後から積分球2bへ向けて照明している。
この光源2aの背後には、図示しないが、外光による影響を制限するための遮光カバー2cを設けることが好ましく、この遮光カバーには、該ウエハ周端縁を回転可能に挿入するスリットが形成される。
As shown in FIGS. 2 to 4, the integrating sphere illumination 2 that irradiates the peripheral edge of the wafer W with inspection light passes through the spherical core (integral center) of the integrating sphere 2b. Is inserted so as to be rotatable, and the imaging centers of the chamfered portions W2 and W3 are arranged so as to match the integration center of the integrating sphere 2b.
Inside the integrating sphere 2b, flat surface light sources having a large illumination area are arranged as light sources 2a above and below the integrating sphere 2b so as to sandwich the peripheral edge of the wafer, respectively. Illumination is performed from behind the outer peripheral end surface W1 and the chamfered portions W2 and W3 toward the integrating sphere 2b.
Although not shown, it is preferable to provide a light-shielding cover 2c for limiting the influence of external light behind the light source 2a. The light-shielding cover has a slit for rotatably inserting the peripheral edge of the wafer. Is done.

さらに、上記光源2aのウエハ側の先端には、例えばルーバーやブラインドなどの遮光板2cを配置し、上記ウエハ周端縁の面取り部W2,W3に対する照明角度を制限して直接照明されないようにすることにより、該面取り部W2,W3とウエハ面との間に形成されるコーナー部W5及び面取り部W2,W3と外周端面W1との境界に形成されるコーナー部W6が白く光ることを防止している。   Further, a light shielding plate 2c such as a louver or a blind is disposed at the front end of the light source 2a on the wafer side so that the illumination angle with respect to the chamfered portions W2 and W3 at the peripheral edge of the wafer is limited so that direct illumination is not performed. Thus, the corner portion W5 formed between the chamfered portions W2 and W3 and the wafer surface and the corner portion W6 formed at the boundary between the chamfered portions W2 and W3 and the outer peripheral end surface W1 can be prevented from shining white. Yes.

また、上記ウエハ周端縁の外周端面W1に対する上記光源2aからの積分中心照明の正反射が撮像レンズに効率良く入射するように、該ウエハWの円周方向へ所定角度シフトさせて、該外周端面W1に相当するB部分の画像の中心に黒いスジの影が発生しないようにしている。
図示例の場合には、図3に示すように、上記積分球2bの積分中心線と、ウエハWの中心を通る撮像軸とを一致させ、該積分球2bの積分中心からウエハWの円周方向へ所定角度(約14度)以上傾斜した位置に、上記外周端面W1のモニタ光路3aのポート2dを開穿している。
その他の例として、図示しないが、上記積分球2bをその積分中心線が、ウエハWの中心を通る撮像軸に対し、ウエハWの円周方向へ所定角度(約14度)以上傾斜させて取り付けることや撮像軸をオフセットすることも可能である。
Further, the wafer W is shifted by a predetermined angle in the circumferential direction of the wafer W so that the regular reflection of the integration center illumination from the light source 2a with respect to the outer peripheral end surface W1 of the peripheral edge of the wafer is efficiently incident on the imaging lens. A black streak shadow is prevented from being generated at the center of the B portion image corresponding to the end face W1.
In the case of the illustrated example, as shown in FIG. 3, the integration center line of the integrating sphere 2b coincides with the imaging axis passing through the center of the wafer W, and the circumference of the wafer W from the integration center of the integrating sphere 2b. The port 2d of the monitor optical path 3a of the outer peripheral end face W1 is opened at a position inclined by a predetermined angle (about 14 degrees) or more in the direction.
As another example, although not shown, the integrating sphere 2b is attached with its integration center line inclined at a predetermined angle (about 14 degrees) or more in the circumferential direction of the wafer W with respect to the imaging axis passing through the center of the wafer W. It is also possible to offset the imaging axis.

さらに、上記積分球2bの上下には、上記外周端面W1のモニタ光路3aのポート2dを開穿している。
Further, the port 2d of the monitor optical path 3a of the outer peripheral end face W1 is opened above and below the integrating sphere 2b.

一方、上記光学系3の光路3a,3b,3cは、図5〜図7に示すように、カバーケース3dで覆われ、上述した積分球照明2及び上記カメラ1と一体化して、これら全体を、前記支持部に回転可能に支持されるウエハWに対し、移動自在に支持している。   On the other hand, the optical paths 3a, 3b, 3c of the optical system 3 are covered with a cover case 3d as shown in FIG. 5 to FIG. The wafer W is rotatably supported by the support portion.

さらに、上記積分球照明2の光源2aの明視野照明に加えて、LEDなどを光源とした暗視野照明が備えられ、明視野照明でウエハWの周端縁を一回転させて、外周端面W1及び面取り部W2,W3の全外周を撮像した後、次に暗視野照明でもう一回転させて撮像を行う。
それにより、暗視野において例えばパーティクルやゴミなどの付着欠陥とピットなどのキズ欠陥とを、それらの反射形態の違いで識別し、明視野照明で検出された欠陥データと照合することで、付着欠陥を除去しキズ欠陥のみにしている。
Further, in addition to the bright field illumination of the light source 2a of the integrating sphere illumination 2, a dark field illumination using an LED or the like as a light source is provided, and the peripheral edge of the wafer W is rotated once by the bright field illumination, and the outer peripheral end surface W1. In addition, after imaging the entire outer periphery of the chamfered portions W2 and W3, imaging is performed by another rotation with dark field illumination.
As a result, adhesion defects such as particles and dust and scratch defects such as pits in the dark field are identified by the difference in their reflection form, and are compared with defect data detected by bright field illumination. Remove only scratch defects.

そして、このようなウエハ用検査装置を用いて、オリフラ部W4が形成されたウエハWの外観検査を行う場合には、ウエハWの回転に伴い上述した外周端面W1及び面取り部W2,W3が形成される円周部W5を撮像する時のカメラ1の位置と、オリフラ部W4を撮像する時のカメラ1の位置とを変えることで、オリフラ部W4の面像にエッジシャドー(黒いスジの影)が発生しないようにしている。   Then, when the appearance inspection of the wafer W on which the orientation flat portion W4 is formed using such a wafer inspection apparatus, the outer peripheral end face W1 and the chamfered portions W2 and W3 are formed as the wafer W rotates. By changing the position of the camera 1 when imaging the circumferential portion W5 and the position of the camera 1 when imaging the orientation flat portion W4, an edge shadow (shadow of black streaks) is formed on the plane image of the orientation flat portion W4. It is trying not to occur.

即ち、円周部W5を撮像する時のカメラ1の位置で、そのまま平面状のオリフラ部W4を撮像すると、オリフラ部W4は円周部W5に比べて凹んでいるため、カメラ1との位置関係が変化し、それによりオリフラ部W4の面像に黒いスジの影が発生する。   That is, when the planar orientation flat portion W4 is imaged as it is at the position of the camera 1 when imaging the circumferential portion W5, the orientation flat portion W4 is recessed as compared with the circumferential portion W5, and therefore the positional relationship with the camera 1 Changes, and a black streak shadow is generated in the plane image of the orientation flat portion W4.

そこで、このようなウエハ用検査装置には、ウエハWを回転させる回転駆動部と、このウエハWに対して上述したカメラ1、積分球照明2及び光学系3を相対的に移動させる移動手段と、ウエハWのオリフラ部W4がカメラ1による撮像位置に送達したことを自動的に検出する検出手段と、この検出手段による検出結果に応じて上記回転駆動部、カメラ1及び移動手段を夫々作動制御する制御手段とを備え、この制御手段は、ウエハWのオリフラ部W4がカメラ撮像位置に送達した時にウエハWの回転を停止させ、カメラ1、照明2及び光学系3を黒いスジの影が発生しない位置に移動させている。   In view of this, such a wafer inspection apparatus includes a rotation drive unit that rotates the wafer W, and a moving unit that relatively moves the camera 1, the integrating sphere illumination 2, and the optical system 3 described above with respect to the wafer W. , Detecting means for automatically detecting that the orientation flat part W4 of the wafer W has been delivered to the imaging position by the camera 1, and controlling the operation of the rotation driving part, the camera 1 and the moving means according to the detection result by the detecting means. The control means stops the rotation of the wafer W when the orientation flat portion W4 of the wafer W is delivered to the camera imaging position, and the camera 1, the illumination 2 and the optical system 3 are shaded black. It has been moved to a position that does not.

その具体例を図5(a)〜(f)、図6(a)(b)及び図7(a)(b)に基づいて説明すると、先ず図5(a)(b)に示すように、ウエハWの回転に伴って円周部W5の撮像が終了しても、そのまま図6(a)に示すように撮像を続けると、図6(b)に示すように、画像のオリフラ部W4側に黒スジが発生する。   Specific examples will be described with reference to FIGS. 5A to 5F, FIGS. 6A and 6B, and FIGS. 7A and 7B. First, as shown in FIGS. Even if the imaging of the circumferential portion W5 is completed with the rotation of the wafer W, if the imaging is continued as shown in FIG. 6A, the orientation flat portion W4 of the image is obtained as shown in FIG. 6B. Black streaks appear on the side.

これを防止するため、図5(c)に示すように、ウエハWの回転を停止して、カメラ1、照明2及び光学系3をウエハWの回転方向へ平行移動させ、続いて図5(d)及び図7(a)に示すように、ウエハWを正回転又は逆回転して屈曲部W6を再撮像すると、オリフラ部W4側の黒スジが除去される。   In order to prevent this, as shown in FIG. 5C, the rotation of the wafer W is stopped, and the camera 1, the illumination 2 and the optical system 3 are translated in the rotation direction of the wafer W, and then FIG. As shown in d) and FIG. 7A, when the wafer W is rotated forward or backward to re-image the bent portion W6, the black stripe on the orientation flat portion W4 side is removed.

その後は、図5(e)に示すように、ウエハWを正回転してオリフラ部W4と平行になったら回転を停止し、このオリフラ部W4の端部までカメラ1、照明2及び光学系3をウエハWの回転方向へ平行移動させるとともに焦点を合わせるためにオリフラ部W4へ向けて接近移動し、続いて図5(f)に示すように、カメラ1、照明2及び光学系3をオリフラ部W4に沿って平行移動させて、オリフラ部W4を撮像する。
それ以降は、上述した作動を繰り返して黒スジの除去を行う。
Thereafter, as shown in FIG. 5 (e), when the wafer W is rotated in the forward direction and becomes parallel to the orientation flat portion W4, the rotation is stopped, and the camera 1, illumination 2 and optical system 3 reach the end of the orientation flat portion W4. Is moved in parallel to the rotation direction of the wafer W and moved closer to the orientation flat portion W4 for focusing, and then the camera 1, the illumination 2 and the optical system 3 are moved to the orientation flat portion as shown in FIG. The orientation flat portion W4 is imaged by parallel translation along W4.
After that, the above-described operation is repeated to remove black stripes.

なお、前示実施例では、前記ウエハ周端縁に検査光を照射する照明2として光源2aと該ウエハ周端縁を包み込むように配置される積分球2bとからなる積分球照明を使用する場合を示したが、これに限定されず、それ以外の照明を使用しても良い。
また、光路3a,3b,3cの途中に例えばプリズムやミラーなどの反射体を配置してそれらにより導かれる反射光を一台のカメラ1に導いたが、これに限定されず、プリズムやミラーなどの反射体に代え、ファイバースコープなどを配置して、三つの屈曲する光路3a,3b,3cが形成されるようにしても良い。
In the previous embodiment, the integrating sphere illumination including the light source 2a and the integrating sphere 2b arranged so as to wrap around the wafer peripheral edge is used as the illumination 2 for irradiating the wafer peripheral edge with the inspection light. However, the present invention is not limited to this, and other illuminations may be used.
Further, reflectors such as prisms and mirrors are arranged in the middle of the optical paths 3a, 3b, and 3c, and the reflected light guided by them is guided to one camera 1. However, the present invention is not limited to this. Instead of the reflector, a fiberscope or the like may be arranged to form the three bent optical paths 3a, 3b, 3c.

本発明のウエハ用検査装置の一実施例を示し、(a)が結像光学系光路図であり、(b)が撮像画像とウエハの位置関係を示す説明図である。An embodiment of the wafer inspection apparatus of the present invention is shown, in which (a) is an optical path diagram of an imaging optical system, and (b) is an explanatory diagram showing a positional relationship between a captured image and a wafer. ウエハと照明の位置関係を示す縦断側面図である。It is a vertical side view which shows the positional relationship of a wafer and illumination. ウエハと照明の位置関係を示す横断平面図である。It is a cross-sectional top view which shows the positional relationship of a wafer and illumination. ウエハと照明の位置関係を示すウエハ側から見た正面図である。It is the front view seen from the wafer side which shows the positional relationship of a wafer and illumination. 撮像ステップを示す説明図で、(a)〜(f)の順番に従って撮像が行われる。It is explanatory drawing which shows an imaging step, and is imaged according to the order of (a)-(f). (a)が撮像ステップの途中を示す説明図で、(b)がその撮像画像である。(A) is explanatory drawing which shows the middle of an imaging step, (b) is the captured image. (a)が撮像ステップの途中を示す説明図で、(b)がその撮像画像である。(A) is explanatory drawing which shows the middle of an imaging step, (b) is the captured image.

符号の説明Explanation of symbols

W ウエハ W1 外周端面
W2,W3 面取り部 W4 オリフラ部
W5,W6 コーナー部 1 カメラ
2 照明(積分球照明) 2a 光源
2b 積分球 2c 遮光カバー
2d,2e ポート 3 光学系
3a,3b,3c 光路 4 反射体(プリズム)
5 テレセントリック撮像レンズ
W wafer W1 outer peripheral end face W2, W3 chamfered portion W4 orientation flat portion W5, W6 corner portion 1 camera 2 illumination (integrating sphere illumination) 2a light source 2b integrating sphere 2c light shielding cover 2d, 2e port 3 optical system 3a, 3b, 3c optical path 4 reflection Body (prism)
5 Telecentric imaging lens

Claims (4)

回転するウエハ(W)の周端縁に検査光を照射して反射させ、この反射光をカメラ(1)で撮像して映像化することにより、該ウエハ周端縁の外周端面(W1)と、それを厚さ方向に挟んで形成される一対の面取り部(W2,W3)とに生じた表面欠陥を同時に検出するウエハ用検査装置において、
前記ウエハ周端縁の外周端面(W1)及び面取り部(W2,W3)から一台のカメラ(1)へ向けて、三つの屈曲する光路(3a,3b,3c)を有する光学系(3)を設け、これら光路(3a,3b,3c)で導かれる反射光を上記一台のカメラ(1)で撮像して、上記外周端面(W1)及び面取り部(W2,W3)の3面を同時に映像化することを特徴とするウエハ用検査装置。
The peripheral edge of the rotating wafer (W) is irradiated with inspection light and reflected, and the reflected light is imaged and imaged by the camera (1), thereby forming an outer peripheral end surface (W1) of the peripheral edge of the wafer. In the wafer inspection apparatus for simultaneously detecting surface defects generated in a pair of chamfered portions (W2, W3) formed by sandwiching it in the thickness direction,
An optical system (3) having three bent optical paths (3a, 3b, 3c) from the outer peripheral end surface (W1) and the chamfered portions (W2, W3) of the peripheral edge of the wafer toward one camera (1). The reflected light guided by these optical paths (3a, 3b, 3c) is imaged by the one camera (1), and the outer peripheral end surface (W1) and the three surfaces of the chamfered portions (W2, W3) are simultaneously formed. An inspection apparatus for wafers characterized by being imaged.
前記光学系(3)の光路(3a,3b,3c)途中に複数のプリズム(4)を配置して、前記ウエハ周端縁の外周端面(W1)及び面取面(W2,W3)からの反射光を屈折させ合成した請求項1記載のウエハ用検査装置。 A plurality of prisms (4) are arranged in the middle of the optical path (3a, 3b, 3c) of the optical system (3) so that the peripheral edge of the wafer (W1) and the chamfered surfaces (W2, W3) The wafer inspection apparatus according to claim 1, wherein the reflected light is refracted and synthesized. 前記検査光を照射する照明(2)として明視野照明と暗視野照明を備え、これら明視野照明と暗視野照明の光源を切り換えて撮像する請求項1又は2記載のウエハ用検査装置。 3. The wafer inspection apparatus according to claim 1, comprising bright-field illumination and dark-field illumination as illumination (2) for irradiating the inspection light, and switching between the bright-field illumination and dark-field illumination light sources for imaging. 4. 前記ウエハ(W)に対して前記カメラ(1)及び光学系(3)を相対的に移動させる移動手段と、ウエハ(W)のオリフラ部(W4)がカメラ(1)による撮像位置に送達したことを検出する検出手段と、この検出手段による検出結果に応じて上記移動手段を作動制御する制御手段とを備え、この制御手段は、上記オリフラ部(W4)の検出時に上記カメラ(1)及び光学系(3)を移動させる請求項1、2又は3記載のウエハ用検査装置。 A moving means for moving the camera (1) and the optical system (3) relative to the wafer (W) and an orientation flat part (W4) of the wafer (W) delivered to the imaging position by the camera (1). Detecting means for detecting this, and control means for controlling the operation of the moving means in accordance with the detection result by the detecting means. The control means detects the camera (1) and the camera when detecting the orientation flat portion (W4). 4. The wafer inspection apparatus according to claim 1, wherein the optical system is moved.
JP2008172487A 2008-07-01 2008-07-01 Wafer inspection equipment Active JP5144401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172487A JP5144401B2 (en) 2008-07-01 2008-07-01 Wafer inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172487A JP5144401B2 (en) 2008-07-01 2008-07-01 Wafer inspection equipment

Publications (2)

Publication Number Publication Date
JP2010016048A true JP2010016048A (en) 2010-01-21
JP5144401B2 JP5144401B2 (en) 2013-02-13

Family

ID=41701920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172487A Active JP5144401B2 (en) 2008-07-01 2008-07-01 Wafer inspection equipment

Country Status (1)

Country Link
JP (1) JP5144401B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
KR101576945B1 (en) 2011-07-06 2015-12-11 한미반도체 주식회사 Wafer inspection device
JP2016128831A (en) * 2016-02-12 2016-07-14 株式会社東京精密 Device and method for observing grinding slip streak
JP2016178298A (en) * 2015-03-18 2016-10-06 株式会社昭和電気研究所 Wafer edge inspection device
KR20170007638A (en) * 2015-07-10 2017-01-19 삼성전기주식회사 Apparatus for examining appearance
JP2019054132A (en) * 2017-09-15 2019-04-04 信越半導体株式会社 Method for evaluating semiconductor wafer
JP2020025126A (en) * 2014-06-09 2020-02-13 ケーエルエー コーポレイション Imaging system
CN111654242A (en) * 2015-10-26 2020-09-11 应用材料公司 Method and system for detecting a breach in a solar wafer
CN111725086A (en) * 2019-03-22 2020-09-29 捷进科技有限公司 Semiconductor manufacturing apparatus and method for manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038539A (en) * 1996-07-29 1998-02-13 Toshiba Ceramics Co Ltd Wafer shape recognizing device
JP2006064975A (en) * 2004-08-26 2006-03-09 Olympus Corp Microscope and thin plate edge inspection apparatus
WO2006059647A1 (en) * 2004-11-30 2006-06-08 Shibaura Mechatronics Corporation Surface inspection device and surface inspection method
JP2007123561A (en) * 2005-10-28 2007-05-17 Naoetsu Electronics Co Ltd Test device for outer periphery of wafer
JP2007171149A (en) * 2005-12-21 2007-07-05 Nippon Electro Sensari Device Kk Surface defect inspection device
WO2007129691A1 (en) * 2006-05-09 2007-11-15 Nikon Corporation End section inspecting apparatus
JP2008020371A (en) * 2006-07-13 2008-01-31 Nikon Corp Inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038539A (en) * 1996-07-29 1998-02-13 Toshiba Ceramics Co Ltd Wafer shape recognizing device
JP2006064975A (en) * 2004-08-26 2006-03-09 Olympus Corp Microscope and thin plate edge inspection apparatus
WO2006059647A1 (en) * 2004-11-30 2006-06-08 Shibaura Mechatronics Corporation Surface inspection device and surface inspection method
JP2007123561A (en) * 2005-10-28 2007-05-17 Naoetsu Electronics Co Ltd Test device for outer periphery of wafer
JP2007171149A (en) * 2005-12-21 2007-07-05 Nippon Electro Sensari Device Kk Surface defect inspection device
WO2007129691A1 (en) * 2006-05-09 2007-11-15 Nikon Corporation End section inspecting apparatus
JP2008020371A (en) * 2006-07-13 2008-01-31 Nikon Corp Inspection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073039A (en) * 2010-09-27 2012-04-12 Nidec Sankyo Corp Particle detection optical device and particle detection device
KR101576945B1 (en) 2011-07-06 2015-12-11 한미반도체 주식회사 Wafer inspection device
JP2020025126A (en) * 2014-06-09 2020-02-13 ケーエルエー コーポレイション Imaging system
JP2016178298A (en) * 2015-03-18 2016-10-06 株式会社昭和電気研究所 Wafer edge inspection device
KR20170007638A (en) * 2015-07-10 2017-01-19 삼성전기주식회사 Apparatus for examining appearance
KR102202469B1 (en) * 2015-07-10 2021-01-14 삼성전기주식회사 Apparatus for examining appearance
CN111654242A (en) * 2015-10-26 2020-09-11 应用材料公司 Method and system for detecting a breach in a solar wafer
CN111654242B (en) * 2015-10-26 2023-12-29 应用材料公司 Method and system for detecting notch on solar wafer
JP2016128831A (en) * 2016-02-12 2016-07-14 株式会社東京精密 Device and method for observing grinding slip streak
JP2019054132A (en) * 2017-09-15 2019-04-04 信越半導体株式会社 Method for evaluating semiconductor wafer
CN111725086A (en) * 2019-03-22 2020-09-29 捷进科技有限公司 Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
CN111725086B (en) * 2019-03-22 2024-03-12 捷进科技有限公司 Semiconductor manufacturing apparatus and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP5144401B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5144401B2 (en) Wafer inspection equipment
JP4990630B2 (en) Surface inspection apparatus and surface inspection method
JP4878907B2 (en) Image inspection apparatus and image inspection method using the image inspection apparatus
JP5014003B2 (en) Inspection apparatus and method
JPH0515978B2 (en)
JP2007147433A (en) Flaw inspection method of ceramic plate and flaw inspection device therefor
JP6859627B2 (en) Visual inspection equipment
JP4687248B2 (en) Appearance inspection device
JP2007171149A (en) Surface defect inspection device
JP6859628B2 (en) Visual inspection method and visual inspection equipment
JP4761245B2 (en) Defect inspection system
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
TW200527405A (en) Appearance inspector
JPH1062354A (en) Device and method of inspecting transparent plate for defect
JP2006017685A (en) Surface defect inspection device
JPH0882602A (en) Method and apparatus for inspecting fault of plate glass
JP2008064656A (en) Peripheral edge inspecting apparatus
JP2005345221A (en) Detection optical device and flaw inspection device
JP6870262B2 (en) Flat glass inspection method and flat glass inspection equipment
KR101744149B1 (en) Apparatus for inspecting substrate
JP2009222629A (en) Device for inspecting edge of object to be inspected
TW201939021A (en) Optical system, illumination module and automated optical inspection system
JP7205832B2 (en) Hole internal inspection device
JP2005195332A (en) Visual inspection apparatus of circular article
JP6949538B2 (en) Defect inspection equipment, defect inspection method, and method for manufacturing balloon catheters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5144401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250