JP2007171149A - Surface defect inspection device - Google Patents

Surface defect inspection device Download PDF

Info

Publication number
JP2007171149A
JP2007171149A JP2005381162A JP2005381162A JP2007171149A JP 2007171149 A JP2007171149 A JP 2007171149A JP 2005381162 A JP2005381162 A JP 2005381162A JP 2005381162 A JP2005381162 A JP 2005381162A JP 2007171149 A JP2007171149 A JP 2007171149A
Authority
JP
Japan
Prior art keywords
imaging
inspection apparatus
defect inspection
surface defect
diffused light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005381162A
Other languages
Japanese (ja)
Other versions
JP4847128B2 (en
Inventor
Yoichiro Oyama
洋一郎 大山
Yutaka Kiama
裕 木天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electro Sensory Devices Corp
Original Assignee
Nippon Electro Sensory Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electro Sensory Devices Corp filed Critical Nippon Electro Sensory Devices Corp
Priority to JP2005381162A priority Critical patent/JP4847128B2/en
Publication of JP2007171149A publication Critical patent/JP2007171149A/en
Application granted granted Critical
Publication of JP4847128B2 publication Critical patent/JP4847128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simplify constitution of a device, and to reduce an expense required for the device, in imaging inspection of a three-dimensional portion such as a a terminal edge part of a silicon wafer or a notch part provided in the terminal edge part. <P>SOLUTION: This surface defect inspection device is constituted of one imaging means for imaging an inspection object, the first diffusion light illumination means such as a flat light source illumination device for illuminating uniform diffusion light incident with a wide angle, the second diffusion light illumination means for illuminating diffusion light coaxially to an optical axis of an optical system of the imaging means, an optical path refraction means for imaging an imaging-objective portion not faced to the imaging means, and an image processing means for computation-processing an image data picked up by the imaging means, and the plurality of portions of the inspection object having a three-dimensional shape is imaged at the same time by the one imaging means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリコンウエーハの周端縁部や周端縁部に設けられたノッチなどのように、鏡面状表面であってテーパやR部を含む三次元的な形状の検査対象物の複数の部位を、同時に観測することができる立体形状鏡面の表面欠陥検査装置に関する。  The present invention provides a plurality of inspection objects having a mirror-like surface and including a taper and an R portion, such as a peripheral edge of a silicon wafer and a notch provided at the peripheral edge. The present invention relates to a surface defect inspection apparatus having a three-dimensional mirror surface capable of simultaneously observing a part.

製造に用いられるシリコンウエーハの表面平面部の欠陥検査の重要性は言うまでもなく表面欠陥の低減化を計るため、細心の注意で検査が行われる。一方、シリコンウエーハの周端縁部および周端縁部に設けられたノッチ部は最終製品には使用されない部位で、廃棄される部分であることから、その部分の検査についてはあまり重要と考えてはいなかった。近年になって、この部分の微細な欠陥が後工程への歩留まりに大きな影響があることが次第に明らかになってきた。即ち、終端縁部に微細なクラックがあれば、その部分のひずみがシリコンウエーハ全体に拡大し破損や周辺汚染に発展することや、あるいは終端縁部にある微細な凹凸欠陥が原因でパーティクルが飛散して不良品が発生することが問題視されてきている。  Needless to say, the inspection of the surface flat portion of the silicon wafer used for manufacturing is inspected with great care in order to reduce the surface defects. On the other hand, the peripheral edge of the silicon wafer and the notch provided on the peripheral edge are parts that are not used in the final product and are discarded parts. I didn't. In recent years, it has gradually become clear that the minute defects in this part have a great influence on the yield to the post-process. In other words, if there are minute cracks at the end edge, the distortion at that end will spread throughout the silicon wafer, leading to breakage and peripheral contamination, or fine scattering at the end edge, causing particles to scatter. Thus, it has been regarded as a problem that defective products are generated.

シリコンウエーハの終端縁部は強度の面を考慮してテーパが設けられており、上側テーパ部、側面部、下側テーパ部を備え、上下のテーパ部と側面部との間はアール部で接続されているために、観測する対象面は立体的な面となっている。  The terminal edge of the silicon wafer is tapered in consideration of strength, and it has an upper taper, a side, and a lower taper. Therefore, the observation target surface is a three-dimensional surface.

さらにシリコンウエーハの終端縁部に設けられたウエーハの結晶の方向を判別するためのU字状のノッチ部は、ノッチ部以外の終端縁部のテーパと同様なテーパが設けられているために、ノッチ部以外の終端縁部より一層複雑な立体形状となっている。  Furthermore, since the U-shaped notch portion for determining the direction of the wafer crystal provided at the terminal edge of the silicon wafer is provided with a taper similar to the taper of the terminal edge other than the notch portion, The three-dimensional shape is more complicated than the end edge portion other than the notch portion.

特開2003−243465号公報に、上記のシリコンウエーハの終端縁部および終端縁部に設けられているノッチ部の画像を撮像し、この画像データからシリコンウエーハの終端縁部および終端縁部に設けられているノッチ部上に存在する欠陥を検出するための検査装置の構成およびその内容が開示されている。  Japanese Patent Application Laid-Open No. 2003-243465 takes images of the end edge and the notch provided on the end edge of the silicon wafer, and provides the end edge and end edge of the silicon wafer from this image data. A configuration and contents of an inspection apparatus for detecting a defect existing on a notch portion is disclosed.

上記検査装置においては、シリコンウエーハの終端縁部の側面部、テーパ部およびそれに続くロールオフ部を撮像するための手段として、シリコンウエーハの終端縁部の側面部、テーパ部およびそれに続くロールオフ部を拡散光で照明するためのC型照明装置と、側面部、上側テーパ部とそれに続くロールオフ部および下側テーパ部とそれに続くロールオフ部をそれぞれ撮像するための3台の撮像カメラが設けられている。  In the inspection apparatus, as a means for imaging the side surface portion, the taper portion and the roll-off portion of the terminal edge of the silicon wafer, the side surface portion, the taper portion and the roll-off portion following the silicon wafer as the means for imaging the roll-off portion. A C-type illumination device for illuminating the image with diffused light, and three imaging cameras for imaging the side surface portion, the upper taper portion and the subsequent roll-off portion, and the lower taper portion and the subsequent roll-off portion are provided. It has been.

また、シリコンウエーハの終端縁部に設けられたウエーハの結晶の方向を判別するためのU字状のノッチ部を撮像する手段として、ノッチ部を拡散光で照明するドーム型の照明装置と、上記ノッチ部を異なる5つの方向から撮像する5台の撮像カメラが設けられている。  Further, as means for imaging a U-shaped notch portion for determining the direction of the wafer crystal provided at the terminal edge of the silicon wafer, a dome-shaped illumination device that illuminates the notch portion with diffused light, and the above Five imaging cameras for imaging the notch from five different directions are provided.

一方、シリコンウエーハなどの検査対象物の鏡面状平面の画像を用いた検査を行う場合、検査対象物を照明する照明手段が重要であることが知られている。ここで、シリコンウエーハなどの鏡面状表面を有する検査対象物の検査では、検査対象物の性能に影響を与える欠陥と、汚れあるいは欠陥と言えない程度のわずかな摩擦痕などを判別するには、できる限り広い範囲の方向から照射される拡散光照明手段が好適である。また、照明手段の照射方向は、撮像装置の光軸と同軸もしくは同方向である必要がある。  On the other hand, it is known that illumination means for illuminating an inspection object is important when performing inspection using an image of a mirror-like plane of the inspection object such as a silicon wafer. Here, in the inspection of the inspection object having a mirror-like surface such as a silicon wafer, in order to determine a defect that affects the performance of the inspection object and a slight friction mark that cannot be said to be a dirt or a defect, A diffused light illuminating means for irradiating from as wide a range as possible is preferable. Further, the irradiation direction of the illumination means needs to be coaxial or in the same direction as the optical axis of the imaging device.

上記の条件を満足させる拡散光照明手段が特開2004−319466号に開示されている。その1つが、上記公報の従来技術として記載されているドーム型全天照明装置により拡散光照明し、ドーム型の装置の一部に設けた観察孔から検査対象物を撮像する方法である。特開2003−243465号公報に開示されている検査装置は、ノッチの照明手段としてのやはりドーム型の照明装置を備えているが、5台のカメラを照明装置の配置する方向とほぼ同方向に配置する必要があるために、十分な大きさがとれず、広範囲な方向から入射する均一な照明光が得られるとは言い難い。  Japanese Unexamined Patent Application Publication No. 2004-319466 discloses a diffused light illuminating means that satisfies the above conditions. One of them is a method in which diffused light illumination is performed by a dome-type whole sky illumination device described as the prior art in the above publication, and an inspection object is imaged from an observation hole provided in a part of the dome-type device. The inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2003-243465 includes a dome-shaped illumination device as a notch illumination device, but in the same direction as the direction in which the five cameras are arranged. Since it needs to be arranged, it cannot be said that a sufficient size is obtained and uniform illumination light incident from a wide range of directions can be obtained.

