JP2010012443A - Ultrasonic wave treating device - Google Patents

Ultrasonic wave treating device Download PDF

Info

Publication number
JP2010012443A
JP2010012443A JP2008176681A JP2008176681A JP2010012443A JP 2010012443 A JP2010012443 A JP 2010012443A JP 2008176681 A JP2008176681 A JP 2008176681A JP 2008176681 A JP2008176681 A JP 2008176681A JP 2010012443 A JP2010012443 A JP 2010012443A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
resistors
radiator
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008176681A
Other languages
Japanese (ja)
Other versions
JP4921431B2 (en
Inventor
Noboru Sakano
昇 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008176681A priority Critical patent/JP4921431B2/en
Priority to KR1020080107567A priority patent/KR101464259B1/en
Publication of JP2010012443A publication Critical patent/JP2010012443A/en
Application granted granted Critical
Publication of JP4921431B2 publication Critical patent/JP4921431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • B01J2219/00484Means for mixing reactants or products in the reaction vessels by shaking, vibrating or oscillating of the reaction vessels
    • B01J2219/00486Means for mixing reactants or products in the reaction vessels by shaking, vibrating or oscillating of the reaction vessels by sonication or ultrasonication

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten processing time, reduce a size, reduce an operation cost and save energy by raising the utilization efficiency of ultrasonic waves. <P>SOLUTION: A rod shaped ultrasonic irradiator 3 is coaxially arranged in the center part of a straight pipe part 21 of a casing 2 where a fluid to be treated is circulated, and a plurality of resistances 41, 42 are arranged which generate turbulence for agitating the fluid in a gap between the ultrasonic wave radiation body and the straight pipe part 21. The plurality of resistance bodies are projected in a plate shape toward the center part from the outer peripheral side together, are arranged at predetermined intervals in an axial direction not to be into contact with each other in the tilted states to the downstream side and are arranged in such a way successively to shift predetermined angles in the circumference direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体に超音波を照射して所要の処理を行う超音波処理装置に関するものである。   The present invention relates to an ultrasonic processing apparatus that performs required processing by irradiating a fluid with ultrasonic waves.

流体に超音波を照射して所要の処理を行う超音波処理装置として種々の構成のものが知られている。例えば、被処理流体を貯留する容器の外側から超音波を照射する構成(特許文献1参照)、被処理流体が流通する管の外側から超音波を照射する構成(特許文献2・3参照)、被処理流体を貯留する容器の内部に超音波放射体を配設した構成(特許文献4・5参照)、静止型混合器の外側から超音波を照射する構成(特許文献6・7参照)のものが知られている。
特開2008−012233号公報 特開平10−216507号公報 特開2005−199253号公報 特開2008−036586号公報 特開2003−200042号公報 特開2004−195403号公報 特開2007−330894号公報
2. Description of the Related Art There are various types of ultrasonic processing apparatuses that perform required processing by irradiating a fluid with ultrasonic waves. For example, a configuration in which ultrasonic waves are irradiated from the outside of a container that stores the fluid to be processed (see Patent Document 1), a configuration in which ultrasonic waves are irradiated from the outside of a pipe through which the fluid to be processed flows (see Patent Documents 2 and 3), A configuration in which an ultrasonic radiator is disposed inside a container for storing a fluid to be processed (see Patent Documents 4 and 5), and a structure in which ultrasonic waves are irradiated from the outside of a static mixer (see Patent Documents 6 and 7). Things are known.
JP 2008-012233 A JP-A-10-216507 JP 2005-199253 A JP 2008-036586 A JP 2003-200042 A JP 2004-195403 A JP 2007-330894 A

しかしながら、前記のように被処理流体を貯留する容器の外側から、あるいは被処理流体が流通する管の外側から超音波を照射する構成では、超音波の損失が大きく、超音波の利用効率が低下して運転コストが嵩む問題がある。また被処理流体を貯留する容器の内部に超音波放射体を配設した構成では、超音波の損失を低減する上では有利であるが、流体に対する超音波の照射量が超音波放射体からの距離に応じて異なり、超音波の照射が不均一になるため、超音波放射体から離れた位置で十分な照射量を確保しようとすると、超音波放射体の近傍では超音波が必要以上に照射されることになり、結果的に超音波の利用効率を十分に向上させることができないという問題が生じる。   However, in the configuration in which ultrasonic waves are irradiated from the outside of the container for storing the fluid to be processed as described above or from the outside of the tube through which the fluid to be processed flows, the loss of ultrasonic waves is large and the utilization efficiency of the ultrasonic waves is reduced. As a result, there is a problem that the operating cost increases. In addition, the configuration in which the ultrasonic radiator is disposed inside the container for storing the fluid to be treated is advantageous in reducing the loss of ultrasonic waves. Depending on the distance, the ultrasonic irradiation becomes uneven, so if you want to secure a sufficient irradiation amount at a position away from the ultrasonic radiator, the ultrasonic wave is irradiated more than necessary near the ultrasonic radiator. As a result, there arises a problem that the use efficiency of ultrasonic waves cannot be sufficiently improved.

一方、静止型混合器の外側から超音波を照射する手法では、内部の抵抗体により流体が攪拌されることから、超音波の照射を均一化する上で有効であるが、管壁での超音波の損失により、超音波の利用効率が低下する問題がある。これに対して、静止型混合器の内部に超音波放射体を配設する構成が考えられるが、この場合、抵抗体による攪拌機能が損なわれないように構成する必要があり、さらに抵抗体や超音波放射体の形態を工夫して超音波を利用効率を高めることができるように構成することが望まれる。   On the other hand, the method of irradiating ultrasonic waves from the outside of the static mixer is effective in making the ultrasonic irradiation uniform because the fluid is stirred by the internal resistor. Due to the loss of sound waves, there is a problem that the utilization efficiency of ultrasonic waves is lowered. On the other hand, a configuration in which an ultrasonic radiator is disposed inside the static mixer is conceivable, but in this case, it is necessary to configure so that the stirring function by the resistor is not impaired. It is desired to configure the ultrasonic radiator so that the use efficiency of ultrasonic waves can be improved.

本発明は、このような発明者の知見に基づき案出されたものであり、その主な目的は、超音波の利用効率を高めて、処理時間の短縮、装置の小型化、運転コストの削減、及び省エネルギー化を図ることができるように構成された超音波処理装置を提供することにある。   The present invention has been devised based on such inventor's knowledge, and its main purpose is to increase the use efficiency of ultrasonic waves, shorten the processing time, reduce the size of the apparatus, and reduce the operating cost. Another object of the present invention is to provide an ultrasonic processing apparatus configured to save energy.

このような課題を解決するために、本発明による超音波処理装置においては、処理すべき流体が流通するパイプの中心部に棒状の超音波放射体が同軸的に配置されると共に、この超音波放射体と前記パイプとの間の間隙に流体を攪拌するための乱流を発生させる複数の抵抗体が配設され、前記複数の抵抗体が、共に外周側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられたものとした。   In order to solve such a problem, in the ultrasonic processing apparatus according to the present invention, a rod-shaped ultrasonic radiator is coaxially arranged at the center of a pipe through which a fluid to be processed flows, and this ultrasonic wave A plurality of resistors for generating a turbulent flow for stirring the fluid are disposed in a gap between the radiator and the pipe, and the plurality of resistors are formed in a plate shape from the outer peripheral side toward the center. The protrusions are provided so as not to contact each other while being inclined toward the downstream side, with a predetermined interval in the axial direction and sequentially shifted by a predetermined angle in the circumferential direction.

本発明によれば、静止型混合器の内部に超音波放射体が配設された構成となり、超音波放射体とパイプとの間の間隙を流通する流体に対して超音波放射体から超音波が照射され、このとき同時に複数の抵抗体によって生じる乱流により流体が攪拌される。このため、超音波の損失が小さく、また超音波を流体に均一に照射することが可能となるため、超音波の利用効率を向上させることができ、処理時間の短縮、装置の小型化、運転コストの削減、及び省エネルギー化を図ることができる。   According to the present invention, the ultrasonic radiator is arranged inside the static mixer, and the ultrasonic radiator is ultrasonically applied to the fluid flowing through the gap between the ultrasonic radiator and the pipe. At this time, the fluid is stirred by turbulent flow generated by a plurality of resistors. For this reason, since the loss of ultrasonic waves is small and it is possible to irradiate the ultrasonic waves uniformly to the fluid, the use efficiency of ultrasonic waves can be improved, the processing time is shortened, the apparatus is downsized and the operation is performed. Cost reduction and energy saving can be achieved.

しかも、抵抗体による攪拌機能が損なわれることがなく、特に下流側に傾斜した抵抗体が中心部の超音波放射体に向けて流体を導くため、流体が一様に超音波放射体の近傍を通過するようになり、超音波の利用効率を大幅に向上させることができる。これは、特に減衰し易い高周波の超音波を用いる場合や、超音波を著しく減衰させる気体を含む場合、すなわちガス吸収などで気液混合状態となる場合に効果的である。また、流動性の低い液体(例えば生物汚泥など)の場合にも効果的である。   In addition, the stirrer function by the resistor is not impaired, and the resistor that is inclined toward the downstream side guides the fluid toward the ultrasonic radiator in the center, so that the fluid can be uniformly distributed in the vicinity of the ultrasonic radiator. As a result, the use efficiency of ultrasonic waves can be greatly improved. This is particularly effective when high-frequency ultrasonic waves that are easily attenuated are used, or when a gas that significantly attenuates the ultrasonic waves is included, that is, when a gas-liquid mixed state is established due to gas absorption or the like. It is also effective in the case of a liquid with low fluidity (for example, biological sludge).

さらに抵抗体を流れに逆らわないように下流側に傾斜した状態で筒状体の内周面から突出させた単純な形態で、且つ抵抗体同士の間に十分に大きな間隙を確保することができることから、目詰まりを起こし難く、繊維質や固形物等が混入した液体(例えば生物汚泥など)の処理も可能になる。   Furthermore, it is possible to secure a sufficiently large gap between the resistors in a simple form in which the resistors are inclined from the inner peripheral surface of the cylindrical body while being inclined to the downstream side so as not to oppose the flow. Therefore, it is difficult to cause clogging, and a liquid (for example, biological sludge) mixed with fibers or solids can be treated.

以下、本発明の実施の形態を、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による超音波処理装置を示す断面図である。この超音波処理装置1は、処理すべき流体が流通するケーシング2と、このケーシング2の内部を流通する流体に超音波を照射する超音波放射体3と、ケーシング2の内部を流通する流体を攪拌するための乱流を発生させる抵抗体41・42を備えた複数の抵抗体エレメント4とを有している。   FIG. 1 is a cross-sectional view showing an ultrasonic processing apparatus according to the present invention. The ultrasonic processing apparatus 1 includes a casing 2 through which a fluid to be processed flows, an ultrasonic radiator 3 that irradiates the fluid flowing through the casing 2 with ultrasonic waves, and a fluid that flows through the casing 2. And a plurality of resistor elements 4 including resistors 41 and 42 that generate turbulent flow for stirring.

ケーシング2は、円形断面をなす直管部(パイプ)21と、この直管部21からT字状に分岐した導入管部22と、直管部21の両端に設けられたフランジ部23・24とを有しており、処理すべき流体が導入管部22の入口部25から導入されて直管部21を通って出口部26から回収される。   The casing 2 includes a straight pipe portion (pipe) 21 having a circular cross section, an introduction pipe portion 22 branched from the straight pipe portion 21 in a T shape, and flange portions 23 and 24 provided at both ends of the straight pipe portion 21. The fluid to be processed is introduced from the inlet portion 25 of the introduction pipe portion 22 and is recovered from the outlet portion 26 through the straight pipe portion 21.

導入管部22には、注入管27が設けられており、この注入管27は、超音波処理と並行して複数種類の流体の攪拌・混合を行う場合(ガス吸収や添加剤の添加)に用いられ、例えばガス吸収処理では、原料液が入口部25から導入される一方で、原料ガスが注入管27から注入される。なお、このような複数種類の流体の攪拌・混合を行わない場合には、注入管27は必要なく、省略することができる。   The introduction pipe section 22 is provided with an injection pipe 27. This injection pipe 27 is used for stirring and mixing a plurality of types of fluids (gas absorption and addition of additives) in parallel with the ultrasonic treatment. For example, in the gas absorption process, the raw material liquid is introduced from the inlet 25 while the raw material gas is injected from the injection pipe 27. In addition, when not stirring and mixing such a plurality of types of fluids, the injection tube 27 is not necessary and can be omitted.

ケーシング2の直管部21には、その中心部に真直な棒状の超音波放射体3が同軸的に配置され、この超音波放射体3を片持ち状態で支持するベース部31が、導入管部22に近接するフランジ部24に直管部21の開口を閉鎖する態様で接合された端板28に固定されている。   The straight pipe portion 21 of the casing 2 is coaxially arranged with a straight rod-like ultrasonic radiator 3 at the center thereof, and a base portion 31 that supports the ultrasonic radiator 3 in a cantilever state is provided as an introduction pipe. It is fixed to an end plate 28 joined to a flange portion 24 adjacent to the portion 22 in such a manner as to close the opening of the straight pipe portion 21.

ベース部31には、超音波放射体3の発振源となる超音波振動子(圧電素子)が配置され、この超音波振動子は、所要の周波数の超音波が発生するようにコントローラ(発振器)32より駆動される。   An ultrasonic transducer (piezoelectric element) serving as an oscillation source of the ultrasonic radiator 3 is disposed in the base unit 31, and this ultrasonic transducer is a controller (oscillator) so as to generate ultrasonic waves having a required frequency. 32.

抵抗体エレメント4は、ケーシング2の直管部21に挿設され、この直管部21の内径に対応する外径を有する円形断面をなす筒状体43の互いに対向する内周面から第1・第2の一対の抵抗体41・42がそれぞれ中心部に向けて板状に突出されており、軸方向に連続する筒状体43と超音波放射体3との間隙を流通する流体が抵抗体41・42により攪拌される。   The resistor element 4 is inserted into the straight pipe portion 21 of the casing 2, and is first from the mutually opposing inner peripheral surfaces of the cylindrical body 43 having a circular cross section having an outer diameter corresponding to the inner diameter of the straight pipe portion 21. The second pair of resistors 41 and 42 are each projected in a plate shape toward the center, and the fluid flowing through the gap between the cylindrical body 43 and the ultrasonic radiator 3 that are continuous in the axial direction is resistant It is stirred by the bodies 41 and 42.

抵抗体41・42は、共に下流側に向けて傾斜する、すなわち外周側に対して中心部側が下流側に位置するように傾斜した状態でハ字形状に配置されており、両抵抗体41・42間に所要の間隔が確保されるように軸線方向にずらして設けられている。この抵抗体41・42の直管部21の軸線に対する傾斜角度は、用途に応じて適宜設定すれば良いが、45°前後が適当である。   The resistors 41 and 42 are both arranged in a C shape in such a state that they are inclined toward the downstream side, that is, in a state where the center portion side is located on the downstream side with respect to the outer peripheral side. They are shifted in the axial direction so as to ensure a required interval between the two. The inclination angle of the resistors 41 and 42 with respect to the axis of the straight pipe portion 21 may be appropriately set according to the application, but around 45 ° is appropriate.

図2は、図1に示した抵抗体エレメントを示す斜視図である。図3は、図1に示した抵抗体エレメントを上流側から見た正面図である。図4は、図1に示した抵抗体エレメント相互の配置状況を説明する正面図である。   FIG. 2 is a perspective view showing the resistor element shown in FIG. FIG. 3 is a front view of the resistor element shown in FIG. 1 as viewed from the upstream side. FIG. 4 is a front view for explaining the arrangement state of the resistor elements shown in FIG.

抵抗体41・42は、図3に示すように、外周側から中心部に向けて次第に幅が狭くなる略扇形をなす板状に形成されている。抵抗体41・42の先端縁は超音波放射体3の外周面に沿って弧状に形成されている。特にここでは、上流側の第1の抵抗体41が短尺に、下流側の第2の抵抗体42が長尺に形成されているが、両抵抗体41・42を同じ大きさとしても良い。   As shown in FIG. 3, the resistors 41 and 42 are formed in a substantially fan-shaped plate shape whose width gradually decreases from the outer peripheral side toward the center. The leading edges of the resistors 41 and 42 are formed in an arc shape along the outer peripheral surface of the ultrasonic radiator 3. In particular, here, the first resistor 41 on the upstream side is formed short and the second resistor 42 on the downstream side is formed long, but both the resistors 41 and 42 may have the same size.

図2に示すように、筒状体43の軸線方向の端部には、隣接するものに対して周方向に45度ずらして結合されるように凹凸が形成されている。また、軸線方向に沿った分割線により一対の抵抗体41・42がそれぞれ形成された2つの分割体43a・43bに分割可能になっており、これにより製造を容易にすると共に、表面に付着した障害物を簡単に除去することができる。   As shown in FIG. 2, irregularities are formed at the end of the cylindrical body 43 in the axial direction so as to be coupled to the adjacent one while being shifted by 45 degrees in the circumferential direction. Moreover, it can be divided into two divided bodies 43a and 43b in which a pair of resistor bodies 41 and 42 are formed by a dividing line along the axial direction, thereby facilitating manufacture and adhering to the surface. Obstacles can be easily removed.

抵抗体エレメント4は、図4に示すように、直前の抵抗体エレメント4に対して45度ずつ同一方向にずらして配置され、最上流側の抵抗体エレメント4に対して後続の各抵抗体エレメント4はそれぞれ、周方向に45度、90度、135度、180度、225度、270度、315度といった角度位置となる。したがって、全体として見ると、対をなす抵抗体41・42がそれぞれ、抵抗体エレメント4のずらし角度に応じたリード角をもって螺旋を描くように配置される。   As shown in FIG. 4, the resistor element 4 is arranged so as to be shifted in the same direction by 45 degrees with respect to the immediately preceding resistor element 4, and each subsequent resistor element with respect to the most upstream resistor element 4. 4 are angular positions such as 45 degrees, 90 degrees, 135 degrees, 180 degrees, 225 degrees, 270 degrees, and 315 degrees in the circumferential direction. Accordingly, when viewed as a whole, the pair of resistors 41 and 42 are arranged so as to draw a spiral with a lead angle corresponding to the shift angle of the resistor element 4.

この超音波処理装置1においては、超音波放射体3とケーシング2の直管部21との間の間隙を流通する流体に対して、超音波放射体3から所定の周波数域の超音波を照射することにより、液体中にキャビテーションが生起し、このとき生成した微細気泡の崩壊時に発生する衝撃波により極めて高い圧力状態が局所的に形成され、また極めて高い温度状態が局所的に形成されて、化学反応が促進される。   In this ultrasonic processing apparatus 1, ultrasonic waves in a predetermined frequency range are irradiated from the ultrasonic radiator 3 to the fluid flowing through the gap between the ultrasonic radiator 3 and the straight pipe portion 21 of the casing 2. As a result, cavitation occurs in the liquid, and an extremely high pressure state is locally formed by the shock wave generated when the fine bubbles generated at this time collapse, and an extremely high temperature state is locally formed. The reaction is promoted.

さらに、超音波により生起するキャビテーションは、水分子の分解を引き起こし、これにより生成したヒドロキシラジカルが有する化学的な酸化作用と、衝撃波による物理的な破壊作用とにより、微生物の細胞壁を破壊して微生物を死滅させる処理が可能となる。   Furthermore, the cavitation caused by ultrasonic waves causes the decomposition of water molecules, which destroys the cell walls of the microorganisms by the chemical oxidation action of the hydroxy radicals generated thereby and the physical destruction action by shock waves. Can be killed.

また、この超音波処理装置1においては、所要の流速が得られるように流体がポンプにより圧送されて入口部25から導入され、抵抗体エレメント4では抵抗体41・42が板状をなすことから、抵抗体41・42に衝突した流れが抵抗体41・42の周囲に多方向に分散され、抵抗体41・42の背面側で巻き込みによる渦流(伴流)が生じる。さらに、抵抗体エレメント4が流れ方向に沿って周方向に所定角度ずつずらしながら配置され、抵抗体41・42が全体として螺旋状に配置されているため、流体がショートパスすることなく抵抗体41・42のいずれかに衝突し、この抵抗体41・42による流体の衝突、分散並びに巻き込みが次々と繰り返されることで、直管部21内に強力な乱流が発生して流体が激しく撹拌される。   Further, in this ultrasonic processing apparatus 1, the fluid is pumped by a pump so as to obtain a required flow velocity and is introduced from the inlet portion 25, and in the resistor element 4, the resistors 41 and 42 have a plate shape. The flow colliding with the resistors 41 and 42 is dispersed in multiple directions around the resistors 41 and 42, and a vortex (wake) due to entrainment occurs on the back side of the resistors 41 and 42. Furthermore, since the resistor element 4 is arranged while being shifted by a predetermined angle in the circumferential direction along the flow direction, and the resistors 41 and 42 are arranged in a spiral shape as a whole, the resistor 41 does not cause a short path. -Colliding with any one of 42, the collision, dispersion and entrainment of the fluid by the resistors 41, 42 are repeated one after another, so that a strong turbulent flow is generated in the straight pipe portion 21, and the fluid is vigorously stirred. The

このように超音波処理装置1においては、超音波放射体3による超音波の照射と同時に抵抗体41・42によって生じる乱流により流体が攪拌されるため、超音波を流体に均一に照射することが可能となり、特に下流側に傾斜した抵抗体41・42が中心部の超音波放射体3に向けて流体を導くため、流体が一様に超音波放射体3の近傍を通過するようになり、超音波の照射効率を大幅に向上させることができる。これは、特に減衰の大きな高周波の超音波を用いる場合や、超音波を減衰させる気体を含む場合、すなわちガス吸収などで気液混合状態となる場合に効果的である。また、流動性の低い液体(例えば生物汚泥など)の場合にも効果的である。   As described above, in the ultrasonic processing apparatus 1, the fluid is agitated by the turbulent flow generated by the resistors 41 and 42 simultaneously with the irradiation of the ultrasonic wave by the ultrasonic radiator 3, so that the ultrasonic wave is uniformly irradiated to the fluid. In particular, since the resistors 41 and 42 inclined toward the downstream side guide the fluid toward the ultrasonic radiator 3 at the center, the fluid uniformly passes through the vicinity of the ultrasonic radiator 3. The irradiation efficiency of ultrasonic waves can be greatly improved. This is particularly effective when high-frequency ultrasonic waves with large attenuation are used, or when a gas that attenuates the ultrasonic waves is included, that is, when a gas-liquid mixed state is obtained due to gas absorption or the like. It is also effective in the case of a liquid with low fluidity (for example, biological sludge).

また、複数の流体を同時に流通させれば混合処理と超音波照射処理とを同時並行的に実施することができる。特にガス吸収処理では、抵抗体41・42による乱流の作用により原料ガスの気泡が細かく破砕されて微細気泡が高密度で大量に生成して、気液接触効率が高められるため、原料ガスの消費量を大幅に削減することができる。   Further, if a plurality of fluids are circulated simultaneously, the mixing process and the ultrasonic irradiation process can be performed simultaneously. In particular, in the gas absorption process, the bubbles of the raw material gas are finely crushed by the turbulent action of the resistors 41 and 42 to generate a large amount of fine bubbles at a high density, thereby improving the gas-liquid contact efficiency. Consumption can be greatly reduced.

さらに、微生物を含む被処理液体を撹拌用気体と共に導入すれば、抵抗体41・42による乱流の作用により撹拌用気体が微細気泡化し、この微細気泡の崩壊時に発生する圧力変動による衝撃作用により微生物の細胞壁に損傷を加えることができ、この抵抗体41・42による乱流の作用と超音波放射体3による超音波の作用との相乗効果により、微生物を死滅させる処理の効率を飛躍的に高めることができる。   Furthermore, if the liquid to be treated containing microorganisms is introduced together with the agitation gas, the agitation gas becomes fine bubbles due to the turbulent action of the resistors 41 and 42, and the impact effect due to the pressure fluctuation generated when the fine bubbles collapse. The cell wall of the microorganism can be damaged, and the efficiency of the treatment for killing the microorganism is dramatically improved by the synergistic effect of the turbulent action by the resistors 41 and 42 and the ultrasonic action by the ultrasonic radiator 3. Can be increased.

この場合、撹拌用気体として微生物の細胞壁を化学的に破壊する作用を有するオゾンガスを用いると良く、このオゾンと超音波放射体3による超音波と抵抗体41・42による乱流との3者の相乗効果により、処理効率をより一層高めることができる。この場合、この超音波処理装置1においては、オゾン水を生成することなく、注入管27からオゾンガスを直接注入すれば良いため、高効率な処理を、簡素で且つ小型の装置で、低コストに行うことが可能となる。   In this case, ozone gas having an action of chemically destroying the cell wall of the microorganism may be used as the stirring gas. The ozone, the ultrasonic wave by the ultrasonic radiator 3, and the turbulent flow by the resistors 41 and 42 are used. The processing efficiency can be further enhanced by the synergistic effect. In this case, in this ultrasonic processing apparatus 1, it is only necessary to directly inject ozone gas from the injection pipe 27 without generating ozone water, so that high-efficiency processing can be performed with a simple and small apparatus at low cost. Can be done.

このような微生物の細胞壁を破壊する作用を利用することにより、この超音波処理装置1は、例えば飲料水や食品製造用水等の処理に用いることができ、原水中の細菌を死滅させる殺菌処理を効率良く行うことができ、さらに超音波放射体3の超音波による化学物質の分解作用により、原水に含まれる有害物質の分解除去が可能になる。   By utilizing the action of destroying the cell walls of such microorganisms, the ultrasonic treatment apparatus 1 can be used for the treatment of, for example, drinking water or water for food production, and performs a sterilization treatment that kills bacteria in the raw water. Furthermore, the chemical substance can be decomposed by the ultrasonic wave of the ultrasonic radiator 3 and decomposed and removed in the raw water.

また、バラスト水処理、すなわち船舶のバラスト水に含まれる水生生物(プランクトンなど)がバラスト水の排出時に海域に放出されることで生態系が破壊されることを防止するために水生生物を死滅させる処理に用いることができる。特に海水ではオゾンとの接触により生成する臭素酸が高い殺菌作用を有することから、オゾンを併用すると良い。   Ballast water treatment, that is, killing aquatic organisms to prevent the destruction of ecosystems due to the release of aquatic organisms (plankton, etc.) contained in the ship's ballast water to the sea area when ballast water is discharged Can be used for processing. Especially in seawater, since bromic acid generated by contact with ozone has a high bactericidal action, ozone is preferably used in combination.

また、有機性排水の生物処理(活性汚泥法など)で発生する生物汚泥の処理に適用することができる。この生物汚泥は、水中の有機物を摂取して繁殖した微生物を大量に含み、この微生物の細胞壁を破壊して細胞中の有機物を放出させる可溶化により更なる生物処理が可能となり、汚泥の減容化を行うことができるが、この超音波処理装置1を用いると、汚泥の可溶化処理の効率を飛躍的に高めることができる。この生物汚泥処理でもオゾンを併用すると良い。   Further, it can be applied to the treatment of biological sludge generated by biological treatment of organic wastewater (eg activated sludge method). This biological sludge contains a large amount of microorganisms that have been propagated by ingesting organic substances in water, and further biological treatment becomes possible through solubilization that breaks down the cell walls of these microorganisms and releases organic substances in the cells, reducing sludge volume. However, the use of this ultrasonic treatment device 1 can dramatically increase the efficiency of the sludge solubilization treatment. Even in this biological sludge treatment, ozone may be used in combination.

また、この超音波処理装置1は、超音波放射体3の超音波による化学反応の促進作用と、抵抗体41・42により生起する強力な乱流で実現される高い気液接触効率を利用して、ダイオキシン等の難分解性物質に汚染された地下水や浚渫汚泥の処理に用いることができ、乱流による高い気液接触効率によりオゾンなどの酸化剤の溶解が促進され、この酸化剤の作用と、超音波による化学反応促進作用とが協働して、難分解性物質を効率良く分解することができる。   In addition, this ultrasonic processing apparatus 1 utilizes the action of promoting the chemical reaction by the ultrasonic wave of the ultrasonic radiator 3 and the high gas-liquid contact efficiency realized by the strong turbulent flow generated by the resistors 41 and 42. In addition, it can be used for the treatment of groundwater and sludge sludge contaminated with hardly degradable substances such as dioxin, and the high gas-liquid contact efficiency by turbulent flow promotes the dissolution of ozone and other oxidants. And the chemical reaction promoting action by ultrasonic waves cooperates, so that the hardly decomposable substance can be efficiently decomposed.

この他に、この超音波処理装置1は、各種の化学反応を促進する用途で広く用いることができ、また複数種類の材料の分散処理、例えば食品製造などの分野で必要となるエマルジョンの生成処理(乳化)にも有効であり、処理効率を飛躍的に高めることができる。   In addition to this, the ultrasonic processing apparatus 1 can be widely used in applications that promote various chemical reactions, and a dispersion process of a plurality of types of materials, for example, an emulsion generation process required in the field of food production and the like. (Emulsification) is also effective, and the processing efficiency can be dramatically increased.

特にこの超音波処理装置1では、抵抗体41・42を流れに逆らわないように下流側に傾斜した状態で筒状体の内周面から突出させた単純な形態で、且つ抵抗体41・42同士の間に十分に大きな間隙を確保することができることから、繊維状あるいは粒子状の固形物が引っかかったり堆積したりするところがなく、汚泥のように固形物を大量に含む液状物でも目詰まりを起こすことなく安定した処理を行うことができる。   In particular, in the ultrasonic processing apparatus 1, the resistors 41 and 42 have a simple configuration in which the resistors 41 and 42 are protruded from the inner peripheral surface of the cylindrical body in a state where the resistors 41 and 42 are inclined downstream so as not to oppose the flow. Since a sufficiently large gap can be secured between each other, there is no place where fibrous or particulate solid matter is caught or deposited, and clogging is also caused by liquid matter containing a large amount of solid matter such as sludge. Stable processing can be performed without waking up.

本発明にかかる超音波処理装置は、超音波を利用効率を高めることができる効果を有し、ガス吸収処理、殺菌処理、生物汚泥処理、化学物質の分解処理などの用途で用いられる超音波処理装置などとして有用である。   The ultrasonic treatment apparatus according to the present invention has the effect of improving the utilization efficiency of ultrasonic waves, and is used for applications such as gas absorption treatment, sterilization treatment, biological sludge treatment, chemical substance decomposition treatment, etc. It is useful as a device.

本発明による超音波処理装置を示す断面図である。It is sectional drawing which shows the ultrasonic processing apparatus by this invention. 図1に示した抵抗体エレメントを示す斜視図である。It is a perspective view which shows the resistor element shown in FIG. 図1に示した抵抗体エレメントを上流側から見た正面図である。It is the front view which looked at the resistor element shown in FIG. 1 from the upstream. 図1に示した抵抗体エレメント相互の配置状況を説明する正面図である。It is a front view explaining the arrangement | positioning condition of the resistor elements shown in FIG.

符号の説明Explanation of symbols

1 超音波処理装置
2 ケーシング
3 超音波放射体
4 抵抗体エレメント
21 直管部(パイプ)
22 導入管部
25 入口部
26 出口部
27 注入管
41・42 抵抗体
43 筒状体
DESCRIPTION OF SYMBOLS 1 Ultrasonic processing apparatus 2 Casing 3 Ultrasonic radiator 4 Resistor element 21 Straight pipe part (pipe)
22 Introducing pipe part 25 Inlet part 26 Outlet part 27 Injection pipes 41 and 42 Resistor 43 Cylindrical body

Claims (1)

処理すべき流体が流通するパイプの中心部に棒状の超音波放射体が同軸的に配置されると共に、この超音波放射体と前記パイプとの間の間隙に流体を攪拌するための乱流を発生させる複数の抵抗体が配設され、
前記複数の抵抗体が、共に外周側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられたことを特徴とする超音波処理装置。
A rod-shaped ultrasonic radiator is coaxially arranged at the center of the pipe through which the fluid to be processed flows, and a turbulent flow for stirring the fluid is provided in the gap between the ultrasonic radiator and the pipe. A plurality of resistors to be generated are arranged,
The plurality of resistors are projected in a plate shape from the outer peripheral side toward the central portion, are spaced at a predetermined interval in the axial direction so as not to contact each other while being inclined toward the downstream side, and sequentially at a predetermined angle in the circumferential direction. An ultrasonic processing apparatus characterized by being provided by being shifted one by one.
JP2008176681A 2008-07-07 2008-07-07 Ultrasonic treatment equipment Expired - Fee Related JP4921431B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008176681A JP4921431B2 (en) 2008-07-07 2008-07-07 Ultrasonic treatment equipment
KR1020080107567A KR101464259B1 (en) 2008-07-07 2008-10-31 Ultrasonic treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176681A JP4921431B2 (en) 2008-07-07 2008-07-07 Ultrasonic treatment equipment

Publications (2)

Publication Number Publication Date
JP2010012443A true JP2010012443A (en) 2010-01-21
JP4921431B2 JP4921431B2 (en) 2012-04-25

Family

ID=41699085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176681A Expired - Fee Related JP4921431B2 (en) 2008-07-07 2008-07-07 Ultrasonic treatment equipment

Country Status (2)

Country Link
JP (1) JP4921431B2 (en)
KR (1) KR101464259B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241468A (en) * 2010-05-13 2011-11-16 金达坂(上海)新能源设备有限公司 Mechanical ultrasonic sludge reduction device
WO2014084276A1 (en) * 2012-11-27 2014-06-05 辻 清 Aeration nozzle, and blockage removal method for said aeration nozzle
WO2024019051A1 (en) * 2022-07-19 2024-01-25 株式会社大興製作所 Vibration flow channel device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179350A (en) * 1997-12-24 1999-07-06 Noboru Sakano Ultraviolet radiation device
JP2003220397A (en) * 2002-01-30 2003-08-05 Noboru Sakano Method and apparatus for treating biological sludge
US20080062811A1 (en) * 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
FR2906734A1 (en) * 2006-10-06 2008-04-11 Jerome Chateau Sonoreactor for treating fluid e.g. liquid in enclosure, comprises an enclosure having a portion of longitudinal wall that extends around a rectilinear axis, a high frequency generator, and an ultrasonic resonator piloted by the generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179350A (en) * 1997-12-24 1999-07-06 Noboru Sakano Ultraviolet radiation device
JP2003220397A (en) * 2002-01-30 2003-08-05 Noboru Sakano Method and apparatus for treating biological sludge
US20080062811A1 (en) * 2006-09-08 2008-03-13 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
FR2906734A1 (en) * 2006-10-06 2008-04-11 Jerome Chateau Sonoreactor for treating fluid e.g. liquid in enclosure, comprises an enclosure having a portion of longitudinal wall that extends around a rectilinear axis, a high frequency generator, and an ultrasonic resonator piloted by the generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241468A (en) * 2010-05-13 2011-11-16 金达坂(上海)新能源设备有限公司 Mechanical ultrasonic sludge reduction device
CN102241468B (en) * 2010-05-13 2014-08-06 金达坂(上海)新能源设备有限公司 Mechanical ultrasonic sludge reduction device
WO2014084276A1 (en) * 2012-11-27 2014-06-05 辻 清 Aeration nozzle, and blockage removal method for said aeration nozzle
JP6021939B2 (en) * 2012-11-27 2016-11-09 株式会社清和 Aeration nozzle and method for removing clogging of the aeration nozzle
JPWO2014084276A1 (en) * 2012-11-27 2017-01-05 株式会社清和 Aeration nozzle and method for removing clogging of the aeration nozzle
US9731252B2 (en) 2012-11-27 2017-08-15 Kabushikikaisha Seiwa Aeration nozzle, and blockage removal method for said aeration nozzle
WO2024019051A1 (en) * 2022-07-19 2024-01-25 株式会社大興製作所 Vibration flow channel device
JP7494431B1 (en) 2022-07-19 2024-06-04 株式会社大興製作所 Vibrating flow path device

Also Published As

Publication number Publication date
JP4921431B2 (en) 2012-04-25
KR101464259B1 (en) 2014-11-21
KR20100005647A (en) 2010-01-15

Similar Documents

Publication Publication Date Title
Gągol et al. Wastewater treatment by means of advanced oxidation processes based on cavitation–a review
Tran et al. Sonochemical techniques to degrade pharmaceutical organic pollutants
EP2073919B1 (en) Ultrasonic liquid treatment system
JP5067695B2 (en) Ballast water treatment equipment
JP2009131827A (en) Method for treating sewage
AU2007341626B2 (en) Method and device for treating a liquid
BRPI0819582B1 (en) &#34;liquid treatment system&#34;
EP1222540A1 (en) Method and system for consistent cluster operational data in a server cluster using a quorum of replicas
US20140048466A1 (en) Apparatus for treating Lake Okeechobee water
JP2006289183A (en) Nano-bubble forming method and apparatus
JP2010172800A (en) Apparatus and method for generating fine air bubbles
Guo et al. Sonochemical degradation of the antibiotic cephalexin in aqueous solution
Wang et al. Hydrodynamic cavitation and its application in water treatment combined with ozonation: A review
JP4921431B2 (en) Ultrasonic treatment equipment
US8936392B2 (en) Hydrodynamic cavitation device
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
JP5936168B1 (en) Underwater oxygen dissolution apparatus and underwater oxygen dissolution method using the same
Kerboua et al. Sonochemistry for Water Remediation: Toward an Up‐Scaled Continuous Technology
KR102256064B1 (en) Ultraviolet purifying device using ozone gas
JP2015020165A (en) Fine bubble generator
KR101217167B1 (en) Apparatus for mixing chemicals using ultrasonic waves
WO2000058224A1 (en) Reactor for cleaning and disinfection of aquatic media
JP4357316B2 (en) Wastewater treatment equipment
JP2004202322A (en) Ultrasonic treatment method and apparatus
Mason The design of ultrasonic reactors for environmental remediation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4921431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees