JP2010012433A - Method of treating dug soil containing arsenic - Google Patents

Method of treating dug soil containing arsenic Download PDF

Info

Publication number
JP2010012433A
JP2010012433A JP2008176031A JP2008176031A JP2010012433A JP 2010012433 A JP2010012433 A JP 2010012433A JP 2008176031 A JP2008176031 A JP 2008176031A JP 2008176031 A JP2008176031 A JP 2008176031A JP 2010012433 A JP2010012433 A JP 2010012433A
Authority
JP
Japan
Prior art keywords
soil
arsenic
gypsum
containing arsenic
excavated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176031A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubo
博 久保
Toshihiko Miura
俊彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2008176031A priority Critical patent/JP2010012433A/en
Publication of JP2010012433A publication Critical patent/JP2010012433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating dug soil containing arsenic which can perform insolubilization of arsenic and solidification of dug soil at a low cost and, moreover, allows the dug soil after the treatment to exhibit alkalescence or neutrality. <P>SOLUTION: The method of treating dug soil containing arsenic comprises a process of mixing the dug soil containing arsenic with a material which contains a gypsum type solidifying agent but contains neither quick lime nor iron salt, or mixing the dug soil with two kinds of materials selected from the quick lime, gypsum type solidifying agent such as hemihydrate gypsum and iron salt such as ferrous sulfate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、砒素を含む掘削土の処理方法に関する。   The present invention relates to a method for treating excavated soil containing arsenic.

砒素は、環境汚染の原因物質であることから、砒素を含む掘削土については、砒素の不溶化処理を行って、砒素の溶出量を所定の基準値以下、具体的には、「土壌の汚染に係る環境基準について」(環境庁告示第46号:平成3年8月23日)による検液の砒素濃度が0.01mg/l下となるようにしておく必要がある。   Arsenic is a causative agent for environmental pollution. For excavated soil containing arsenic, arsenic insolubilization is performed, and the amount of arsenic eluted is below a prescribed reference value. It is necessary to keep the arsenic concentration of the test solution below 0.01 mg / l according to “Environmental standards concerned” (Environmental Agency Notification No. 46: August 23, 1991).

また、掘削土は、一般的に強度が低いため、トラックなどに山積みすることが困難であることから、そのままの状態では、一般残土としてこれを搬出することが認められていない。そのため、砒素を含む掘削土を搬出してから処理する場合には、当該掘削土の固化処理を行って、掘削土の土質強度が所定の基準値以上(具体的には、コーン指数が200kN/m以上)となるようにしておくことが望ましい。 In addition, since excavated soil is generally low in strength, it is difficult to pile it up on a truck or the like, so that it is not allowed to be carried out as general residual soil as it is. Therefore, when the excavated soil containing arsenic is carried out and then treated, the excavated soil is solidified so that the soil strength of the excavated soil exceeds a predetermined reference value (specifically, the cone index is 200 kN / m 2 or more is desirable.

そこで、従来より、砒素を含む掘削土の処理方法として、砒素の不溶化処理を行うとともに、掘削土の固化処理を行う技術が知られており、例えば、砒素を含む掘削土に、生石灰を添加混合する技術、或いは、砒素を含む掘削土に、鉄塩、半水石膏、及び固化材(セメント系固化材、石灰系固化材、マグネシア系固化材から選ばれる一種以上)を添加混合する技術が知られている(特許文献1等参照)。
特開2006−167524号公報
Therefore, conventionally, as a method for treating excavated soil containing arsenic, a technique for insolubilizing arsenic and solidifying the excavated soil is known. For example, quick lime is added and mixed with excavated soil containing arsenic. Technology that adds or mixes iron salt, hemihydrate gypsum, and solidifying material (one or more types selected from cement-based solidified material, lime-based solidified material, and magnesia-based solidified material) to drilling soil containing arsenic. (See Patent Document 1, etc.).
JP 2006-167524 A

しかしながら、上記の従来技術の如く、砒素を含む掘削土に、強アルカリである生石灰を添加混合する場合には、処理後の掘削土が強アルカリ性を示すこととなる。そのため、例えば、処理後の掘削土の利用が制限されるなどの問題が生じてしまう。また、処理後の掘削土について、別途、中和処理を行う場合には、コストの増加を招いてしまう。   However, when the quick lime, which is a strong alkali, is added and mixed with excavated soil containing arsenic as in the above-described prior art, the excavated soil after treatment exhibits strong alkalinity. For this reason, for example, there arises a problem that the use of the excavated soil after processing is restricted. In addition, when the treated excavated soil is separately neutralized, the cost increases.

一方、上記の従来技術の如く、砒素を含む掘削土に、前述した三種類の材料(すなわち鉄塩、半水石膏、及び前記固化材)をすべて添加混合する場合には、材料数が多くなるため、処理コストが高くなってしまう。また、固化材として、セメント系固化材、石灰系固化材、マグネシア系固化材を用いた場合には、砒素を不溶化し、掘削土を固化することは可能であるものの、処理後の掘削土が強アルカリ性を示すことになってしまう。   On the other hand, when all of the above-mentioned three types of materials (that is, iron salt, hemihydrate gypsum, and the solidified material) are added and mixed with excavated soil containing arsenic as in the above-described conventional technology, the number of materials increases. Therefore, the processing cost becomes high. In addition, when cement-based solidified material, lime-based solidified material, and magnesia-based solidified material are used as the solidifying material, arsenic can be insolubilized and the excavated soil can be solidified. It will show strong alkalinity.

そこで、本発明は、このような課題に鑑みてなされたものであり、砒素の不溶化処理及び掘削土の固化処理を低コストで行うことが可能であり、しかも、処理後の掘削土が弱アルカリ性若しくは中性を示すこととなるような砒素を含む掘削土の処理方法を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and it is possible to perform insolubilization treatment of arsenic and solidification treatment of excavated soil at low cost, and the excavated soil after treatment is weakly alkaline. Alternatively, an object of the present invention is to provide a method for treating excavated soil containing arsenic that will be neutral.

上記課題を解決するために、本発明に係る砒素を含む掘削土の処理方法は、砒素を含む掘削土と、石膏系固化材を含むが生石灰及び鉄塩をいずれも含まない材料と、を混合させる工程を有することを特徴とする。   In order to solve the above problems, a method for treating excavated soil containing arsenic according to the present invention is a method of mixing excavated soil containing arsenic with a material containing a gypsum-based solidifying material but containing neither quick lime nor iron salt. It has the process to make it feature.

また、本発明に係る砒素を含む掘削土の処理方法は、砒素を含む掘削土と、生石灰、石膏系固化材、鉄塩から選ばれる二種類の材料と、を混合させる工程を有することを特徴とする。   The method for treating excavated soil containing arsenic according to the present invention includes a step of mixing excavated soil containing arsenic with two types of materials selected from quick lime, gypsum-based solidified material, and iron salt. And

前記石膏系固化材の一例として、半水石膏が挙げられる。但し、本発明において、前記石膏系固化材は、半水石膏に限定されるものではなく、これ以外にも、例えば、無水石膏及びこれを含む固化材などを使用することとしてもよい。   An example of the gypsum-based solidifying material is hemihydrate gypsum. However, in the present invention, the gypsum-based solidifying material is not limited to hemihydrate gypsum, and other than this, for example, anhydrous gypsum and a solidifying material containing the gypsum may be used.

前記鉄塩の一例として、硫酸第一鉄が挙げられる。但し、本発明において、前記鉄塩は、硫酸第一鉄に限定されるものではなく、これ以外にも、例えば、硫酸第二鉄、塩化第一鉄、塩化第二鉄、及びこれらを含む薬剤などを使用することとしてもよい。   An example of the iron salt is ferrous sulfate. However, in the present invention, the iron salt is not limited to ferrous sulfate, and besides this, for example, ferric sulfate, ferrous chloride, ferric chloride, and drugs containing these Etc. may be used.

本発明によれば、砒素の不溶化処理及び掘削土の固化処理を低コストで行うことが可能であり、しかも、処理後の掘削土が弱アルカリ性若しくは中性を示すこととなる。   According to the present invention, arsenic insolubilization treatment and excavated soil solidification treatment can be performed at low cost, and the excavated soil after treatment exhibits weak alkalinity or neutrality.

本発明者らは、上記課題を解決するために鋭意研究を行ったところ、砒素を含む掘削土の処理方法として、砒素を含む掘削土と、石膏系固化材を含むが生石灰及び鉄塩をいずれも含まない材料とを混合させ、又は、砒素を含む掘削土と、石膏系固化材、鉄塩、生石灰のうち二種類の材料と、を混合させることを考えた。そして、本発明者らは、次の確認試験によりその効果を確認し、本発明を完成するに至ったのである。   As a method for treating excavated soil containing arsenic, the present inventors have conducted intensive research to solve the above problems. It was considered to mix digging earth containing arsenic and two kinds of materials among gypsum-based solidified material, iron salt and quicklime. And the present inventors confirmed the effect by the following confirmation test, and came to complete this invention.

すなわち、本発明者らは、砒素を含む掘削土(以下「試料土」という。)に、表1に示す各種の材料を添加混合し、各混合土について、処理コスト(材料費)、含水比、土質強度(コーン指数)、pH及び砒素溶出量を分析した。その上で、本発明者らは、この分析結果を踏まえて、表1に示す各種の材料のうち、石膏系固化材を含むが生石灰及び鉄塩をいずれも含まない材料、及び、生石灰、石膏系固化材、鉄塩から選ばれる二種類の材料が、本発明の材料に適しているものと評価して、これらの材料を本発明に使用することとしたのである。要するに、本発明者らは、表1に示す材料のうち、「×」の評価を含まないもの(但し、従来技術に相当する最上段及び最下段に示す材料を除く)を、本発明の材料に使用することとしたのである。   That is, the present inventors added and mixed various materials shown in Table 1 to excavated soil containing arsenic (hereinafter referred to as “sample soil”), and for each mixed soil, processing cost (material cost), water content ratio. The soil strength (cone index), pH, and arsenic elution amount were analyzed. In addition, based on the results of the analysis, the present inventors, among the various materials shown in Table 1, include a gypsum-based solidifying material but no quick lime and no iron salt, and quick lime, gypsum. Two kinds of materials selected from a system solidifying material and an iron salt were evaluated as suitable for the material of the present invention, and these materials were used in the present invention. In short, the inventors of the present invention have included the materials shown in Table 1 that do not include the evaluation of “x” (excluding the materials shown in the uppermost and lowermost stages corresponding to the prior art). It was decided to use it.

以下、この確認試験について、より具体的に説明する。   Hereinafter, this confirmation test will be described more specifically.

<本発明の確認試験>
まず、本発明者らは、自然由来の砒素汚染土壌を現場から採取するとともに、採取した砒素汚染土壌を10mmの篩に通過させてから攪拌し、これを試料土とした。この試料土は、土質が砂混じりシルトであり、含水比が40%、pHが9.5、環告46号の砒素溶出量が0.02mg/lであった。次に、本発明者らは、この試料土に対して、表1に示す各種の材料を添加し、これらをミキサで3分間攪拌して混合させた。その際、表1に示す鉄塩としては、硫酸第一鉄を使用し、また、同表1に示す石膏系固化材としては、半水石膏を使用した。そして、本発明者らは、このようにして得られた各混合土を1時間放置してから、それぞれの含水比を測定した。
<Confirmation test of the present invention>
First, the present inventors collected naturally-derived arsenic-contaminated soil from the field, and the collected arsenic-contaminated soil was passed through a 10 mm sieve and stirred, and this was used as sample soil. This sample soil was silt mixed with sand, had a water content of 40%, a pH of 9.5, and an arsenic elution amount of Notification 46 was 0.02 mg / l. Next, the inventors added various materials shown in Table 1 to the sample soil, and mixed them by stirring for 3 minutes with a mixer. At that time, ferrous sulfate was used as the iron salt shown in Table 1, and hemihydrate gypsum was used as the gypsum-based solidifying material shown in Table 1. Then, the present inventors left each mixed soil thus obtained for 1 hour, and then measured each water content ratio.

次に、本発明者らは、直径10cmの鉄製モールドに各混合土を入れて、JISA1210に規定されているA法により締固めを行った。なお、締固めの際、ランマー質量は2.5kg、突固め層数は3、許容最大粒径は19mm、1層当たり突固め回数は25回とした。続いて、本発明者らは、締固めを行った混合土を気中密閉養生で1日間養生してから、これをモールドに充填し、充填された混合土にコンペネを挿入して、円の中心点で1箇所のコーン指数を測定した。さらに、本発明者らは、測定後の試料から少量の土を採取して、当該土についてpHを測定するとともに、環告46号溶出試験を行って砒素溶出量を測定した。これらの測定結果を表1に示す。また、本発明者らは、本確認試験における処理コスト(材料費)を算出しており、その算出結果についても表1に示した。   Next, the present inventors put each mixed soil into an iron mold having a diameter of 10 cm and compacted it by the method A defined in JIS A1210. At the time of compaction, the Rammer mass was 2.5 kg, the number of tamped layers was 3, the allowable maximum particle size was 19 mm, and the number of times of tamping per layer was 25 times. Subsequently, the present inventors cured the compacted mixed soil for one day by air-sealed curing, filled it with a mold, inserted a component into the filled mixed soil, One cone index was measured at the center point. Furthermore, the present inventors collected a small amount of soil from the sample after measurement, measured the pH of the soil, and conducted a ring No. 46 elution test to measure the amount of arsenic elution. These measurement results are shown in Table 1. In addition, the present inventors have calculated the processing costs (material costs) in this confirmation test, and the calculation results are also shown in Table 1.

Figure 2010012433
Figure 2010012433

表1に示す通り、生石灰、鉄塩をそれぞれ単独で用いた場合には、いずれの場合にも欠点が認められたが、石膏系固化材を単独で用いた場合、及び、生石灰、石膏系固化材、鉄塩のうち二種類の材料を併用した場合には、いずれの場合にも、これらの欠点が克服若しくは低減されることとなった。しかし、三種類の材料をすべて併用した場合には、土質強度の改善効果、pH、及び砒素の不溶化効果の点においては、優れた効果が認められることになると推測されるものの、材料数が多くなって材料費が高くなるため、コストの点において欠点が認められることになってしまう。   As shown in Table 1, when quick lime and iron salt were each used alone, defects were observed in either case, but when gypsum solidified material was used alone, and quick lime and gypsum solidified. When two kinds of materials, ie, iron and iron salt, were used in combination, these disadvantages were overcome or reduced. However, when all three types of materials are used in combination, it is estimated that excellent effects will be observed in terms of soil strength improvement effect, pH, and arsenic insolubilization effect, but the number of materials is large. As a result, the material cost becomes high, so that disadvantages are recognized in terms of cost.

このような表1の結果により、本発明の如く、砒素を含む掘削土と、石膏系固化材を含むが生石灰及び鉄塩をいずれも含まない材料と、を混合させ、又は、砒素を含む掘削土と、生石灰、石膏系固化材、鉄塩から選ばれる二種類の材料と、を混合させることにより、砒素の不溶化処理及び掘削土の固化処理を低コストで行うことが可能であり、しかも、処理後の掘削土が弱アルカリ性若しくは中性を示すことになるものと推測される。   According to the results shown in Table 1, the excavation soil containing arsenic and the material containing gypsum solidified material but not containing quicklime and iron salt are mixed or excavation containing arsenic as in the present invention. By mixing soil with two kinds of materials selected from quicklime, gypsum-based solidifying material, and iron salt, it is possible to perform insolubilization treatment of arsenic and solidification treatment of excavated soil at low cost, It is estimated that the excavated soil after the treatment will show weak alkalinity or neutrality.

<本発明の活用形態>
さらに、本発明者らは、表1の結果を踏まえて、次のように本発明を活用することとした。すなわち、本発明者らは、砒素を含む掘削土の性質に応じて、生石灰を単独で使用する従来の技術(下記(1)を参照)と、本発明(下記(2)及び(3)を参照)とを適宜組み合わせることによって、より効果的且つ柔軟に、当該掘削土の処理を行うことが可能であると考えたのである。
<Utilization form of the present invention>
Furthermore, the present inventors decided to utilize this invention as follows based on the result of Table 1. That is, the inventors of the present invention (see (1) below) and the present invention (see (2) and (3) below), using conventional lime alone (see (1) below) according to the nature of the excavated soil containing arsenic. It is considered that the excavated soil can be treated more effectively and flexibly by appropriately combining (see Fig. 1).

具体的には、(1)まず、処理土のpHが高くても(例えばpHが12.5)、その後の処理において問題にならない場合には、砒素を含む掘削土に、生石灰を添加して、これらを混合させることとする。これにより、掘削土の土質がかなり悪い(すなわち軟弱な)ときであっても、土質強度を改善することが可能となる。他方、掘削土の土質が良いときには、生石灰の添加量が50kg/m以下であっても、土質強度を改善することが可能となる。また、生石灰は、土質強度の改善効果のみならず、砒素の不溶化効果にも優れているため、砒素の溶出量が比較的高い掘削土であったとしても、砒素の不溶化効果を十分に期待し得る。但し、この場合には、処理土のpHが高アルカリ性を示すことになるため、処理場が限定されてしまうものの、処理コストを低く抑えることができる。 Specifically, (1) First, when the pH of the treated soil is high (for example, pH is 12.5) and there is no problem in the subsequent treatment, quick lime is added to the excavated soil containing arsenic. These are mixed. This makes it possible to improve the soil strength even when the soil quality of the excavated soil is considerably poor (that is, soft). On the other hand, when the soil quality of excavated soil is good, the soil strength can be improved even if the amount of quicklime added is 50 kg / m 3 or less. In addition, quick lime is not only effective in improving soil strength, but also excellent in insolubilizing arsenic, so even if it is excavated soil with a relatively high arsenic elution amount, it can be expected to sufficiently insolubilize arsenic. obtain. However, in this case, since the pH of the treated soil exhibits high alkalinity, the treatment cost can be kept low although the treatment site is limited.

(2)また、処理土のpHについて中性域であることが要求される場合には、砒素を含む掘削土に、石膏系固化材を添加し、又は、石膏系固化材及び鉄塩(例えば、硫酸第一鉄)を添加して、これらを混合させることとする。このように処理すると、掘削土の土質が軟弱なときには、石膏系固化材を200kg/m以上添加する必要があるものの、掘削土の土質が良いときには、石膏系固化材の添加量を100kg/m程度に抑えることが可能となる。そして、石膏系固化材を単独で使用する場合には、掘削土のpHを中性に維持しつつ、砒素の不溶化を行うことが可能となるとともに、土質強度を改善することも可能となる。但し、この場合には、砒素の不溶化効果が小さいため、砒素溶出量の少ない掘削土を適用対象とする。また、この場合には、土質強度の改善効果が小さく、また、石膏系固化材の添加量も多くなるためコストが若干高くなる。一方、石膏系固化材及び鉄塩を併用する場合には、砒素の不溶化効果が大きくなるため、砒素溶出量が比較的高い掘削土であっても適用対象となる。但し、この場合には、石膏系固化材を単独で使用する場合と比べ、土質強度の改善効果が低くなり、しかも、単価(特に硫酸第一鉄の単価)が高いためコストが高くなる。 (2) When the pH of the treated soil is required to be in a neutral range, a gypsum-based solidifying material is added to the excavated soil containing arsenic, or a gypsum-based solidifying material and an iron salt (for example, , Ferrous sulfate) is added and mixed. When treated in this manner, when the soil quality of the excavated soil is soft, it is necessary to add 200 kg / m 3 or more of the gypsum-based solidifying material, but when the soil quality of the excavated soil is good, the addition amount of the gypsum-based solidifying material is 100 kg / It can be suppressed to about m 3 . When the gypsum-based solidifying material is used alone, arsenic can be insolubilized while maintaining the pH of the excavated soil neutral, and the soil strength can be improved. However, in this case, since the insolubilizing effect of arsenic is small, excavated soil with a small amount of arsenic elution is targeted. In this case, the effect of improving the soil strength is small, and the amount of the gypsum-based solidifying material is increased, so that the cost is slightly increased. On the other hand, when a gypsum-based solidifying material and an iron salt are used in combination, the effect of insolubilizing arsenic is increased, so that even digging soil with a relatively high arsenic elution amount is applicable. However, in this case, the effect of improving the soil strength is lower than in the case where the gypsum-based solidifying material is used alone, and the unit price (particularly the unit price of ferrous sulfate) is high, and the cost is increased.

(3)さらに、処理土のpHが極端に高くなければ問題にならない場合(例えば、処理土のpHが12以下であればよい場合)には、砒素を含む掘削土に、生石灰及び鉄塩(例えば、硫酸第一鉄)を添加し、又は、生石灰及び石膏系固化材(例えば、石膏)を添加して、これらを混合させることとする。例えば、硫酸第一鉄を生石灰量に対して1倍以上添加するとともに、石膏を生石灰量に対して3倍以上添加することとすれば、処理土のpHを12以下にすることが可能である。このように、生石灰と鉄塩若しくは石膏系固化材とを併用する場合には、生石灰を単独で使用する場合と比べ、土質強度の改善効果は低下するものの、生石灰を25kg/m程度確保すれば、土質強度を改善することが可能となる。そして、生石灰と鉄塩とを併用する場合には、処理土のpHが11〜12付近を示すことになるものの、砒素の不溶化効果及び土質強度の改善効果は、いずれも大きくなる。但し、この場合には、鉄塩の単価(特に硫酸第一鉄の単価)が高いためコストは高い。また、生石灰と石膏系固化材とを併用する場合にも、処理土のpHが11〜12を示すことになるものの、砒素の不溶化効果及び土質強度の改善効果は、いずれも大きくなる。しかも、この場合には、石膏系固化材の単価が安いため低コストとなる。 (3) Furthermore, when there is no problem unless the pH of the treated soil is extremely high (for example, when the pH of the treated soil only needs to be 12 or less), the lime and the iron salt ( For example, ferrous sulfate) is added, or quick lime and a gypsum-based solidifying material (for example, gypsum) are added, and these are mixed. For example, if ferrous sulfate is added 1 time or more with respect to the amount of quick lime and gypsum is added 3 times or more with respect to the amount of quick lime, the pH of the treated soil can be made 12 or less. . Thus, when used in combination with quicklime and an iron salt or gypsum-based solidifying material, compared with the case of using quick lime alone, although the effect of improving the soil strength is reduced, by ensuring the order of 25 kg / m 3 quicklime For example, the soil strength can be improved. And when using quicklime and iron salt together, although the pH of treated soil will show the 11-11 vicinity, both the insolubilization effect of arsenic and the improvement effect of soil strength will become large. However, in this case, since the unit price of iron salt (particularly the unit price of ferrous sulfate) is high, the cost is high. Moreover, also when using quicklime and a gypsum-type solidification material together, although the pH of treated soil will show 11-12, both the insolubilization effect of arsenic and the improvement effect of soil strength become large. In addition, in this case, the unit price of the gypsum-based solidifying material is low, so the cost is low.

Claims (2)

砒素を含む掘削土と、石膏系固化材を含むが生石灰及び鉄塩をいずれも含まない材料と、を混合させる工程を有することを特徴とする砒素を含む掘削土の処理方法。   A method for treating excavated soil containing arsenic, comprising a step of mixing excavated soil containing arsenic with a material containing a gypsum-based solidifying material but not containing quicklime and iron salt. 砒素を含む掘削土と、生石灰、石膏系固化材、鉄塩から選ばれる二種類の材料と、を混合させる工程を有することを特徴とする砒素を含む掘削土の処理方法。   A method for treating excavated soil containing arsenic, comprising a step of mixing excavated soil containing arsenic with two kinds of materials selected from quick lime, a gypsum-based solidified material, and an iron salt.
JP2008176031A 2008-07-04 2008-07-04 Method of treating dug soil containing arsenic Pending JP2010012433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176031A JP2010012433A (en) 2008-07-04 2008-07-04 Method of treating dug soil containing arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176031A JP2010012433A (en) 2008-07-04 2008-07-04 Method of treating dug soil containing arsenic

Publications (1)

Publication Number Publication Date
JP2010012433A true JP2010012433A (en) 2010-01-21

Family

ID=41699076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176031A Pending JP2010012433A (en) 2008-07-04 2008-07-04 Method of treating dug soil containing arsenic

Country Status (1)

Country Link
JP (1) JP2010012433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162712A (en) * 2010-02-12 2011-08-25 Ohbayashi Corp Treatment material of arsenic-contaminated soil, and treatment method
JP2013017981A (en) * 2011-07-14 2013-01-31 Kurita Water Ind Ltd Detoxification method of solid waste containing heavy metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162712A (en) * 2010-02-12 2011-08-25 Ohbayashi Corp Treatment material of arsenic-contaminated soil, and treatment method
JP2013017981A (en) * 2011-07-14 2013-01-31 Kurita Water Ind Ltd Detoxification method of solid waste containing heavy metal

Similar Documents

Publication Publication Date Title
Wang et al. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil
Chen et al. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill
Li et al. Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends
JP5728845B2 (en) Method for estimating strength of modified dredged soil and method for modifying dredged soil
JP2012031618A5 (en)
JP6032013B2 (en) Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
JP2006231208A (en) Method for solidifying soft soil
JP2016112540A (en) Water sealing material
JP2010012433A (en) Method of treating dug soil containing arsenic
JP7133281B2 (en) Dredged soil modification method
JP2019059886A (en) Solidification material
JP2011162712A (en) Treatment material of arsenic-contaminated soil, and treatment method
WO2019138538A1 (en) Method for improving ground
JP2005272546A (en) Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
JP2005007256A (en) Contaminated soil insolubilization solidification agent
JP6619193B2 (en) Residual soil processing material and processing method of residual soil
JP5718562B2 (en) Soil stabilization treatment material and soil stabilization treatment method using the same
JP2001040652A (en) Soil improvement method and solidifying material
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JP6679030B1 (en) Method for modifying mud soil such as soil mixed with drilling additives
JP2006225475A (en) Solidifier and method for improving solidification of soil by using the solidifier
CN105195494A (en) Pretreating agent for fluorine-containing solid waste slag and preparing and using method thereof
JPH0827462A (en) Refilling material having fluidity
JP6331514B2 (en) Slightly acidic solidification method for soil
CN107162516A (en) A kind of curing agent and its application process for curing process discarded slurry