特開2004−319466号の発明として記載されている拡散光照明装置は、微細な隙間ができるように配列した微小な多数個の反射部とこれを支える透明体と光源とからなっている。光源から出射した光はこの反射部で反射して検査対象物を照明し、検査対象物で反射した光は、反射部間の微細な隙間から照明装置を通過するように構成されたものであり、検査対象物を均一な拡散光で照明するとともに、照明装置の同軸方向にある撮像手段で検査対象物の画像を撮像することができる。  The diffused light illuminating device described as the invention of Japanese Patent Application Laid-Open No. 2004-319466 includes a large number of minute reflecting portions arranged so as to form a minute gap, a transparent body that supports the reflecting portion, and a light source. The light emitted from the light source is reflected by the reflecting part to illuminate the inspection object, and the light reflected by the inspection object is configured to pass through the illumination device through a minute gap between the reflecting parts. In addition to illuminating the inspection object with uniform diffused light, an image of the inspection object can be captured by the imaging means in the coaxial direction of the illumination device.

特開2003−243465号  JP 2003-243465 A 特開2004−319466号  JP 2004-319466 A

特開2003−243465号で開示されている検査装置において、シリコンウエーハの終端縁部を撮像するのに3台のカメラを必要とし、さらに終端縁部の一部に設けられるノッチ部を撮像するのに5台のカメラを必要とするために、合わせて8台のカメラをシリコンウエーハの周囲に配置しなければならず、装置が複雑化するとともに、その製作費用も高額とならざるを得ない。  In the inspection apparatus disclosed in Japanese Patent Application Laid-Open No. 2003-243465, three cameras are required to image the terminal edge of the silicon wafer, and the notch portion provided at a part of the terminal edge is imaged. In other words, five cameras are required, and a total of eight cameras must be arranged around the silicon wafer. This complicates the apparatus and increases the production cost.

また、ノッチ部を撮影するためにノッチ部を照明する照明装置は、撮像手段として5台のカメラを配置するために、撮像に十分な大きさのドーム型照明を配置することが困難であり、ノッチの各部位に均一な拡散光で照明することが困難である。In addition, the illumination device that illuminates the notch part for photographing the notch part is difficult to arrange a dome-shaped illumination that is large enough for imaging because it arranges five cameras as imaging means. It is difficult to illuminate each part of the notch with uniform diffused light.

上記問題を鑑み、本発明は多数台の撮像カメラを配置することなく、シリコンウエーハの終端縁部あるいは終端縁部に設けられたノッチ部を撮像するとともに、様々な方向から入射する均一な拡散光照明を得ることが可能な装置であって、装置の構成が簡略化され、安定した拡散光照明が得られるとともに、費用の削減を図ることが可能なシリコンウエーハの終端縁部および終端縁部に設けられたノッチ部の表面欠陥を検査する表面欠陥検査装置を提供することを目的とする。  In view of the above problems, the present invention images a terminal edge of a silicon wafer or a notch provided at the terminal edge without arranging a large number of imaging cameras, and uniformly diffuses light incident from various directions. It is a device capable of obtaining illumination, and the structure of the device is simplified, stable diffused light illumination can be obtained, and cost can be reduced at the end edge and the end edge of the silicon wafer. An object of the present invention is to provide a surface defect inspection apparatus for inspecting a surface defect of a notch portion provided.

本発明の立体形状鏡面を検査する表面欠陥検査装置は上記目的を達成するために、前記検査対象物を撮像する1台の撮像手段と、検査対象物の表面に様々な方向からの光を一様に照射する拡散光照明手段と、撮像手段と正対しない撮像対象部位を撮像するために光路を屈折させる光路屈折手段と、前記撮像手段の撮像データを演算処理する画像処理手段とを備え、立体的形状の検査対象物の複数の部位を1台の撮像手段で同時に撮像することを特徴とする。  In order to achieve the above object, a surface defect inspection apparatus for inspecting a three-dimensional mirror surface according to the present invention has a single imaging means for imaging the inspection object and a single light from various directions on the surface of the inspection object. A diffusing light illuminating means for irradiating in such a manner, an optical path refracting means for refracting an optical path to image an imaging target portion that does not face the imaging means, and an image processing means for calculating the imaging data of the imaging means, A plurality of parts of a three-dimensional inspection object are simultaneously imaged by a single imaging means.

上記の第1の課題解決手段によれば、検査対象物の立体形状鏡面を検査する際に、撮像手段と正対しない部位であっても、光路屈折手段を用いることにより撮像することが可能となるために、1台の撮像カメラで複数の検査対象物の部位を撮像することが可能となる。  According to the first problem solving means, when inspecting the three-dimensional mirror surface of the inspection object, it is possible to take an image by using the optical path refracting means even if the part is not directly facing the imaging means. Therefore, it becomes possible to image the site | parts of a several test target object with one imaging camera.

第2の課題解決手段は、第1の課題解決手段であって、撮像する複数の部位の画像が一つの撮像画面内に分離して配置されることを特徴としており、対象物の複数の検査部位を同時に観測することができる。  The second problem solving means is the first problem solving means, characterized in that images of a plurality of parts to be imaged are separately arranged in one imaging screen, and a plurality of examinations of an object The site can be observed simultaneously.

第3の課題解決手段は、第1の課題解決手段であって、撮像する複数部位の画像が各々の隣接する画像と重複部分を有するように各々の画像の撮像範囲が定められていることを特徴としており、検査対象物の検査部位をもれなく観測することができる。  The third problem-solving means is the first problem-solving means, and the imaging range of each image is determined so that the images of the plurality of parts to be imaged have overlapping portions with the adjacent images. As a feature, it is possible to observe all inspection parts of the inspection object.

第4の課題解決手段は、第1の課題解決手段であって、前記撮像手段は、テレセントリック光学系で構成されていることを特徴とする  The fourth problem-solving means is the first problem-solving means, and the imaging means is constituted by a telecentric optical system.

第5の課題解決手段は、第1の課題解決手段であって、前記拡散光照明手段は、検査対象物と前記光路屈折手段との間に配置することを特徴とする。  The fifth problem solving means is the first problem solving means, characterized in that the diffused light illuminating means is disposed between the inspection object and the optical path refraction means.

第6の課題解決手段は、第1の課題解決手段であって、前記拡散光照明手段は面光源であって、検査対象物からの反射光を撮像手段へ透過可能であることを特徴とする。  A sixth problem solving means is the first problem solving means, wherein the diffused light illuminating means is a surface light source, and is capable of transmitting reflected light from the inspection object to the imaging means. .

第7の課題解決手段は、第1の課題解決手段であって、前記拡散光照明手段は、ドーム状の形状に形成され、その略頂部に前記撮像手段の観測用窓を設けた第1の拡散光照明手段と、前記撮像手段の光学系の光軸と同軸に照射する第2の拡散光照明手段とで構成されることを特徴とする。  The seventh problem-solving means is the first problem-solving means, wherein the diffused light illuminating means is formed in a dome shape, and an observation window for the imaging means is provided at a substantially top portion thereof. The diffused light illuminating means and a second diffused light illuminating means for irradiating coaxially with the optical axis of the optical system of the imaging means.

第8の課題解決手段は、第7の課題解決手段であって、前記第1の拡散光照明手段は、ドームの周辺部に発光部を備え、ドーム内面を反射面とすることを特徴しており、ドーム内面で反射した光は、様々な方向から検査対象物を照明する結果、検査対象物の様々な方向の面を撮像手段により観測することができる。  The eighth problem-solving means is the seventh problem-solving means, wherein the first diffused light illuminating means is provided with a light emitting portion at the periphery of the dome, and the inner surface of the dome is used as a reflecting surface. The light reflected from the inner surface of the dome illuminates the inspection object from various directions, so that the surfaces of the inspection object in various directions can be observed by the imaging means.

第9の課題解決手段は、第7の課題解決手段であって、前記第2の拡散光照明手段は、拡散光光源部とハーフミラーから構成するとともに、拡散光光源部からの拡散光がハーフミラーで反射して前記撮像手段の光学系の光軸と同軸で照明することを特徴としており、第1の照明手段の頂部には撮像手段用の観測窓の分だけ照明光が減少するのを補う役割を果たして均一な照明光を得る。  A ninth problem solving means is a seventh problem solving means, wherein the second diffused light illuminating means comprises a diffused light source part and a half mirror, and the diffused light from the diffused light source part is half. It is characterized in that it is reflected by a mirror and illuminated coaxially with the optical axis of the optical system of the imaging means, and the illumination light is reduced at the top of the first illumination means by the amount of the observation window for the imaging means. It plays a role to supplement and obtains uniform illumination light.

第10の課題解決手段は、第7の課題解決手段であって、前記第2の拡散光照明手段は、偏光フィルター又は減光フィルターを備えることを特徴としており、これらのフィルターを使うことにより第1の照明光の照度に第2の照明光の照度を合わせる。  A tenth problem solving means is a seventh problem solving means, wherein the second diffused light illuminating means is provided with a polarizing filter or a neutral density filter. By using these filters, The illuminance of the second illumination light is matched with the illuminance of the first illumination light.

第11の課題解決手段は、第1の課題解決手段であって、前記光路屈折手段は、複数個の屈折部材から形成されていることを特徴としており、撮像手段に正対しない検査対象物の部位であっても撮像手段とあたかも正対するように撮像することを可能にする。  The eleventh problem-solving means is the first problem-solving means, wherein the optical path refracting means is formed of a plurality of refracting members, and is an inspection object that does not face the imaging means. Even a part can be imaged as if it were directly facing the imaging means.

第12の課題解決手段は、第1の課題解決手段であって、前記光路屈折手段は、複数の撮像部位の光路長が等しくなるように屈折部材の形状を定めることを特徴としており、撮像部位にかかわらず同じピントが得られる。  The twelfth problem solving means is the first problem solving means, wherein the optical path refracting means determines the shape of the refractive member so that the optical path lengths of the plurality of imaging parts are equal, and the imaging part is characterized in that Regardless of whether the focus is the same.

第13の課題解決手段は、第1の課題解決手段であって、検査対象はシリコンウエーハの周端縁部に設けられたノッチ部であり、ノッチ部上面テーパ部位、ノッチ部下面テーパ部位、ノッチ側面底部及びノッチ側面の左斜面部と右斜面部の少なくとも5箇所の画像を撮像することを特徴とする。  The thirteenth problem solving means is the first problem solving means, and the object to be inspected is a notch portion provided at the peripheral edge of the silicon wafer, the notch portion upper surface taper portion, the notch portion lower surface taper portion, the notch At least five images of the left and right slopes of the side bottom and notch side are taken.

第14の課題解決手段は、第1の課題解決手段であって、検査対象はシリコンウエーハの周端縁部全周であり、周端縁部の上面テーパ部位並びにこれに続くロールオフ部、下面テーパ部位並びにこれに続くロールオフ部及び側面部位の画像を撮像することを特徴とする。  The fourteenth problem-solving means is the first problem-solving means, and the inspection object is the entire circumference of the peripheral edge of the silicon wafer. An image of the taper part and the subsequent roll-off part and side part are taken.

第15の課題解決手段は、第1の課題解決手段であって、上記画像処理手段は、上記撮像手段で撮像した複数の部位の画像の重複する部分を削除し、展開図状に画像表示することを特徴とする。  The fifteenth problem solving means is the first problem solving means, wherein the image processing means deletes overlapping portions of the images of a plurality of parts imaged by the imaging means and displays the images in a developed view. It is characterized by that.

立体的な部位の表面を検査する場合、従来は複数の撮像手段を配置して立体的な形状の異なる部位を撮像することにより検査を行っていた。しかし、この方法では、複雑な形状になるほど多数の撮像手段が必要となり、装置が複雑でかつ高価になるという問題があった。  In the case of inspecting the surface of a three-dimensional part, conventionally, a plurality of imaging means are arranged to inspect a part having a different three-dimensional shape. However, this method has a problem that the more complex the shape, the more imaging means are required, and the apparatus becomes complicated and expensive.

本発明の表面欠陥検査装置は、1台の撮像手段を以って複数の立体形状の異なる部位を撮像することを可能にしたものであり、従来のように多数台のカメラを用意することなく、立体的な形状の複数の部位の撮像を可能にしている。その結果、装置の構成がシンプルになるとともに、製作費用の低減が可能となった。  The surface defect inspection apparatus according to the present invention makes it possible to image a plurality of parts having different three-dimensional shapes by using a single imaging means, without preparing a large number of cameras as in the prior art. This enables imaging of a plurality of parts having a three-dimensional shape. As a result, the configuration of the apparatus is simplified and the production cost can be reduced.

また、均一な拡散光照明手段を用いることにより、コーナー部にあるアール形状のような立体的な部分であっても、凹凸が無い場合には撮像手段に入射する照明光が存在する。そのために、立体的な部分であっても誤って欠陥と判定する恐れがなく、欠陥を正しく検出することができる。  Further, by using the uniform diffused light illumination means, there is illumination light that is incident on the image pickup means even if it is a three-dimensional portion such as a round shape at the corner portion when there is no unevenness. Therefore, even if it is a three-dimensional part, there is no possibility of erroneously determining a defect, and the defect can be detected correctly.

図をもって本発明の方法および装置について詳細に説明する。なお、本発明は本実施例によって限定されるものではない。  The method and apparatus of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by a present Example.

図1は本発明の第1の実施例の表面欠陥検査装置を説明する平面図であり、表面欠陥検査装置1は撮像カメラ2、拡散光照明手段3および光路屈折手段4とから構成される。  FIG. 1 is a plan view for explaining a surface defect inspection apparatus according to a first embodiment of the present invention. The surface defect inspection apparatus 1 includes an imaging camera 2, diffused light illumination means 3, and optical path refraction means 4.

図2は、図1において右方向から見た形態を一部断面でもって示す側面部であり、シリコンウエーハ5は図示しない回転テーブルによって回転可能にかつ、水平に支持されている。  FIG. 2 is a side view showing the form seen from the right direction in FIG. 1 with a partial cross section. The silicon wafer 5 is rotatably supported by a turntable (not shown) and horizontally.

図3に検査対象物であるシリコンウエーハ5の周端縁部に設けられたノッチ6の形状を示す。図3(a)はノッチ6を上から見た図であり、図3(b)はノッチ6を側面部の正面方向すなわち撮像カメラ2の光軸方向から見た図であり、図3(c)はA矢視の断面図である。ノッチ6はシリコンウエーハ5の結晶方向の判別および位置決めのためにシリコンウエーハ5の周端縁部に設けられており、図3(a)に示すようにノッチ部6は、略U字上にエッジを切り欠いた形状である。シリコンウエーハ5の周端縁部には全周に亙って上面および下面にテーパ面が形成されており、図3(b)に示すようにノッチの部分にもテーパ面が形成されている。  FIG. 3 shows the shape of the notch 6 provided at the peripheral edge of the silicon wafer 5 as the inspection object. 3A is a view of the notch 6 as viewed from above, and FIG. 3B is a view of the notch 6 as viewed from the front side of the side surface, that is, from the optical axis direction of the imaging camera 2. FIG. ) Is a cross-sectional view taken along arrow A. The notch 6 is provided at the peripheral edge of the silicon wafer 5 for discrimination and positioning of the crystal direction of the silicon wafer 5. As shown in FIG. 3A, the notch 6 has a substantially U-shaped edge. The shape is a notch. A taper surface is formed on the upper surface and the lower surface of the peripheral edge of the silicon wafer 5 over the entire periphery, and a taper surface is also formed on the notch portion as shown in FIG.

撮像カメラ2としてはエリアセンサカメラなどの2次元撮像装置が適当であり、シリコンウエーハ5の中心に向けてノッチ6に正対する位置に配置されて、ノッチ6の各部分を撮像する。  As the imaging camera 2, a two-dimensional imaging device such as an area sensor camera is suitable. The imaging camera 2 is arranged at a position facing the notch 6 toward the center of the silicon wafer 5 and images each part of the notch 6.

撮像カメラ2は、テレセントリック光学系7を備えた構成とするのが好ましい。図4は両側テレセントリック光学系を説明する説明図である。  The imaging camera 2 is preferably configured to include a telecentric optical system 7. FIG. 4 is an explanatory diagram for explaining a double-sided telecentric optical system.

物体側レンズ71とCCD側レンズ73との間に絞り72が配置されており、その位置は、物体側レンズ71の後側焦点であって、かつCCD側レンズ73の前側焦点である位置に置かれる。このように構成されている光学系では、主光線は物体側レンズ71の光軸に平行な光線となり、さらにCCD側レンズ73を通過した主光線はCCD側レンズ73の光軸に平行になる。すなわち、CCD素子74には、テレセントリック光学系の光軸に平行な光線のみ入射することになる。その結果、撮像する対象の位置に関係なく、CCD素子74で撮像される像の大きさは一定となり、検査対象物にある欠陥の大きさを正確に測定することができる。CCD素子74は受光素子であり、エリアセンサカメラを用いる場合は、エリアセンサが用いられる。  A diaphragm 72 is disposed between the object side lens 71 and the CCD side lens 73, and the position thereof is the rear focal point of the object side lens 71 and the front focal point of the CCD side lens 73. It is burned. In the optical system configured as described above, the principal ray becomes a ray parallel to the optical axis of the object side lens 71, and the principal ray that has passed through the CCD side lens 73 becomes parallel to the optical axis of the CCD side lens 73. That is, only light rays parallel to the optical axis of the telecentric optical system are incident on the CCD element 74. As a result, regardless of the position of the object to be imaged, the size of the image captured by the CCD element 74 is constant, and the size of the defect in the inspection object can be accurately measured. The CCD element 74 is a light receiving element, and when an area sensor camera is used, an area sensor is used.

図6は扁平拡散光照明手段4を説明する説明図であり、図6(a)は、扁平拡散光照明手段4の一部を断面で示したものであり、図6(b)はその部分を下方から見た平面図であり、図6(c)は、図6(a)の一部を拡大した説明図である。  FIG. 6 is an explanatory view for explaining the flat diffused light illuminating means 4, FIG. 6 (a) shows a part of the flat diffused light illuminating means 4 in cross section, and FIG. 6 (b) shows that part. FIG. 6C is an explanatory diagram in which a part of FIG. 6A is enlarged.

扁平拡散光照明手段4は、図6(a)に示すように、扁平な透明部材31にドーム形状のくぼみを多数設けて構成し、そのくぼみに光を反射する素材を塗布することにより反射部32を形成する。反射部32は、図6(c)に示すようにドーム状の形状をしているので、光源33からの光を広角に反射し、これらの反射部32が透明部材31の上に均一に設けることにより、均一な拡散光照明を得ることができる。また、その表面を細かく荒らすことで反射光をより散乱させるようにすることができる。透明部材31のくぼみ部32以外の部分は光が透過できるように保たれる。  As shown in FIG. 6 (a), the flat diffused light illuminating means 4 is configured by providing a flat transparent member 31 with a large number of dome-shaped depressions, and applying a material that reflects light to the depressions. 32 is formed. Since the reflecting part 32 has a dome shape as shown in FIG. 6C, the light from the light source 33 is reflected at a wide angle, and these reflecting parts 32 are provided uniformly on the transparent member 31. Thus, uniform diffused light illumination can be obtained. Further, the reflected light can be more scattered by roughening the surface. Portions other than the recessed portion 32 of the transparent member 31 are kept so that light can be transmitted.

ここで、反射部32のくぼみの大きさやその間隔は、撮像カメラ2の撮像用レンズの絞り値や撮像カメラ2と検査物であるシリコンウエーハ5との間隔により撮影に影響を与えないように構成すればよい。逆に、くぼみの大きさやその間隔が製造上等の制約で決定される場合は、撮像カメラ2の撮像レンズの絞り値や被検査部位と扁平拡散光照明手段3との距離を適切に選択することで、反射部32の撮像への影響を適切化することができる。  Here, the size and interval of the recesses of the reflection unit 32 are configured so as not to affect the imaging due to the aperture value of the imaging lens of the imaging camera 2 and the interval between the imaging camera 2 and the silicon wafer 5 as the inspection object. do it. On the other hand, when the size of the indentation and the interval between the indentations are determined due to manufacturing restrictions, the aperture value of the imaging lens of the imaging camera 2 and the distance between the site to be inspected and the flat diffused light illumination means 3 are appropriately selected. Thereby, the influence on the imaging of the reflection part 32 can be made appropriate.

扁平拡散光照明手段3より様々な方向へ射出された光は、鏡面で立体的な部位の被検査物であるシリコンウエーハ5のエッジ部を様々な方向より照明し、シリコンウエーハ5の表面で反射する。この反射光は、反射部32以外の透過部材31の部分を透過して撮像手段2で観察される。  Light emitted from the flat diffused light illuminating means 3 in various directions illuminates the edge portion of the silicon wafer 5 which is a three-dimensional inspection object on the mirror surface from various directions and is reflected on the surface of the silicon wafer 5. To do. This reflected light is transmitted through a portion of the transmissive member 31 other than the reflective portion 32 and is observed by the imaging means 2.

上記の扁平拡散光照明手段3は、透明部材31にくぼみを設けて反射部32としたが、特開2004−319466号に記載されているように、透明部材にドーム状の突起部を設けてこれを反射部とする構成としてもよい。  In the above-described flat diffused light illuminating means 3, a recess is provided in the transparent member 31 to form the reflecting portion 32. However, as described in JP-A-2004-319466, a dome-shaped protrusion is provided in the transparent member. It is good also as a structure which makes this a reflection part.

光路屈折手段4は、図1および図2に示すように屈折部材となる複数のプリズム41、42,43、44と、透明部材45とから構成され、それぞれ、撮像する画像に対応してプリズムの形状が定められる。ここでプリズム41は、ノッチ6の側面の左部分を撮像するための光路屈折用部材であり、プリズム42は、ノッチ6の側面の右部分を撮像するための光路屈折用部材であり、プリズム43は、ノッチ6の上側テーパ面を撮像するための光路屈折用部材であり、プリズム44は、ノッチ6の下側テーパ面を撮像するための光路屈折用部材である。透明部材45はノッチ6の側面の底部を撮像する場合と、他のプリズム部材を使用した場合とで光路長が異なるので、光路長の調整のために用いるが、プリズム部材の長さで調整可能な場合には、不要である。  As shown in FIGS. 1 and 2, the optical path refracting means 4 is composed of a plurality of prisms 41, 42, 43, and 44, which are refracting members, and a transparent member 45, and each of the prisms corresponds to an image to be captured. The shape is defined. Here, the prism 41 is an optical path refraction member for imaging the left portion of the side surface of the notch 6, and the prism 42 is an optical path refraction member for imaging the right portion of the side surface of the notch 6. Is an optical path refraction member for imaging the upper tapered surface of the notch 6, and the prism 44 is an optical path refraction member for imaging the lower tapered surface of the notch 6. The transparent member 45 is used for adjusting the optical path length because the optical path length is different between the case where the bottom of the side surface of the notch 6 is imaged and the case where another prism member is used, but can be adjusted by the length of the prism member. In such a case, it is unnecessary.

次に本実施例の表面検査装置を用いて検査を行う手順および機能について説明する。検査対象物であるシリコンウエーハ5は図示しない回転テーブルに載置されており、ノッチ6が撮像カメラ2に正対する位置で停止し、撮像カメラ2によりノッチ6を撮像することで、ノッチ6の部分の表面欠陥検査を行う。  Next, procedures and functions for performing inspection using the surface inspection apparatus of this embodiment will be described. A silicon wafer 5 as an inspection object is placed on a rotary table (not shown), and the notch 6 stops at a position facing the imaging camera 2, and the notch 6 is imaged by the imaging camera 2. Perform surface defect inspection.

このとき、ノッチの側面左部分、側面底部、側面右部分、上側テーパ面、下側テーパ面の5つの部分がそれぞれ光路屈折手段4を構成するプリズムおよび透明部材により導かれる光路を経て撮像カメラ2に届くことによりそれぞれの画像が撮像される。  At this time, the imaging camera 2 passes through the optical path guided by the prism and the transparent member in which the five parts of the left side portion, the bottom side surface, the right side surface portion, the upper tapered surface, and the lower tapered surface of the notch are respectively guided by the prism and the transparent member. Each image is captured by arriving at.

図5により、ノッチ側面左部分を撮像するために配置されているプリズム41を例にとって光路屈折手段4の機能を説明する。広角な方向から扁平拡散光照明手段3により照明されているために、ノッチ6の表面には広角で様々な方向から照明光が達する。ノッチ6表面に傷がない場合、ノッチ表面は鏡面であるので、上記の広角に入射する照明光のうち、図5のA矢印方向に反射するような照明光が存在する。ここでA矢印方向とは、光路屈折手段4のプリズム41の面41aと直交する方向である。A矢印方向に進んだ反射光は光路屈折手段4の屈折部材の一つであるプリズム41に入り、面41bで全反射し、次いで面41cで全反射して撮像カメラ2の光軸方向に進み、撮像カメラ2により、画像として撮像される。即ち、プリズム41は、面41aと直交する方向に入射した光がプリズム41の面で2回屈折して撮像手段2の光軸方向に進むようにプリズム41の形状が形成されている。このプリズムによる像は全反射が2回起こるために正立の像として撮像カメラ2に捉えられる。他のプリズムについても同様に形成されており、それぞれ対応するノッチ6の部位の画像を得る。  The function of the optical path refracting means 4 will be described with reference to FIG. 5 taking as an example a prism 41 arranged for imaging the left part of the side surface of the notch. Since the flat diffused light illuminating means 3 is illuminated from a wide angle direction, the illumination light reaches the surface of the notch 6 from various directions at a wide angle. When the surface of the notch 6 is not scratched, the notch surface is a mirror surface, so that there is illumination light that reflects in the direction of the arrow A in FIG. Here, the arrow A direction is a direction orthogonal to the surface 41 a of the prism 41 of the optical path refracting means 4. The reflected light traveling in the direction of arrow A enters the prism 41, which is one of the refractive members of the optical path refracting means 4, and is totally reflected by the surface 41b, and then totally reflected by the surface 41c and proceeds in the optical axis direction of the imaging camera 2. The image is taken as an image by the imaging camera 2. That is, the prism 41 is formed in such a shape that light incident in a direction orthogonal to the surface 41 a is refracted twice by the surface of the prism 41 and proceeds in the optical axis direction of the imaging means 2. The image by the prism is captured by the imaging camera 2 as an erect image because total reflection occurs twice. The other prisms are formed in the same manner, and images of the corresponding notch 6 are obtained.

撮像カメラ2の光軸に対してプリズム41と対称の位置にプリズム42が配置されているが、プリズム42はノッチ6の側面部の右部分を撮像するための光路屈折手段であり、プリズム41と同様にノッチの側面部を正立画像として撮像カメラ2に入射させる役割を果たす。  A prism 42 is disposed at a position symmetrical to the prism 41 with respect to the optical axis of the imaging camera 2. The prism 42 is an optical path refracting means for imaging the right portion of the side surface of the notch 6. Similarly, it plays a role of making the side surface portion of the notch enter the imaging camera 2 as an upright image.

また、図2に示すように、プリズム43はノッチ6の上側テーパ面を撮像するための光路屈折手段であり、プリズム41、42と同様にノッチの上側テーパ面部を正立画像として撮像カメラ2に入射させる役割を果たす。同様プリズム44は、ノッチの下側テーパ面部を正立画像として撮像カメラ2に入射させる。透明部材45を通る反射光によりノッチの側面底部を撮像する。  As shown in FIG. 2, the prism 43 is an optical path refracting means for imaging the upper tapered surface of the notch 6, and the upper tapered surface portion of the notch is used as an upright image to the imaging camera 2 in the same manner as the prisms 41 and 42. Plays the role of incidence. Similarly, the prism 44 causes the lower tapered surface portion of the notch to enter the imaging camera 2 as an erect image. The bottom of the side surface of the notch is imaged by the reflected light passing through the transparent member 45.

本実施例の表面欠陥検査装置1に用いる撮像手段はテレセントリック光学系撮像手段であるために、扁平拡散光照明手段3による照明光のうち、撮像手段の光学系の光軸に平行となる反射光のみCCD素子74に入射する。したがって、撮像している面に欠陥である傷や付着物がある箇所では光が散乱する結果、撮像手段に入射する光軸に平行な光線の光量が減少し、平坦である箇所とは明暗の差が生じる。即ち、欠陥である傷や付着物がある箇所に陰影が現われる。本発明の微少凹凸欠陥検査装置ではこの性質を利用して検査面の微少凹凸を明暗度の違いとして検出する。  Since the imaging means used in the surface defect inspection apparatus 1 of the present embodiment is a telecentric optical system imaging means, the reflected light that is parallel to the optical axis of the optical system of the imaging means out of the illumination light from the flat diffused light illumination means 3. Only incident on the CCD element 74. Therefore, light is scattered at locations where there are flaws or deposits that are defects on the surface being imaged, resulting in a decrease in the amount of light rays parallel to the optical axis incident on the imaging means, and contrast between locations that are flat. There is a difference. That is, a shadow appears in a place where there is a flaw or a deposit that is a defect. The minute unevenness inspection apparatus of the present invention uses this property to detect minute unevenness on the inspection surface as a difference in brightness.

テレセントリック光学系は、鏡面欠陥の凹凸を濃淡画像に変換できるとともに、対象物の位置にかかわらず対象物が一定の大きさで撮像されるために、欠陥検査において欠陥の大きさおよび位置を精密に知ることができるという特徴を有する。テレセントリック光学系を備えない通常の光学系の撮像カメラを用いても欠陥の検出は可能であるが、検査対象物の距離が変わる場合には像の大きさが変化するために、欠陥の正確な位置及び大きさを知ることはできない。  The telecentric optical system can convert the irregularities of specular defects into grayscale images, and because the object is imaged at a constant size regardless of the position of the object, the size and position of the defect can be accurately determined in defect inspection. It has the feature of knowing. Although it is possible to detect defects using an imaging camera with a normal optical system that does not have a telecentric optical system, the size of the image changes when the distance of the inspection object changes, so the defect can be accurately detected. The position and size cannot be known.

図1および図2に示すようにプリズム41、42を配置してあるために、ノッチ6の側面底部は、撮像カメラ2の視野の中央に配置され、ノッチ6の側面左部は撮像カメラ2の視野の右側に、またノッチ6の側面右部は撮像カメラ2の視野の左側に配置されるとともに、互いに重なり合うことなく撮像される。プリズム43、44による像も同様であり、図7に示すように撮像カメラの視野内に配置される。  Since the prisms 41 and 42 are arranged as shown in FIGS. 1 and 2, the bottom of the side surface of the notch 6 is arranged at the center of the field of view of the imaging camera 2, and the left side of the notch 6 is the side of the imaging camera 2. The right side of the field of view and the right side of the side surface of the notch 6 are arranged on the left side of the field of view of the imaging camera 2 and images are taken without overlapping each other. The same applies to the images by the prisms 43 and 44, and they are arranged in the field of view of the imaging camera as shown in FIG.

図8は図7に示す撮像カメラ2で撮像した画像を、図示しない画像処理手段により重複している部分は削除した上で、各々の画像の接点を一致させて展開図状に表示したものであり、ノッチ表面の状態を一目で確認することができる。  FIG. 8 shows an image captured by the image capturing camera 2 shown in FIG. 7, with the overlapping portions removed by image processing means (not shown) and displayed in a developed view with the contact points of the images matched. Yes, the state of the notch surface can be confirmed at a glance.

本発明の表面欠陥検査装置の第2の実施例を図9の平面図および図10の側面図でもって示す。第1の実施例の表面欠陥装置との違いは照明装置であり、それ以外の構成は同じである。照明装置は、ドーム型照明装置8と同軸照明装置9とから構成される。  A second embodiment of the surface defect inspection apparatus of the present invention is shown in the plan view of FIG. 9 and the side view of FIG. The difference from the surface defect apparatus of the first embodiment is an illumination apparatus, and the other configurations are the same. The lighting device includes a dome-shaped lighting device 8 and a coaxial lighting device 9.

ドーム型照明装置8は、図11に示すようにドームの開口部83周りに配置されているメタルハライドランプ光源のライトガイド81と、ドーム型の反射面82と開口部83とからなり、ドームの頂点部には後述する光路屈折手段を配置する撮像用の窓84が設けられている。図11から分かるようにドーム状の反射面82に向かって配列されたライトガイド81から射出された拡散光がドーム型の反射面で反射し、その反射光が検査対象物を照明するために検査対象物の表面に様々な角度で光が入射する。また反射面82は極めて微細な凹凸のある面にしておくことが望ましく、その結果反射光が様々な角度で反射することになり、検査対象であるシリコンウエーハ5の表面に様々な角度で入射することで、対象物に広角で入射する照明光となる。  As shown in FIG. 11, the dome-shaped illumination device 8 includes a light guide 81 of a metal halide lamp light source disposed around the opening 83 of the dome, a dome-shaped reflecting surface 82, and an opening 83, and the top of the dome. The part is provided with an imaging window 84 in which an optical path refracting means to be described later is arranged. As can be seen from FIG. 11, the diffused light emitted from the light guide 81 arranged toward the dome-shaped reflecting surface 82 is reflected by the dome-shaped reflecting surface, and the reflected light illuminates the inspection object. Light enters the surface of the object at various angles. Further, it is desirable that the reflecting surface 82 be a surface with extremely fine irregularities. As a result, the reflected light is reflected at various angles, and enters the surface of the silicon wafer 5 to be inspected at various angles. Thus, the illumination light is incident on the object at a wide angle.

ドーム型照明装置8には、頂部に撮像用の窓84が設けられているために頂部付近からの反射光の光量が確保できず、均一な照明光が得られないという問題がある。そこで、第2の拡散光照明手段として同軸照明装置9を配置して頂部付近からの照明光を補強する。  The dome illumination device 8 has a problem in that since the imaging window 84 is provided at the top, the amount of reflected light from the vicinity of the top cannot be secured, and uniform illumination light cannot be obtained. Therefore, the coaxial illumination device 9 is disposed as the second diffused light illumination means to reinforce the illumination light from the vicinity of the top.

同軸照明装置9は、図12に示すように撮像カメラ1の光軸とほぼ直交する方向に拡散光を射出する面光源91を配置し、面光源91から発せられた照明光が、撮像手段の光軸に対してほぼ45°の角度に配置したハーフミラー92で反射してノッチ6に対して撮像手段の光軸方向から照明する。また、面光源91とハーフミラーの間に光量を調整するための光量調整フィルター93を配置する。光量調整フィルター93には偏向フィルターあるいは減光フィルターを用いることができる。  As shown in FIG. 12, the coaxial illumination device 9 is provided with a surface light source 91 that emits diffused light in a direction substantially orthogonal to the optical axis of the imaging camera 1, and the illumination light emitted from the surface light source 91 is emitted from the imaging means. The light is reflected by the half mirror 92 disposed at an angle of approximately 45 ° with respect to the optical axis, and the notch 6 is illuminated from the optical axis direction of the imaging means. A light amount adjustment filter 93 for adjusting the light amount is disposed between the surface light source 91 and the half mirror. A deflection filter or a neutral density filter can be used as the light amount adjustment filter 93.

ドーム型照明装置8と同軸照明装置9を同時に点灯した場合に、これらの照明光が合わさった照明光が均一な照明光になるとは限らない。そこで、面光源91とハーフミラー91の間に光量を調整するための光量調整フィルター93を配置することによって同軸照明装置9の照明光の強度を調整して、検査対象物に対して均一な拡散光照明を実現する。光量調整フィルター93としては偏向フィルターや減光フィルターを用いることができる。偏向フィルターは特定な偏向光のみ通すことにより光量を調整するフィルターであり、減光フィルター、所謂NDフィルターは透過光量を減少させるフィルターである。  When the dome illumination device 8 and the coaxial illumination device 9 are turned on at the same time, the illumination light in which these illumination lights are combined is not necessarily uniform illumination light. Therefore, the intensity of the illumination light of the coaxial illumination device 9 is adjusted by disposing a light amount adjustment filter 93 for adjusting the amount of light between the surface light source 91 and the half mirror 91, and uniform diffusion to the inspection object. Realize light illumination. As the light amount adjustment filter 93, a deflection filter or a neutral density filter can be used. A deflection filter is a filter that adjusts the amount of light by allowing only specific deflection light to pass therethrough, and a neutral density filter, so-called ND filter, is a filter that reduces the amount of transmitted light.

図13は本発明の第3の実施例の表面欠陥検査装置を説明する側面図であり、検査対象はシリコンウエーハのノッチ部6を除いた終端縁部である。表面欠陥検査装置11は撮像カメラ12、扁平型拡散光照明手段3および光路屈折手段13とから構成される。図13には扁平型拡散光照明手段を用いた例で説明するが、ドーム型照明装置3、第2の照明手段である同軸照明装置4を組み合わせて一様な拡散光照明を得る構成としてもよい。  FIG. 13 is a side view for explaining a surface defect inspection apparatus according to a third embodiment of the present invention. The inspection object is a terminal edge portion excluding the notch portion 6 of the silicon wafer. The surface defect inspection apparatus 11 includes an imaging camera 12, a flat diffused light illuminating unit 3, and an optical path refracting unit 13. Although FIG. 13 illustrates an example using a flat diffused light illuminating means, a configuration in which uniform diffused light illumination is obtained by combining the dome-shaped illuminating device 3 and the coaxial illuminating device 4 as the second illuminating means is also possible. Good.

図14は、シリコンウエーハ6の終端縁部の断面図であり、ノッチ部以外の終端縁部の形状を示すものである。図15に示されているロールオフ部は、テーパ部から続く製品とならない平坦部のことを意味している。  FIG. 14 is a cross-sectional view of the end edge portion of the silicon wafer 6 and shows the shape of the end edge portion other than the notch portion. The roll-off part shown by FIG. 15 means the flat part which does not become the product following a taper part.

第3の実施例で用いる撮像カメラ12は、ラインセンサカメラであり、撮像素子としてリニアセンサアレイの主スキャン方向をシリコンウエーハの厚さ方向に設定する。また、テレセントリック光学系を備えた撮像カメラを用いることにより、検査対象物までの距離に影響されずに測定物の大きさを確認することができる。  The imaging camera 12 used in the third embodiment is a line sensor camera, and sets the main scan direction of the linear sensor array as the imaging element in the thickness direction of the silicon wafer. Further, by using an imaging camera provided with a telecentric optical system, the size of the measurement object can be confirmed without being affected by the distance to the inspection object.

光路屈折手段13は、図13に示すように、プリズム43、44と透明部材45を組み合わせた構成とする。第1の実施例および第2の実施例で用いたノッチ用の場合と異なり、側面の左右部位用のプリズム41,42は除いた構成となっている。  As shown in FIG. 13, the optical path refracting means 13 is configured by combining prisms 43 and 44 and a transparent member 45. Unlike the case of the notch used in the first and second embodiments, the left and right side prisms 41 and 42 are omitted.

第3の実施例の表面欠陥検査装置は、シリコンウエーハ5を図示しない回転テーブルに載置し、一定速度で回転させながら撮像カメラ12で撮像することにより表面欠陥検査を行う。撮像カメラ12に搭載されているラインセンサアレイの主スキャン方向をシリコンウエーハ5の厚さ方向、即ち図13の上下方向に設定し、シリコンウエーハ5を一定速度で回転することにより主スキャン方向と直交する方向にスキャンされることになりシリコンウエーハ5の終端縁部の2次元画像が終端縁部の全周に亙って撮像される。  The surface defect inspection apparatus of the third embodiment performs surface defect inspection by placing the silicon wafer 5 on a turntable (not shown) and picking up an image with the image pickup camera 12 while rotating at a constant speed. The main scan direction of the line sensor array mounted on the imaging camera 12 is set to the thickness direction of the silicon wafer 5, that is, the vertical direction in FIG. 13, and the silicon wafer 5 is rotated at a constant speed to be orthogonal to the main scan direction. The two-dimensional image of the terminal edge of the silicon wafer 5 is imaged over the entire periphery of the terminal edge.

光路屈折手段13は、シリコンウエーハ5の上側テーパ面とそれに続くロールオフ部を撮像するためのプリズム43と、下側テーパ面とそれに続くロールオフ部を撮像するためのプリズム44を図10のように配置してあるので、正対する位置に個別のカメラを配置したのと同様に精緻な画像を撮像することが可能となる。  The optical path refracting means 13 includes a prism 43 for imaging the upper tapered surface and the subsequent roll-off portion of the silicon wafer 5, and a prism 44 for imaging the lower tapered surface and the subsequent roll-off portion as shown in FIG. Therefore, it is possible to pick up a precise image as if the individual cameras were arranged at the directly facing positions.

第3の実施例の表面欠陥装置は、撮像カメラの形態および光路屈折手段の構成が第1の実施例および第2の実施例と異なるのみで、他の主要部分は共通である。また検査手順も第1の実施例および第2の実施例と同様であるが、撮像画像はシリコンウエーハ5の全周を撮像した後に2次元の画像が得られるところが異なる。  The surface defect apparatus of the third embodiment is different from the first embodiment and the second embodiment only in the form of the imaging camera and the configuration of the optical path refraction means, and the other main parts are common. The inspection procedure is the same as in the first and second embodiments, but the captured image is different in that a two-dimensional image is obtained after the entire circumference of the silicon wafer 5 is captured.

上述のように本実施例の表面欠陥装置はシリコンウエーハの周縁端部および周縁端部に設けられているノッチの表面欠陥検査について適用するものとして説明したが、これらの検査対象物に限るものではなく、鏡面状の表面を有し、かつ立体的な検査対象物であれば、適用可能である。  As described above, the surface defect apparatus of the present embodiment has been described as being applied to the surface defect inspection of the peripheral edge portion of the silicon wafer and the notch provided at the peripheral edge portion. However, the surface defect device is not limited to these inspection objects. However, the present invention can be applied to any three-dimensional inspection object having a mirror-like surface.

立体的な部位の表面を検査する場合、従来は複数の撮像手段を配置して立体的な形状の異なる部位を撮像することにより検査を行うのが通常の方法であるが、形状が複雑になるほど多数の撮像手段が必要となり、装置が複雑でかつ高価になるという問題があった。  When inspecting the surface of a three-dimensional part, conventionally, it is a normal method to inspect a part having a different three-dimensional shape by arranging a plurality of imaging means, but the more complicated the shape is A large number of imaging means are required, and there is a problem that the apparatus is complicated and expensive.

本発明の表面欠陥検査装置は、検査対象物と撮像手段の間に光路屈折手段を配置することにより撮像手段と1台の撮像手段を以って複数の立体形状の異なる部位を撮像することを可能にしたものであり、従来のように複数のカメラを用意することなく、立体的な形状の複数の部位の撮像を可能にしている。  According to the surface defect inspection apparatus of the present invention, an optical path refracting unit is disposed between an inspection object and an imaging unit, thereby imaging a plurality of parts having different three-dimensional shapes using the imaging unit and one imaging unit. Thus, it is possible to image a plurality of three-dimensional parts without preparing a plurality of cameras as in the prior art.

さらに、扁平光源照明装置などの広い角度で入射する均一な拡散光照明を用いているために、複雑な立体的形状の表面に対しても欠陥検出に十分な様々な角度からの均一な拡散光照明を得ることができる。  Furthermore, since uniform diffused light illumination that is incident at a wide angle, such as a flat light source illumination device, is used, uniform diffused light from various angles sufficient for defect detection even on a complicated three-dimensional surface. Lighting can be obtained.

その結果、装置の製作に当たっては複数台の撮像カメラが不要となるために、製作費用が大幅に低減されるとともに、装置の構成が簡潔であるので、装置の組立および調整にかかる時間が短縮される。また、装置の構成が簡潔であるので、保守に要する時間も軽減される結果、高い生産性を確保することが可能となり産業への寄与が大なるものである。  As a result, since a plurality of imaging cameras are not required for manufacturing the device, the manufacturing cost is greatly reduced and the configuration of the device is simple, so that the time required for assembly and adjustment of the device is shortened. The In addition, since the configuration of the apparatus is simple, the time required for maintenance is reduced. As a result, high productivity can be secured and the contribution to the industry is great.

本発明の第1の実施例を説明する平面図である。  It is a top view explaining the 1st example of the present invention. 本発明の第1の実施例を説明する側面図である。  It is a side view explaining the 1st example of the present invention. ノッチの形状を示す説明図である。  It is explanatory drawing which shows the shape of a notch. テレセントリック光学系を説明する説明図である。  It is explanatory drawing explaining a telecentric optical system. 光路屈折手段の機能を説明する説明図である。  It is explanatory drawing explaining the function of an optical path refraction means. 扁平光源照明装置を説明する説明図である。  It is explanatory drawing explaining a flat light source illuminating device. 撮像カメラの視野と対象撮像部位の関係を示す説明図である。  It is explanatory drawing which shows the relationship between the visual field of an imaging camera, and a target imaging part. 撮像した画像を合成する場合の説明図である。  It is explanatory drawing in the case of combining the captured image. 本発明の第2の実施例を説明する側面図である。  It is a side view explaining the 2nd example of the present invention. 本発明の第2の実施例を説明する平面図である。  It is a top view explaining the 2nd example of the present invention. ドーム状照明装置を説明する断面図である。It is sectional drawing explaining a dome-shaped illuminating device. 同軸照明装置を説明する説明図である。  It is explanatory drawing explaining a coaxial illuminating device. 本発明の第3の実施例を説明する側面図である。  It is a side view explaining the 3rd example of the present invention. シリコンウエーハの終端縁部を断面で示す説明図である。  It is explanatory drawing which shows the termination | terminus edge part of a silicon wafer in a cross section.

符号の説明Explanation of symbols

1 表面欠陥検査装置
2 撮像カメラ
3 扁平光源照明装置
4 光路屈折手段
5 シリコンウエーハ
6 ノッチ
7 テレセントリック光学系
8 ドーム型照明装置
9 同軸照明装置
11 表面欠陥検査装置
12 撮像カメラ
13 光路屈折手段
21 側面右部画像
22 側面左部画像
23 上側テーパ面画像
24 下側テーパ面画像
25 側面底部画像
41、42,43、44 プリズム
45 透明部材
71 物体側レンズ
72 絞り
73 CCD側レンズ
74 CCD素子
81 ライトガイド
82 反射面
83 開口部
84 窓
91 面光源
92 ハーフミラー
93 光量調整フィルター
DESCRIPTION OF SYMBOLS 1 Surface defect inspection apparatus 2 Imaging camera 3 Flat light source illumination apparatus 4 Optical path refraction means 5 Silicon wafer 6 Notch 7 Telecentric optical system 8 Dome type illumination apparatus 9 Coaxial illumination apparatus 11 Surface defect inspection apparatus 12 Imaging camera 13 Optical path refraction means 21 Side right Partial image 22 Side left side image 23 Upper tapered surface image 24 Lower tapered surface image 25 Side bottom image 41, 42, 43, 44 Prism 45 Transparent member 71 Object side lens 72 Aperture 73 CCD side lens 74 CCD element 81 Light guide 82 Reflecting surface 83 Opening 84 Window 91 Surface light source 92 Half mirror 93 Light amount adjustment filter

Claims (15)

検査対象物の立体形状鏡面を検査する検査装置であって、前記検査対象物を撮像する1台の撮像手段と、検査対象物の表面に様々な方向からの光を一様に照射する拡散光照明手段と、撮像手段と正対しない撮像対象部位を撮像するために光路を屈折させる光路屈折手段と、前記撮像手段の撮像データを演算処理する画像処理手段とを備え、立体的形状の検査対象物の複数の部位を1台の撮像手段で同時に撮像することを特徴とする表面欠陥検査装置。  An inspection apparatus for inspecting a three-dimensional mirror surface of an inspection object, wherein one imaging means for imaging the inspection object and diffused light that uniformly irradiates light from various directions on the surface of the inspection object A three-dimensional inspection target, comprising: an illuminating unit; an optical path refracting unit that refracts an optical path to capture an imaging target portion that does not face the imaging unit; and an image processing unit that performs arithmetic processing on imaging data of the imaging unit. A surface defect inspection apparatus characterized in that a plurality of parts of an object are simultaneously imaged by a single imaging means. 撮像する複数の部位の画像が一つの撮像画面内に分離して配置されることを特徴とする請求項1に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 1, wherein images of a plurality of parts to be imaged are separately arranged in one imaging screen. 撮像する複数部位の画像が各々の隣接する画像と重複部分を有するように各々の画像の撮像範囲が定められていることを特徴とする請求項1に記載の表面欠陥検査装置。  2. The surface defect inspection apparatus according to claim 1, wherein an imaging range of each image is determined such that images of a plurality of parts to be imaged have overlapping portions with adjacent images. 前記撮像手段は、テレセントリック光学系で構成されていることを特徴とする請求項1に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 1, wherein the imaging unit includes a telecentric optical system. 前記拡散光照明手段は、検査対象物と前記光路屈折手段との間に配置することを特徴とする請求項1に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 1, wherein the diffused light illuminating unit is disposed between the inspection object and the optical path refracting unit. 前記拡散光照明手段は、面光源であって、検査対象物からの反射光を撮像手段へ透過可能であることを特徴とする請求項1に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 1, wherein the diffused light illuminating unit is a surface light source and can transmit reflected light from an inspection object to the imaging unit. 前記拡散光照明手段は、ドーム状の形状に形成され、その略頂部に前記撮像手段の観測用窓を設けた第1の拡散光照明手段と、前記撮像手段の光学系の光軸と同軸に照射する第2の拡散光照明手段とで構成されることを特徴とする請求項1に記載の表面欠陥検査装置。  The diffused light illuminating means is formed in a dome-like shape, and has a first diffused light illuminating means provided with an observation window for the imaging means at a substantially top portion thereof, and coaxial with the optical axis of the optical system of the imaging means. The surface defect inspection apparatus according to claim 1, comprising a second diffused light illuminating means for irradiating. 前記第1の拡散光照明手段は、ドームの周辺部に発光部を備え、ドーム内面を反射面とすることを特徴する請求項7に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 7, wherein the first diffused light illuminating means includes a light emitting portion in a peripheral portion of the dome, and uses the inner surface of the dome as a reflecting surface. 前記第2の拡散光照明手段は、拡散光光源部とハーフミラーから構成するとともに、拡散光光源部からの拡散光がハーフミラーで反射して前記撮像手段の光学系の光軸と同軸で照明することを特徴とする請求項7に記載の表面欠陥検査装置。  The second diffused light illuminating means comprises a diffused light source part and a half mirror, and the diffused light from the diffused light source part is reflected by the half mirror and illuminated coaxially with the optical axis of the optical system of the imaging means. The surface defect inspection apparatus according to claim 7. 前記第2の拡散光照明手段は、偏光フィルター又は減光フィルターを備えることを特徴とする請求項7に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 7, wherein the second diffused light illumination unit includes a polarizing filter or a neutral density filter. 前記光路屈折手段は、複数個の屈折部材から形成されていることを特徴とする請求項1に記載の表面欠陥検査装置。  2. The surface defect inspection apparatus according to claim 1, wherein the optical path refracting means is formed of a plurality of refractive members. 前記光路屈折手段は、複数の撮像部位の光路長が等しくなるように屈折部材の形状を定めることを特徴とする請求項11に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 11, wherein the optical path refracting means determines the shape of the refractive member so that the optical path lengths of the plurality of imaging regions are equal. 検査対象はシリコンウエーハの周端縁部に設けられたノッチ部であり、ノッチ部上面テーパ部位、ノッチ部下面テーパ部位、ノッチ側面底部及びノッチ側面の左斜面部と右斜面部の少なくとも5箇所の画像を撮像することを特徴とする請求項1に記載の表面欠陥検査装置。  The inspection object is a notch portion provided at the peripheral edge of the silicon wafer, and at least five portions of the notch portion upper surface taper portion, the notch portion lower surface taper portion, the notch side surface bottom portion and the left slope surface and right slope portion of the notch side surface. The surface defect inspection apparatus according to claim 1, wherein an image is picked up. 検査対象はシリコンウエーハの周端縁部全周であり、周端縁部の上面テーパ部位並びにこれに続くロールオフ部、下面テーパ部位並びにこれに続くロールオフ部及び側面部位の画像を撮像することを特徴とする請求項1に記載の表面欠陥検査装置。  The inspection object is the entire circumference of the peripheral edge of the silicon wafer, and images of the upper surface taper part of the peripheral edge part and the roll-off part, lower-surface taper part, and subsequent roll-off part and side part of the subsequent part are taken. The surface defect inspection apparatus according to claim 1. 上記画像処理手段は、上記撮像手段で撮像した複数の部位の画像の重複する部分を削除し、展開図状に画像表示することを特徴とする請求項1に記載の表面欠陥検査装置。  The surface defect inspection apparatus according to claim 1, wherein the image processing unit deletes overlapping portions of the images of a plurality of parts imaged by the imaging unit and displays the images in a developed view.
JP2005381162A 2005-12-21 2005-12-21 Surface defect inspection equipment Expired - Fee Related JP4847128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381162A JP4847128B2 (en) 2005-12-21 2005-12-21 Surface defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381162A JP4847128B2 (en) 2005-12-21 2005-12-21 Surface defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2007171149A true JP2007171149A (en) 2007-07-05
JP4847128B2 JP4847128B2 (en) 2011-12-28

Family

ID=38297890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381162A Expired - Fee Related JP4847128B2 (en) 2005-12-21 2005-12-21 Surface defect inspection equipment

Country Status (1)

Country Link
JP (1) JP4847128B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072483A1 (en) * 2007-12-05 2009-06-11 Nikon Corporation Monitoring apparatus and monitoring method
WO2009154182A1 (en) * 2008-06-18 2009-12-23 株式会社コベルコ科研 Edge surface observation apparatus
JP2010016048A (en) * 2008-07-01 2010-01-21 Naoetsu Electronics Co Ltd Inspection device for wafer
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
JP2012132940A (en) * 2012-04-09 2012-07-12 Nuclear Fuel Ind Ltd Visual inspection device for fuel assembly
JP5610462B2 (en) * 2007-10-23 2014-10-22 芝浦メカトロニクス株式会社 Inspection method and inspection apparatus based on photographed image
US10324044B2 (en) 2014-12-05 2019-06-18 Kla-Tencor Corporation Apparatus, method and computer program product for defect detection in work pieces
CN110249215A (en) * 2017-02-08 2019-09-17 联达科技设备私人有限公司 For generating the 3D composograph of object and determining the method and systems of object properties based on the 3D composograph
WO2020153948A1 (en) * 2019-01-23 2020-07-30 Hewlett-Packard Development Company, L.P. Detecting three-dimensional (3d) part lift and drag
WO2020153949A1 (en) * 2019-01-23 2020-07-30 Hewlett-Packard Development Company, L.P. Detecting three-dimensional (3d) part drag
CN113333307A (en) * 2020-06-29 2021-09-03 台湾积体电路制造股份有限公司 Apparatus and method for inspecting wafer and non-transitory computer readable medium
WO2021181441A1 (en) * 2020-03-09 2021-09-16 日本電気株式会社 Abnormality determination system, imaging device and abnormality determination method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587744A (en) * 1991-03-01 1993-04-06 Fujisawa Pharmaceut Co Ltd Method for inspecting surface of article and device used therefor
JPH10148517A (en) * 1996-09-17 1998-06-02 Komatsu Ltd Image-pickup apparatus for object to be inspected, and inspection apparatus for semiconductor package
JP2002062267A (en) * 2000-08-21 2002-02-28 Asahi Glass Co Ltd Device for inspecting defect
JP2003139523A (en) * 2001-11-02 2003-05-14 Nippon Electro Sensari Device Kk Surface defect detecting method and surface defect detecting device
JP2003243465A (en) * 2002-02-19 2003-08-29 Honda Electron Co Ltd Inspection equipment for wafer
JP2004184241A (en) * 2002-12-03 2004-07-02 Ccs Inc Light irradiation unit
JP2004319466A (en) * 2003-03-31 2004-11-11 Ccs Inc Light radiation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587744A (en) * 1991-03-01 1993-04-06 Fujisawa Pharmaceut Co Ltd Method for inspecting surface of article and device used therefor
JPH10148517A (en) * 1996-09-17 1998-06-02 Komatsu Ltd Image-pickup apparatus for object to be inspected, and inspection apparatus for semiconductor package
JP2002062267A (en) * 2000-08-21 2002-02-28 Asahi Glass Co Ltd Device for inspecting defect
JP2003139523A (en) * 2001-11-02 2003-05-14 Nippon Electro Sensari Device Kk Surface defect detecting method and surface defect detecting device
JP2003243465A (en) * 2002-02-19 2003-08-29 Honda Electron Co Ltd Inspection equipment for wafer
JP2004184241A (en) * 2002-12-03 2004-07-02 Ccs Inc Light irradiation unit
JP2004319466A (en) * 2003-03-31 2004-11-11 Ccs Inc Light radiation device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610462B2 (en) * 2007-10-23 2014-10-22 芝浦メカトロニクス株式会社 Inspection method and inspection apparatus based on photographed image
WO2009072483A1 (en) * 2007-12-05 2009-06-11 Nikon Corporation Monitoring apparatus and monitoring method
JPWO2009072483A1 (en) * 2007-12-05 2011-04-21 株式会社ニコン Observation apparatus and observation method
WO2009154182A1 (en) * 2008-06-18 2009-12-23 株式会社コベルコ科研 Edge surface observation apparatus
JP2010002216A (en) * 2008-06-18 2010-01-07 Kobelco Kaken:Kk Observation device of edge surface
JP2010016048A (en) * 2008-07-01 2010-01-21 Naoetsu Electronics Co Ltd Inspection device for wafer
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
WO2012120662A1 (en) * 2011-03-09 2012-09-13 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
CN103415756A (en) * 2011-03-09 2013-11-27 东洋玻璃株式会社 Glass bottle inspection device and telecentric lens unit
JP2012132940A (en) * 2012-04-09 2012-07-12 Nuclear Fuel Ind Ltd Visual inspection device for fuel assembly
US10324044B2 (en) 2014-12-05 2019-06-18 Kla-Tencor Corporation Apparatus, method and computer program product for defect detection in work pieces
US10935503B2 (en) 2014-12-05 2021-03-02 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
US11105839B2 (en) 2014-12-05 2021-08-31 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
US11726126B2 (en) 2014-12-05 2023-08-15 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
US11892493B2 (en) 2014-12-05 2024-02-06 Kla Corporation Apparatus, method and computer program product for defect detection in work pieces
CN110249215A (en) * 2017-02-08 2019-09-17 联达科技设备私人有限公司 For generating the 3D composograph of object and determining the method and systems of object properties based on the 3D composograph
WO2020153948A1 (en) * 2019-01-23 2020-07-30 Hewlett-Packard Development Company, L.P. Detecting three-dimensional (3d) part lift and drag
WO2020153949A1 (en) * 2019-01-23 2020-07-30 Hewlett-Packard Development Company, L.P. Detecting three-dimensional (3d) part drag
US11511486B2 (en) 2019-01-23 2022-11-29 Hewlett-Packard Development Company, L.P. Detecting three-dimensional (3D) part drag
WO2021181441A1 (en) * 2020-03-09 2021-09-16 日本電気株式会社 Abnormality determination system, imaging device and abnormality determination method
CN113333307A (en) * 2020-06-29 2021-09-03 台湾积体电路制造股份有限公司 Apparatus and method for inspecting wafer and non-transitory computer readable medium
US11600504B2 (en) 2020-06-29 2023-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Detecting damaged semiconductor wafers utilizing a semiconductor wafer sorter tool of an automated materials handling system

Also Published As

Publication number Publication date
JP4847128B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4847128B2 (en) Surface defect inspection equipment
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
KR101326455B1 (en) Apparatus and method for characterizing defects in a transparent substrate
JP5909751B2 (en) Flat glass foreign matter inspection apparatus and inspection method
TW201310023A (en) Apparatus and method for detecting the surface defect of the glass substrate
US20110194101A1 (en) Supersensitization of defect inspection method
JPS58219441A (en) Apparatus for detecting defect on surface of convex object
JPH0961365A (en) Surface defect inspecting device
JPH08128959A (en) Optical inspection method and optical inspection device
JP4550610B2 (en) Lens inspection device
KR101120226B1 (en) Surface inspecting apparatus
JPS63261144A (en) Optical web monitor
KR20160004099A (en) Defect inspecting apparatus
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
JP2018025478A (en) Appearance inspection method and appearance inspection apparatus
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2017166903A (en) Defect inspection device and defect inspection method
JP2002214158A (en) Defect detecting method and detecting device for transparent plate-like body
JP2009124018A (en) Image acquiring apparatus
JP2006258778A (en) Method and device for inspecting surface defect
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JPH0961291A (en) Apparatus for testing optical parts
JP2006017685A (en) Surface defect inspection device
JP2007010640A (en) Surface defect inspection device
JP3078784B2 (en) Defect inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees